1
|
Peng B, Du F, Dou S, Yang Y, Zhou M, Zhao S, Fang Y. Ratio-fluorescence detection of propyl gallate based on MnOOH nanoflakes and β-cyclodextrin modified quantum dots. Food Chem 2025; 484:144361. [PMID: 40253730 DOI: 10.1016/j.foodchem.2025.144361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/29/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
A ratiometric fluorescent probe was developed for the first time to quantitatively analyze propyl gallate (PG). The probe utilizes the fluorescence enhancement of Schiff base formed by PG and polyethyleneimine (PEI) catalyzed by MnOOH nanosheets, and the quenching effect of PG on quantum dots modified by β-cyclodextrin. Upon excitation at 350 nm, the fluorescence intensity of the dual-emission probe increased at 470 nm and decreased at 595 nm. The probe was successfully employed for the determination of PG in food samples in the concentration range of 0.1-35 μg/mL. The limit of detection (LOD) and the limit of quantitation (LOQ) were determined to be 0.023 μg/mL and 0.077 μg/mL, respectively. The recovery rate was found to range from 88.5 % to 103 % across three levels of spiked experiments. In conclusion, the present study provides a highly selective and sensitive analytical method for the detection of PG in real samples.
Collapse
Affiliation(s)
- Bo Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| | - Fengxiang Du
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Simin Dou
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yuying Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Min Zhou
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Shengguo Zhao
- Lanzhou Customs District P. R. China, Lanzhou 730070, PR China
| | - Yanjun Fang
- Tianjin Institute of Environment and Operational Medicine, the Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, PR China.
| |
Collapse
|
2
|
Georgiopoulou E, Kavetsou E, Alexandratou E, Detsi A, Politopoulos K. Cyclodextrins as nanocarriers of hydrophobic silicon phthalocyanine dichloride for the enhancement of photodynamic therapy effect. J Biomater Appl 2025; 39:933-951. [PMID: 39644183 DOI: 10.1177/08853282241306858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
In this study, silicon phthalocyanine dichloride (SiCl2Pc) was successfully encapsulated in β-cyclodextrin (β-CD) and hydroxy-propyl-β-cyclodextrin (HP-β-CD) using the kneading method. Dynamic Light Scattering (DLS) demonstrated complexes of various hydrodynamic diameters with moderate stability in aqueous solutions. Their structural characterization by Infrared Spectroscopy (FT- IR) indicated that a part of phthalocyanine is located inside the cyclodextrin cavity. Both photophysical and photochemical studies showed that phthalocyanine's encapsulation in cyclodextrins increased its aqueous solubility. The photodynamic studies against A431 cancer cell line indicated that the complexes are more effective than pure SiCl2Pc. Pure SiCl2Pc's photodynamic effect is characterized as dose-dependent, whereas both complexes presented a biphasic dose-response photodynamic effect. For the highest energy dose of 3.24 J/cm2, pure SiCl2Pc induced mild cell toxicity. SiCl2Pc-β-CD complex was the most promising photosensitizer, exhibiting the highest photodynamic effect when irradiated at 2.16 J/cm2.
Collapse
Affiliation(s)
- Eleni Georgiopoulou
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, Zografou Campus, National Technical University of Athens, Athens, Greece
| | - Eleni Kavetsou
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Eleni Alexandratou
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, Zografou Campus, National Technical University of Athens, Athens, Greece
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Konstantinos Politopoulos
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, Zografou Campus, National Technical University of Athens, Athens, Greece
| |
Collapse
|
3
|
Saffarionpour S, Diosady LL. Cyclodextrins and their potential applications for delivering vitamins, iron, and iodine for improving micronutrient status. Drug Deliv Transl Res 2025; 15:26-65. [PMID: 38671315 DOI: 10.1007/s13346-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Cyclodextrins (CDs) have been investigated as potential biopolymeric carriers that can form inclusion complexes with numerous bioactive ingredients. The inclusion of micronutrients (e.g. vitamins or minerals) into cyclodextrins can enhance their solubility and provide oxidative or thermal stability. It also enables the formulation of products with extended shelf-life. The designed delivery systems with CDs and their inclusion complexes including electrospun nanofibers, emulsions, liposomes, and hydrogels, show potential in enhancing the solubility and oxidative stability of micronutrients while enabling their controlled and sustained release in applications including food packaging, fortified foods and dietary supplements. Nano or micrometer-sized delivery systems capable of controlling burst release and permeation, or moderating skin hydration have been reported, which can facilitate the formulation of several personal and skin care products for topical or transdermal delivery of micronutrients. This review highlights recent developments in the application of CDs for the delivery of micronutrients, i.e. vitamins, iron, and iodine, which play key roles in the human body, emphasizing their existing and potential applications in the food, pharmaceuticals, and cosmeceuticals industries.
Collapse
Affiliation(s)
| | - Levente L Diosady
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Man DE, Nițu ET, Temereancă C, Sbârcea L, Ledeți A, Ivan D, Ridichie A, Andor M, Jîjie AR, Barvinschi P, Rusu G, Văruţ RM, Ledeți I. Host-Guest Complexation of Olmesartan Medoxomil by Heptakis(2,6-di-O-methyl)-β-cyclodextrin: Compatibility Study with Excipients. Pharmaceutics 2024; 16:1557. [PMID: 39771536 PMCID: PMC11677897 DOI: 10.3390/pharmaceutics16121557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Olmesartan medoxomil (OLM) is the prodrug of olmesartan, an angiotensin II type 1 receptor blocker that has antihypertensive and antioxidant activities and renal protective properties. It exhibits low water solubility, which leads to poor bioavailability and limits its clinical potential. To improve the solubility of OLM, a host-guest inclusion complex (IC) between heptakis(2,6-di-O-methyl)-β-cyclodextrin (DMβCD) and the drug substance was obtained. Along with active substances, excipients play a crucial role in the quality, safety, and efficacy of pharmaceutical formulations. Therefore, the compatibility of OLM/DMβCD IC with several pharmaceutical excipients was evaluated. Methods: IC was characterized in both solid and liquid states, employing thermoanalytical techniques, universal-attenuated total reflectance Fourier-transform infrared spectroscopy, powder X-ray diffractometry, UV spectroscopy, and saturation solubility studies. Compatibility studies were carried out using thermal and spectroscopic methods to assess potential physical and chemical interactions. Results: The 1:1 OLM:DMβCD stoichiometry ratio and the value of the apparent stability constant were determined by means of the phase solubility method that revealed an AL-type diagram. The binary system showed different physicochemical characteristics from those of the parent entities, supporting IC formation. The geometry of the IC was thoroughly investigated using molecular modeling. Compatibility studies revealed a lack of interaction between the IC and all studied excipients at ambient conditions and the thermally induced incompatibility of IC with magnesium stearate and α-lactose monohydrate. Conclusions: The results of this study emphasize that OLM/DMβCD IC stands out as a valuable candidate for future research in the development of new pharmaceutical formulations, in which precautions should be considered in choosing magnesium stearate and α-lactose monohydrate as excipients if the manufacture stage requires temperatures above 100 °C.
Collapse
Affiliation(s)
- Dana Emilia Man
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (D.E.M.); (M.A.)
| | - Ema-Teodora Nițu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Claudia Temereancă
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (G.R.)
| | - Laura Sbârcea
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Adriana Ledeți
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Denisa Ivan
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Amalia Ridichie
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (G.R.)
| | - Minodora Andor
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (D.E.M.); (M.A.)
| | - Alex-Robert Jîjie
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
| | - Paul Barvinschi
- Faculty of Physics, West University of Timisoara, 4 Vasile Parvan Blvd, 300223 Timisoara, Romania;
| | - Gerlinde Rusu
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (G.R.)
| | - Renata-Maria Văruţ
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, 2-4 Petru Rares Str., 200349 Craiova, Romania;
| | - Ionuț Ledeți
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (G.R.)
| |
Collapse
|
5
|
Musuc AM. Cyclodextrins: Advances in Chemistry, Toxicology, and Multifaceted Applications. Molecules 2024; 29:5319. [PMID: 39598708 PMCID: PMC11596893 DOI: 10.3390/molecules29225319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Cyclodextrins (CDs) have garnered significant attention in various scientific and industrial fields due to their unique ability to form inclusion complexes with a wide range of guest molecules. This review comprehensively explores the latest advancements in cyclodextrin chemistry, focusing on the synthesis and characterization of cyclodextrin derivatives and their inclusion complexes. This review examines the biological activities of cyclodextrins, highlighting their pharmacological properties and pharmacokinetics, and discussing their promising applications in drug delivery systems. Furthermore, the industrial utilization of cyclodextrins, including their role in nanomaterials and nanostructured coatings, as well as their potential in environmental remediation, are explored. The present research also addresses the critical aspect of toxicity, particularly concerning cyclodextrin inclusion complexes, providing an overview of the current understanding and safety considerations. Through a multidisciplinary approach, the aim is to present a complete view of cyclodextrins, underscoring their versatility and impact across various domains.
Collapse
Affiliation(s)
- Adina Magdalena Musuc
- Institute of Physical Chemistry-Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|
6
|
Gościniak A, Lainé E, Cielecka-Piontek J. How Do Cyclodextrins and Dextrans Affect the Gut Microbiome? Review of Prebiotic Activity. Molecules 2024; 29:5316. [PMID: 39598705 PMCID: PMC11596334 DOI: 10.3390/molecules29225316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
The modulation of the gut microbiome through dietary components has garnered significant attention for its potential health benefits. Prebiotics, non-digestible food ingredients that promote the growth of beneficial gut bacteria, play a crucial role in maintaining gut health, enhancing immune function, and potentially preventing various metabolic and inflammatory disorders. This review explores the prebiotic activity of cyclodextrins and dextrans, focusing on their ability to influence gut microbiota composition and function. Both cyclodextrins and dextrans have demonstrated the capacity to promote the growth of beneficial bacterial populations, while also impacting short-chain fatty acid production, crucial for gut health.
Collapse
Affiliation(s)
- Anna Gościniak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Emmanuelle Lainé
- UMR 454 INRAe-UCA, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
7
|
Taha AG, Attia MS, Abdelaziz AM. Modification of chitosan-ethyl formate polymer with zinc oxide nanoparticles and β-CD to minimize the harmful effects of Alternaria early blight on Vicia faba. Int J Biol Macromol 2024; 282:137246. [PMID: 39505187 DOI: 10.1016/j.ijbiomac.2024.137246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/09/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Derivatives of chitosan-ethyl formate polymers (Chs-EF) show promise as biologically relevant materials. The novelty of this study lies in the innovative use of Chs-EF doped with zinc oxide nanoparticles and beta-cyclodextrin, which significantly enhances the polymers' protective activities against Alternaria early blight disease in Vicia faba by improving both disease resistance and plant health. After doping Chs-EF with zinc oxide nanoparticles (ZnONPs) and inserting it into the beta-cyclodextrin (CD), two products emerged: Chs-EF/ZnONPs and Chs-EF/CD. Using βCD and ZnONPs to modify the Chs-EF polymer improves the optical properties of the generated polymers. Also, the energy gab values of the modified polymers (Chs-EF/ZnONPs and Chs-EF/βCD) were 3.3 and 3.7 eV, respectively, while energy gab value of the Chs-EF polymer was 3.9 eV. In this study, the effects of ZnONPs, chitosan, β-CD, and Chs-EF/ZnONPs on Alternaria solani early blight disease in Vicia faba plants were investigated. The treatments were evaluated based on disease symptoms and a disease index (DI) to assess their ability to protect against Alternaria early blight disease blight. The results show that the modified polymer with ZnONPs and beta-cyclodextrin (β-CD) and the modified polymer with ZnONPs (Chs-EF/ZnO NPs) provided the best protection, with DI values of 25 % and 12.5 %, respectively. Furthermore, it was discovered that the levels of carotenoids, chlorophyll a, and chlorophyll b in the infected plants had dropped by 52.6 %, 69.2 %, and 36.1 %, respectively. Chs-EF/ZnONPs were the most effective treatment, showing significant increases in the contents of chlorophyll a and b in infected plants by 120.8 % and 225.4 %, respectively. The study revealed that Chs-EF/ZnONPs exhibited a 131 % increase in the total phenolic content of plants, peroxidase (POD) activity (110.6 %), and a 347 % increase in polyphenol oxidase (PPO) activity, respectively, compared to healthy plants. Malondialdhyde (MDA) decreased by 50.7 %, 49.7 %, 43.4 %, 36.6 %, 31.7 %, and 7.5 % in response to Chs-EF/ZnONPs, Chs-EF/β-CD, Chs-EF, ZnONPs, Chitosan, and β-CD, respectively. Also, application of Chs-EF/ZnONPs, Chs-EF/β-CD, Chs-EF, ZnONPs, Chitosan, and β-CD reduced the production of H2O2 by 77.5 %, 62.8 %, 62.5 %, 39.6 %, 22 %, and 15.1 %, respectively, compared to infected controls. We recommend considering these substances as promising candidates for agricultural use, as they may effectively serve as control agents against early blight caused by Alternaria solani.
Collapse
Affiliation(s)
- Ahmed G Taha
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| | - Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| |
Collapse
|
8
|
Sharapova AV, Ol’khovich MV, Blokhina SV. Integrative approach for improved dofetilide solubility using β-cyclodextrin and two its substituted derivatives: Solutions and solid dispersions. Colloids Surf A Physicochem Eng Asp 2024; 698:134602. [DOI: 10.1016/j.colsurfa.2024.134602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Rajamohan R, Kamaraj E, Muthuraja P, Murugavel K, Govindasamy C, Prabakaran DS, Malik T, Lee YR. Enhancing ketoprofen's solubility and anti-inflammatory efficacy with safe methyl-β-cyclodextrin complexation. Sci Rep 2024; 14:21516. [PMID: 39277667 PMCID: PMC11401905 DOI: 10.1038/s41598-024-71615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
Improved solubility and anti-inflammatory (AI) properties are imperative for enhancing the effectiveness of poorly water-soluble drugs, particularly non-steroidal anti-inflammatory drugs (NSAIDs). To address these critical issues, our focus is on obtaining NSAID materials in the form of inclusion complexes (IC) with methyl-beta-cyclodextrin (MCD). Ketoprofen (KTP) is selected as the NSAID for this study due to its potency in treating various types of pain, inflammation, and arthritis. Our objective is to tackle the solubility challenge followed by enhancing the AI activity. Confirmation of complexation is achieved through observing changes in the absorbance and fluorescence intensities of KTP upon the addition of MCD, indicating a 1:1 stoichiometric ratio. Phase solubility studies demonstrated improved dissolution rates after the formation of ICs. Further analysis of the optimized IC is conducted using FT-IR, NMR, FE-SEM, and TG/DTA techniques. Notable shifts in chemical shift values and morphological alterations on the surface of the ICs are observed compared to their free form. Most significantly, the IC exhibited superior AI and anti-arthritic (AA) activity compared to KTP alone. These findings highlight the potential of ICs in expanding the application of KTP, particularly in pharmaceuticals, where enhanced stability and efficacy of natural AIs and AAs are paramount.
Collapse
Affiliation(s)
- Rajaram Rajamohan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Eswaran Kamaraj
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Perumal Muthuraja
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kuppusamy Murugavel
- PG & Research Department of Chemistry, Government Arts College, Chidambaram, 608 102, Tamil Nadu, India
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, 11433, Riyadh, Saudi Arabia
| | - D S Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro Seowon-gu, Cheongju, 28644, Republic of Korea
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, 603203, Tamil Nadu, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
- Division of Research & Development, Lovely Professional University, Phagwara, India, 144411.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
10
|
Huang J, Wang X, Huang T, Yang Y, Tu J, Zou J, Yang H, Yang R. Application of sodium sulfobutylether-β-cyclodextrin based on encapsulation. Carbohydr Polym 2024; 333:121985. [PMID: 38494236 DOI: 10.1016/j.carbpol.2024.121985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Sodium Sulfobutylether-β-cyclodextrin (SBE-β-CD) is a derivative of β-cyclodextrin, characterized by its stereo structure, which closely resembles a truncated cone with a hydrophobic internal cavity. The solubility of insoluble substances within the hydrophobic cavity is significantly enhanced, reducing contact between the guest and the environment. Consequently, SBE-β-CD is frequently employed as a co-solvent and stabilizer. As the research progresses, it has been observed that the inclusion of SBE-β-CD is reversible and competitive. Besides, some inclusion complexes undergo distinct physicochemical property alterations compared to the guests. Additionally, certain guests exhibit varying inclusions with SBE-β-CD at different concentrations. These features have contributed to the expanding applications. SBE-β-CD finds widespread application in pharmaceutics as a protective agent and pKa regulator, in pharmaceutical analysis as a chiral substance separator, and in biomedical engineering for encapsulating dyes and modifying sensors. The article will elaborate in detail on the physicochemical properties of SBE-β-CD, encapsulation principles, and factors influencing the formation of inclusion complexes. Furthermore, the review focuses on the application of SBE-β-CD through encapsulation in pharmaceutics, pharmaceutical analysis, and biomedical engineering. Finally, the prospects and potential applications of SBE-β-CD are discussed.
Collapse
Affiliation(s)
- Jiaqi Huang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Xiaofeng Wang
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Ting Huang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Yang Yang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Jiasheng Tu
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jian Zou
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Huiying Yang
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China.
| | - Rui Yang
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China.
| |
Collapse
|
11
|
Alsadun NS, Alfadil AA, Elbashir AA, Suliman FO, Ali Omar MM, Ahmed AY. Polyaromatic Hydrocarbon Inclusion Complexes with 2-Hydroxylpropyl-β/γ-Cyclodextrin: Molecular Dynamic Simulation and Spectroscopic Studies. Molecules 2024; 29:2535. [PMID: 38893410 PMCID: PMC11173409 DOI: 10.3390/molecules29112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
In aqueous and solid media, 2-HP-β/γ-CD inclusion complexes with poly aromatic hydrocarbon (PAH) Phenanthrene (PHN), Anthracene (ANT), Benz(a)pyrene (BaP), and Fluoranthene (FLT) were investigated for the first time. The inclusion complexes were characterized and investigated using fluorescence and 1HNMR spectroscopy. The most prevalent complexes consisting of both guests and hosts were those with a 1:1 guest-to-host ratio. The stability constants for the complexes of PHN with 2-HP-β-CD and 2-HP-γ-CD were 85 ± 12 M-1 and 49 ± 29 M-1, respectively. Moreover, the stability constants were found to be 502 ± 46 M-1 and 289 ± 44 M-1 for the complexes of ANT with both hosts. The stability constants for the complexes of BaP with 2-HP-β-CD and 2-HP-γ-CD were (1.5 ± 0.02) × 103 M-1 and (9.41 ± 0.03) × 103 M-1, respectively. The stability constant for the complexes of FLT with 2-HP-β-CD was (1.06 ± 0.06) × 103 M-1. However, FLT was observed to form a weak complex with 2-HP-γ-CD. Molecular dynamic (MD) simulations were used to investigate the mechanism and mode of inclusion processes, and to monitor the atomic-level stability of these complexes. The analysis of MD trajectories demonstrated that all guests formed stable inclusion complexes with both hosts throughout the duration of the simulation time, confirming the experimental findings. However, the flexible Hydroxypropyl arms prevented the PAHs from being encapsulated within the cavity; however, a stable exclusion complex was observed. The main forces that influenced the complexation included van der Waals interactions, hydrophobic forces, and C-H⋯π interaction, which contribute to the stability of these complexes.
Collapse
Affiliation(s)
- Norah S. Alsadun
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Amira A. Alfadil
- Department of Chemistry, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khoud 123, Oman
- Department of Chemistry, Faculty of Science, University of Khartoum, Khartoum 11114, Sudan
- Department of Scientific Laboratories, College of Science, Sudan University of Science and Technology, Khartoum 11115, Sudan
| | - Abdalla A. Elbashir
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Chemistry, Faculty of Science, University of Khartoum, Khartoum 11114, Sudan
| | - FakhrEldin O. Suliman
- Department of Chemistry, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khoud 123, Oman
| | - Mei Musa Ali Omar
- Central Laboratory, Department of Chemistry, Ministry of Higher Education & Scientific Research, Khartoum 7099, Sudan;
| | - Amel Y. Ahmed
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
12
|
Andor M, Temereancă C, Sbârcea L, Ledeți A, Man DE, Mornoș C, Ridichie A, Cîrcioban D, Vlase G, Barvinschi P, Caunii A, Văruţ RM, Trandafirescu CM, Buda V, Ledeți I, Rădulescu M. Host-Guest Interaction Study of Olmesartan Medoxomil with β-Cyclodextrin Derivatives. Molecules 2024; 29:2209. [PMID: 38792072 PMCID: PMC11123892 DOI: 10.3390/molecules29102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Olmesartan medoxomil (OLM) is a selective angiotensin II receptor antagonist used in the treatment of hypertension. Its therapeutic potential is limited by its poor water solubility, leading to poor bioavailability. Encapsulation of the drug substance by two methylated cyclodextrins, namely randomly methylated β-cyclodextrin (RM-β-CD) and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD), was carried out to overcome the limitation related to OLM solubility, which, in turn, is expected to result in an improved biopharmaceutical profile. Supramolecular entities were evaluated by means of thermoanalytical techniques (TG-thermogravimetry; DTG-derivative thermogravimetry), spectroscopic methods including powder X-ray diffractometry (PXRD), universal-attenuated total reflectance Fourier-transform infrared (UATR-FTIR) and UV spectroscopy, saturation solubility studies, and by a theoretical approach using molecular modeling. The phase solubility method reveals an AL-type diagram for both inclusion complexes, indicating a stoichiometry ratio of 1:1. The values of the apparent stability constant indicate the higher stability of the host-guest system OLM/RM-β-CD. The physicochemical properties of the binary systems are different from those of the parent compounds, emphasizing the formation of inclusion complexes between the drug and CDs when the kneading method was used. The molecular encapsulation of OLM in RM-β-CD led to an increase in drug solubility, thus the supramolecular adduct can be the subject of further research to design a new pharmaceutical formulation containing OLM, with improved bioavailability.
Collapse
Affiliation(s)
- Minodora Andor
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (M.A.); (D.E.M.); (C.M.); (M.R.)
| | - Claudia Temereancă
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (I.L.)
| | - Laura Sbârcea
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Adriana Ledeți
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Dana Emilia Man
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (M.A.); (D.E.M.); (C.M.); (M.R.)
| | - Cristian Mornoș
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (M.A.); (D.E.M.); (C.M.); (M.R.)
| | - Amalia Ridichie
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Denisa Cîrcioban
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Gabriela Vlase
- Research Centre for Thermal Analysis in Environmental Problems, West University of Timisoara, Pestalozzi Street 16, 300115 Timisoara, Romania;
| | - Paul Barvinschi
- Faculty of Physics, West University of Timisoara, 4 Vasile Parvan Blvd, 300223 Timisoara, Romania;
| | - Angela Caunii
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Renata-Maria Văruţ
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania;
| | - Cristina Maria Trandafirescu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
| | - Valentina Buda
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
| | - Ionuț Ledeți
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (I.L.)
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Matilda Rădulescu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (M.A.); (D.E.M.); (C.M.); (M.R.)
| |
Collapse
|
13
|
Enggi CK, Sulistiawati S, Himawan A, Raihan M, Iskandar IW, Saputra RR, Rahman L, Yulianty R, Manggau MA, Donelly RF, Aswad M, Permana AD. Application of Biomaterials in the Development of Hydrogel-Forming Microneedles Integrated with a Cyclodextrin Drug Reservoir for Improved Pharmacokinetic Profiles of Telmisartan. ACS Biomater Sci Eng 2024; 10:1554-1576. [PMID: 38407993 DOI: 10.1021/acsbiomaterials.3c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Telmisartan (TEL) is a promising antihypertensive agent among other angiotensin receptor blockers. However, its oral application is limited by its poor water solubility. This study presents the successful utilization of biomaterial-based hydrogel-forming microneedles integrated with a direct compressed tablet reservoir (HFMN-DCT) for the transdermal delivery of telmisartan in the treatment of hypertension. The combination of PVP, PVA, and tartaric acid was used in the HFMN formulation. A range of cross-linking temperatures and times were employed to optimize the characteristics of the HFMN. The HFMN exhibited excellent swelling capacity, mechanical strength, and insertion properties. Additionally, the poorly soluble characteristic of TEL was improved by the inclusion complex formulation with β-cyclodextrin (βCD). Phase solubility analysis showed an Ap-type diagram, indicating a higher-order complex between TEL and βCD, with respect to βCD. A ratio of TEL:βCD of 1:4 mM demonstrates the highest solubility enhancement of TEL. The inclusion complex formation was confirmed by FTIR, XRD, DSC, and molecular docking studies. A significantly higher release of TEL (up to 20-fold) from the inclusion complex was observed in the in vitro release study. Subsequently, a DCT reservoir was developed using various concentrations of sodium starch glycolate. Essentially, both the HFMN and DCT reservoir exhibit hemocompatibility and did not induce any skin irritation. The optimized combination of the HFMN-DCT reservoir showed an ex vivo permeation profile of 83.275 ± 2.405%. Notably, the proposed system showed superior pharmacokinetic profiles in the in vivo investigation using male Wistar rats. Overall, this study highlights the potential of HFMN-DCT reservoir systems as a versatile platform for transdermal drug delivery applications.
Collapse
Affiliation(s)
| | | | - Achmad Himawan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Muhammad Raihan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Rizki Rachmad Saputra
- Faculty of Mathematics and Natural Sciences, University of Palangka Raya, Palangkaraya, Central Kalimantan 73111, Indonesia
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Risfah Yulianty
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Ryan F Donelly
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Muhammad Aswad
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
14
|
Wu H, Jiang X, Dong Z, Fan Q, Huang J, Liu H, Chen L, Li Z, Ming L. New insights into the influence of encapsulation materials on the feasibility of ultrasonic-assisted encapsulation of Mosla chinensis essential oil. ULTRASONICS SONOCHEMISTRY 2024; 103:106787. [PMID: 38310739 PMCID: PMC10862064 DOI: 10.1016/j.ultsonch.2024.106787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
The study aimed to estimate the feasibility of α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), and γ-cyclodextrin (γ-CD) to encapsulate Mosla chinensis essential oil (EO) by ultrasonic-assisted method. The physical properties variations, stabilization mechanisms, and formation processes of the inclusion complexes (ICs) were investigated using experimental methods, molecular docking, and molecular dynamics (MD) simulation. Scanning electron microscopy, fourier transform infrared spectroscopy, thermogravimetric analysis, and gas chromatography-mass spectrometry showed that the ICs were successfully prepared, which differentially improved the thermal stability and retained the chemical composition of EO. The dissolution profile showed that the Peppas model can be used to describe the diffuse release mechanism of EO. Finally, molecular docking and MD simulation theoretically confirmed the interaction and conformational changes of carvacrol (the main active component of Mosla chinensis EO) inside the cavity of CDs. The results indicate that hydrogen bonding was the primary driving force for the carvacrol spontaneous access to the cavity. Further, a binding dynamic balance occurs between carvacrol and β-CD, whereas a bind and away dynamic balance occurs in the IC between carvacrol and α-CD, γ-CD. The comprehensive results show that the medium cavity size of β-CD is a suitable host molecule for Mosla chinensis EO of encapsulation, release, and stabilization. A combination of experimental and theoretical calculations is useful for the pinpoint targeted design and optimization of CD molecular encapsulation of small entity molecules. β-CD was rationally screened as a better candidate for stabilizing EO, which provides an option for a meaningful path to realistic EO applications.
Collapse
Affiliation(s)
- Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China
| | - Xiaoxia Jiang
- Department of Pharmacy, Jiangxi Provincial People's Hospital, Jiangxi Nanchang, 330006, China
| | - Zishu Dong
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China
| | - Qimeng Fan
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China
| | - Jia Huang
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China
| | - Lihua Chen
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China; Department of Pharmacy, Jiangxi Provincial People's Hospital, Jiangxi Nanchang, 330006, China
| | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China.
| | - Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China.
| |
Collapse
|
15
|
Li S, Chen J, Liu Y, Qiu H, Gao W, Che K, Zhou B, Liu R, Hu W. Characterization of garlic oil/β-cyclodextrin inclusion complexes and application. Front Nutr 2023; 10:1308787. [PMID: 38094921 PMCID: PMC10716253 DOI: 10.3389/fnut.2023.1308787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/14/2023] [Indexed: 06/19/2024] Open
Abstract
Garlic oil is a liquid extracted from garlic that has various natural antibacterial and anti-inflammatory properties and is believed to be used to prevent and treat many diseases. However, the main functional components of garlic oil are unstable. Therefore, in this study, encapsulating garlic oil with cyclodextrin using the saturated co-precipitation method can effectively improve its chemical stability and water solubility and reduce its characteristic odor and taste. After preparation, the microcapsules of garlic oil cyclodextrin were characterized, which proved that the encapsulation was successful. Finally, the results showed that the encapsulated garlic oil still had antioxidant ability and slow-release properties. The final addition to plant-based meat gives them a delicious flavor and adds texture and mouthfeel. Provided a new reference for the flavor application of garlic cyclodextrin micro-capsules in plant-based meat patties.
Collapse
Affiliation(s)
- Shangjian Li
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Jiajia Chen
- Zhuhai Livzon Microsphere Technology Co. Ltd., Zhuhai, China
| | - Yuntong Liu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Honghao Qiu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Wei Gao
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Kundian Che
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Baogang Zhou
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Ran Liu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Wenzhong Hu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Dalian Minzu University, Dalian, China
| |
Collapse
|
16
|
He Y, Xiang J, Chen J, Fang S, Guo Z, Liang X. Improving Bioaccessibility and Bioavailability of Isoflavone Aglycones from Chickpeas by Germination and Forming β-Cyclodextrin Inclusion Complexes. Pharmaceutics 2023; 15:2684. [PMID: 38140025 PMCID: PMC10747479 DOI: 10.3390/pharmaceutics15122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Chickpea isoflavones have diverse pharmacological activities but with low water solubility and bioavailability. In this work, the isoflavone content in chickpeas was first increased by germination, and then the bioaccessibility and bioavailability of isoflavones in chickpea sprout extracts (CSE) were enhanced using β-cyclodextrin (β-CD) inclusion techniques. Firstly, the total content of isoflavones was increased by 182 times through sprouting, and isoflavones were presented mostly in the germ and radicle. Then, the chickpea sprout extract/β-cyclodextrin (CSE/β-CD) inclusion complex was prepared and characterized. The in vitro test showed that the cumulative release of two isoflavones, formononetin (FMN) and biochanin A (BCA), in the CSE/β-CD was significantly increased in a simulated digestive fluid. The in vivo rat pharmacokinetics demonstrated that the inclusion of FMN and BCA by β-CD effectively increased their bioavailability in rat plasma and tissues, especially in the liver. The study provides a feasible strategy for improving the bioavailability of isoflavones from chickpeas and is also beneficial to the utilization of other legume resources.
Collapse
Affiliation(s)
- Yuanfan He
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Y.H.); (J.X.)
| | - Jiani Xiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Y.H.); (J.X.)
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; (J.C.); (S.F.)
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; (J.C.); (S.F.)
| | - Zili Guo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Xianrui Liang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Y.H.); (J.X.)
| |
Collapse
|
17
|
Puebla-Duarte AL, Santos-Sauceda I, Rodríguez-Félix F, Iturralde-García RD, Fernández-Quiroz D, Pérez-Cabral ID, Del-Toro-Sánchez CL. Active and Intelligent Packaging: A Review of the Possible Application of Cyclodextrins in Food Storage and Safety Indicators. Polymers (Basel) 2023; 15:4317. [PMID: 37959997 PMCID: PMC10648989 DOI: 10.3390/polym15214317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Natural cyclodextrins (CDs) can be formed by 6, 7, or 8 glucose molecules (α-, β-, and γ-, respectively) linked in a ring, creating a cone shape. Its interior has an affinity for hydrophobic molecules, while the exterior is hydrophilic and can interact with water molecules. This feature has been used to develop active packaging applied to food, interacting with the product or its environment to improve one or more aspects of its quality or safety. It also provides monitoring information when food is optimal for consumption, as intelligent packaging is essential for the consumer and the merchant. Therefore, this review will focus on discerning which packaging is most appropriate for each situation, solubility and toxicological considerations, characterization techniques, effect on the guest properties, and other aspects related to forming the inclusion complex with bioactive molecules applied to packaging.
Collapse
Affiliation(s)
- Andrés Leobardo Puebla-Duarte
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico; (A.L.P.-D.); (F.R.-F.); (R.D.I.-G.); (I.D.P.-C.)
| | - Irela Santos-Sauceda
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico;
| | - Francisco Rodríguez-Félix
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico; (A.L.P.-D.); (F.R.-F.); (R.D.I.-G.); (I.D.P.-C.)
| | - Rey David Iturralde-García
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico; (A.L.P.-D.); (F.R.-F.); (R.D.I.-G.); (I.D.P.-C.)
| | - Daniel Fernández-Quiroz
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico;
| | - Ingrid Daniela Pérez-Cabral
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico; (A.L.P.-D.); (F.R.-F.); (R.D.I.-G.); (I.D.P.-C.)
| | - Carmen Lizette Del-Toro-Sánchez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico; (A.L.P.-D.); (F.R.-F.); (R.D.I.-G.); (I.D.P.-C.)
| |
Collapse
|
18
|
Wijekoon MMJO, Mahmood K, Ariffin F, Nafchi AM, Zulkurnain M. Recent advances in encapsulation of fat-soluble vitamins using polysaccharides, proteins, and lipids: A review on delivery systems, formulation, and industrial applications. Int J Biol Macromol 2023; 241:124539. [PMID: 37085081 DOI: 10.1016/j.ijbiomac.2023.124539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Fat-soluble vitamins (FSVs) offer a range of beneficial properties as important nutrients in human nutrition. However, the high susceptibility to environmental conditions such as high temperature, light, and oxygen leads to the degradation of these compounds. This review highlights the different formulations underlying the encapsulation of FSVs in biopolymer (polysaccharide and protein) and lipid-based micro or nanocarriers for potential applications in food and pharmaceutical industries. In particular, the function of these carrier systems in terms of encapsulation efficiency, stability, bioavailability, and bio-accessibility is critically discussed. Recently, tremendous attention has been paid to encapsulating FSVs in commercial applications. According to the chemical nature of the active compound, the vigilant selection of delivery formulation, method of encapsulation, and final application (type of food) are the key important factors to be considered in the encapsulation of FSVs to ensure a high loading capacity, stability, bioavailability, and bio-accessibility. Future studies are recommended on the effect of different vitamin types and micro and nano encapsulate sizes on bioaccessibility and biocompatibility through in vitro/in vivo studies. Moreover, the toxicity and safety evaluation of encapsulated FSVs in human health should be evaluated before commercial application in food and pharmaceuticals.
Collapse
Affiliation(s)
- M M Jeevani Osadee Wijekoon
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kaiser Mahmood
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Fazilah Ariffin
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Musfirah Zulkurnain
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
19
|
Farcas A, Resmerita AM, Balan-Porcarasu M, Cojocaru C, Peptu C, Sava I. Inclusion Complexes of 3,4-Ethylenedioxythiophene with Per-Modified β- and γ-Cyclodextrins. Molecules 2023; 28:molecules28083404. [PMID: 37110637 PMCID: PMC10143540 DOI: 10.3390/molecules28083404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Herein, we report the synthesis of inclusion complexes (ICs) based on 3,4-ethylenedioxythiophene (EDOT) with permethylated β-cyclodextrins (TMe-βCD) and permethylated γ-cyclodextrins (TMe-γCD) host molecules. To prove the synthesis of such ICs, molecular docking simulation, UV-vis titrations in water, 1H-NMR, and H-H ROESY, as well as matrix-assisted laser desorption ionization mass spectroscopy (MALDI TOF MS) and thermogravimetric analysis (TGA) were carried out on each of the EDOT∙TMe-βCD and EDOT∙TMe-γCD samples. The results of computational investigations reveal the occurrence of hydrophobic interactions, which contribute to the insertion of the EDOT guest inside the macrocyclic cavities and a better binding of the neutral EDOT to TMe-βCD. The H-H ROESY spectra show correlation peaks between H-3 and H-5 of hosts and the protons of the guest EDOT, suggesting that the EDOT molecule is included inside the cavities. The MALDI TOF MS analysis of the EDOT∙TMe-βCD solutions clearly reveals the presence of MS peaks corresponding to sodium adducts of the species associated with the complex formation. The IC preparation shows remarkable improvements in the physical properties of EDOT, rendering it a plausible alternative to increasing its aqueous solubility and thermal stability.
Collapse
Affiliation(s)
- Aurica Farcas
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | | | | | - Corneliu Cojocaru
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Cristian Peptu
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Ion Sava
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
20
|
Marijan M, Jakupović L, Končić MZ. Hydroxypropyl-β-Cyclodextrin-Glycerol-Assisted Extraction of Phenolics from Satureja montana L.: Optimization, Anti-Elastase and Anti-Hyaluronidase Properties of the Extracts. Processes (Basel) 2023. [DOI: 10.3390/pr11041117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
A green method for hydroxypropyl-β-cyclodextrin-glycerol-assisted extraction (HCGAE) of bioactive phenolics from S. montana, Lamiaceae was optimized using Box-Behnken design and response surface methodology and compared conventional water/ethanol-based extraction. The procedure was aimed at obtaining extracts with the maximum content of total phenols (TP), flavonoids (TF), dihydroxycinnamic acids (TDCA), rosmarinic acid (RA), and luteolin 7-O-glucoside (LG). The impact of glycerol content (0–70%), 2-hydroxypropyl-β-cyclodextrin content (0–0.4 mmol), temperature (20–70 °C), herbal material weight (0.3–0.8 g), extraction duration (5–25 min), and ultrasound power (144–720 W) on the extraction efficiency was analyzed. Four extracts with maximum amounts of target phenols, OPT-TP (5.93 mg/mL), OPT-TDCA-RA (4.17 mg/mL and 1.16 mg/mL, respectively), OPT-TF (0.99 mg/mL), and OPT-LG (0.28 mg/mL) were prepared. Comparison of the content of TDCA, TF, RA, and LG with those obtained in water/ethanol-based extraction demonstrated the superiority of the HCGAE approach for the extraction of phenols from S. montana. The extracts displayed good anti-elastase and excellent anti-hyaluronidase activity. IC50 values of the anti-hyaluronidase activity (1.67 ± 0.06 μL extract/mL, 1.16 ± 0.08 μL extract/mL, 0.85 ± 0.03 μL extract/mL, and 0.79 ± 0.05 μL extract/mL for OPT-TP, OPT-TDCA-RA, OPT-TF, and OPT-LG, respectively) surpassed that of the applied positive control, tannic acid. The observed bioactivity of the optimized extracts makes them promising active ingredients for natural cosmetics. The results of this research indicate that HCGAE is an excellent alternative to conventional water/ethanol-based extraction of phenolics from Satureja montana L.-yielding extracts with potent anti-elastase and anti-hyaluronidase properties suitable for direct use in cosmetic products.
Collapse
Affiliation(s)
- Marijan Marijan
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Lejsa Jakupović
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Marijana Zovko Končić
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| |
Collapse
|
21
|
Jakupović L, Bačić I, Jablan J, Marguí E, Marijan M, Inić S, Nižić Nodilo L, Hafner A, Zovko Končić M. Hydroxypropyl-β-Cyclodextrin-Based Helichrysum italicum Extracts: Antioxidant and Cosmeceutical Activity and Biocompatibility. Antioxidants (Basel) 2023; 12:antiox12040855. [PMID: 37107230 PMCID: PMC10135191 DOI: 10.3390/antiox12040855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Two Helichrysum italicum extracts, OPT-1 (rich in phenolic acids) and OPT-2 (rich in total phenols and flavonoids), were prepared using hydroxypropyl-β-cyclodextrin (HP-β-CD)-assisted extraction. The prepared extracts were rich in phenolic compounds, including flavonoids and phenolic acids. GC-MS analysis of the extracts identified neryl acetate, neo-intermedeol, β-selinene, γ-curcumene, italidione I, and nerol as the main volatile components of the extracts, as well as plant sterols, γ-sitosterol, campesterol, and stigmasterol. The antioxidant (DPPH radical scavenging, reducing power, and a carotene linoleic acid assay) and cosmeceutical (anti-hyaluronidase, anti-tyrosinase, anti-lipoxygenase, ovalbumin anti-coagulation, and a UV-absorption assay) activity of the extracts in most of the assays was better than the activity of the applied positive controls. Especially low were the IC50 values of the extracts in the anti-hyaluronidase (14.31 ± 0.29 μL extract/mL and 19.82 ± 1.53 μL extract/mL for OPT-1 and OPT-2, respectively) and the anti-lipoxygenase (0.96 ± 0.11 μL extract/mL and 1.07 ± 0.01 μL extract/mL for OPT-1 and OPT-2, respectively) assays. The extracts were non-toxic to HaCaT cells in concentrations of up to 62.5 µL extract/mL assuring their status as excellent candidates for cosmeceutical product development appropriate for direct use in cosmetic products without solvent evaporation.
Collapse
Affiliation(s)
- Lejsa Jakupović
- Department of Pharmacognosy, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Ivana Bačić
- Forensic Science Centre “Ivan Vučetić”, Ilica 335, 10000 Zagreb, Croatia
| | - Jasna Jablan
- Department of Analytical Chemistry, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Eva Marguí
- Department of Chemistry, Faculty of Sciences, University of Girona, C/M. Aurèlia Capmany 69, 17003 Girona, Spain
| | - Marijan Marijan
- Department of Pharmacognosy, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Suzana Inić
- Department of Analytical Chemistry, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Laura Nižić Nodilo
- Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Anita Hafner
- Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Marijana Zovko Končić
- Department of Pharmacognosy, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| |
Collapse
|
22
|
Lavorgna M, Dragone M, Russo C, D’Abrosca G, Nugnes R, Orlo E, della Valle M, Isernia C, Malgieri G, Iacovino R, Isidori M. Characterization of Complexes between Imidacloprid and β-Cyclodextrin: Evaluation of the Toxic Activity in Algae and Rotifers. Molecules 2023; 28:molecules28073049. [PMID: 37049814 PMCID: PMC10096419 DOI: 10.3390/molecules28073049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
The development of new formulations can be driven by the knowledge of host–guest complexes using cyclodextrins which have the ability to include guest molecules within their hydrophobic cavities, improving the physicochemical properties of the guest. To rationally explore new pesticide formulations, the effects of cyclodextrins on the properties of such guest molecules need to be explored. Imidacloprid is a neonicotinoid systemic insecticide used worldwide. In this study, the inclusion complexes of Imidacloprid (IMI) with β-cyclodextrin (β-CD) were prepared in the solid state by co-precipitation and the physical mixing method, with a stoichiometry of 1:1 and 1:2 molar ratios. The obtained products, Imidacloprid:β-cyclodextrin inclusion complex (IMI:β-CD), were characterized in the solid state by Fourier transform-infrared (FT-IR) spectroscopy and X-ray powder diffractometry (XRD). In solution, the 1:1 stoichiometry for the inclusion complexes was established by the Job plot method, and the binding constant of IMI:β-CD was determined by UV–vis titration. The toxicity was determined in producers and primary consumers of the freshwater trophic chain, the green alga Raphidocelis subcapitata and the rotifer Brachionus calyciflorus, respectively. The results indicated that Imidacloprid forms inclusion complexes with CDs showing improved physicochemical properties compared to free Imidacloprid. The formation of the inclusion complex reduced the chronic toxicity in rotifers when IMI concentrations were close to those of environmental concern (tenths/hundredths of micromoles/L). Therefore, CD inclusion complexes could provide important advantages to be considered for the future industrial production of new formulations.
Collapse
|
23
|
Optimization of Cyclodextrin-Assisted Extraction of Phenolics from Helichrysum italicum for Preparation of Extracts with Anti-Elastase and Anti-Collagenase Properties. Metabolites 2023; 13:metabo13020257. [PMID: 36837876 PMCID: PMC9959134 DOI: 10.3390/metabo13020257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Helichrysum italicum is a plant traditionally used for skin-related disorders that is becoming an increasingly popular ingredient in cosmetic products. In this work, a "green" ultrasound-assisted extraction method for H. italicum phenolics was developed using skin-friendly cyclodextrins (CDs). Extraction conditions needed for the greatest yield of target compounds (total phenolics, phenolic acids, and flavonoids) were calculated. The composition of the extracts was determined using LC-MS and spectrophotometric methods. Among the tested CDs, 2-hydroxylpropyl-beta-CD (HP-β-CD) was the best suited for extraction of target phenolics and used to prepare two optimized extracts, OPT 1 (the extract with the highest phenolic acid content) and OPT 2 (the extract with the highest total phenol and flavonoid content). The extracts were prepared at 80 °C, using 0.089 g of plant material/g solvent (0.6 mmol of HP-β-CD), with or without addition of 1.95% (w/w) lactic acid. The main metabolite in both extracts was 3,5-O-dicaffeoylquinic acid. It was found that the addition of lactic acid greatly contributes to the extraction of arzanol, a well-known anti-inflammatory agent. IC50 values of the anti-elastase (22.360 ± 0.125 μL extract/mL and 20.067 ± 0.975 for OPT-1 and OPT-2, respectively) and anti-collagenase (12.035 ± 1.029 μL extract/mL and 14.392 ± 0.705 μL extract/mL for OPT-1 and OPT-2, respectively) activities of the extracts surpassed those of the applied positive controls, namely ursolic and gallic acids. This activity deems the prepared extracts promising ingredients for natural cosmetics, appropriate for direct use in cosmetic products, removing the need for the evaporation of conventional solvents.
Collapse
|