1
|
Mousania Z, Atkinson JD. A cradle-to-grave life cycle assessment of multilayer plastic film food packaging materials, comparing to a paper-based alternative. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 200:114747. [PMID: 40139046 DOI: 10.1016/j.wasman.2025.114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
This study evaluates alternatives to polymers with high environmental impact in plastic-based multilayer packaging (PMP). This Life Cycle Assessment (LCA) quantifies energy demand, fossil resource scarcity (FRS), and greenhouse gases (GHG) associated with 14 PMP films, with comparisons to coated paper-based packaging (CPP). Two functional units, one ton and one m3of packaging, were considered. End-of-life scenarios, including landfilling and incineration, were based on average US use for plastic waste, along with recycling for CPP paper. Production of polyamide 6 (PA 6) has four times the GHG impact of polymers like high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) due to its natural gas demand, and almost twice that of polystyrene (PS), the second highest environmental burden for a skin layer on a volume basis. Polyethylene terephthalate (PET) is a promising alternative to PA 6, offering improved functionality and reduced environmental impact. As a core layer, ethylene vinyl alcohol (EVOH) has lower impacts than PA 6 in terms of energy (-35%), GHGs (-74%), and FRS (-34%). Among PMPs, HDPE-EVOH, LDPE-EVOH, LLDPE-EVOH, and PP-EVOH have lower environmental impacts while meeting required O2and water permeability. CPP production is more environmentally-friendly than PMPs in energy (25-34% improvement), FRS (81-83% improvement), and GHGs (34-62% improvement). Using 75% recovered paper in CPP production improves energy, FRS, and GHG impacts by up to 41%, 16%, and 11%, respectively, compared to using virgin paper. This study offers a framework for layered packaging impact assessments, guiding manufacturers toward environmentally-friendly options that retain essential functions.
Collapse
Affiliation(s)
- Zeinab Mousania
- Department of Civil, Structural, and Environmental Engineering, State University of New York, University at Buffalo, Buffalo, NY 14260, USA
| | - John D Atkinson
- Department of Civil, Structural, and Environmental Engineering, State University of New York, University at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
2
|
Bhuyan MS, Jenzri M, Pandit D, Adikari D, Alam MW, Kunda M. Microplastics occurrence in sea cucumbers and impacts on sea cucumbers & human health: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175792. [PMID: 39197778 DOI: 10.1016/j.scitotenv.2024.175792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Microplastics (MPs) are a developing concern in marine environments, with scientists concentrating more on their effects on various creatures. Sea cucumbers (SCs), as suspension and deposit feeders, are expected to be exposed to and consume MPs in their habitat. The purpose of this methodical review is to gather and integrate accessible research on the presence and effects of MPs on SCs. A systematic search of relevant databases yielded relevant papers exploring the occurrence of MPs in SC habitats as well as the possible effects of MP intake on SCs. Bibliometric analysis was also conducted to collect and analyze a large volume of data. Then the papers were sorted (a total of 249) related to the occurrence and effects of MPs in SCs. Finally, targeted data were collected from the articles for the study. The review emphasizes the ubiquity of MPs in SC ecosystems, citing studies that found high quantities in coastal areas and sediment. MPs have a variety of effects on SCs, with some studies indicating that they lower eating efficiency, affect behavior, and cause tissue damage. However, there is still no unanimity on the overall effects of MP exposure on SCs. This review gives a complete summary of the present state of information about the incidence and impact of MPs on SCs, highlighting the need for additional study in this area. Understanding the possible dangers of MPs on SCs is critical for the survival of these ecologically significant creatures.
Collapse
Affiliation(s)
- Md Simul Bhuyan
- Bangladesh Oceanographic Research Institute, Cox's Bazar-4730, Bangladesh; Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet-3100, Bangladesh.
| | - Maroua Jenzri
- Research Laboratory of Bioresources: Integrative Biology & Valorization (LR 14ES06), Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, PB. 74, 5000 Monastir, Tunisia
| | - Debasish Pandit
- Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Oceanography, Faculty of Fisheries and Ocean Sciences, Khulna Agricultural University, Khulna-3100, Bangladesh
| | - Diponkor Adikari
- Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md Wahidul Alam
- Department of Oceanography, Faculty of Marine Sciences and Fisheries, University of Chittagong, Chittagong-4331, Bangladesh
| | - Mrityunjoy Kunda
- Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
3
|
Chen Y, Cui S, Wu L, Han Y, Zhao X, Ren T. Dietary silicate minerals relieving cadmium or lead poisoning in juvenile sea cucumber, Apostichopusjaponicus. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106795. [PMID: 39426205 DOI: 10.1016/j.marenvres.2024.106795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Industrial activities increase Apostichopus japonicus exposure to toxic heavy metals. This study evaluates the efficacy of three dietary silicate minerals (montmorillonite, zeolite, and kaolin) in relieving cadmium and lead toxicity in A. japonicus. Over four weeks, juvenile A. japonicus (7 - 9 g) were fed diets incorporating montmorillonite, zeolite, or kaolin, replacing sea mud at a 1:1 ratio. Experimental groups were: SM (control with sea mud), M (montmorillonite), Z (zeolite), and K (kaolin). Each group was exposed to cadmium (50 mg kg-1) or lead (100 mg kg-1) at the minimal toxic dose (MTD). Groups M and K demonstrated excellent growth performance, marked by improvements in weight gain rate (WGR), specific growth rate (SGR), feed conversion ratio (FCR), and survival rate (SR). Their coelomic fluid revealed higher enzymatic activities, such as acid phosphatase (ACP), alkaline phosphatase (AKP), catalase (CAT), and superoxide dismutase (SOD). Additionally, groups M and K showed a reduced accumulation of cadmium and lead in their tissues; group K notably excelled in mitigating intestinal tissue damage. In contrast, Group Z exhibited significantly poorer performance. In other aspects, the trends among the three experimental groups were generally similar: the activity of intestinal digestive enzymes declined, intestinal microbiota diversity decreased, and the stability of community composition increased. In summary, the supplementation of montmorillonite and kaolin effectively reduces cadmium and lead toxicity, diminishes oxidative damage, and promotes intestinal health in A. japonicus. These findings provide valuable insights for enhancing safety in A. japonicus aquaculture.
Collapse
Affiliation(s)
- Yi Chen
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Shuchang Cui
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Lin Wu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yuzhe Han
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, China
| | - Xiaoran Zhao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, China.
| | - Tongjun Ren
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, China.
| |
Collapse
|
4
|
Al Mamun A, Rahman MM, Huq MA, Rahman MM, Rana MR, Rahman ST, Khatun ML, Alam MK. Phytoremediation: a transgenic perspective in omics era. Transgenic Res 2024; 33:175-194. [PMID: 38922381 DOI: 10.1007/s11248-024-00393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Phytoremediation is an environmental safety strategy that might serve as a viable preventative approach to reduce soil contamination in a cost-effective manner. Using plants to remediate pollution from the environment is referred to as phytoremediation. In the past few decades, plants have undergone genetic manipulation to overcome inherent limitations by using genetically modified plants. This review illustrates the eco-friendly process of cleaning the environment using transgenic strategies combined with omics technologies. Herbicides tolerance and phytoremediation abilities have been established in genetically modified plants. Transgenic plants have eliminated the pesticides atrazine and metolachlor from the soil. To expand the application of genetically engineered plants for phytoremediation process, it is essential to test strategies in the field and have contingency planning. Omics techniques were used for understanding various genetic, hormonal, and metabolic pathways responsible for phytoremediation in soil. Transcriptomics and metabolomics provide useful information as resources to understand the mechanisms behind phytoremediation. This review aims to highlight the integration of transgenic strategies and omics technologies to enhance phytoremediation efficiency, emphasizing the need for field testing and comprehensive planning for successful implementation.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh.
| | - Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Md Mashiar Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Rasel Rana
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Shabiha Tasbir Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Mst Lata Khatun
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Khasrul Alam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|
5
|
Demelash Abera B, Alefe Adimas M. Health benefits and health risks of contaminated fish consumption: Current research outputs, research approaches, and perspectives. Heliyon 2024; 10:e33905. [PMID: 39050454 PMCID: PMC11268356 DOI: 10.1016/j.heliyon.2024.e33905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background Fish contains high-quality omega-3 fatty acids, protein, vitamins, and minerals and due to this it is termed as an essential component of a balanced diet. But there have been concerns raised about the risks of consuming fish that is contaminated with toxins such as methylmercury, polychlorinated biphenyls (PCBs), dioxins, pesticides, and plastic waste. Consumption of contaminated fish containing these pollutants is raising global mortality and morbidity rates. Scope and approaches The review examines the current research outputs on the health benefits and potential health risks of fish consumption. The review also discusses various approaches to mitigating the health problems caused by fish consumption, highlights the roles of balancing the risks and benefits when consuming fish. Key findings and conclusion Different findings indicated that contaminants cause cancer, kidney failure, adverse neurological effect, cardiovascular diseases, and so on to vulnerable groups such as pregnant, child breast-feeding and children. In conclusion, there is a need to get more tangible evidence about the advantages and disadvantages of fish consumption to safeguard the wellbeing of the society.
Collapse
|
6
|
Harini R, Natarajan V, Sunil CK. Sea cucumber significance: Drying techniques and India's comprehensive status. J Food Sci 2024; 89:3995-4018. [PMID: 38847764 DOI: 10.1111/1750-3841.17153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 07/04/2024]
Abstract
Sea cucumbers, members of the echinoderm class Holothuroidea, are marine invertebrates with ecological significance and substantial commercial value. With approximately 1700 species, these organisms contribute to marine ecosystems through nutrient cycling and face various threats, including overfishing and habitat loss. Despite their importance, they are extensively exploited for diverse applications, from seafood to pharmaceuticals. This study investigates sea cucumbers' nutritional profile and bioactive elements, emphasizing their role as sources of essential compounds with potential health benefits. The demand for sea cucumbers, especially in dried form, is significant, prompting exploration into various drying techniques. Examining the global trade in sea cucumbers highlights their economic importance and the conservation challenges they face. Conservation efforts, such as awareness campaigns and international collaboration, are evaluated as essential steps in combating illicit trade and promoting the sustainable stewardship of sea cucumber populations. PRACTICAL APPLICATION: Around 1700 species of sea cucumbers were identified as vital ecological scavengers in the Holothuroidea class. High commercial value due to their health benefits, particularly their demonstrated inhibitory effect against various types of cancer. "Beche-de-mer" holds a 90% market share and is regarded as a luxury food item in Southeast Asian countries. Due to overexploitation, the species is classified as Schedule I under the Wildlife Protection Act (WPA) in India, prompting the implementation of a blanket ban on their harvesting to ensure its conservation.
Collapse
Affiliation(s)
- Ravi Harini
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - Venkatachalapathy Natarajan
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - C K Sunil
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| |
Collapse
|
7
|
Rezvani Ghalhari M, Rezaei Rahimi N, Fahiminia M, Noruzzade E, Azhdarpoor A, Koochakzadeh Z, Vakili H, Fouladi-Fard R. Analyzing heavy metal contamination for one of the high-rate consumption fruits in Iran: A probabilistic health risk assessment. Heliyon 2024; 10:e30392. [PMID: 38737238 PMCID: PMC11088310 DOI: 10.1016/j.heliyon.2024.e30392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Good health and well-being is one of the sustainable development goals (SDGs) that can be achieved through fruit consumption. This study measured cucumber (Cucumis sativus L.) heavy metal concentrations. Inductively coupled plasma-mass spectrometry (ICP-OES) was used to analyze the samples for heavy metal content. The uncertainty and sensitivity analyses of carcinogenic and non-carcinogenic heavy metal intake via cucumber (Cucumis sativus L.) consumption were assessed by Monte Carlo simulation. The mean ± SD levels of Cu, Pb, Zn, Cd, and As were determined to be 157.87 ± 128.54, 33.81 ± 6.27, 288.46 ± 114.59, 35.22 ± 18.67, and 33.6 ± 18.1 μg/kg, respectively. The 95th percentile of HI related to heavy metal intake via cucumber (Cucumis sativus L.) among children and adults were 2.64 and 1.75, respectively. Also, the 95th percentile of ELCR related to heavy metal were 8.26E-4 and 4.14E-3 among children and adults, respectively. The 95th percentile of LTCR of As among adults and As, Cd, and Pb among children were in the WHO target range (1E-04 to 1E-06) so reducing the concentration of them can help to reduce overall LTCR. When HQ and LTCR are below the cut limits, reducing heavy metals in high-consumption meals is a good way to lower them. In general, due to the wide consumption of various fruits, such as cucumber (Cucumis sativus L.), the concentration of environmental pollutants in their edible tissues should be monitored regularly, and the concentration of pollutants in these tissues should be minimized by proper planning.
Collapse
Affiliation(s)
- Mohammad Rezvani Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nayereh Rezaei Rahimi
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fahiminia
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Elahe Noruzzade
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abooalfazl Azhdarpoor
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeynab Koochakzadeh
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Habib Vakili
- Department of Health, Safety and Environment, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Fouladi-Fard
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
8
|
Lim GS, Er JC, Bhaskaran K, Sin P, Shen P, Lee KM, Teo GS, Chua JMC, Chew PCF, Ang WM, Lee J, Wee S, Wu Y, Li A, Chan JSH, Aung KT. Singapore's Total Diet Study (2021-2023): Study Design, Methodology, and Relevance to Ensuring Food Safety. Foods 2024; 13:511. [PMID: 38397488 PMCID: PMC10887509 DOI: 10.3390/foods13040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
A total diet study is often used to evaluate a population's baseline dietary exposure to chemical hazards from across the diet. In 2021-2023, Singapore carried out a TDS, and this article presents an overview of the study design and methodological selections in Singapore's TDS, as well as its relevance to ensuring food safety. A food consumption survey was conducted on Singapore citizens and permanent residents, where food consumption patterns of the Singapore population were identified. The selection of chemical hazards and foods for inclusion in Singapore's TDS, as well as principal considerations on sampling, food preparation, and analytical testing are discussed. Commonly consumed foods by the Singapore population in food categories such as grain and grain-based products, meat and meat products, fish and seafood, vegetables, fruits, milk and dairy products were included in this study, and mean concentrations of chemicals tested in each food category were reported, with food categories possessing higher levels identified. Future work will include dietary exposure assessments for the population and analysis of the contributions by food and cooking method.
Collapse
Affiliation(s)
- Geraldine Songlen Lim
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Jun Cheng Er
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Kalpana Bhaskaran
- School of Applied Science, Temasek Polytechnic, 21 Tampines Ave 1, Singapore 529757, Singapore (P.S.)
| | - Paul Sin
- School of Applied Science, Temasek Polytechnic, 21 Tampines Ave 1, Singapore 529757, Singapore (P.S.)
| | - Ping Shen
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Kah Meng Lee
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Guat Shing Teo
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Joachim Mun Choy Chua
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Peggy Chui Fong Chew
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Wei Min Ang
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Joanna Lee
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Sheena Wee
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Yuansheng Wu
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Angela Li
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
| | - Joanne Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore (G.S.T.); (P.C.F.C.); (J.L.); (K.T.A.)
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
| |
Collapse
|
9
|
Bhuyan MS, Bat L, Senapathi V, Kulandaisamy P, Sekar S, Haider SMB, Meraj G, Islam MT, Kunda M, Alam MW, Rabaoui L. A review on sea cucumber (Bengali: Somuddro Sosha) as a bioindicator of heavy metal contamination and toxicity. MARINE POLLUTION BULLETIN 2024; 199:115988. [PMID: 38181469 DOI: 10.1016/j.marpolbul.2023.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/07/2024]
Abstract
This review paper exhibits the underexplored realm of heavy metal contamination and associated risks in sea cucumbers (SCs), which hold significant importance in traditional Asian marine diets and are globally harvested for the Asian market. The assessment focuses on heavy metals (HMs) presence in various SC species, revealing a global trend in HMs concentrations across anatomical parts: Fe > Zn > As > Cu > Hg > Pb > Mn > Cr > Ni > Cd. Specific species, such as Eupentacta fraudatrix, Holothuria mammata, Holothuria polii, Holothuria tubulosa, and Holothuria atra, exhibit heightened arsenic levels, while Stichopus herrmanni raises concerns with mercury levels, notably reaching 3.75 mg/kg in some instances, posing potential risks, particularly for children. The study sheds light on anthropogenic activities such as cultivation, fishing, and shipping, releasing HMs into marine ecosystems and thereby threatening ocean and coastal environments due to the accumulation and toxicity of these elements. In response to these findings, the paper suggests SCs as promising bioindicator species for assessing metal pollution in marine environments. It underscores the adverse effects of human actions on sediment composition and advocates for ongoing monitoring efforts both at sea and along coastlines.
Collapse
Affiliation(s)
- Md Simul Bhuyan
- Bangladesh Oceanographic Research Institute, Cox's Bazar-4730, Bangladesh; Sylhet Agricultural University, Sylhet, Bangladesh.
| | - Levent Bat
- Department of Hydrobiology, Fisheries Faculty, University of Sinop, Turkey
| | | | | | - Selvam Sekar
- Department of Geology, V.O. Chidambara College, Thoothukudi, India
| | | | - Gowhar Meraj
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-8654, Japan
| | - Md Tarikul Islam
- Bangladesh Oceanographic Research Institute, Cox's Bazar-4730, Bangladesh
| | | | - Md Wahidul Alam
- Department of Oceanography, Faculty of Marine Sciences and Fisheries, University of Chittagong, Chittagong 4331, Bangladesh
| | - Lotfi Rabaoui
- Center for Environment & Marine Studies, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
10
|
Xu Y, Liu Y, Li X, Cai Y, Gao Z, Qiu J. Development of a split G-quadruplex and DAPI-based fluorescent probe for Hg(II) and Pb(II) ions detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:83-90. [PMID: 38078449 DOI: 10.1039/d3ay01839c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
A novel thymine- and guanine-rich oligonucleotide (ODN-7) was engineered explicitly for the detection of Hg(II) and Pb(II) by a single intercalated dye 4',6-diamidinyl-2-phenylindole (DAPI). Upon the introduction of Hg(II), a rapid formation of T-Hg(II)-T base pairs takes place, triggering the assembly of a split G-quadruplex structure, resulting in a strong fluorescence signal due to DAPI intercalating into the T-Hg(II)-T mismatch. The introduction of Pb(II) initiates an interaction with the split G-quadruplex, causing a significant conformational change in its structure. Consequently, the altered split G-quadruplex structure fails to facilitate the insertion of DAPI into the T-Hg(II)-T complexes, leading to fluorescence quenching. This strategy offers a straightforward means of detecting Hg(II) and Pb(II). Leveraging the split G-quadruplex, the ODN-7 sensor enables the detection limits (3σ) for Hg(II) and Pb(II) to reach an impressive low of 0.39 nM and 4.98 nM, respectively. It exhibited a favorable linear range of 0.39-900 nM for Hg(II) detection (R2 = 0.9993) and 4.98 nM-5 μM for Pb(II) determination (R2 = 0.9953), respectively. Furthermore, the proposed sensor had excellent selectivity for detecting Hg(II) and Pb(II). It was used in milk samples containing mixed Hg(II) and Pb(II) solutions, yielding recovery rates of 99.3-103.8% for Hg(II) detection and 100.1-104.1% for Pb(II) detection.
Collapse
Affiliation(s)
- Youyang Xu
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Yuxin Liu
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Xiangxiang Li
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Yule Cai
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Zihan Gao
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Jieqiong Qiu
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
11
|
Muhsin MF, Fujaya Y, Hidayani AA, Fazhan H, Wan Mahari WA, Lam SS, Shu-Chien AC, Wang Y, Afiqah-Aleng N, Rukminasari N, Waiho K. Bridging the gap between sustainability and profitability: unveiling the untapped potential of sea cucumber viscera. PeerJ 2023; 11:e16252. [PMID: 37842055 PMCID: PMC10576502 DOI: 10.7717/peerj.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Sea cucumbers have high economic value, and in most forms of trade, their body wall is typically the only part that is harvested and sold. The organs of the sea cucumber, collectively known as the viscera, are frequently discarded, contributing to land and water pollution. However, discarded sea cucumber viscera contain various nutrients that can be used in many applications. Therefore, this review highlights the biological and economic aspects of sea cucumbers, followed by a critical discussion of the nutritional value of their internal organs and possible applications, including as functional feed additives in the aquaculture industry, sources of natural testosterone for application in sex reversal and production of monosex population, of neuroprotective agents against central nervous system disorders and of cosmetic ingredients, especially for skin whitening and anti-ageing products. The review further highlights the valorisation potential of viscera to maximize their economic potential, thus providing an enormous prospect for reusing sea cucumber waste, thereby reducing the negative impact of the sea cucumber fishery sector on the environment.
Collapse
Affiliation(s)
- Muhammad Fatratullah Muhsin
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Yushinta Fujaya
- Faculty of Marine Sciences and Fishery, Hasanuddin University, Makassar, Indonesia
| | - Andi Aliah Hidayani
- Faculty of Marine Sciences and Fishery, Hasanuddin University, Makassar, Indonesia
| | - Hanafiah Fazhan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Wan Adibah Wan Mahari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Alexander Chong Shu-Chien
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Nor Afiqah-Aleng
- Institute of Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Nita Rukminasari
- Faculty of Marine Sciences and Fishery, Hasanuddin University, Makassar, Indonesia
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
12
|
Vu DT, Falch E, Elvevoll EO, Jensen IJ. Enzymatic Hydrolysis of Orange-Footed Sea Cucumber ( Cucumaria frondosa)-Effect of Different Enzymes on Protein Yield and Bioactivity. Foods 2023; 12:3685. [PMID: 37835338 PMCID: PMC10573069 DOI: 10.3390/foods12193685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
While sea cucumber is a food delicacy in Asia, these food resources are less exploited in Europe. The aim of this study was to determine the chemical composition and potential food applications of the less exploited orange-footed sea cucumber (Cucumaria frondosa). In particular, the antioxidative capacity and free amino acids associated with the umami flavor released by enzymatic hydrolyses by either Bromelain + Papain (0.36%, 1:1) or Alcalase (0.36%) were studied. Fresh C. frondosa contained approximately 86% water, and low levels of ash (<1%) and lipids (<0.5%). The protein content was 5%, with a high proportion of essential amino acids (43%) and thus comparable to the FAO reference protein. The high concentration of free amino acids associated with umami, sour, sweet, and bitter may contribute to flavor enhancement. Hydrolysis by Bromelain + Papain resulted in the highest protein yield, and the greatest concentration of free amino acids associated with umami and sour taste. All samples showed promising antioxidant capacity measured by FRAP, ABTS, DPPH and ORAC compared to previous reports. The inorganic arsenic concentration of fresh C. frondosa ranged from 2 to 8 mg/kg wet weight and was not affected by processing. This is comparable to other seafood and may exceed regulatory limits of consumption.
Collapse
Affiliation(s)
- Dat Trong Vu
- Department of Biotechnology and Food Science, The Norwegian University of Science and Technology, NTNU Trondheim, N-7012 Trondheim, Norway; (D.T.V.); (E.F.)
| | - Eva Falch
- Department of Biotechnology and Food Science, The Norwegian University of Science and Technology, NTNU Trondheim, N-7012 Trondheim, Norway; (D.T.V.); (E.F.)
| | - Edel O. Elvevoll
- Norwegian College of Fishery Science, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Ida-Johanne Jensen
- Department of Biotechnology and Food Science, The Norwegian University of Science and Technology, NTNU Trondheim, N-7012 Trondheim, Norway; (D.T.V.); (E.F.)
| |
Collapse
|
13
|
Langdal A, Eilertsen KE, Kjellevold M, Heimstad ES, Jensen IJ, Elvevoll EO. Climate Performance, Environmental Toxins and Nutrient Density of the Underutilized Norwegian Orange-Footed Sea Cucumber ( Cucumaria frondosa). Foods 2022; 12:114. [PMID: 36613330 PMCID: PMC9818526 DOI: 10.3390/foods12010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Low trophic species are often mentioned as additional food sources to achieve broader and more sustainable utilisation of the ocean. The aim of this study was to map the food potential of Norwegian orange-footed sea cucumber (Cucumaria frondosa). C. frondosa contained 7% protein, 1% lipids with a high proportion of polyunsaturated fatty acids, and a variety of micronutrients. The nutrient density scores (NDS) of C. frondosa were above average compared towards daily recommended intakes (DRI) for men and women (age 31-60) but below when capped at 100% of DRI. The concentrations of persistent organic pollutants and trace elements were in general low, except for inorganic arsenic (iAs) (0.73 mg per kg) which exceeded the limits deemed safe by food authorities. However, the small number of samples analysed for iAs lowers the ability to draw a firm conclusion. The carbon footprint from a value chain with a dredge fishery, processing in Norway and retail in Asia was assessed to 8 kg carbon dioxide equivalent (CO2eq.) per kg C. frondosa, the fishery causing 90%. Although, C. frondosa has some nutritional benefits, the carbon footprint or possible content of iAs may restrict the consumption.
Collapse
Affiliation(s)
- Andreas Langdal
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Karl-Erik Eilertsen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Marian Kjellevold
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway
| | - Eldbjørg S. Heimstad
- NILU—Norwegian Institute for Air Research, The Fram Centre, N-9296 Tromsø, Norway
| | - Ida-Johanne Jensen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| | - Edel O. Elvevoll
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|