1
|
Damasceno ROS, Pinheiro JLS, da Silva LD, Rodrigues LHM, Emídio JJ, Lima TC, de Sousa DP. Phytochemistry and Anti-Inflammatory and Antioxidant Activities of Cinnamomum osmophloeum and Its Bioactive Constituents: A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:562. [PMID: 40006821 PMCID: PMC11859615 DOI: 10.3390/plants14040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
Cinnamomum osmophloeum, commonly known as indigenous cinnamon, is a tree species native to Taiwan's hardwood forests. It has been extensively investigated for its chemical composition and bioactivities. Several reports have shown that C. osmophloeum leaves are rich in aromatic oils, which are grouped into various chemotypes based on their major constituents. Components of the volatile oils included phenylpropanoids, monoterpenoids, sesquiterpenoids, phenols, coumarins, and other miscellaneous compounds. In addition, other secondary metabolites previously identified in this species included flavonol glycosides, phenolic acids, lignans, proanthocyanidins, and cyclopropanoids. C. osmophloeum is widely recognized for its medicinal and industrial applications, particularly its essential oils. In general, essential oils exhibit remarkable anti-inflammatory and antioxidant actions, enabling them to modulate key inflammatory mediators and neutralize free radicals. This review explored the phytochemical composition of the essential oils and extracts from C. osmophloeum as well as therapeutic potential of this species, focusing on the action mechanisms and clinical potential. We hope that this review will contribute to a better understanding of the biological effects of this plant and its potential applications in the management of conditions associated with inflammation and oxidative stress.
Collapse
Affiliation(s)
- Renan Oliveira Silva Damasceno
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; (J.L.S.P.); (L.D.d.S.); (L.H.M.R.)
| | - João Lucas Silva Pinheiro
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; (J.L.S.P.); (L.D.d.S.); (L.H.M.R.)
| | - Lorena Duarte da Silva
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; (J.L.S.P.); (L.D.d.S.); (L.H.M.R.)
| | - Lucas Henrique Marques Rodrigues
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; (J.L.S.P.); (L.D.d.S.); (L.H.M.R.)
| | - Jeremias Justo Emídio
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil;
| | - Tamires Cardoso Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil;
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil;
| |
Collapse
|
2
|
Safaeian L, Asghari-Varzaneh M, Alavi SS, Halvaei-Varnousfaderani M, Laher I. Cardiovascular protective effects of cinnamic acid as a natural phenolic acid: a review. Arch Physiol Biochem 2025; 131:52-62. [PMID: 39101816 DOI: 10.1080/13813455.2024.2387694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/23/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Phenolic acids derived from plants have beneficial effects on cardiovascular diseases (CVD). Cinnamic acid (CA) is a crucial phenolic acid that can form numerous hydroxycinnamic derivate found in many food groups. We review current data on the cardiovascular pharmacology of CA with a focus on CVD and their risk factors including hyperlipidaemia, obesity, hyperglycaemia, cardiomyopathy and myocardial ischaemia, vascular dysfunction, oxidative stress and inflammation. Both in vivo and in vitro laboratory studies demonstrate the lipid-lowering, anti-obesity, anti-hyperglycemic, cardio-protective and vasorelaxant activities of CA. The protective impacts of CA against CVD occur by inhibiting inflammatory, oxidative, and apoptotic pathways, regulating the genes and enzymes involved in glucose and lipid metabolisms, and promoting vasodilation. This review showed that the most studied and prominent effects of CA are anti-hyperlipidemic and anti-diabetic properties. In conclusion, intake of plant foods rich in CA may reduce CVD risk especially through regulating blood glucose and lipids levels.
Collapse
Affiliation(s)
- Leila Safaeian
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansooreh Asghari-Varzaneh
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed-Sadegh Alavi
- Hakiman Pazhooh Co., Incubator and Entrepreneurship Center, Isfahan University, Isfahan, Iran
| | | | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Ye C, Li Y, Shi J, He L, Shi X, Yang W, Lei W, Quan S, Lan X, Liu S. Network pharmacology analysis revealed the mechanism and active compounds of jiao tai wan in the treatment of type 2 diabetes mellitus via SRC/PI3K/AKT signaling. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118898. [PMID: 39374878 DOI: 10.1016/j.jep.2024.118898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiao-tai-wan (JTW) is a traditional Chinese herbal prescription, exerts its therapeutic effects on type 2 diabetes mellitus (T2DM). However, its mechanisms and active components remain unclear. AIM OF THE STUDY To investigate the therapeutic mechanisms of JTW in treating type 2 diabetes mellitus (T2DM), focusing on identifying active components, their targets, and validating efficacy through SRC/PI3K/AKT signaling pathway modulation in vitro and in vivo. MATERIALS AND METHODS Active ingredients were retrieved from the Traditional Chinese Medicine System Pharmacology (TCMSP) and Comprehensive Traditional Chinese Medicine Database (TCMID). Targets for these components were identified using the ChemMapper database based on 3D structural similarity. T2DM-related genes were sourced from the DisGeNET and Gene Expression Omnibus (GEO) databases. Protein-protein interaction (PPI) analysis and functional enrichment analysis were conducted to construct a pathway network of "herbs-active ingredients-candidate targets", identifying core molecular mechanisms and key active ingredients. SwissDock was used for molecular docking to predict ligands for candidate targets. The diabetic models were established using C57BL/6 mice and human liver HepG2 cell lines. Their Effectiveness and key molecules were verified through biochemical detection and immunoblotting. RESULTS Total 30 active compounds, 597 active ingredient targets, 9631 T2DM-related genes, and 521 overlapping candidate targets were found for JTW on T2DM. Go enrichment indicated the core pathways enriched on insulin and glucose metabolism. The auto-docking demonstrated SRC has potential binds to ingredients of JTW. In vivo, JTW can reduce blood glucose, and blood lipid levels, and HOMA-IR, and increase HOMA-ISI levels in T2DM mice with reduced ALT, AST, MDA levels and increased SOD levels. Meanwhile, decreased phosphorylation of SRC, along with increased levels of phosphorylated PI3K, PI3K, and phosphorylated AKT, were observed. HE staining of liver tissues further confirmed that JTW administration improved liver morphology, reducing inflammation and necrosis. In vitro, JTW significantly ameliorates upstream dysregulation by reducing SRC phosphorylation while enhancing phosphorylated PI3K, PI3K, and AKT phosphorylation levels. CONCLUSION JTW may alleviate glucose, insulin resistance, and lipid metabolism disorders by the SRC/PI3K/AKT signaling pathway, that provide a novel view of potential active compounds and essential targets in treating T2DM.
Collapse
Affiliation(s)
- Cunsi Ye
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Jiayin Shi
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Liena He
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Xinyan Shi
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Wei Yang
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Wenbo Lei
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Shijian Quan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaopeng Lan
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China.
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China.
| |
Collapse
|
4
|
Wang W, Wang Y, Huang P, Zhou J, Tan G, Zeng J, Liu W. Mosla Chinensis Extract Enhances Growth Performance, Antioxidant Capacity, and Intestinal Health in Broilers by Modulating Gut Microbiota. Microorganisms 2024; 12:2647. [PMID: 39770849 PMCID: PMC11728446 DOI: 10.3390/microorganisms12122647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
This study aimed to evaluate the effects of Mosla chinensis extract (MCE) on broiler intestinal health. A total of 240 1-day-old Arbor Acres (AA) broilers (balanced for sex) were randomly allocated into four treatment groups, each with six replicates of 10 chickens. The study comprised a starter phase (days 1-21) and a grower phase (days 22-42). The control group (C) received a basal diet, while the experimental groups were supplemented with low (S1, 500 mg/kg), medium (S2, 1000 mg/kg), and high doses (S3, 2000 mg/kg) of MCE. The results showed that MCE supplementation significantly improved average daily gain in broilers (p < 0.05) and reduced the feed-to-gain ratio in broilers. Additionally, MCE enhanced the anti-inflammatory and antioxidant capacity of broilers. In the duodenum and cecum, MCE significantly upregulated the expression of tight junction proteins Claudin-1, and Occludin, with the high-dose group showing the strongest effect on intestinal barrier protection (p < 0.05). There was no significant difference in ZO-1 in dudenum (p > 0.05). Microbial analysis indicated that MCE supplementation significantly reduced the Chao and Sobs indices in both the small and large intestines (p < 0.05). At the same time, the Coverage index of the small intestine increased, with the high-dose group demonstrating the most pronounced effect. Beta diversity analysis revealed that MCE had a significant modulatory effect on the microbial composition in the large intestine (p < 0.05), with a comparatively smaller impact on the small intestine. Furthermore, MCE supplementation significantly increased the relative abundance of Ruminococcaceae and Alistipes in the large intestine, along with beneficial genera that promote short-chain fatty acid (SCFA) production, thus optimizing the gut microecological environment. Correlation analysis of SCFAs further confirmed a significant association between the enriched microbiota and the production of acetate, propionate, and butyrate (p < 0.05). In conclusion, dietary supplementation with MCE promotes healthy growth and feed intake in broilers and exhibits anti-inflammatory and antioxidant effects. By optimizing gut microbiota composition, enhancing intestinal barrier function, and promoting SCFA production, MCE effectively maintains gut microecological balance, supporting broiler intestinal health.
Collapse
Affiliation(s)
- Wei Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.W.)
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yuyu Wang
- College of Veterinary, Hunan Agricultural University, Changsha 410128, China;
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.W.)
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Junjuan Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.W.)
| | - Guifeng Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.W.)
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- College of Veterinary, Hunan Agricultural University, Changsha 410128, China;
| | - Wei Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Abankwah JK, Wang Y, Wang J, Ogbe SE, Pozzo LD, Chu X, Bian Y. Gut aging: A wane from the normal to repercussion and gerotherapeutic strategies. Heliyon 2024; 10:e37883. [PMID: 39381110 PMCID: PMC11456882 DOI: 10.1016/j.heliyon.2024.e37883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/01/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Globally, age-related diseases represent a significant public health concern among the elderly population. In aging, healthy organs and tissues undergo structural and functional changes that put the aged adults at risk of diseases. Some of the age-related diseases include cancer, atherosclerosis, brain disorders, muscle atrophy (sarcopenia), gastrointestinal (GIT) disorders, etc. In organs, a decline in stem cell function is the starting point of many conditions and is extremely important in GIT disorder development. Many studies have established that aging affects stem cells and their surrounding supportive niche components. Although there is a significant advancement in treating intestinal aging, the rising elderly population coupled with a higher occurrence of chronic gut ailments necessitates more effective therapeutic approaches to preserve gut health. Notable therapeutic strategies such as Western medicine, traditional Chinese medicine, and other health-promotion interventions have been reported in several studies to hold promise in mitigating age-related gut disorders. This review highlights findings across various facets of gut aging with a focus on aging-associated changes of intestinal stem cells and their niche components, thus a deviation from the normal to repercussion, as well as essential therapeutic strategies to mitigate intestinal aging.
Collapse
Affiliation(s)
- Joseph K. Abankwah
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jida Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Susan Enechojo Ogbe
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lisa Dal Pozzo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - XiaoQian Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - YuHong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
6
|
Barbarossa A, Rosato A, Carrieri A, Fumarola L, Tardugno R, Corbo F, Fracchiolla G, Carocci A. Exploring the Antibiofilm Effect of Sertraline in Synergy with Cinnamomum verum Essential Oil to Counteract Candida Species. Pharmaceuticals (Basel) 2024; 17:1109. [PMID: 39338275 PMCID: PMC11435152 DOI: 10.3390/ph17091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence and spread of drug-resistant pathogens, resulting in antimicrobial resistance, continue to compromise our capability to handle commonly occurring infectious diseases. The rapid global spread of multi-drug-resistant pathogens, particularly systemic fungal infections, presents a significant concern, as existing antimicrobial drugs are becoming ineffective against them. In recent decades, there has been a notable increase in systemic fungal infections, primarily caused by Candida species, which are progressively developing resistance to azoles. Moreover, Candida species biofilms are among the most common in clinical settings. In particular, they adhere to biomedical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. In recent years, many research programs have concentrated on the development of novel compounds with possible antimicrobial effects to address this issue, and new sources, such as plant-derived antimicrobial compounds, have been thoroughly investigated. Essential oils (EOs), among their numerous pharmacological properties, exhibit antifungal, antibacterial, and antiviral activities and have been examined at a global scale as the possible origin of novel antimicrobial compounds. A recent work carried out by our research group concerned the synergistic antibacterial activities of commercially available and chemically characterized Cinnamomum verum L. essential oil (C. verum EO) in association with sertraline, a selective serotonin reuptake inhibitor whose repositioning as a non-antibiotic drug has been explored over the years with encouraging results. The aim of this work was to explore the synergistic effects of C. verum EO with sertraline on both planktonic and sessile Candida species cells. Susceptibility testing and testing of the synergism of sertraline and C. verum EO against planktonic and sessile cells were performed using a broth microdilution assay and checkerboard methods. A synergistic effect was evident in both the planktonic cells and mature biofilms, with significant reductions in fungal viability. Indeed, the fractional inhibitory concentration index (FICI) was lower than 0.5 for all the associations, thus indicating significant synergism of the associations with the Candida strains examined. Moreover, the concentrations of sertraline able to inhibit Candida spp. strain growth and biofilm formation significantly decreased when it was used in combination with C. verum EO for all the strains considered, with a reduction percentage in the amount of each associated component ranging from 87.5% to 97%.
Collapse
Affiliation(s)
- Alexia Barbarossa
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Antonio Rosato
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Luciana Fumarola
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Filomena Corbo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Alessia Carocci
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
7
|
Corbetta P, Lonati E, Pagliari S, Mauri M, Cazzaniga E, Botto L, Campone L, Palestini P, Bulbarelli A. Flavonoids-Enriched Vegetal Extract Prevents the Activation of NFκB Downstream Mechanisms in a Bowel Disease In Vitro Model. Int J Mol Sci 2024; 25:7869. [PMID: 39063111 PMCID: PMC11277009 DOI: 10.3390/ijms25147869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) incidence has increased in the last decades due to changes in dietary habits. IBDs are characterized by intestinal epithelial barrier disruption, increased inflammatory mediator production and excessive tissue injury. Since the current treatments are not sufficient to achieve and maintain remission, complementary and alternative medicine (CAM) becomes a primary practice as a co-adjuvant for the therapy. Thus, the intake of functional food enriched in vegetal extracts represents a promising nutritional strategy. This study evaluates the anti-inflammatory effects of artichoke, caihua and fenugreek vegetal extract original blend (ACFB) in an in vitro model of gut barrier mimicking the early acute phases of the disease. Caco2 cells cultured on transwell supports were treated with digested ACFB before exposure to pro-inflammatory cytokines. The pre-treatment counteracts the increase in barrier permeability induced by the inflammatory stimulus, as demonstrated by the evaluation of TEER and CLDN-2 parameters. In parallel, ACFB reduces p65NF-κB pro-inflammatory pathway activation that results in the decrement of COX-2 expression as PGE2 and IL-8 secretion. ACFB properties might be due to the synergistic effects of different flavonoids, indicating it as a valid candidate for new formulation in the prevention/mitigation of non-communicable diseases.
Collapse
Affiliation(s)
- Paolo Corbetta
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Stefania Pagliari
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Mario Mauri
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Luca Campone
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| |
Collapse
|
8
|
Nelson VK, Nuli MV, Ausali S, Gupta S, Sanga V, Mishra R, Jaini PK, Madhuri Kallam SD, Sudhan HH, Mayasa V, Abomughaid MM, Almutary AG, Pullaiah CP, Mitta R, Jha NK. Dietary anti-inflammatory and anti-bacterial medicinal plants and its compounds in bovine mastitis associated impact on human life. Microb Pathog 2024; 192:106687. [PMID: 38750773 DOI: 10.1016/j.micpath.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Center for global health research, saveetha medical college, saveetha institute of medical and technical sciences, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saijyothi Ausali
- College of Pharmacy, MNR higher education and research academy campus, MNR Nagar, Sangareddy, 502294, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vaishnavi Sanga
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, 391760, Gujrat, India
| | - Pavan Kumar Jaini
- Department of Pharmaceutics, Raffles University, Neemrana, Rajasthan, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Vadlamudi, Andhra Pradesh, 522213, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box, 59911, United Arab Emirates
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | - Raghavendra Mitta
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering & Technology (SSET), Sharda University, Greater Noida, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| |
Collapse
|
9
|
Bi Bi S, Elahi I, Sardar N, Ghaffar O, Ali H, Alsubki RA, Iqbal MS, Attia KA, Abushady AM. Exploring non-cytotoxic, antioxidant, and anti-inflammatory properties of selenium nanoparticles synthesized from Gymnema sylvestre and Cinnamon cassia extracts for herbal nanomedicine. Microb Pathog 2024; 192:106670. [PMID: 38734323 DOI: 10.1016/j.micpath.2024.106670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
The increasing need for pharmaceutical agents that possess attributes such as safety, cost-effectiveness, environmental sustainability, and absence of side effects has driven the advancement of nanomedicine research, which lies at the convergence of nanotechnology and medicine. AIMS AND OBJECTIVES The study aimed to synthesize non-toxic selenium nanoparticles (SeNPs) using Gymnema sylvestre (G. sylvestre) and Cinnamon cassia (C. cassia) extracts. It also sought to develop and evaluate versatile nanomedicine formulations i.e. selenium nanoparticles of G. sylvestre and C. cassia (SeNPs), drug (lupeol) loaded SeNPs (DLSeNPs), drug-loaded and coated (PEG) SeNPs (DLCSeNPs) without side effects. METHODS The SeNPs formulations were hydrothermally synthesized, loaded with lupeol to improve efficacy, coated with polyethylene glycol (PEG) for targeted delivery, and characterized using UV-Vis spectrophotometry, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), zeta potential analysis, size distribution analysis, and X-ray diffraction (XRD). Hemolytic cytotoxicity, 2,2-Diphenyl-1-picrylhydzayl (DPPH), total Reducing power, and total antioxidant capacity (TAC) antioxidant assays, carrageenan-induced paw edema, and histological studies were used to estimate the acute anti-inflammatory activity of the synthesized SeNPs. RESULTS The final form of PEGylated and drug (lupeol)-loaded selenium nanoparticles (DLCSeNPs) exhibited an average particle size ranging from 100 to 500 nm as evidenced by SEM, and Zeta potential results. These nanoparticles demonstrated no cytotoxic effects and displayed remarkable antioxidant (IC50 values 19.29) and anti-inflammatory capabilities. These results were fed into Graph-pad Prism 5 software and analyzed by one-way ANOVA, followed by Tukey's post hoc test (p < 0.001). All nano-formulations exhibited significant overall antioxidant activity, with IC50 values ≤ 386 (p < 0.05) as analyzed by ANOVA. The study's results suggest that G. sylvestre outperformed C. cassia in terms of reducing 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical, potassium ferricyanide, and ammonium molybdate in respective antioxidant assays. As far as anti-inflammatory activities are concerned drug (lupeol)-loaded and PEG-coated G. sylvestre SeNPs exhibited the highest anti-inflammatory potential from all other nano-formulations including drug (lupeol)-loaded and PEG-coated C. cassia SeNPs, as exhibited to reduce the release of pro-inflammatory signals i.e. cytokines and NF-kB, making them innovative anti-inflammatory nanomedicine. CONCLUSION The study synthesized lupeol-loaded and PEG-coated SeNPs, showcasing the potential for biocompatible, cost-effective anti-inflammatory nanomedicines. G. Sylvester's superior antioxidant and anti-inflammatory performance than Cinnamon cassia emphasizes medicinal plant versatility.
Collapse
Affiliation(s)
- Sumairan Bi Bi
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Iqra Elahi
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Nimra Sardar
- Department of Microbiology and Molecular Genetics, School of Applied Sciences, University of Okara, Okara, Pakistan.
| | - Omer Ghaffar
- Department of Biotechnology, School of Natural and Applied Sciences, Niğde Ömer Halisdemir University, Turkey.
| | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.
| | - Roua A Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, 2455, Riyadh, 11451, Saudi Arabia.
| | - Muhammad Sarfaraz Iqbal
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Riyadh, Saudi Arabia.
| | - Asmaa M Abushady
- Biotechnology School, 26Th of July Corridor, Nile University, Sheikh Zayed City, Giza, 12588, Egypt; Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
10
|
Pagliari S, Domínguez‐Rodríguez G, Cifuentes A, Ibáñez E, Labra M, Campone L. Pressurized liquid extraction of glucosinolates from Camelina sativa (L.) Crantz by-products: Process optimization and biological activities of green extract. Food Chem X 2024; 22:101324. [PMID: 38590634 PMCID: PMC10999800 DOI: 10.1016/j.fochx.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
The cultivation of Camelina sativa (L.) Crantz is rapidly increasing due to oil production resulting in a substantial volume of by-products, which still have an interesting composition in secondary metabolites, especially glucosinolates. Therefore, a green extraction procedure of glucosinolates by Pressurised Liquid Extraction was developed and optimized using a chemometric approach. Furthermore, the glucosinolates were purified by solid phase extraction, and a preliminary study on bioaccessibility and bioavailability study was carried out to evaluate the resistance of the glucosinolates to the digestive process. The application of pressurised liquid extraction to the recovery of glucosinolates from camelina sativa by-product, is a green, automatic, and rapid method, representing a valid alternative to conventional extraction method to obtain ingredients for food industries.
Collapse
Affiliation(s)
- Stefania Pagliari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Gloria Domínguez‐Rodríguez
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Alejandro Cifuentes
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Elena Ibáñez
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
11
|
Peng J, Song X, Yu W, Pan Y, Zhang Y, Jian H, He B. The role and mechanism of cinnamaldehyde in cancer. J Food Drug Anal 2024; 32:140-154. [PMID: 38934689 PMCID: PMC11210466 DOI: 10.38212/2224-6614.3502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/15/2024] [Indexed: 06/28/2024] Open
Abstract
As cancer continues to rise globally, there is growing interest in discovering novel methods for prevention and treatment. Due to the limitations of traditional cancer therapies, there has been a growing emphasis on investigating herbal remedies and exploring their potential synergistic effects when combined with chemotherapy drugs. Cinnamaldehyde, derived from cinnamon, has gained significant attention for its potential role in cancer prevention and treatment. Extensive research has demonstrated that cinnamaldehyde exhibits promising anticancer properties by modulating various cellular processes involved in tumor growth and progression. However, challenges and unanswered questions remain regarding the precise mechanisms for its effective use as an anticancer agent. This article aims to explore the multifaceted effects of cinnamaldehyde on cancer cells and shed light on these existing issues. Cinnamaldehyde has diverse anti-cancer mechanisms, including inducing apoptosis by activating caspases and damaging mitochondrial function, inhibiting tumor angiogenesis, anti-proliferation, anti-inflammatory and antioxidant. In addition, cinnamaldehyde also acts as a reactive oxygen species scavenger, reducing oxidative stress and preventing DNA damage and genomic instability. This article emphasizes the promising therapeutic potential of cinnamaldehyde in cancer treatment and underscores the need for future research to unlock novel mechanisms and strategies for combating cancer. By providing valuable insights into the role and mechanism of cinnamaldehyde in cancer, this comprehensive understanding paves the way for its potential as a novel therapeutic agent. Overall, cinnamaldehyde holds great promise as an anticancer agent, and its comprehensive exploration in this article highlights its potential as a valuable addition to cancer treatment options.
Collapse
Affiliation(s)
- Jiahua Peng
- Department of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Institute of Obstetrics and Gynecology, Nanchang, Jiangxi,
China
| | - Xin Song
- Department of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Institute of Obstetrics and Gynecology, Nanchang, Jiangxi,
China
| | - Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi,
China
| | - Yuhan Pan
- School of Finance, Shanghai University of Finance and Economics, Shanghai,
China
| | - Yufei Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi,
China
| | - Hui Jian
- Department of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Institute of Obstetrics and Gynecology, Nanchang, Jiangxi,
China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi,
China
| |
Collapse
|
12
|
Sati P, Dhyani P, Sharma E, Attri DC, Jantwal A, Devi R, Calina D, Sharifi-Rad J. Gut Microbiota Targeted Approach by Natural Products in Diabetes Management: An Overview. Curr Nutr Rep 2024; 13:166-185. [PMID: 38498287 DOI: 10.1007/s13668-024-00523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW This review delves into the complex interplay between obesity-induced gut microbiota dysbiosis and the progression of type 2 diabetes mellitus (T2DM), highlighting the potential of natural products in mitigating these effects. By integrating recent epidemiological data, we aim to provide a nuanced understanding of how obesity exacerbates T2DM through gut flora alterations. RECENT FINDINGS Advances in research have underscored the significance of bioactive ingredients in natural foods, capable of restoring gut microbiota balance, thus offering a promising approach to manage diabetes in the context of obesity. These findings build upon the traditional use of medicinal plants in diabetes treatment, suggesting a deeper exploration of their mechanisms of action. This comprehensive manuscript underscores the critical role of targeting gut microbiota dysbiosis in obesity-related T2DM management and by bridging traditional knowledge with current scientific evidence; we highlighted the need for continued research into natural products as a complementary strategy for comprehensive diabetes care.
Collapse
Affiliation(s)
- Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Eshita Sharma
- Department of Biochemistry and Molecular Biology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Arvind Jantwal
- Department of Pharmaceutical Sciences, Kumaun University, Bhimtal, Uttarakhand, India
| | - Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
13
|
Qneibi M, Bdir S, Maayeh C, Bdair M, Sandouka D, Basit D, Hallak M. A Comprehensive Review of Essential Oils and Their Pharmacological Activities in Neurological Disorders: Exploring Neuroprotective Potential. Neurochem Res 2024; 49:258-289. [PMID: 37768469 DOI: 10.1007/s11064-023-04032-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Numerous studies have demonstrated essential oils' diverse chemical compositions and pharmacological properties encompassing antinociceptive, anxiolytic-like, and anticonvulsant activities, among other notable effects. The utilization of essential oils, whether inhaled, orally ingested, or applied topically, has commonly been employed as adjunctive therapy for individuals experiencing anxiety, insomnia, convulsions, pain, and cognitive impairment. The utilization of synthetic medications in the treatment of various disorders and symptoms is associated with a wide array of negative consequences. Consequently, numerous research groups across the globe have been prompted to explore the efficacy of natural alternatives such as essential oils. This review provides a comprehensive overview of the existing literature on the pharmacological properties of essential oils and their derived compounds and the underlying mechanisms responsible for these observed effects. The primary emphasis is on essential oils and their constituents, specifically targeting the nervous system and exhibiting significant potential in treating neurodegenerative disorders. The current state of research in this field is characterized by its preliminary nature, highlighting the necessity for a more comprehensive overlook of the therapeutic advantages of essential oils and their components. Integrating essential oils into conventional therapies can enhance the effectiveness of comprehensive treatment regimens for neurodegenerative diseases, offering a more holistic approach to addressing the multifaceted nature of these conditions.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Diana Basit
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mira Hallak
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
14
|
Arabshomali A, Bazzazzadehgan S, Mahdi F, Shariat-Madar Z. Potential Benefits of Antioxidant Phytochemicals in Type 2 Diabetes. Molecules 2023; 28:7209. [PMID: 37894687 PMCID: PMC10609456 DOI: 10.3390/molecules28207209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The clinical relationship between diabetes and inflammation is well established. Evidence clearly indicates that disrupting oxidant-antioxidant equilibrium and elevated lipid peroxidation could be a potential mechanism for chronic kidney disease associated with type 2 diabetes mellitus (T2DM). Under diabetic conditions, hyperglycemia, especially inflammation, and increased reactive oxygen species generation are bidirectionally associated. Inflammation, oxidative stress, and tissue damage are believed to play a role in the development of diabetes. Although the exact mechanism underlying oxidative stress and its impact on diabetes progression remains uncertain, the hyperglycemia-inflammation-oxidative stress interaction clearly plays a significant role in the onset and progression of vascular disease, kidney disease, hepatic injury, and pancreas damage and, therefore, holds promise as a therapeutic target. Evidence strongly indicates that the use of multiple antidiabetic medications fails to achieve the normal range for glycated hemoglobin targets, signifying treatment-resistant diabetes. Antioxidants with polyphenols are considered useful as adjuvant therapy for their potential anti-inflammatory effect and antioxidant activity. We aimed to analyze the current major points reported in preclinical, in vivo, and clinical studies of antioxidants in the prevention or treatment of inflammation in T2DM. Then, we will share our speculative vision for future diabetes clinical trials.
Collapse
Affiliation(s)
- Arman Arabshomali
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (A.A.); (S.B.)
| | - Shadi Bazzazzadehgan
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (A.A.); (S.B.)
| | - Fakhri Mahdi
- Department of BioMolecular Sciences, Division of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| | - Zia Shariat-Madar
- Department of BioMolecular Sciences, Division of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| |
Collapse
|
15
|
Baloghová J, Michalková R, Baranová Z, Mojžišová G, Fedáková Z, Mojžiš J. Spice-Derived Phenolic Compounds: Potential for Skin Cancer Prevention and Therapy. Molecules 2023; 28:6251. [PMID: 37687080 PMCID: PMC10489044 DOI: 10.3390/molecules28176251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Skin cancer is a condition characterized by the abnormal growth of skin cells, primarily caused by exposure to ultraviolet (UV) radiation from the sun or artificial sources like tanning beds. Different types of skin cancer include melanoma, basal cell carcinoma, and squamous cell carcinoma. Despite the advancements in targeted therapies, there is still a need for a safer, highly efficient approach to preventing and treating cutaneous malignancies. Spices have a rich history dating back thousands of years and are renowned for their ability to enhance the flavor, taste, and color of food. Derived from various plant parts like seeds, fruits, bark, roots, or flowers, spices are important culinary ingredients. However, their value extends beyond the culinary realm. Some spices contain bioactive compounds, including phenolic compounds, which are known for their significant biological effects. These compounds have attracted attention in scientific research due to their potential health benefits, including their possible role in disease prevention and treatment, such as cancer. This review focuses on examining the potential of spice-derived phenolic compounds as preventive or therapeutic agents for managing skin cancers. By compiling and analyzing the available knowledge, this review aims to provide insights that can guide future research in identifying new anticancer phytochemicals and uncovering additional mechanisms for combating skin cancer.
Collapse
Affiliation(s)
- Janette Baloghová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Baranová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Fedáková
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| |
Collapse
|
16
|
Lonati E, Sala G, Corbetta P, Pagliari S, Cazzaniga E, Botto L, Rovellini P, Bruni I, Palestini P, Bulbarelli A. Digested Cinnamon ( Cinnamomum verum J. Presl) Bark Extract Modulates Claudin-2 Gene Expression and Protein Levels under TNFα/IL-1β Inflammatory Stimulus. Int J Mol Sci 2023; 24:9201. [PMID: 37298151 PMCID: PMC10253083 DOI: 10.3390/ijms24119201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Epigenetic changes, host-gut microbiota interactions, and environmental factors contribute to inflammatory bowel disease (IBD) onset and progression. A healthy lifestyle may help to slow down the chronic or remitting/relapsing intestinal tract inflammation characteristic of IBD. In this scenario, the employment of a nutritional strategy to prevent the onset or supplement disease therapies included functional food consumption. Its formulation consists of the addition of a phytoextract enriched in bioactive molecules. A good candidate as an ingredient is the Cinnamon verum aqueous extract. Indeed, this extract, subjected to a process of gastrointestinal digestion simulation (INFOGEST), exhibits beneficial antioxidant and anti-inflammatory properties in an in vitro model of the inflamed intestinal barrier. Here, we deepen the study of the mechanisms related to the effect of digested cinnamon extract pre-treatment, showing a correlation between transepithelial electrical resistance (TEER) decrement and alterations in claudin-2 expression under Tumor necrosis factor-α/Interleukin-1β (TNF-α/IL-1) β cytokine administration. Our results show that pre-treatment with cinnamon extract prevents TEER loss by claudin-2 protein level regulation, influencing both gene transcription and autophagy-mediated degradation. Hence, cinnamon polyphenols and their metabolites probably work as mediators in gene regulation and receptor/pathway activation, leading to an adaptive response against renewed insults.
Collapse
Affiliation(s)
- Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Gessica Sala
- Milan Center for Neuroscience (NeuroMI), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Paolo Corbetta
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Stefania Pagliari
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Pierangela Rovellini
- Innovhub Stazioni Sperimentali per l’Industria S.r.l., Via Giuseppe Colombo 79, 20133 Milan, Italy
| | - Ilaria Bruni
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
17
|
Hartmann AM, D’Urso M, Dell’Oro M, Koppold DA, Steckhan N, Michalsen A, Kandil FI, Kessler CS. Post Hoc Analysis of a Randomized Controlled Trial on Fasting and Plant-Based Diet in Rheumatoid Arthritis (NutriFast): Nutritional Supply and Impact on Dietary Behavior. Nutrients 2023; 15:nu15040851. [PMID: 36839208 PMCID: PMC9960429 DOI: 10.3390/nu15040851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
This study aimed at comparing the nutrient supply and dietary behaviors during a plant-based diet (PBD) combined with time-restricted eating (TRE) to standard dietary recommendations in rheumatoid arthritis patients. In this open-label, randomized, controlled clinical trial, patients were assigned to either a 7-day fast followed by an 11-week PBD including TRE (A) or a 12-week anti-inflammatory diet following official German guidelines (German Nutrition Society, DGE) (B). Dietary habits were assessed by 3-day food records at weeks -1, 4 and 9 and food frequency questionnaires. 41 out of 53 participants were included in a post-hoc per protocol analysis. Both groups had similar energy, carbohydrate, sugar, fiber and protein intake at week 4. Group A consumed significantly less total saturated fat than group B (15.9 ± 7.7 vs. 23.2 ± 10.3 g/day; p = 0.02). Regarding micronutrients, group B consumed more vitamin A, B12, D, riboflavin and calcium (each p ≤ 0.02). Zinc and calcium were below recommended intakes in both groups. Cluster analysis did not show clear group allocation after three months. Hence, dietary counselling for a PBD combined with TRE compared to a standard anti-inflammatory diet does not seem to lead to two different dietary clusters, i.e., actual different dietary behaviors as expected. Larger confirmatory studies are warranted to further define dietary recommendations for RA.
Collapse
Affiliation(s)
- Anika M. Hartmann
- Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Institute for Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Correspondence:
| | - Marina D’Urso
- Institute for Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Gastroenterology, Infectiology and Rheumatology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Melanie Dell’Oro
- Institute for Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, 10117 Berlin, Germany
| | - Daniela A. Koppold
- Institute for Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Nico Steckhan
- Institute for Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Connected Healthcare, Hasso Plattner Institute, University of Potsdam, 10117 Potsdam, Germany
| | - Andreas Michalsen
- Institute for Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, 10117 Berlin, Germany
| | - Farid I. Kandil
- Institute for Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Paediatric Oncology/Haematology, Otto-Heubner Centre for Paediatric and Adolescent Medicine (OHC), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Christian S. Kessler
- Institute for Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, 10117 Berlin, Germany
| |
Collapse
|