1
|
Zheng X, Wang X, Li P, Zhou Y, Zhu X, Hu Z, Wang H, Chen M, Huo X, Liu Y, Zhang W. The change of long tail fibers expanded the host range of a T5-like Salmonella phage and its application in milk. BMC Microbiol 2025; 25:169. [PMID: 40133802 PMCID: PMC11938639 DOI: 10.1186/s12866-025-03895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
We engineered novel T5-like bacteriophage (phage) with extended host ranges by editing the long-tail fibers (PB3 and PB4) to combat Salmonella Enteritidis. By replacing the long-tail fibers PB3 and PB4 regions of phage PH204 with those from phage SP76, we created phages RPA1 - 3 and RPB1 - 3, which exhibited expanded host ranges, lysing 54 strains compared to the original 30 strains. These phages retained the biological characteristics of PH204, including temperature, pH stability and adsorption rate. In milk, RPA1 - 3 and RPB1 - 3 inhibited Salmonella ZWSA605 growth, reducing bacterial counts to 1.51 log10 CFU/mL and 2.18 log10 CFU/mL after 8 h, respectively. Although the bacteriolytic activity of recombinant phages is lower than that of the parent phage, our findings suggest that these phages hold promise as candidates for future phage biocontrol applications in food.
Collapse
Affiliation(s)
- Xiaofeng Zheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Xin Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Pei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Yu Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Xihui Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Zimeng Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Hui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Mianmian Chen
- College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Xiang Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
- Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Nanjing, 210009, China
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, 210009, China
| | - Yingyu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
| |
Collapse
|
2
|
Kipper D, Orsi RH, de Souza Zanetti N, De Carli S, Mascitti AK, Fonseca ASK, Ikuta N, Wiedmann M, Lunge VR. Comparative genomic analysis reveals the emergence and dissemination of different Salmonella enterica serovar Gallinarum biovar Gallinarum lineages in Brazil. Avian Pathol 2025:1-13. [PMID: 39850984 DOI: 10.1080/03079457.2025.2458601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
RESEARCH HIGHLIGHTS Fowl typhoid (FT) is a concerning poultry disease caused by S. Gallinarum.Five S. Gallinarum lineages (I to V) were demonstrated in South American farms.S. Gallinarum lineages have specific antimicrobial resistance / virulence genomic profiles.Main FT outbreaks in Brazil have been caused by the specific lineage II.
Collapse
Affiliation(s)
- Diéssy Kipper
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | | | | | - Silvia De Carli
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | | | | | - Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha, Brazil
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Vagner Ricardo Lunge
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
- Simbios Biotecnologia, Cachoeirinha, Brazil
| |
Collapse
|
3
|
Zheng X, Wang X, Zhou Y, Liu M, Li P, Gao L, Wang H, Ma X, Wang L, Huo X, Zhang W. Isolation, whole genome sequencing and application of a broad-spectrum Salmonella phage. Arch Microbiol 2024; 206:335. [PMID: 38953983 DOI: 10.1007/s00203-024-04061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Salmonella is considered as one of the most common zoonotic /foodborne pathogens in the world. The application of bacteriophages as novel antibacterial agents in food substrates has become an emerging strategy. Bacteriophages have the potential to control Salmonella contamination.We have isolated and characterized a broad-spectrum Salmonella phage, SP154, which can lyse 9 serotypes, including S. Enteritidis, S. Typhimurium, S. Pullorum, S. Arizonae, S. Dublin, S. Cholerasuis, S. Chester, S. 1, 4, [5], 12: i: -, and S. Derby, accounting for 81.9% of 144 isolates. SP154 showed a short latent period (40 min) and a high burst size (with the first rapid burst size at 107 PFUs/cell and the second rapid burst size at approximately 40 PFUs/cell). Furthermore, SP154 activity has higher survival rates across various environmental conditions, including pH 4.0-12.0 and temperatures ranging from 4 to 50 °C for 60 min, making it suitable for diverse food processing and storage applications. Significant reductions in live Salmonella were observed in different foods matrices such as milk and chicken meat, with a decrease of up to 1.9 log10 CFU/mL in milk contamination and a 1 log10 CFU/mL reduction in chicken meat. Whole genome sequencing analysis revealed that SP154 belongs to the genus Ithacavirus, subfamily Humphriesvirinae, within the family Schitoviridae. Phylogenetic analysis based on the terminase large subunit supported this classification, although an alternate tree using the tail spike protein gene suggested affiliation with the genus Kuttervirus, underscoring the limitations of relying on a single gene for phylogenetic inference. Importantly, no virulence or antibiotic resistance genes were detected in SP154. Our research highlights the potential of using SP154 for biocontrol of Salmonella in the food industry.
Collapse
Affiliation(s)
- Xiaofeng Zheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xin Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Yu Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Meihan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Pei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Linyun Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Hui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Xuelian Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Liqun Wang
- School of Animal Husbandry and Veterinary, Jiangsu Polytechnic College Agriculture and Forestry, Jurong, 212400, China
| | - Xiang Huo
- Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, 210009, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
| |
Collapse
|
4
|
Vaz CSL, da Fonseca FN, Voss-Rech D, Morés MAZ, Coldebella A, Cantão ME. Wild-type lytic bacteriophages against Salmonella Heidelberg: Further characterization and effect of prophylactic therapy in broiler chickens. Res Vet Sci 2024; 171:105247. [PMID: 38554611 DOI: 10.1016/j.rvsc.2024.105247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
To characterize wild-type bacteriophages and their effect on Salmonella Heidelberg intestinal colonization in broilers, phages combined in a cocktail were continuously delivered via drinking water since the first day after hatching. After challenge with a field strain, broilers were evaluated at regular intervals for S. Heidelberg and bacteriophages in tissues and cecum, and gross and microscopic lesions in organs. Phages were highly virulent against S. Heidelberg by efficiency of plating. One-step growth curves exhibited eclipse period from 20 to 25 min, whereas the lowest latent period and higher burst size found were 45 min and 54 PFU/cell, respectively. Bacteriophage whole genomic sequencing analyses revealed a lack of genes related to lysogeny, antimicrobial resistance, and virulence factors. Relevant gross or microscopic lesions were absent in tissues analyzed from treated broilers. Although numerically stable bacteriophage concentrations were detected in the cecal contents of treated broilers, no significant difference was found for the S. Heidelberg cecal load in comparison to the untreated group and for the prevalence of positive tissues throughout the evaluated period. The phages produced turbid plaques against some S. Heidelberg re-isolated from treated broilers, suggesting the evolving of a resistant subpopulation. Overall, the results provide new evidence of the safety and in vitro replication of such phages in S. Heidelberg. Nevertheless, continuous administration of the phage suspension most likely induced the development of bacteriophage-resistant mutants, which might have affected the in vivo effect. Therefore, a putative administration protocol should be based on other strategies, such as short-term therapy at pre-harvest age.
Collapse
Affiliation(s)
| | | | - Daiane Voss-Rech
- Embrapa Suínos e Aves, BR 153, Km 110, PO box 321, Concórdia, Santa Catarina 89715899, Brazil
| | | | - Arlei Coldebella
- Embrapa Suínos e Aves, BR 153, Km 110, PO box 321, Concórdia, Santa Catarina 89715899, Brazil
| | - Maurício Egídio Cantão
- Embrapa Suínos e Aves, BR 153, Km 110, PO box 321, Concórdia, Santa Catarina 89715899, Brazil
| |
Collapse
|
5
|
Tung CW, Julianingsih D, Canagarajah C, Sellers G, Scriba A, Alvarado-Martínez Z, Tabashsum Z, Biswas D. The effectiveness of endolysin ENDO-1252 from Salmonella bacteriophage-1252 against nontyphoidal Salmonella enterica. FEMS Microbiol Lett 2024; 371:fnae051. [PMID: 38970360 DOI: 10.1093/femsle/fnae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024] Open
Abstract
Salmonella enterica (S. enterica) is the most common food and waterborne pathogen worldwide. The growing trend of antibiotic-resistant S. enterica poses severe healthcare threats. As an alternative antimicrobial agent, bacteriophage-encoded endolysins (endolysins) are a potential agent in controlling S. enterica infection. Endolysins are enzymes that particularly target the peptidoglycan layer of bacterial cells, leading to their rupture and destruction. However, the application of endolysins against Gram-negative bacteria is limited due to the presence of the outer membrane in the cell wall, which hinders the permeation of externally applied endolysins. This study aimed the prokaryotic expression system to produce the recombinant endolysin ENDO-1252, encoded by the Salmonella bacteriophage-1252 associated with S. Enteritidis. Subsequently, ENDO-1252 had strong lytic activity not only against S. Enteritidis but also against S. Typhimurium. In addition, ENDO-1252 showed optimal thermostability and lytic activity at 25°C with a pH of 7.0. In combination with 0.1 mM EDTA, the effect of 120 µg of ENDO-1252 for 6 hours exhibited the highest lytic activity, resulting in a reduction of 1.15 log or 92.87% on S. Enteritidis. These findings suggest that ENDO-1252 can be used as a potential and innovative antibacterial agent for controlling the growth of S. Enteritidis.
Collapse
Affiliation(s)
- Chuan-Wei Tung
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, United States
| | - Dita Julianingsih
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, United States
| | - Christa Canagarajah
- Department of Biology, University of Maryland, College Park, College Park, MD 20740, United States
| | - George Sellers
- Department of Biology, University of Maryland, College Park, College Park, MD 20740, United States
| | - Aaron Scriba
- Department of Biology, University of Maryland, College Park, College Park, MD 20740, United States
| | - Zabdiel Alvarado-Martínez
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20740, United States
| | - Zajeba Tabashsum
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20740, United States
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, United States
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20740, United States
| |
Collapse
|