1
|
Liu J, Wang J, Zhu B, Liang K, Zhang Y, Song J, Tu L, Zheng Y, Wang M. Identification of phenols and their formation network during the brewing process of Shanxi aged vinegar. Food Chem 2025; 470:142635. [PMID: 39798261 DOI: 10.1016/j.foodchem.2024.142635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/15/2025]
Abstract
Phenols are important functional compounds present in vineagr, however, their composition and formation pathways remain uncertain. Herein, non-targeted metabolomics and macrotranscriptomics methods were applied to identify phenols and analyze their formation network during the brewing process of Shanxi aged vinegar. A total of 82 phenols were detected from the raw material and the brewing process. Results indicated that phenolic acids were the major phenols and were mainly formed during acetic acid fermentation stages. Water, reducing sugars, lactic acid, and 7 amino acids influenced the formation and transformation of phenols, as shown through Spearman analysis. Furthermore, 16 genera and 38 enzymes were involved in substrates decomposition and phenols formation according to the metabolic pathway analysis, with Xenobiotics biodegradation and metabolism identified as the main pathway for phenols formation. Lactobacillus and Acetobacter were the key genera responsible for the phenols transformation. This study provides new insights into the phenols formation mechanisms in cereal vinegars and it is helpful for isolating the functional strains to reinforce the phenols formation.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiao Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Boya Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kai Liang
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and Engineering, Shanxi Zilin Vinegar Industry Co, Ltd, Taiyuan 030400, China
| | - Yushi Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jia Song
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Linna Tu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Shanxi Province Key Laboratory of Vinegar Fermentation Science and Engineering, Shanxi Zilin Vinegar Industry Co, Ltd, Taiyuan 030400, China.
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Zhao Y, Zhang M, Liu Y, Liu Z, Li X, Jia F. A transcriptomic investigation into the intrinsic and extrinsic effects of cold plasma generated from air and nitrogen on Pseudomonas aeruginosa. Food Res Int 2025; 205:115974. [PMID: 40032467 DOI: 10.1016/j.foodres.2025.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
This research endeavor delved into the bactericidal mechanisms of CAP against Pseudomonas aeruginosa (P. aeruginosa), employing both protein oxidation and transcriptome analysis for a comprehensive understanding. The findings unveiled that CAP treatment, through the generation of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), induced direct cell membrane disruption and intracellular protein oxidation. Transcriptome profiling revealed notable disparities in gene expression patterns between CAP-treated samples and untreated controls. Specifically, the A5 treatment (air-CAP exposure for 5 min), N5 treatment (nitrogen-CAP exposure for 5 min), and N9 treatment (nitrogen-CAP exposure for 9 min) identified 1457, 95, and 885 differentially expressed genes (DEGs), respectively. These alterations indicate that CAP treatment disrupts bacterial cellular structure, motility, colonization capabilities, and protein secretion pathways, inhibiting biofilm formation and nutrient acquisition. Intriguingly, the N9 treatment was observed to cause substantial internal damage to bacterial structures, including flagella and ribosomes via RNS. Conversely, the A5 treatment rapidly disrupted the cell's external surface and metabolic activity via ROS, resulting in extensive oxidative damage and rapid efflux of cellular components. These observations suggest that CAP treatment effectively inhibits P. aeruginosa by targeting its internal and external structures.
Collapse
Affiliation(s)
- Yijie Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Economic Development Zone Management Committee of Lishui, Nanjing, Jiangsu Province, China
| | - Mohan Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Nanjing, Jiangsu Province, China
| | - Yana Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Fei Jia
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China.
| |
Collapse
|
3
|
Ding H, Wang T, Zhang Y, Guo C, Shi K, Kurtovic I, Yuan Y, Yue T. Efficacy, kinetics, inactivation mechanism and application of cold plasma in inactivating Alicyclobacillus acidoterrestris spores. Int J Food Microbiol 2024; 423:110830. [PMID: 39047618 DOI: 10.1016/j.ijfoodmicro.2024.110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
As spores of Alicyclobacillus acidoterrestris can survive traditional pasteurization, this organism has been suggested as a target bacterium in the fruit juice industry. This study aimed to investigate the inactivation effect of cold plasma on A. acidoterrestris spores and the mechanism behind the inactivation. The inactivation effect was detected by the plate count method and described by kinetic models. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), the detection of dipicolinic acid (DPA) release and heat resistance detection, the detection and scavenging experiment of reactive species, and cryo-scanning electron microscopy were used to explore the mechanism of cold plasma inactivation of A. acidoterrestris. The results showed that cold plasma can effectively inactivate A. acidoterrestris spores in saline with a 3.0 ± 0.3 and 4.4 ± 0.8 log reduction in CFU/mL, for 9 and 18 min, respectively. The higher the voltage and the longer the treatment time, the stronger the overall inactivation effect. However, a lower gas flow rate may increase the probability of spore contact with reactive species, resulting in better inactivation results. The biphasic model fits the survival curves better than the Weibull model. SEM and TEM revealed that cold plasma treatment can cause varying degrees of damage to the morphology and structure of A. acidoterrestris spores, with at least 50 % sustaining severe morphological and structural damage. The DPA release and heat resistance detection showed that A. acidoterrestris spores did not germinate but died directly during the cold plasma treatment. 1O2 plays the most important role in the inactivation, while O3, H2O2 and NO3- may also be responsible for inactivation. Cold plasma treatment for 1 min reduced A. acidoterrestris spores in apple juice by 0.4 ± 0.0 log, comparable to a 12-min heat treatment at 95 °C. However, as the treatment time increased, the survival curve exhibited a significant tailing phenomenon, which was most likely caused by the various compounds in apple juice that can react with reactive species and exert a physical shielding effect on spores. Higher input power and higher gas flow rate resulted in more complete inactivation of A. acidoterrestris spores in apple juice. What's more, the high inactivation efficiency in saline indicates the cold plasma device provides a promising alternative for controlling A. acidoterrestris spores during apple washing. Overall, our study provides adequate data support and a theoretical basis for using cold plasma to inactivate A. acidoterrestris spores in the food industry.
Collapse
Affiliation(s)
- Hao Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Yuxiang Zhang
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Chunfeng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Kaiyu Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Ivan Kurtovic
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
4
|
Hai A, Rambabu K, Al Dhaheri AS, Kurup SS, Banat F. Tapping into Palm Sap: Insights into extraction practices, quality profiles, fermentation chemistry, and preservation techniques. Heliyon 2024; 10:e35611. [PMID: 39170275 PMCID: PMC11336882 DOI: 10.1016/j.heliyon.2024.e35611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The quality profile, extraction yield, and fermentation chemistry of palm sap depend on various factors such as extraction technique, weather conditions, and preservation methods. This review aims to provide a detailed overview of palm sap extraction techniques and the methods for its preservation. The compositional analysis of palm sap, including physical and chemical parameters such as sugar content, acidity, and mineral composition, is discussed thoroughly. The role of microorganisms in fermentation and the effects of various influencing factors are also critically examined. Additionally, this review evaluates different preservation methods, including thermal processes, refrigeration, and electrical techniques, highlighting their effectiveness in extending the shelf life of palm sap. The review further explores the emerging impact of nanotechnology on palm sap preservation, offering insights into the latest industry challenges, developments, and future prospects. By presenting these findings, this review aims to enhance the scientific understanding of palm sap and stimulate additional research and innovation in the field, paving the way for improved production practices and product quality.
Collapse
Affiliation(s)
- Abdul Hai
- Department of Chemical and Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, 127788, United Arab Emirates
| | - K. Rambabu
- Department of Chemical and Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Ayesha S. Al Dhaheri
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Shyam S. Kurup
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical and Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
5
|
Li J, Zhang G, Zhang Z, Zhang Y, Zhang D. Synergistic Microbial Inhibition and Quality Preservation for Grapes through High-Voltage Electric Field Cold Plasma and Nano-ZnO Antimicrobial Film Treatment. Foods 2023; 12:4234. [PMID: 38231691 DOI: 10.3390/foods12234234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
To ensure their quality and safety, harvested grapes should be protected from microbial contamination before reaching consumers. For the first time, this study combined high-voltage electric field cold plasma (HVEF-CP) and nano-ZnO antimicrobial film to inhibit microbial growth on grapes. Using the response surface method, the optimal processing parameters of HVEF-CP (a voltage of 78 kV, a frequency of 110 Hz, and a time of 116 s) were identified to achieve 96.29% sterilization. The effects of co-processing with HVEF-CP and nano-ZnO antimicrobial film on the quality and safety of grapes during storage were explored. When stored at 4 °C and 20 °C, the co-processing extended the shelf life of grapes to 14 and 10 days, respectively. The co-processing increased the sterilization rate to 99.34%, demonstrating a synergistic effect between the two methods to ensure not only the safety of grapes but also their nutrient retention during storage. This novel approach is promising for the efficient, safe, and scalable preservation of grapes as well as other foods.
Collapse
Affiliation(s)
- Juan Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Guantao Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zitong Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuan Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Dongjie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| |
Collapse
|
6
|
Biryukov M, Semenov D, Kryachkova N, Polyakova A, Patrakova E, Troitskaya O, Milakhina E, Poletaeva J, Gugin P, Ryabchikova E, Zakrevsky D, Schweigert I, Koval O. The Molecular Basis for Selectivity of the Cytotoxic Response of Lung Adenocarcinoma Cells to Cold Atmospheric Plasma. Biomolecules 2023; 13:1672. [PMID: 38002354 PMCID: PMC10669024 DOI: 10.3390/biom13111672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The interaction of cold atmospheric plasma (CAP) with biotargets is accompanied by chemical reactions on their surfaces and insides, and it has great potential as an anticancer approach. This study discovers the molecular mechanisms that may explain the selective death of tumor cells under CAP exposure. To reach this goal, the transcriptional response to CAP treatment was analyzed in A549 lung adenocarcinoma cells and in lung-fibroblast Wi-38 cells. We found that the CAP treatment induced the common trend of response from A549 and Wi-38 cells-the p53 pathway, KRAS signaling, UV response, TNF-alpha signaling, and apoptosis-related processes were up-regulated in both cell lines. However, the amplitude of the response to CAP was more variable in the A549 cells. The CAP-dependent death of A549 cells was accompanied by DNA damage, cell-cycle arrest in G2/M, and the dysfunctional response of glutathione peroxidase 4 (GPx4). The activation of the genes of endoplasmic reticulum stress and ER lumens was detected only in the A549 cells. Transmission-electron microscopy confirmed the alteration of the morphology of the ER lumens in the A549 cells after the CAP exposure. It can be concluded that the responses to nuclear stress and ER stress constitute the main differences in the sensitivity of tumor and healthy cells to CAP exposure.
Collapse
Affiliation(s)
- Mikhail Biryukov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
| | - Dmitriy Semenov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
| | - Nadezhda Kryachkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
| | - Alina Polyakova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
| | - Ekaterina Patrakova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
| | - Olga Troitskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
| | - Elena Milakhina
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
- Department of Radio Engineering and Electronics, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | - Julia Poletaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
| | - Pavel Gugin
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
| | - Elena Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Dmitriy Zakrevsky
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
- Department of Radio Engineering and Electronics, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | - Irina Schweigert
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
| | - Olga Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
| |
Collapse
|