1
|
Judžentienė A, Šarlauskas J. Comparative Research of Antioxidant, Antimicrobial, Antiprotozoal and Cytotoxic Activities of Edible Suillus sp. Fruiting Body Extracts. Foods 2025; 14:1130. [PMID: 40238251 PMCID: PMC11988316 DOI: 10.3390/foods14071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/12/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
The aim of this study was to evaluate bioactive properties of Basidiomycota fungi, mainly Suillus sp. Wide spectrum of activities were revealed for S. variegatus, S. luteus, S. bovinus and S. granulatus; and obtained results were compared with other common fungi. Total Phenolic Content (TPC) varied from 245.32 ± 5.45 to 580.77 ± 13.10 (mg (GAE) per 100 g of dry weight) in methanolic extracts of S. bovinus and S. granulatus fruiting bodies, respectively. In ethyl acetate extracts, the highest TPC were obtained for S. variegatus (310 ± 9.68, mg (GAE)/100 g, dry matter), and the lowest means for S. luteus (105 ± 3.55, mg (GAE)/100 g dry weight). The ethyl acetate extracts of the tested Suillus species exhibited a stronger antioxidant activity (AA) to scavenge DPPH● and ABTS•+ than the methanolic ones, and the highest effects were determined for S. luteus (EC50, 0.15 ± 0.05 and 0.23 ± 0.05%, respectively). In the case of methanolic extracts, the highest AA were evaluated for S. granulatus. (EC50 for DPPH● and ABTS•+, 0.81 ± 0.30 and 0.95 ± 0.22%, respectively). The ABTS•+ scavenging potential varied from 0.25 ± 0.05 to 0.74 ± 0.10 (mmol/L, TROLOX equivalent, for S. granulatus and S. variegatus fruiting body extracts, respectively) in the ethyl acetate extracts. S. granulatus extracts demonstrated the widest range of antimicrobial effects against both gram-positive and gram-negative bacteria (from 11.7 ± 1.3 to 28.5 ± 3.3 mm against Pseudomonas aeruginosa and Bacillus mycoides, respectively); and against two fungal strains (up to 13.6 ± 0.4 mm on Meyerozyma guilliermondii) in agar disc diffusion tests. Our study revealed that methanolic extracts of the most tested Suillus sp. were not active enough against the tested parasites: Trypanosoma cruzi, Trypanosoma brucei, Leishmania infantum and Plasmodium falciparum. Only S. variegatus extracts showed good antiprotozoal effects against P. falciparum (12.70 µg/mL). Cytotoxic activity was observed on human diploid lung cells MRC-5 SV2 by S. granulatus extracts (64.45 µg/mL). For comparative purposes, extracts of other common Lithuanian fungi, such as Xerocomus sp. (X. badius, X. chrysenteron and X. subtomentosus), Tylopilus felleus, Phallus impudicus and Pycnoporus cinnabarinus were investigated for their activity. The P. cinnabarinus extracts demonstrated the highest and broadest overall effects: 1.32 µg/mL against T. brucei, 1.46 µg/mL against P. falciparum, 3.93 µg/mL against T. cruzi and 21.53 µg/mL against L. infantum. Additionally, this extract exhibited strong cytotoxicity on MRC-5 cells (13.05 µg/mL). The investigation of bioactive fungal metabolites is important for the development of a new generation of antioxidants, antimicrobials, antiparasitic and anticancer agents.
Collapse
Affiliation(s)
- Asta Judžentienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Avenue 7, LT-10257 Vilnius, Lithuania
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Jonas Šarlauskas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
2
|
Li LF, Hu YY, Wang XZ, Meng QZ, Zhao PP, Chen QN, Xu Y, Xia XK. Anti-MRSA and cytotoxic activity of a new diamide compound isolated from Aspergillus sp. H30. Nat Prod Res 2025:1-7. [PMID: 40096750 DOI: 10.1080/14786419.2025.2478529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/04/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
A new aromatic diamide compound, aspergillusin A (1), together with three known compounds, globosterol (2), ergosterol (3), and cladosporide A (4), was isolated from the crude extract of the endophytic fungi Aspergillus sp. H30. The structures were elucidated using NMR and MS data, finally, the biosynthetic pathway of compound 1 was hypothesised. Compounds 1-4 were tested for their antibacterial activities on six pathogenic bacteria and compound 1 was also evaluated against human non-small cell lung cancer H1299. Among them, compound 1 exhibited weak antibacterial activity against MRSA and a strong effect against the human bronchial epithelial cell line, BEAS-2B, with an IC50 value of 12.32 ± 0.37 μM.
Collapse
Affiliation(s)
- Long-Fen Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ying-Ying Hu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xin-Zhu Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qing-Zhou Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Pei-Pei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qiao-Ni Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ying Xu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xue-Kui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
3
|
Stefaniak-Skorupa J, Milewska MJ. Ergosterol and Lanosterol Derivatives: Synthesis and Possible Biomedical Applications. ChemMedChem 2025:e202400948. [PMID: 40059077 DOI: 10.1002/cmdc.202400948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/01/2025] [Indexed: 03/18/2025]
Abstract
Lanosterol is the crucial intermediate in ergosterol biosynthesis in fungi. A number of derivatives of natural or synthetic origin of these sterols are portrayed in this review. For the synthetic derivatives, strategies of their syntheses are presented. Biological activities of lanosterol and ergosterol derivatives include antimicrobial, especially antifungal action, anticancer and antiviral effects but also anti-inflammatory and anti-allergic potential. The most promising seems to be the anticancer potential of peroxides, epoxides, and keto- derivatives of both sterols.
Collapse
Affiliation(s)
- Joanna Stefaniak-Skorupa
- Department of Organic Chemistry, Gdańsk University of Technology, Faculty of Chemistry, 11/12 Narutowicza str. 80-233, Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry, Gdańsk University of Technology, Faculty of Chemistry, 11/12 Narutowicza str. 80-233, Gdańsk, Poland
| |
Collapse
|
4
|
Singh A, Saini RK, Kumar A, Chawla P, Kaushik R. Mushrooms as Nutritional Powerhouses: A Review of Their Bioactive Compounds, Health Benefits, and Value-Added Products. Foods 2025; 14:741. [PMID: 40077445 PMCID: PMC11899115 DOI: 10.3390/foods14050741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Mushrooms are known to be a nutritional powerhouse, offering diverse bioactive compounds that promote and enhance health. Mushrooms provide a distinguishable taste and aroma and are an essential source of vitamin D2, vitamin B complex, hydroxybenzoic acids (HBAs) and hydroxycinnamic acids (HCAs), terpenes, sterols, and β-glucans. Edible mushroom varieties such as Hericium erinaceus, Ganoderma sp., and Lentinula edodes are recognized as functional foods due to their remarkable potential for disease prevention and promotion of overall health and well-being. These varieties have antioxidants, anti-inflammatory, cytoprotective, cholesterol-lowering, antidiabetic, antimicrobial, and anticancer properties, as well as controlling blood pressure, being an immunity booster, and strengthening bone properties. In addition, they contain essential non-digestible oligosaccharides (NDOs) and ergothioneine, a potential substrate for gut microflora. Supplementing our daily meals with those can add value to our food, providing health benefits. Novel edible mushrooms are being investigated to explore their bioactive substances and their therapeutic properties, to benefit human health. The scientific community (mycologists) is currently studying the prospects for unlocking the full health advantages of mushrooms. This review aims to promote knowledge of mushroom culturing conditions, their nutritional potential, and the value-added products of 11 varieties.
Collapse
Affiliation(s)
- Akruti Singh
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India; (A.S.); (R.K.S.); (A.K.)
| | - Ramesh Kumar Saini
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India; (A.S.); (R.K.S.); (A.K.)
| | - Amit Kumar
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India; (A.S.); (R.K.S.); (A.K.)
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Ravinder Kaushik
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India; (A.S.); (R.K.S.); (A.K.)
| |
Collapse
|
5
|
Subin JA, Shrestha RLS. Computational Assessment of the Phytochemicals of Panax ginseng C.A. Meyer Against Dopamine Receptor D1 for Early Huntington's Disease Prophylactics. Cell Biochem Biophys 2024; 82:3413-3423. [PMID: 39046621 DOI: 10.1007/s12013-024-01426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
A herb, Panax ginseng C.A. Meyer has been used traditionally for the treatment of various diseases. In this work, its chemical components have been explored by computational methods for the possibility of therapeutic potential against early Huntington's disease. The molecular docking calculations against dopamine receptor D1 (PDB ID: 7X2F) involved in pathogenesis of early Huntington's disease gave the binding affinities (kcal/mol) of schizandrin (-10.530), ergosterol (-10.124), protopanaxadiol (-9.650), panaxydol (-9.399), diphenhydramine (-9.358), and panasenoside (-9.358). The values for native ligand (-7.748) and some selected drugs, Nefazodone (-9.880), Risperidone (-9.752), and Haloperidol (-9.712) were higher revealing weaker interactions. The stability assessment of top protein-ligand adducts in terms of various geometrical and thermodynamical parameters extracted from 200 ns molecular dynamics simulations pointed to schizandrin, protopanaxadiol, and panasenoside as hit molecules. The minimal translational and rotational motion of the docked ligands at orthosteric pocket of the receptor at near physiological conditions hinted at the probability of it restricting or inhibiting over-activation of DRD1. The sustained thermodynamic spontaneity of complex formation reaction augmented the inferences derived from spatial results. The phytochemicals from Panax ginseng could be used in the prophylactics of early Huntington's disease and recommendation is made for further evaluation by experimental work.
Collapse
Affiliation(s)
- Jhashanath Adhikari Subin
- Bioinformatics and Cheminformatics Division, Scientific Research and Training Nepal P. Ltd., Kaushaltar, Bhaktapur, 44800, Nepal
| | - Ram Lal Swagat Shrestha
- Bioinformatics and Cheminformatics Division, Scientific Research and Training Nepal P. Ltd., Kaushaltar, Bhaktapur, 44800, Nepal.
- Department of Chemistry, Amrit Campus, Tribhuvan University, Thamel, Kathmandu, 44600, Nepal.
| |
Collapse
|
6
|
Dulay ANG, de Guzman JCC, Marquez ZYD, Santana ESD, Arce J, Orosco FL. The potential of Chlorella spp. as antiviral source against African swine fever virus through a virtual screening pipeline. J Mol Graph Model 2024; 132:108846. [PMID: 39151375 DOI: 10.1016/j.jmgm.2024.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
African swine fever (ASF) causes high mortality in pigs and threatens global swine production. There is still a lack of therapeutics available, with two vaccines under scrutiny and no approved small-molecule drugs. Eleven (11) viral proteins were used to identify potential antivirals in in silico screening of secondary metabolites (127) from Chlorella spp. The metabolites were screened for affinity and binding selectivity. High-scoring compounds were assessed through in silico ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) predictions, compared to structurally similar drugs, and checked for off-target docking with prepared swine receptors. Molecular dynamics (MD) simulations determined binding stability while binding energy was measured in Molecular Mechanics - Generalized Born Surface Area (MMGBSA) or Poisson-Boltzmann Surface Area (MMPBSA). Only six (6) compounds passed until MD analyses, of which five (5) were stable after 100 ns of MD runs. Of these five compounds, only three had binding affinities that were comparable to or stronger than controls. Specifically, phytosterols 24,25-dihydrolanosterol and CID 4206521 that interact with the RNA capping enzyme (pNP868R), and ergosterol which bound to the Erv-like thioreductase (pB119L). The compounds identified in this study can be used as a theoretical basis for in vitro screening to develop potent antiviral drugs against ASFV.
Collapse
Affiliation(s)
- Albert Neil G Dulay
- Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig, 1632, Philippines
| | - John Christian C de Guzman
- Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig, 1632, Philippines
| | - Zyra Ysha D Marquez
- Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Manila, 1000, Philippines
| | - Elisha Sofia D Santana
- Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Manila, 1000, Philippines
| | - Jessamine Arce
- Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Manila, 1000, Philippines
| | - Fredmoore L Orosco
- Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig, 1632, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Manila, 1000, Philippines; S&T Fellows Program, Department of Science and Technology, Taguig, 1632, Philippines.
| |
Collapse
|
7
|
Ferraro V, Spagnoletta A, Rotondo NP, Marsano RM, Miniero DV, Balenzano G, De Palma A, Colletti A, Gargano ML, Lentini G, Cavalluzzi MM. Hypoglycemic Properties of Leccinum scabrum Extracts-An In Vitro Study on α-Glucosidase and α-Amylase Inhibition and Metabolic Profile Determination. J Fungi (Basel) 2024; 10:718. [PMID: 39452670 PMCID: PMC11508548 DOI: 10.3390/jof10100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Type-2 diabetes affects an increasing percentage of the world's population and its control through dietary management, involving the consumption of health-promoting foods or their derived supplements, is a common strategy. Several mushroom species have been demonstrated to be endowed with antidiabetic properties, resulting from their ability in improving insulin sensitivity and production, or inhibiting the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase. This study aimed to investigate for the first time the hypoglycemic properties of the edible mushroom Leccinum scabrum (Bull.) Gray. Mushroom extracts were prepared through the microwave-assisted extraction (MAE) technique using green solvents with different polarity degrees. The inhibition activity of all the obtained extracts on both α-glucosidase and α-amylase was evaluated and the highest activity was observed for the EtOAc extract which showed an IC50 value about 60-fold lower than the reference compound 1-deoxynojirimycin (DNJ) on α-glucosidase (0.42 ± 0.02 and 25.4 ± 0.6 µg/mL, respectively). As expected on the basis of the literature data concerning both α-glucosidase and α-amylase inhibition, a milder inhibition activity on pancreatic α-amylase was observed. Preliminary in vivo tests on Drosophila melanogaster carried out on the most active obtained extract (EtOAc) confirmed the in vitro observed hypoglycemic activity. Finally, the EtOAc extract metabolic profile was determined through GC-MS and HRMS analyses.
Collapse
Affiliation(s)
- Valeria Ferraro
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Anna Spagnoletta
- Laboratory “Regenerative Circular Bioeconomy”, ENEA-Trisaia Research Centre, 75026 Rotondella, Italy;
| | - Natalie Paola Rotondo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - René Massimiliano Marsano
- Department of Biosciences, Biotechnology, and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (R.M.M.); (D.V.M.); (A.D.P.)
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnology, and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (R.M.M.); (D.V.M.); (A.D.P.)
- Department of Medicine & Surgery, LUM University Giuseppe Degennaro Torre Rossi, Piano 5 S.S. 100 Km. 18, 70010 Casamassima, Italy
| | - Gaetano Balenzano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Annalisa De Palma
- Department of Biosciences, Biotechnology, and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (R.M.M.); (D.V.M.); (A.D.P.)
| | - Alessandro Colletti
- Department of Drug Science and Technology, University of Turin, 10124 Torino, Italy
| | - Maria Letizia Gargano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Giovanni Lentini
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| |
Collapse
|
8
|
Sharma E, Bairwa R, Lal P, Pattanayak S, Chakrapani K, Poorvasandhya R, Kumar A, Altaf MA, Tiwari RK, Lal MK, Kumar R. Edible mushrooms trending in food: Nutrigenomics, bibliometric, from bench to valuable applications. Heliyon 2024; 10:e36963. [PMID: 39281488 PMCID: PMC11399639 DOI: 10.1016/j.heliyon.2024.e36963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
The worldwide consumption, health-promoting and nutritional properties of mushrooms have been extensively researched over a decade. Although, wide range of edible mushrooms is still unexplored, which can be a valuable source of bioactive compounds in dietary supplements and biopharma industry. Mushrooms represent as dynamic source of nutrients lacking in food from plant or animal origin thus, considered as vital functional food utilized for prevention of numerous diseases. The unique bioactive compounds in mushroom and their anti-inflammatory, anti-tumour and other health attributes have been discussed. The preventive action of mushroom on maintaining the gut health and their property to act as pro, pre or symbiotic is also elucidated. The direct prebiotic activity of mushroom affects gut haemostasis and enhances the gut microbiota. Recent reports on role in improving the brain health and neurological impact by mushroom are mentioned. The role of bioactive components in mushroom with relation to nutrigenomics have been explored. The nutrigenomics has become a crucial tool to assess individuals' diet according its genetic make-up and thus, cure of several diseases. Undeniably, mushroom in present time is regarded as next-generation wonder food, playing crucial role in sustaining health, thus, an active ingredient of food and nutraceutical industries.
Collapse
Affiliation(s)
- Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rakesh Bairwa
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Priyanka Lal
- Department of Agricultural Economics and Extension, School of Agriculture, Lovely Professional University, Jalandhar GT Road (NH1), Phagwara, India
| | | | - Kota Chakrapani
- Department of Plant Pathology, College of Agriculture, Central Agricultural University, Imphal, India
| | - Rajendra Poorvasandhya
- Department of Plant Pathology, Bidhan Chandra Krishi Vishwavidyalaya, Mohanpur, Nadia District, West Bengal, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, India
- Division of Crop Protection, ICAR-Indian Institute of Sugarcane Research, Lucknow, 226002, India
| | - Milan Kumar Lal
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
- ICAR-Central Potato Research Institute, Shimla, 171001, India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, 171001, India
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
9
|
Navegantes Lima KC, Gaspar SLDF, Oliveira ALDB, dos Santos SM, Quadros LBG, de Oliveira JP, Pereira RCDS, Dias AGDS, Gato LDS, Alencar LYN, dos Santos ALP, Dorneles GP, Romão PRT, Stutz H, Sovrani V, Monteiro MC. Lipid Fraction from Agaricus brasiliensis as a Potential Therapeutic Agent for Lethal Sepsis in Mice. Antioxidants (Basel) 2024; 13:927. [PMID: 39199173 PMCID: PMC11351130 DOI: 10.3390/antiox13080927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Sepsis is a potentially fatal clinical condition that results from an immune imbalance in the host during an infection. It presents systemic alterations due to excessive activation of pro-inflammatory mediators that contribute to inflammation, formation of reactive species, and tissue damage. Anti-inflammatory mediators are then extensively activated to regulate this process, leading to immune exhaustion and, consequently, immunosuppression of the host. Considering the biological activities of the nutraceutical Agaricus brasiliensis (A. brasiliensis), such as immunomodulatory, antioxidant, and antitumor activities, the present study investigated the therapeutic potential of the lipid fraction of A. brasiliensis (LF) in a model of lethal sepsis in mice (Mus musculus), induced by cecal ligation and perforation (CLP). The results showed that treatment of septic animals with LF or LF associated with ertapenem (LF-Erta) reduced systemic inflammation, promoting improvement in clinical parameters and increased survival. The data show a reduction in pro-inflammatory and oxidative stress markers, regulation of the anti-inflammatory response and oxidizing agents, and increased bacterial clearance in the peritoneal cavity and liver. Thus, it can be concluded that LF as a treatment, and in conjunction with antibiotic therapy, has shown promising effects as a hepatoprotective, antioxidant, antimicrobial, and immunomodulatory agent.
Collapse
Affiliation(s)
- Kely Campos Navegantes Lima
- Neuroscience and Cellular Biology Post Graduation Program, Institute of Biological Sciences, Federal University of Pará, Pará 66075-110, Brazil; (K.C.N.L.); (A.L.d.B.O.)
| | - Silvia Leticia de França Gaspar
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil; (S.L.d.F.G.); (L.B.G.Q.); (J.P.d.O.); (R.C.d.S.P.); (A.G.d.S.D.); (L.d.S.G.); (A.L.P.d.S.)
| | - Ana Ligia de Brito Oliveira
- Neuroscience and Cellular Biology Post Graduation Program, Institute of Biological Sciences, Federal University of Pará, Pará 66075-110, Brazil; (K.C.N.L.); (A.L.d.B.O.)
| | - Sávio Monteiro dos Santos
- Pharmaceutical Science Post-Graduation Program, Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil;
| | - Lucas Benedito Gonçalves Quadros
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil; (S.L.d.F.G.); (L.B.G.Q.); (J.P.d.O.); (R.C.d.S.P.); (A.G.d.S.D.); (L.d.S.G.); (A.L.P.d.S.)
| | - Juliana Pinheiro de Oliveira
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil; (S.L.d.F.G.); (L.B.G.Q.); (J.P.d.O.); (R.C.d.S.P.); (A.G.d.S.D.); (L.d.S.G.); (A.L.P.d.S.)
| | - Rayane Caroline dos Santos Pereira
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil; (S.L.d.F.G.); (L.B.G.Q.); (J.P.d.O.); (R.C.d.S.P.); (A.G.d.S.D.); (L.d.S.G.); (A.L.P.d.S.)
| | - Alexandre Guilherme da Silva Dias
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil; (S.L.d.F.G.); (L.B.G.Q.); (J.P.d.O.); (R.C.d.S.P.); (A.G.d.S.D.); (L.d.S.G.); (A.L.P.d.S.)
| | - Lucas da Silva Gato
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil; (S.L.d.F.G.); (L.B.G.Q.); (J.P.d.O.); (R.C.d.S.P.); (A.G.d.S.D.); (L.d.S.G.); (A.L.P.d.S.)
| | | | - Alanna Lorena Pimentel dos Santos
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil; (S.L.d.F.G.); (L.B.G.Q.); (J.P.d.O.); (R.C.d.S.P.); (A.G.d.S.D.); (L.d.S.G.); (A.L.P.d.S.)
| | - Gilson Pires Dorneles
- Laboratory of Cellular and Molecular Immunology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil; (G.P.D.); (P.R.T.R.)
| | - Pedro Roosevelt Torres Romão
- Laboratory of Cellular and Molecular Immunology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil; (G.P.D.); (P.R.T.R.)
| | - Herta Stutz
- Department of Food Engineering, Midwest State University-UNICENTRO, Simeao de Camargo Varela de Sá, 03, Guarapuava 85.040-080, Brazil; (H.S.); (V.S.)
| | - Vanessa Sovrani
- Department of Food Engineering, Midwest State University-UNICENTRO, Simeao de Camargo Varela de Sá, 03, Guarapuava 85.040-080, Brazil; (H.S.); (V.S.)
| | - Marta Chagas Monteiro
- Neuroscience and Cellular Biology Post Graduation Program, Institute of Biological Sciences, Federal University of Pará, Pará 66075-110, Brazil; (K.C.N.L.); (A.L.d.B.O.)
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil; (S.L.d.F.G.); (L.B.G.Q.); (J.P.d.O.); (R.C.d.S.P.); (A.G.d.S.D.); (L.d.S.G.); (A.L.P.d.S.)
- Pharmaceutical Science Post-Graduation Program, Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil;
| |
Collapse
|
10
|
Chen X, Xu B. Insights into chemical components, health-promoting effects, and processing impact of golden chanterelle mushroom Cantharellus cibarius. Food Funct 2024; 15:7696-7732. [PMID: 38967456 DOI: 10.1039/d4fo00891j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Cantharellus cibarius (CC) is a culinary mushroom with significant commercial potential due to its diverse components and bioactive functions. CC is rich in carbohydrates, proteins, minerals, vitamins, and aroma compounds while being low in fat and calories. Moreover, CC contains an abundance of bioactive substances including phenolic compounds, vitamin precursors, and indole derivatives. Numerous studies have claimed that CC has diverse functions such as antioxidant, antimicrobial, immunoregulation, anti-inflammatory, antitumor, neuroprotective, antidiabetic, and prebiotic effects in in vivo or in vitro settings. In addition, a variety of thermal, physical, chemical, and biological treatment methods have been investigated for the processing and preservation of CC. Consequently, this study aims to present a comprehensive review of the chemical composition, health benefits, and processing techniques of CC. Furthermore, the issue of heavy metal accumulation in CC has been indicated and discussed. The study highlights the potential of CC as a functional food in the future while providing valuable insights for future research and identifying areas requiring further investigation.
Collapse
Affiliation(s)
- Xinlei Chen
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
11
|
Huang HC, Shi YJ, Vo TLT, Hsu TH, Song TY. The Anti-Inflammatory Effects and Mechanism of the Submerged Culture of Ophiocordyceps sinensis and Its Possible Active Compounds. J Fungi (Basel) 2024; 10:523. [PMID: 39194849 DOI: 10.3390/jof10080523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
The pharmacological effects of the fruiting body of Ophiocordyceps sinensis (O. sinensis) such as antioxidant, anti-virus, and immunomodulatory activities have already been described, whereas the anti-inflammatory effects and active components of the submerged culture of O. sinesis (SCOS) still need to be further verified. This study aimed to investigate the active compounds in the fermented liquid (FLOS), hot water (WEOS), and 50-95% (EEOS-50, EEOS-95) ethanol extracts of SCOS and their anti-inflammatory effects and potential mechanisms in lipopolysaccharide (LPS)-stimulated microglial BV2 cells. The results demonstrated that all of the SCOS extracts could inhibit NO production in BV2 cells. EEOS-95 exhibited the strongest inhibitory effects (71% inhibitory ability at 500 µg/mL), and its ergosterol, γ-aminobutyric acid (GABA), total phenolic, and total flavonoid contents were significantly higher than those of the other extracts (18.60, 18.60, 2.28, and 2.14 mg/g, p < 0.05, respectively). EEOS-95 also has a strong inhibitory ability against IL-6, IL-1β, and TNF-α with an IC50 of 617, 277, and 507 µg/mL, respectively, which is higher than that of 1 mM melatonin. The anti-inflammatory mechanism of EEOS-95 seems to be associated with the up-regulation of PPAR-γ/Nrf-2/HO-1 antioxidant-related expression and the down-regulation of NF-κB/COX-2/iNOS pro-inflammatory expression signaling. In summary, we demonstrated that EEOS-95 exhibits neuroinflammation-mediated neurodegenerative disorder activities in LPS-induced inflammation in brain microglial cells.
Collapse
Affiliation(s)
- Hsien-Chi Huang
- PhD Program of Biotechnology and Bioindustry, College of Biotechnology and Bioresources, Da-Yeh University, Changhua 515, Taiwan
| | - Yu-Juan Shi
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Thuy-Lan-Thi Vo
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Tai-Hao Hsu
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Tuzz-Ying Song
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| |
Collapse
|
12
|
Wang Y, Guo Y, Dong P, Lin K, Du P, Cao J, Cheng Y, Cheng F, Yun S, Feng C. Water-in-oil Pickering emulsion using ergosterol as an emulsifier solely. Food Res Int 2024; 186:114374. [PMID: 38729731 DOI: 10.1016/j.foodres.2024.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
As a crucial component of the fungal cell membranes, ergosterol has been demonstrated to possess surface activity attributed to its hydrophobic region and polar group. However, further investigation is required to explore its emulsification behavior upon migration to the oil-water interface. Therefore, this study was conducted to analyze the interface properties of ergosterol as a stabilizer for water in oil (W/O) emulsion. Moreover, the emulsion prepared under the optimal conditions was utilized to load the water-soluble bioactive substance with the chlorogenic acid as the model molecules. Our results showed that the contact angle of ergosterol was 117.017°, and its dynamic interfacial tension was obviously lower than that of a pure water-oil system. When the ratio of water to oil was 4: 6, and the content of ergosterol was 3.5 % (ergosterol/oil phase, w/w), the W/O emulsion had smaller particle size (438 nm), higher apparent viscosity, and better stability. Meanwhile, the stability of loaded chlorogenic acid was improved under unfavorable conditions (pH 1.2, 90 °C, ultraviolet irradiation, and oxidation), which were 73.87 %, 59.53 %, 62.53 %, and 69.73 %, respectively. Additionally, the bioaccessibility of chlorogenic acid (38.75 %) and ergosterol (33.69 %), and the scavenging rates of the emulsion on DPPH radicals (81.00 %) and hydroxyl radicals (82.30 %) were also enhanced. Therefore, a novel W/O Pickering emulsion was prepared in this work using ergosterol as an emulsifier solely, which has great potential for application in oil-based food and nutraceutical formulations.
Collapse
Affiliation(s)
- Yaxin Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yuanhao Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Pengfei Dong
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Kai Lin
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Pengya Du
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Feier Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China.
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
13
|
Sillapachaiyaporn C, Wongwan C, Mongkolpobsin K, Nilkhet S, Isidoro C, Chuchawankul S, Tencomnao T. Ergosterol promotes neurite outgrowth, inhibits amyloid-beta synthesis, and extends longevity: In vitro neuroblastoma and in vivo Caenorhabditis elegans evidence. Life Sci 2024; 345:122606. [PMID: 38574884 DOI: 10.1016/j.lfs.2024.122606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
AIMS Alzheimer's disease (AD), the most common neurodegenerative disorder associated with aging, is characterized by amyloid-β (Aβ) plaques in the hippocampus. Ergosterol, a mushroom sterol, exhibits neuroprotective activities; however, the underlying mechanisms of ergosterol in promoting neurite outgrowth and preventing Aβ-associated aging have never been investigated. We aim to determine the beneficial activities of ergosterol in neuronal cells and Caenorhabditis elegans (C. elegans). MATERIALS AND METHODS The neuritogenesis and molecular mechanisms of ergosterol were investigated in wild-type and Aβ precursor protein (APP)-overexpressing Neuro2a cells. The anti-amyloidosis properties of ergosterol were determined by evaluating in vitro Aβ production and the potential inhibition of Aβ-producing enzymes. Additionally, AD-associated transgenic C. elegans was utilized to investigate the in vivo attenuating effects of ergosterol. KEY FINDINGS Ergosterol promoted neurite outgrowth in Neuro2a cells through the upregulation of the transmembrane protein Teneurin-4 (Ten-4) mRNA and protein expressions, phosphorylation of the extracellular signal-regulated kinases (ERKs), activity of cAMP response element (CRE), and growth-associated protein-43 (GAP-43). Furthermore, ergosterol enhanced neurite outgrowth in transgenic Neuro2A cells overexpressing either the wild-type APP (Neuro2a-APPwt) or the Swedish mutant APP (Neuro2a-APPswe) through the Ten-4/ERK/CREB/GAP-43 signaling pathway. Interestingly, ergosterol inhibited Aβ synthesis in Neuro2a-APPwt cells. In silico analysis indicated that ergosterol can interact with the catalytic sites of β- and γ-secretases. In Aβ-overexpressing C. elegans, ergosterol decreased Aβ accumulation, increased chemotaxis behavior, and prolonged lifespan. SIGNIFICANCE Ergosterol is a potential candidate compound that might benefit AD patients by promoting neurite outgrowth, inhibiting Aβ synthesis, and enhancing longevity.
Collapse
Affiliation(s)
- Chanin Sillapachaiyaporn
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chamaiphorn Wongwan
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuljira Mongkolpobsin
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Immunomodulation of Natural Products Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Immunomodulation of Natural Products Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ciro Isidoro
- Department of Health Sciences, University of Eastern Piedmont 'Amedeo Avogadro', Novara 28100, Italy
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Immunomodulation of Natural Products Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
14
|
Shang Y, Jin Q, Li G, Yan H, Yu M, Hu Z. Functional study of two ER localized sterol C-14 reductases in Aspergillus oryzae. 3 Biotech 2024; 14:136. [PMID: 38682096 PMCID: PMC11045682 DOI: 10.1007/s13205-024-03988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/05/2023] [Indexed: 05/01/2024] Open
Abstract
Ergosterol is an important component of fungal cell membrane. Ergosterol biosynthesis involves sterol C-14 reductase, a key enzyme in ergosterol biosynthesis, which has been well studied in Saccharomyces cerevisiae. However, little studies about this important enzyme in Aspergillus oryzae. In this study, two sterol C-14 reductases named AoErg24A and AoErg24B were identified in A. oryzae using bioinformatics analysis. Through phylogenetic tree, expression pattern, subcellular localization, and yeast functional complementation analyses, we discovered that both AoErg24A and AoErg24B are conserved and localized to the endoplasmic reticulum (ER). Both enzymes can partially restore the temperature sensitivity phenotype of a S. cerevisiae erg24 weak mutant. Overexpression of AoErg24A in A. oryzae increased 1.6 times of ergosterol content, while overexpression of AoErg24B led to a slight decrease of ergosterol. Both genes affect the sporulation of A. oryzae. These results uncovered that the two genes function differently in ergosterol biosynthesis. Thus, this study further enhances our understanding of ergosterol biosynthesis in A. oryzae and lays a good foundation for A. oryzae to be used in industrial ergosterol production.
Collapse
Affiliation(s)
- Yitong Shang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Qi Jin
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Ganghua Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002 China
| | - Huanhuan Yan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Mingquan Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Zhihong Hu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| |
Collapse
|
15
|
Hussein Zaki A, Haiying B, Mohany M, Al-Rejaie SS, Abugammie B. The effect mechanism of ergosterol from the nutritional mushroom Leucocalocybe mongolica in breast cancer cells: Protein expression modulation and metabolomic profiling using UHPLC-ESI-Q. Saudi Pharm J 2024; 32:102045. [PMID: 38571766 PMCID: PMC10988126 DOI: 10.1016/j.jsps.2024.102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
The ergosterol from mushrooms has gained significant ethnopharmacological importance in various cultures, including China, Japan, and Europe. This compound has been found to possess immune-boosting and anti-inflammatory properties, making it useful in the treatment of immune disorders. In this study, we focused on investigating the potential anticancer properties of ergosterol isolated from the edible mushroom Leucocalocybe mongolica in breast cancer cell lines. The ergosterol was purified and identified using advanced analytical techniques such as ESI-MS and NMR. We conducted cell proliferation assays on 4 T1 breast cancer cells to assess the cytotoxic effects of ergosterol. Furthermore, we analyzed the transcription levels of BAX, caspase-7, BCL-2, STAT-3, and PARP proteins using real-time PCR and Western blot analysis. Additionally, we employed non-targeted ultra-high-performance liquid chromatography and high-resolution mass spectrometry (UPLC-MS/MS) to study the potential mechanisms underlying the anticancer effects of ergosterol at the metabolomics level. The results demonstrated a significant reduction in cell viability and the induction of apoptosis upon treatment with ergosterol, especially at higher concentrations (P < 0.05). Moreover, ergosterol affected the expression of cancer-related genes, upregulating pro-apoptotic proteins such as BAX, caspase-7, and PARP, while downregulating the anti-apoptotic proteins BCL-2 and STAT-3 (P < 0.05). Western blot analysis confirmed these findings and provided further evidence of ergosterol's role in inducing apoptosis. Metabolomics analysis revealed substantial changes in pathways related to amino acid, antioxidant, and carbohydrate metabolism. In conclusion, our study demonstrates that ergosterol exhibits anticancer effects by inducing apoptosis and modulating metabolic pathways in breast cancer cells.
Collapse
Affiliation(s)
- Asmaa Hussein Zaki
- Key Laboratory of Edible Fungi Resources and Utilization, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, Jilin, China
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun 130118, Jilin, China
- Departments of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minia 61519, Egypt
| | - Bao Haiying
- Key Laboratory of Edible Fungi Resources and Utilization, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, Jilin, China
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Bahaa Abugammie
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
16
|
Clericuzio M, Serra S, Vidari G. No Evidence Was Found for the Presence of Terreolides, Terreumols or Saponaceolides H-S in the Fruiting Bodies of Tricholoma terreum (Basidiomycota, Agaricales). Molecules 2024; 29:1794. [PMID: 38675614 PMCID: PMC11052463 DOI: 10.3390/molecules29081794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Two different collections of the gilled wild fungus Tricholoma terreum, collected in Italy, were subjected to phytochemical analysis. The fungal material was confidently identified by analysis of the ITS genomic sequences. Using both HR-LC-MS and NMR techniques, no evidence was found for the presence in the fruiting bodies of terreolides, terreumols or saponaceolides H-S, in striking contrast with the isolation of these terpenoids by Chinese authors from a mushroom collected in France and identified as T. terreum. The main cytotoxic terpenoid identified and isolated from the extracts of the specimens investigated in this work was the C30 derivative saponaceolide B, which had been previously isolated from T. saponaceum and other T. terreum collections. Although saponaceolide B is a rather labile molecule, easily degradable by heat or in acidic conditions, our study indicated that none of the extraction protocols used produced saponaceolide H-S or terreolide/terreumol derivatives, thus excluding the possibility that the latter compounds could be extraction artifacts. Considered together, these findings point to the need for the unambiguous identification of mushroom species belonging to the complex genus Tricholoma, characterized by high variability in the composition of metabolites. Moreover, based on our data, T. terreum must be considered an edible mushroom.
Collapse
Affiliation(s)
- Marco Clericuzio
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, Via Teresa Michel 11, 15121 Alessandria, Italy
| | - Stefano Serra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”- Consiglio Nazionale delle Ricerche (SCITEC-CNR), Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Giovanni Vidari
- Dipartimento di Chimica, Università degli Studi di Pavia, Via Taramelli 10, 27100 Pavia, Italy;
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil 44001, Iraq
| |
Collapse
|
17
|
Wu Y, Zhang H, Zhu J, Zhang Z, Ma S, Zhao Y, Wang Y, Yuan J, Guo X, Li Y, Zhang S. The Effect of Fermentation on the Chemical Constituents of Gastrodia Tuber Hallimasch Powder (GTHP) Estimated by UHPLC-Q-Orbitrap HRMS and HPLC. Molecules 2024; 29:1663. [PMID: 38611942 PMCID: PMC11013358 DOI: 10.3390/molecules29071663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE To compare the effect of fermentation on the chemical constituents of Gastrodia Tuder Halimasch Powder (GTHP), to establish its fingerprinting and multicomponent content determination, and to provide a basis for the processing, handling, and clinical application of this herb. METHODS Ultra-high-performance liquid chromatography-quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was used to conduct a preliminary analysis of the chemical constituents in GTHP before and after fermentation. High-performance liquid chromatography (HPLC) was used to determine some major differential components of GTHP and establish fingerprints. Cluster analysis (CA), and principal component analysis (PCA) were employed for comprehensive evaluation. RESULTS Seventy-nine compounds were identified, including flavonoids, organic acids, nucleosides, terpenoids, and others. The CA and PCA results showed that ten samples were divided into three groups. Through standard control and HPLC analysis, 10 compounds were identified from 22 peaks, namely uracil, guanosine, adenosine, 5-hydroxymethylfurfural (5-HMF), daidzin, genistin, glycitein, daidzein, genistein, and ergosterol. After fermentation, GTHP exhibited significantly higher contents of uracil, guanosine, adenosine, 5-hydroxymethylfurfural, and ergosterol and significantly lower genistein and daidzein contents. CONCLUSIONS The UHPLC-Q-Orbitrap HRMS and HPLC methods can effectively identify a variety of chemical components before and after the fermentation of GTHP. This study provides a valuable reference for further research on the rational clinical application and quality control improvement of GTHP.
Collapse
Affiliation(s)
- Yaning Wu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hongwei Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jianguang Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenling Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou 450046, China
- Henan Engineering Technology Research Center for Integrated Traditional Chinese Medicine Production, Zhengzhou 450046, China
- Henan Engineering Research Center of Traditional Chinese Medicine Characteristic Processing Technology, Zhengzhou 450046, China
| | - Songbo Ma
- Luoyang Wokang Pharmaceutical Co., Ltd., Luoyang 471521, China
| | - Yongqi Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yiming Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jun Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xing Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yajing Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shuai Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
18
|
Fan C, Xu J, Tong H, Fang Y, Chen Y, Lin Y, Chen R, Chen F, Wu G. Gut-brain communication mediates the impact of dietary lipids on cognitive capacity. Food Funct 2024; 15:1803-1824. [PMID: 38314832 DOI: 10.1039/d3fo05288e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cognitive impairment, as a prevalent symptom of nervous system disorders, poses one of the most challenging aspects in the management of brain diseases. Lipids present in the cell membranes of all neurons within the brain and dietary lipids can regulate the cognition and memory function. In recent years, the advancements in gut microbiome research have enabled the exploration of dietary lipids targeting the gut-brain axis as a strategy for regulating cognition. This present review provides an in-depth overview of how lipids modulate cognition via the gut-brain axis depending on metabolic, immune, neural and endocrine pathways. It also comprehensively analyzes the effects of diverse lipids on the gut microbiota and intestinal barrier function, thereby affecting the central nervous system and cognitive capacity. Moreover, comparative analysis of the positive and negative effects is presented between beneficial and detrimental lipids. The former encompass monounsaturated fatty acids, short-chain fatty acids, omega-3 polyunsaturated fatty acids, phospholipids, phytosterols, fungal sterols and bioactive lipid-soluble vitamins, as well as lipid-derived gut metabolites, whereas the latter (detrimental lipids) include medium- or long-chain fatty acids, excessive proportions of n-6 polyunsaturated fatty acids, industrial trans fatty acids, and zoosterols. To sum up, the focus of this review is on how gut-brain communication mediates the impact of dietary lipids on cognitive capacity, providing a novel theoretical foundation for promoting brain cognitive health and scientific lipid consumption patterns.
Collapse
Affiliation(s)
- Chenhan Fan
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jingxuan Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Haoxiang Tong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yucheng Fang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yiming Chen
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yangzhuo Lin
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Rui Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Fuhao Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Guoqing Wu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
19
|
Hamza A, Mylarapu A, Krishna KV, Kumar DS. An insight into the nutritional and medicinal value of edible mushrooms: A natural treasury for human health. J Biotechnol 2024; 381:86-99. [PMID: 38181980 DOI: 10.1016/j.jbiotec.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Edible mushrooms have been cherished worldwide because of their nutraceutical and medicinal properties. They are recognized as the new superfood for the future due to their low-calorie content, high-protein content, low lipid levels, low cholesterol levels, and abundance of essential vitamins. The fruiting body of edible mushrooms contains a plethora of primary and secondary metabolites. However, submerged cultivation is a more reliable and controlled way of production of mycelium biomass and many bioactive compounds. Several bioactive metabolites present in mushrooms possess a range of beneficial properties, including antioxidant, antimicrobial, anticancer, antidiabetic, anti-inflammatory, antiviral and anti-COVID-19 activities. Consumers have turned more intrigued in mushroom-containing products as the world needs to diversify its protein sources to meet the growing demand for protein. In this context, mushrooms are viewed as a promising source of bioactive chemicals that can be employed as an alternative to meat products. This review aims to summarise the most recent data regarding the beneficial health effects and the development of mushroom-based food products.
Collapse
Affiliation(s)
- Arman Hamza
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Ankit Mylarapu
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - K Vijay Krishna
- Department of Computer Science, Lovely Professional University, Phagwara, Punjab, India
| | - Devarai Santhosh Kumar
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.
| |
Collapse
|
20
|
Gerardo DG, Maura TT. Mushrooms and Their Compounds with Potential Anticancer Activity: A Review. Int J Med Mushrooms 2024; 26:1-15. [PMID: 39093398 DOI: 10.1615/intjmedmushrooms.2024054163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mushrooms produce many metabolites that show biological activity, which can be obtained from their fruiting body, mycelium or recovered from the culture broth when mushrooms are grown in submerged fermentation. Mushrooms are a source of natural pharmaceuticals; they have been reported to have potential inhibitory or preventive activity against some diseases, including different types of cancer. Cancer represents one of the main causes of death worldwide. It is worth mentioning that despite advances in pharmacological treatments, they still present side effects in patients. In this sense, the study of the use of mushrooms in complementary treatments against cancer is of great interest. Based on studies carried out in vitro and, in some cases, using animal models, it has been observed that mushrooms present preventive, corrective, and therapeutic properties against different types of cancer, by stimulating the immune system, due to their antioxidant, antimutagenic, and anti-inflammatory activities, as well as the regulation of the expression of some cellular processes, cell cycle arrest, and apoptosis, etc. Based on the above, this manuscript shows a review of scientific studies that support the anticancer activity of some mushrooms and/or their bioactive compounds.
Collapse
|
21
|
Zhao H, Yao L, Zhao J, Zhang M, Wang LA, Lv J, Zhang J. Chemical Compounds, Bioactivities, and Potential Applications of the Mushroom Species of Genus Suillus (Agaricomycetes): A Review. Int J Med Mushrooms 2024; 26:25-41. [PMID: 38421694 DOI: 10.1615/intjmedmushrooms.2023051919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The genus Suillus, also known as "Song mo," falls under the order Boletales and consists of various higher fungi. It establishes mycorrhizae primarily with pine trees and has a good taste and medicinal values. Herein, we reviewed the chemical compounds present in the genus Suillus, including polysaccharides, steroids, phenols, polyprenyl phenol derivatives, fatty acids, organic acids, and amino acids, and their reported bioactivities and potential applications. This review aims to promote the utilization of the resources belonging to the genus Suillus and serves as a theoretical basis for their future studies and clinical applications.
Collapse
Affiliation(s)
- Hanyu Zhao
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Lan Yao
- Institute of Biology, Hebei Academy of Science, Shijiazhuang 050081, People's Republic of China
| | - Jian Zhao
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Moxin Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Li-An Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| | - Jianhua Lv
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Jinxiu Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| |
Collapse
|
22
|
Arslan NP, Dawar P, Albayrak S, Doymus M, Azad F, Esim N, Taskin M. Fungi-derived natural antioxidants. Crit Rev Food Sci Nutr 2023; 65:1593-1616. [PMID: 38156661 DOI: 10.1080/10408398.2023.2298770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In humans, exogenous antioxidants aid the endogenous antioxidant system to detoxify excess ROS generated during oxidative stress, thereby protecting the body against various diseases and stressful conditions. The majority of natural antioxidants available on the consumer market are plant-based; however, fungi are being recognized as alternative sources of various natural antioxidants such as polysaccharides, pigments, peptides, sterols, phenolics, alkaloids, and flavonoids. In addition, some exogenous antioxidants are exclusively found in fungi. Fungi-derived antioxidants exhibit scavenging activities against DPPH, ABTS, hydroxyl, superoxide, hydrogen peroxide, and nitric oxide radicals in vitro. Furthermore, in vivo models, application of fungal-derived antioxidants increase the level of various antioxidant enzymes, such as catalases, superoxide dismutases, and glutathione peroxidases, and reduce the level of malondialdehyde. Therefore, fungi-derived antioxidants have potential to be used in the food, cosmetic, and pharmaceutical industries. This review summarizes the antioxidant potential of different fungi (mushrooms, yeasts, and molds)-derived natural compounds such as polysaccharides, pigments, peptides, ergothioneine, ergosterol, phenolics, alkaloids, etc.
Collapse
Affiliation(s)
| | - Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Seyda Albayrak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Meryem Doymus
- Vocational School of Health Services of Hinis, Ataturk University, Erzurum, Turkey
| | - Fakhrul Azad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science and Art Faculty, Bingol University, Bingol, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
23
|
Wang J, Yin R, Hashizume Y, Todoroki Y, Mori T, Kawagishi H, Hirai H. Ergosterol and Its Metabolites Induce Ligninolytic Activity in the Lignin-Degrading Fungus Phanerochaete sordida YK-624. J Fungi (Basel) 2023; 9:951. [PMID: 37755059 PMCID: PMC10532932 DOI: 10.3390/jof9090951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
White-rot fungi are the most important group of lignin biodegraders. Phanerochaete sordida YK-624 has higher ligninolytic activity than that of model white-rot fungi. However, the underlying mechanism responsible for lignin degradation by white-rot fungi remains unknown, and the induced compounds isolated from white-rot fungi for lignin degradation have never been studied. In the present study, we tried to screen ligninolytic-inducing compounds produced by P. sordida YK-624. After large-scale incubation of P. sordida YK-624, the culture and mycelium were separated by filtration. After the separation and purification, purified compounds were analyzed by high-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance. The sterilized unbleached hardwood kraft pulp was used for the initial evaluation of ligninolytic activity. Ergosterol was isolated and identified and it induced the lignin-degrading activity of this fungus. Moreover, we investigated ergosterol metabolites from P. sordida YK-624, and the ergosterol metabolites ergosta-4,7,22-triene-3,6-dione and ergosta-4,6,8(14),22-tetraen-3-one were identified and then chemically synthesized. These compounds significantly improved the lignin-degrading activity of the fungus. This is the first report on the ligninolytic-inducing compounds produced by white-rot fungi.
Collapse
Affiliation(s)
- Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China;
| | - Ru Yin
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan;
| | - Yuki Hashizume
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (Y.H.); (Y.T.); (T.M.); (H.K.)
| | - Yasushi Todoroki
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (Y.H.); (Y.T.); (T.M.); (H.K.)
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Toshio Mori
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (Y.H.); (Y.T.); (T.M.); (H.K.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (Y.H.); (Y.T.); (T.M.); (H.K.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirofumi Hirai
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Global Interdisciplinary Science and Innovation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
24
|
Yang A, Hong Y, Zhou F, Zhang L, Zhu Y, Wang C, Hu Y, Yu L, Chen L, Wang X. Endophytic Microbes from Medicinal Plants in Fenghuang Mountain as a Source of Antibiotics. Molecules 2023; 28:6301. [PMID: 37687129 PMCID: PMC10488465 DOI: 10.3390/molecules28176301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
One of the largest concerns with world health today is still antibiotic resistance, which is making it imperative to find efficient alternatives as soon as possible. It has been demonstrated that microbes are reliable sources for the creation of therapeutic antibiotics. This research intends to investigate the endophytic microorganisms from several medicinal plants in Fenghuang Mountain (Jiangsu Province, China) and to discover new antibiotics from their secondary metabolites. A total of 269 endophytic strains were isolated from nine distinct medicinal plants. Taxonomic analysis revealed that there were 20 distinct species among these endophytes, with Streptomyces being the most common genus. Three of the target strains were chosen for scale-up fermentation after preliminary screening of antibacterial activities and the metabolomics investigation using LC-MS. These strains were Penicillium sp. NX-S-6, Streptomyces sp. YHLB-L-2 and Streptomyces sp. ZLBB-S-6. Twenty-three secondary metabolites (1-23), including a new sorbicillin analogue (1), were produced as a result of antibacterial activity-guided isolation. Through spectroscopic analysis using MS and NMR, the structures of yield compounds were clarified. According to antibacterial data, S. aureus or B. subtilis were inhibited to varying degrees by sorrentanone (3), emodic acid (8), GKK1032 B (10), linoleic acid (14), toyocamycin (17) and quinomycin A (21). The most effective antimicrobial agent against S. aureus, B. subtilis, E. coli and A. baumannii was quinomycin A (21). In addition, quinomycin A showed strong antifungal activity against Aspergillus fumigatus, Cryptococcus neoformans, and two clinical isolated strains Aspergillus fumigatus #176 and #339, with MIC as 16, 4, 16 and 16 µg/mL, respectively. This is the first time that bioprospecting of actinobacteria and their secondary metabolites from medicinal plants in Fenghuang Mountain was reported. The finding demonstrates the potential of endophytic microbes in medical plants to produce a variety of natural products. Endophytic microbes will be an important source for new antibiotics.
Collapse
Affiliation(s)
- Aiping Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Hong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Fengjuan Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ling Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Youjuan Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chang Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Hu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Yu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Level 3 Laboratory of Molecular Biology (Epidemic and Febrile Diseases) of National TCM Administrator, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lihong Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiachang Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|