1
|
Paul BM, Sundararajan VV, Raj FJ, Kannan G, Durairajan MB, Thangaraj P. In silico docking, ADMET profiling, and bio-accessibility experimentation on Breynia retusa phytocompounds and in vitro validation for anti-proliferative potencies against ovarian carcinoma. 3 Biotech 2025; 15:121. [PMID: 40225420 PMCID: PMC11981996 DOI: 10.1007/s13205-025-04276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
This study aimed to assess the medicinal properties of Breynia retusa, a plant rich in phytocompounds predominantly used as an ethnomedicinal agent in Western Ghats, which appeared to be promising for therapeutic use, especially in the treatment of ovarian cancer. Herein, its cytotoxic potential on ovarian cancer cell lines SKOV-3, neurotoxicity, antioxidant activity, and molecular docking was determined to aid in explaining the mechanisms of interactions with proteins related to ovarian cancer. B . retusa methanolic extract demonstrated exuberant antioxidant activity, with 81.91% scavenging ability of DPPH radicals and efficient reduction of phosphomolybdenum (22.98 mg ascorbic acid equivalents antioxidant capacity/g extract). The extract proved to be an important anti-inflammatory agent through membrane stabilization inhibition of 83%. The cytotoxicity study against the SKOV-3 cell line indicated an IC50 value of 34.01 µg/mL and a very negligible neurotoxicity in SH-SY5Y cell lines. The GC-MS and HPLC profiling indicated many anticancer compounds in the extract such as secalciferol, methyl gallate, ricinoleic acid, gallic acid, and naringenin. The docking study showed significant interactions of secalciferol molecules with the key ovarian cancer proteins, which include IGF1 (-6.758 kcal/mol) and c-ERBB2 (-4.281 kcal/mol). Fatty acid derivatives and methyl gallate showed efficient dock scores (< -5.0 kcal/mol) with antioxidant (catalase and superoxide dismutase) enzymes and inflammatory cytokines (IL-6 and COX-1), respectively, as evidences of antioxidant and anti-inflammatory potentials. The bio-accessibility of phenolics and their antioxidant activity ranged above 90%, indicating the promising bioavailability of phytochemicals expected in vivo. Hence the current study emphasizes the anticancer potential of B. retusa phytocompounds that appeared to interact very strongly with ovarian cancer targets and confirms the dose-dependent cytotoxic and antioxidant activities of B. retusa methanolic extract. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04276-8.
Collapse
Affiliation(s)
- Benedict Mathews Paul
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Vetri Velavan Sundararajan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Francis Jegan Raj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Gowtham Kannan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Madhu Bala Durairajan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| |
Collapse
|
2
|
Gouda M, Khalaf MM, Abou Taleb MF, Alali I, Abd El-Lateef HM. Formulation of sustainable, biodegradable chitosan films enriched with Origanum majorana extract as an eco-friendly antimicrobial food packaging for possible food preservation. Int J Biol Macromol 2025; 296:139658. [PMID: 39793797 DOI: 10.1016/j.ijbiomac.2025.139658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
In this work, chitosan (Cs) was blended with different concentrations of Origanum majorana extract (OmE) that extracted using ethyl acetate and used for the formation of food packaging films. Based on the utilized volumes of OmE (2.5, 5, and 7.5 mL) that were mixed with 27.5, 25, and 22.5 mL of Cs, these different film samples (2.5 OmE loaded Cs film, 5 OmE loaded Cs film and 7.5 OmE loaded Cs film) were obtained and compared with the film of pure Cs. The extraction yields of OmE were found to be 13 g and 10.4 g % when using ethyl acetate (OmE) and methanol (OmME), respectively, with total phenolic content measured at 889.30 μg GAE/g for the ethyl acetate extract and 810.21 μg GAE/g for the methanol extract, indicating a substantial amount of bioactive compounds available for formulation. Antimicrobial activity was assessed against various foodborne pathogens, with the 7.5 OmE loaded Cs film demonstrating the highest efficacy, achieving inhibition zones of 27 mm against E. coli and 25 mm against S. aureus. This research underscores the potential of Cs-based films loaded with O. majorana extract as a viable solution for active food packaging, addressing environmental concerns and food safety.
Collapse
Affiliation(s)
- Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ibtisam Alali
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| |
Collapse
|
3
|
Bastos KVLDS, de Souza AB, Tomé AC, Souza FDM. New Strategies for the Extraction of Antioxidants from Fruits and Their By-Products: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:755. [PMID: 40094704 PMCID: PMC11902142 DOI: 10.3390/plants14050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
This review highlights the recent advancements in extraction techniques for bioactive compounds from natural sources, focusing on methodologies that enhance both efficiency and sustainability. Techniques such as pressurized hot water extraction (PHWE), solid-state fermentation (SSF), ionic liquids (ILs), and electrohydrodynamic (EHD) methods have shown significant potential in improving extraction yields while preserving the bioactivity of target compounds. These innovative approaches offer significant advantages over traditional methods, including reduced energy consumption, minimal environmental impact, and the ability to extract thermosensitive compounds. PHWE and EHD are particularly effective for extracting antioxidants and thermosensitive compounds, whereas SSF provides an environmentally friendly alternative by valorizing agro-industrial waste. Ionic liquids, although promising for extracting complex phytochemicals, face challenges related to scalability and economic feasibility. The adoption of these advanced techniques represents a shift toward more sustainable and cost-effective extraction processes, promoting the discovery and utilization of high-value compounds. These methods also contribute to the development of eco-friendly, cost-effective strategies that align with green chemistry principles and regulatory standards. However, further research and technological advancements are required to address existing limitations and ensure the widespread application of these methods in industrial and pharmaceutical sectors.
Collapse
Affiliation(s)
| | - Adriana Bezerra de Souza
- Department of Infectious and Parasitic Diseases, Universidade de São Paulo (USP), São Paulo 05508-220, Brazil;
| | - Alessandra Cristina Tomé
- Instituto Federal de Educação, Ciência e Tecnologia Goiano (IFGO), Campus Morrinhos, Morrinhos 75650-000, Brazil;
| | - Felipe de Moura Souza
- Instituto Federal de Educação, Ciência e Tecnologia Goiano (IFGO), Campus Morrinhos, Morrinhos 75650-000, Brazil;
| |
Collapse
|
4
|
Kupikowska-Stobba B, Niu H, Klojdová I, Agregán R, Lorenzo JM, Kasprzak M. Controlled lipid digestion in the development of functional and personalized foods for a tailored delivery of dietary fats. Food Chem 2025; 466:142151. [PMID: 39615348 DOI: 10.1016/j.foodchem.2024.142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024]
Abstract
In recent decades, obesity and its associated health issues have risen dramatically. The COVID-19 pandemic has further exacerbated this trend, underscoring the pressing need for new strategies to manage weight. Functional foods designed to modulate lipid digestion and absorption rates and thereby reduce the assimilation of dietary fats have gained increasing attention in food science as a potentially safer alternative to weight-loss medications. This review provides insights into controlled lipid digestion and customized delivery of fats. The first section introduces basic concepts of lipid digestion and absorption in the human gastrointestinal tract. The second section discusses factors regulating lipid digestion and absorption rates, as well as strategies for modulating lipid assimilation from food. The third section focuses on applications of controlled lipid digestion in developing personalized foods designed for specific consumer groups, with particular emphasis on two target populations: overweight individuals and infants.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland.
| | - Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Iveta Klojdová
- DRIFT-FOOD, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 21 Prague, Czech Republic
| | - Ruben Agregán
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Mirosław Kasprzak
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
5
|
Nuralın L, Taşdemir C. A new and highly efficient source of t-resveratrol: Cephalaria Syriaca (L.) Roem. & Schult. Food Chem 2024; 460:140790. [PMID: 39146720 DOI: 10.1016/j.foodchem.2024.140790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Recently, interest in bioactive plant compounds has increased due to their properties in preventing and treating diseases like cancer and neurodegenerative disorders. In this study, caffeic acid and t-resveratrol were extracted from Cephalaria syriaca seeds using ultrasonic assisted extraction (UAE) and supercritical carbon dioxide (Sc-CO2) extraction methods. Independent variables were temperature (40, 60, 80 °C), pressure (130, 215, and 300 bar), and co-solvent ratio (ethanol v/v (3.0, 6.5, 10.0%)) were selected. While extraction process conditions were optimized using response surface methodology, polyphenols were determined by an HPLC system. As a result of the Sc-CO2 experimental studies, maximum caffeic acid (88.75 ± 1.71 μg/g dw) was obtained at 80 °C, 130 bar, and 10% ethanol conditions and maximum t-resveratrol (2949.45 ± 51.78 μg/g dw) was obtained at 60 °C, 130 bar, and 6.5% ethanol conditions. The results of the UAE method were found to be 76.21 ± 2.40 μg/g dw caffeic acid and 4629 ± 123.2 μg/g dw t-resveratrol.
Collapse
Affiliation(s)
- Levent Nuralın
- Department of Chemical Engineering, Engineering faculty of Gazi University 06570 Cankaya, Ankara, Turkey.
| | - Cem Taşdemir
- Türkiye Ministry of Agriculture and Forestry 06800 Cankaya, Ankara, Turkey.
| |
Collapse
|
6
|
Tang Z, Feng X, Tian H, Wang J, Qin W. Integration of glutathione disulfide-mediated extraction and capillary electrophoresis for determination of Cd(II) and Pb(II) in edible oils. Food Chem 2024; 457:140146. [PMID: 38901338 DOI: 10.1016/j.foodchem.2024.140146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
A novel method is introduced for extracting and enriching Cd(II) and Pb(II) from edible oils using glutathione disulfide (GSSG) as both an extractant and a phase-separation agent. The ions in the oils were initially extracted into an aqueous solution containing GSSG. After mixing the solution with acetonitrile at the appropriate volume ratio, a new phase formed, resulting in enrichment of the analytes. The experimental conditions were optimized using response surface methodology with a central composite design. Under optimal conditions, the method offered a combined enrichment factor of >660, with combined extraction efficiencies of 84.31% and 83.35% for Cd(II) and Pb(II), respectively. Finally, the method was conjugated to capillary electrophoresis to determine Cd(II) and Pb(II) in edible oil samples, with detection limits of 0.45 and 1.24 ppb, respectively. In comparison to traditional approaches, the GSSG-based method demonstrates rapidity, efficiency, and recyclability in extracting heavy metal ions from complex matrices.
Collapse
Affiliation(s)
- Zhanqiu Tang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xinyi Feng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongyuan Tian
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Junhua Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Weidong Qin
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
7
|
Pasdar N, Mostashari P, Greiner R, Khelfa A, Rashidinejad A, Eshpari H, Vale JM, Gharibzahedi SMT, Roohinejad S. Advancements in Non-Thermal Processing Technologies for Enhancing Safety and Quality of Infant and Baby Food Products: A Review. Foods 2024; 13:2659. [PMID: 39272425 PMCID: PMC11394636 DOI: 10.3390/foods13172659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Breast milk is the main source of nutrition during early life, but both infant formulas (Ifs; up to 12 months) and baby foods (BFs; up to 3 years) are also important for providing essential nutrients. The infant food industry rigorously controls for potential physical, biological, and chemical hazards. Although thermal treatments are commonly used to ensure food safety in IFs and BFs, they can negatively affect sensory qualities, reduce thermosensitive nutrients, and lead to chemical contaminant formation. To address these challenges, non-thermal processing technologies such as high-pressure processing, pulsed electric fields, radio frequency, and ultrasound offer efficient pathogen destruction similar to traditional thermal methods, while reducing the production of key process-induced toxicants such as furan and 5-hydroxymethyl-2-furfural (HMF). These alternative thermal processes aim to overcome the drawbacks of traditional methods while retaining their advantages. This review paper highlights the growing global demand for healthy, sustainable foods, driving food manufacturers to adopt innovative and efficient processing techniques for both IFs and BFs. Based on various studies reviewed for this work, the application of these novel technologies appears to reduce thermal processing intensity, resulting in products with enhanced sensory properties, comparable shelf life, and improved visual appeal compared to conventionally processed products.
Collapse
Affiliation(s)
- Nasim Pasdar
- Department of Agricultural Engineering and Technology, Payame Noor University (PNU), Tehran 19395-4697, Iran
| | - Parisa Mostashari
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 19419-33111, Iran
| | - Ralf Greiner
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 76131 Karlsruhe, Germany
| | - Anissa Khelfa
- École Supérieure de Chimie Organique et Minérale (ESCOM), Université de Technologie de Compiègne (UTC), EA 4297 TIMR, 1 Allée du Réseau Jean-Marie Buckmaster, 60200 Compiègne, France
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Hadi Eshpari
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA
| | - Jim M Vale
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | | | - Shahin Roohinejad
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
8
|
Revutskaya N, Polishchuk E, Kozyrev I, Fedulova L, Krylova V, Pchelkina V, Gustova T, Vasilevskaya E, Karabanov S, Kibitkina A, Kupaeva N, Kotenkova E. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers (Basel) 2024; 16:1976. [PMID: 39065293 PMCID: PMC11280963 DOI: 10.3390/polym16141976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment due to a decrease in the use of oil-based plastics and the amount of synthetic preservatives. This review discusses relevant functional additives for improving the bioactivity of biopolymer-based films. Addition of plant, microbial, animal and organic nanoparticles into bio-based films is discussed. Changes in mechanical, transparency, water and oxygen barrier properties are reviewed. Since microbial and oxidative deterioration are the main causes of food spoilage, antimicrobial and antioxidant properties of natural additives are discussed, including perspective ones for the development of biodegradable active packaging.
Collapse
Affiliation(s)
- Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Liliya Fedulova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Valentina Krylova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Viktoriya Pchelkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Tatyana Gustova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Vasilevskaya
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Sergey Karabanov
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Anastasiya Kibitkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Nadezhda Kupaeva
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| |
Collapse
|
9
|
Kocer S, Utku Copur O, Ece Tamer C, Suna S, Kayahan S, Uysal E, Cavus S, Akman O. Optimization and characterization of chestnut shell pigment extract obtained microwave assisted extraction by response surface methodology. Food Chem 2024; 443:138424. [PMID: 38301551 DOI: 10.1016/j.foodchem.2024.138424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
The objective of this study is to find optimum conditions to valorize chestnut shell bioactive compounds with coloring pigments through microwave-assisted extraction. With this aim, response surface methodology with central composite design was used. Microwave power (800 W), extraction time (12 min) and solvent concentration (NaOH: 0.115 mol/L) were determined as the optimum conditions to maximize the responses like color value, total phenolic content and total antioxidant capacity. In the optimized extract (OE), characterization of brown melanin like pigments were assessed by Spectrophotometer, Fourier Transform Infrared Spectrometer and major phenolics were identified as; gallic acid, ellagic acid, protocatechuic acid, catechin, and epicatechin as 0.53, 0.48, 0.46, 0.46, 0.14 mg/g dried weight (dw) by High Performance Liquid Chromatography, respectively. In terms of antibacterial activity, OE inhibited the growth of Staphylococcus aureus. Consequently, chestnut shells were successfully processed into natural coloring agents that were possessing strong brown color properties as well as high bioactive potential.
Collapse
Affiliation(s)
- Serhat Kocer
- Central Research Institute of Food and Feed Control, Bursa, Turkey.
| | - Omer Utku Copur
- Bursa Uludağ University, Faculty of Agriculture, Department of Food Engineering, Bursa, Turkey
| | - Canan Ece Tamer
- Bursa Uludağ University, Faculty of Agriculture, Department of Food Engineering, Bursa, Turkey
| | - Senem Suna
- Bursa Uludağ University, Faculty of Agriculture, Department of Food Engineering, Bursa, Turkey
| | - Seda Kayahan
- Atatürk Horticultural Central Research Institute, Yalova, Turkey
| | - Erdinc Uysal
- Atatürk Horticultural Central Research Institute, Yalova, Turkey
| | - Semra Cavus
- Central Research Institute of Food and Feed Control, Bursa, Turkey
| | - Ozgur Akman
- Central Research Institute of Food and Feed Control, Bursa, Turkey
| |
Collapse
|
10
|
Llorent-Martínez EJ, Ruiz-Medina A, Terzic M, Sinan KI, Koyuncu I, Egi K, Nilofar N, Zengin G. Chemical composition and biological activities of Cucurbita okeechobeensis extracts from its aerial parts, seeds, and fruit shells. Arch Pharm (Weinheim) 2024; 357:e2300663. [PMID: 38408265 DOI: 10.1002/ardp.202300663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024]
Abstract
The Cucurbita genus has been widely used in traditional medicinal systems across different countries. In this study, we aimed to investigate the chemical composition, antioxidant properties, enzyme inhibitory, and cytotoxic effects of methanol and aqueous extracts obtained from the aerial parts, seeds, and fruit shells of Cucurbita okeechobeensis. Antioxidant properties were assessed using various chemical methods, including radical quenching (DPPH and ABTS), reducing power (CUPRAC and FRAP), metal chelation, and phosphomolybdenum assays. The extracts' enzyme inhibitory effects were tested against cholinesterase, amylase, glucosidase, and tyrosinase, whereas different cancer cell lines were used for the cytotoxicity study. The chemical composition, evaluated by HPLC-ESI-MSn, showed that the most abundant compounds were flavonoids (mainly quercetin glycosides) followed by phenolic acids (mostly caffeic acid derivatives). The aerial parts displayed stronger antioxidant ability than the seed and fruit shells, in agreement with the highest content in phytochemicals. In addition, the methanol extracts presented the highest bioactivity and content in phytochemicals; among them, the extract of the aerial part exhibited significant cytotoxic effects on cancer cell lines and induced apoptosis. Overall, our results suggest that C. okeechobeensis is a valuable source of bioactive compounds for the pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
| | - Antonio Ruiz-Medina
- Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Jaén, Spain
| | - Milena Terzic
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | | | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Kadir Egi
- Dialysis Program, Vocational School of Health Services, Harran University, Sanliurfa, Turkey
| | - Nilofar Nilofar
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
11
|
Reig-Valor MJ, Rozas-Martínez J, López-Borrell A, Lora-García J, López-Pérez MF. Experimental Study of a Sequential Membrane Process of Ultrafiltration and Nanofiltration for Efficient Polyphenol Extraction from Wine Lees. MEMBRANES 2024; 14:82. [PMID: 38668110 PMCID: PMC11051934 DOI: 10.3390/membranes14040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The wine industry is a sector of great importance in the Spanish economy, contributing substantial annual revenues. However, one challenge facing the industry is the amount of waste generated, reaching millions of tons annually. These residues consist of organic matter of industrial interest, such as polyphenols. These substances are characterised by their excellent antioxidant properties, making them ideal for use in the food, cosmetic, and pharmaceutical industries. Modern techniques, such as membrane technology, are explored for their extraction based on separating compounds according to size. This work studies a sequential filtration process using ultrafiltration (UF) and nanofiltration (NF) membranes at different operating conditions (2 bar and 9.5 bar for UF and NF, respectively, at 20 °C) to extract polyphenols from wine lees. The results show a total polyphenols rejection rate for each process of 54% for UF and 90% for NF. Pore blocking models have been studied for the UF process and an intermediate pore blocking of the membrane upon wine lees filtration has been identified. A mathematical model that justifies the behavior of a polymeric NF membrane with the filtration of pre-treated vinasse residues has been validated. This study shows a viable process for extracting polyphenols from wine lees with sequential membrane technology.
Collapse
Affiliation(s)
- Miguel-Jorge Reig-Valor
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain; (J.R.-M.); (A.L.-B.); (J.L.-G.); (M.-F.L.-P.)
| | | | | | | | | |
Collapse
|
12
|
Majid I, Khan S, Aladel A, Dar AH, Adnan M, Khan MI, Mahgoub Awadelkareem A, Ashraf SA. Recent insights into green extraction techniques as efficient methods for the extraction of bioactive components and essential oils from foods. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2022.2157492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ishrat Majid
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Shafat Khan
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Alanoud Aladel
- Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Arras, Saudi Arabia
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
13
|
Shinde S, Balasubramaniam AK, Mulay V, Saste G, Girme A, Hingorani L. Recent Advancements in Extraction Techniques of Ashwagandha ( Withania somnifera) with Insights on Phytochemicals, Structural Significance, Pharmacology, and Current Trends in Food Applications. ACS OMEGA 2023; 8:40982-41003. [PMID: 37970011 PMCID: PMC10633886 DOI: 10.1021/acsomega.3c03491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 11/17/2023]
Abstract
Ashwagandha, also known as Withania somnifera (WS), is an ayurvedic botanical plant with numerous applications in dietary supplements and traditional medicines worldwide. Due to the restorative qualities of its roots, WS has potent therapeutic value in traditional Indian (Ayurvedic, Unani, Siddha) and modern medicine recognized as the "Indian ginseng". The presence of phytochemical bioactive compounds such as withanolides, withanosides, alkaloids, flavonoids, and phenolic compounds has an important role in the therapeutic and nutritional properties of WS. Thus, the choice of WS plant part and extraction solvents, with conventional and modern techniques, plays a role in establishing WS as a potential nutraceutical product. WS has recently made its way into food supplements and products, such as baked goods, juices, beverages, sweets, and dairy items. The review aims to cover the key perspectives about WS in terms of plant description, phytochemistry, structural significance, and earlier reported extraction methodologies along with the analytical and pharmacological landscape in the area. It also attempts to iterate the key limitations and further insights into extraction techniques and bioactive standardization with the regulatory framework. It presents a key to the future development of prospective applications in foods such as food supplements or functional foods.
Collapse
Affiliation(s)
- Sunil Shinde
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | | | - Vallabh Mulay
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Ganesh Saste
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Aboli Girme
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Lal Hingorani
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| |
Collapse
|
14
|
Fomina P, Femenias A, Hlavatsch M, Scheuermann J, Schäfer N, Freitag S, Patel N, Kohler A, Krska R, Koeth J, Mizaikoff B. A Portable Infrared Attenuated Total Reflection Spectrometer for Food Analysis. APPLIED SPECTROSCOPY 2023; 77:1073-1086. [PMID: 37525897 PMCID: PMC10478342 DOI: 10.1177/00037028231190660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/11/2023] [Indexed: 08/02/2023]
Abstract
The analytical performance of a compact infrared attenuated total reflection spectrometer using a pyroelectric detector array has been evaluated and compared to a conventional laboratory Fourier transform infrared system for applications in food analysis. Analytical characteristics including sensitivity, repeatability, linearity of the calibration functions, signal-to-noise ratio, and spectral resolution have been derived for both approaches. Representative analytes of relevance in food industries (i.e., organic solvents, fatty acids, and mycotoxins) have been used for the assessment of the performance of the device and to discuss the potential of this technology in food and feed analysis.
Collapse
Affiliation(s)
- Polina Fomina
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Antoni Femenias
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Michael Hlavatsch
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | | | - Nicolas Schäfer
- Nanoplus Nanosystems and Technologies GmbH, Gerbrunn, Germany
| | - Stephan Freitag
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Nageshvar Patel
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Rudolf Krska
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland
| | - Johannes Koeth
- Nanoplus Nanosystems and Technologies GmbH, Gerbrunn, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
- Hahn-Schickard, Ulm, Germany
| |
Collapse
|
15
|
Priya, Ashique S, Afzal O, Khalid M, Faruque Ahmad M, Upadhyay A, Kumar S, Garg A, Ramzan M, Hussain A, Altamimi MA, Altamimi ASA, Webster TJ, Khanam A. Biogenic nanoparticles from waste fruit peels: Synthesis, applications, challenges and future perspectives. Int J Pharm 2023; 643:123223. [PMID: 37442399 DOI: 10.1016/j.ijpharm.2023.123223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Nanotechnology is a continually growing field with a wide range of applications from food science to biotechnology and nanobiotechnology. As the current world is grappling with non-biodegradable waste, considered more challenging and expensive to dispose of than biodegradable waste, new technologies are needed today more than ever. Modern technologies, especially nanotechnology, can transform biodegradable waste into products for human use. Researchers are exploring sustainable pathways for nanotechnology by utilizing biodegradable waste as a source for preparing nanomaterials. Over the past ten years, the biogenic production of metallic nanoparticles (NPs) has become a promising alternative technique to traditional NPs synthesis due to its simplicity, eco-friendliness, and biocompatibility in nature. Fruit and vegetable waste (after industrial processing) contain various bioactives (such as flavonoids, phenols, tannins, steroids, triterpenoids, glycosides, anthocyanins, carotenoids, ellagitannins, vitamin C, and essential oils) serving as reducing and capping agents for NP synthesis and they possess antibacterial, antioxidant, and anti-inflammatory properties. This review addresses various sources of biogenic NPs including their synthesis using fruit/vegetable waste, types of biogenic NPs, extraction processes and extracted biomaterials, the pharmacological functionality of NPs, industrial aspects, and future perspectives. In this manner, this review will cover the most recent research on the biogenic synthesis of NPs from fruit/vegetable peels to transform them into therapeutic nanomedicines.
Collapse
Affiliation(s)
- Priya
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, UP, India
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal 713378, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Aakash Upadhyay
- Department of Pharmacy, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut 250103, UP, India
| | - Shubneesh Kumar
- Department of Pharmacy, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut 250103, UP, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Mohhammad Ramzan
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwada, Punjab, India
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China; School of Engineering, Saveetha University, Chennai, India; Program in Materials Science, UFPI, Teresina, Brazil
| | - Anjum Khanam
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
16
|
Asma U, Morozova K, Ferrentino G, Scampicchio M. Apples and Apple By-Products: Antioxidant Properties and Food Applications. Antioxidants (Basel) 2023; 12:1456. [PMID: 37507993 PMCID: PMC10376361 DOI: 10.3390/antiox12071456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, there has been a growing interest in utilizing natural antioxidants as alternatives to synthetic additives in food products. Apples and apple by-products have gained attention as a potential source of natural antioxidants due to their rich phenolic content. However, the extraction techniques applied for the recovery of phenolic compounds need to be chosen carefully. Studies show that ultrasound-assisted extraction is the most promising technique. High yields of phenolic compounds with antioxidant properties have been obtained by applying ultrasound on both apples and their by-products. Promising results have also been reported for green technologies such as supercritical fluid extraction, especially when a co-solvent is used. Once extracted, recent studies also indicate the feasibility of using these compounds in food products and packaging materials. The present review aims to provide a comprehensive overview of the antioxidant properties of apples and apple by-products, their extraction techniques, and potential applications in food products because of their antioxidant or nutritional properties. The findings reported here highlight the proper utilization of apples and their by-products in food to reduce the detrimental effect on the environment and provide a positive impact on the economy.
Collapse
Affiliation(s)
- Umme Asma
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Ksenia Morozova
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Giovanna Ferrentino
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| |
Collapse
|
17
|
Gavahian M, Bannikoppa AM, Majzoobi M, Hsieh CW, Lin J, Farahnaky A. Fenugreek bioactive compounds: A review of applications and extraction based on emerging technologies. Crit Rev Food Sci Nutr 2023; 64:10187-10203. [PMID: 37303155 DOI: 10.1080/10408398.2023.2221971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fenugreek (Trigonella foenum-graecum L.) is a pharmaceutically significant aromatic crop with health benefits linked to its phytochemicals. This article aims to overview progress in using emerging technologies to extract its bioactive compounds and extraction mechanisms. Also, the trends in the applications of this herb in the food industry and its therapeutical effects were explained. Fenugreek's flavor is the primary reason for its applications in the food industry. At the same time, it has antimicrobial, antibacterial, hepatoprotection, anticancer, lactation, and antidiabetic effects. Phytochemicals responsible for these effects include galactomannans, saponins, alkaloids, and polyphenols. Besides, data showed that emerging technologies boost fenugreek extracts' yield and biological activity. Among these, ultrasound (55.6%) is the most studied technology, followed by microwave (37.0%), cold plasma (3.7%), and combined approaches (3.7%). Processing conditions (e.g., treatment time and intensity) and solvent (type, ratio, and concentration) are significant parameters that affect the performance of these novel extraction technologies. Extracts obtained by sustainable energy-saving emerging technologies can be used to develop value-added health-promoting products.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Asha Mahesh Bannikoppa
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Mahsa Majzoobi
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan
| | - Jenshin Lin
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Di Raimo R, Mizzoni D, Spada M, Dolo V, Fais S, Logozzi M. Oral Treatment with Plant-Derived Exosomes Restores Redox Balance in H 2O 2-Treated Mice. Antioxidants (Basel) 2023; 12:1169. [PMID: 37371899 DOI: 10.3390/antiox12061169] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Plant-derived exosomes (PDEs) are receiving much attention as a natural source of antioxidants. Previous research has shown that PDEs contain a series of bioactives and that their content varies depending on the fruit or vegetable source. It has also been shown that fruits and vegetables derived from organic agriculture produce more exosomes, are safer, free of toxic substances, and contain more bioactives. The aim of this study was to investigate the ability of orally administered mixes of PDE (Exocomplex®) to restore the physiological conditions of mice treated for two weeks with hydrogen peroxide (H2O2), compared with mice left untreated after the period of H2O2 administration and mice that received only water during the experimental period. The results showed that Exocomplex® had a high antioxidant capacity and contained a series of bioactives, including Catalase, Glutathione (GSH), Superoxide Dismutase (SOD), Ascorbic Acid, Melatonin, Phenolic compounds, and ATP. The oral administration of Exocomplex® to the H2O2-treated mice re-established redox balance with reduced serum levels of both reactive oxygen species (ROS) and malondialdehyde (MDA), but also a general recovery of the homeostatic condition at the organ level, supporting the future use of PDE for health care.
Collapse
Affiliation(s)
- Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
- ExoLab Italia, Tecnopolo d'Abruzzo, 67100 L'Aquila, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
- ExoLab Italia, Tecnopolo d'Abruzzo, 67100 L'Aquila, Italy
| | - Massimo Spada
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Vincenza Dolo
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
19
|
Thilakarathna RCN, Siow LF, Tang TK, Lee YY. A review on application of ultrasound and ultrasound assisted technology for seed oil extraction. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1222-1236. [PMID: 36936117 PMCID: PMC10020383 DOI: 10.1007/s13197-022-05359-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/22/2021] [Accepted: 12/25/2021] [Indexed: 12/20/2022]
Abstract
Oil has extensively been extracted from oil-bearing crops and traded globally as a major food commodity. There is always a huge demand from the fats and oils industries to increase oil yield because of profitability benefits. If extraction is conducted under mild operating conditions to preserve and improve the oil quality, then it would be an added value. Ultrasound that works on the cavitational action helps to fulfil the gap. Ultrasound is gaining tremendous interest as an alternative to replace the current conventional extractions approach because of its multiple benefits. Cavitation generated by ultrasound eases the release of oil from cell matrices, thereby allowing the extraction to be carried out under mild processing conditions. The effect enhances the oil yield whilst preserving the quality of the oil. In ultrasound, green solvents can be used to replace toxic organic solvents. Recent up-to-date approaches utilised a combination of ultrasound with enzyme, microwave and supercritical technology to further enhance the oil extraction. This review highlights a comprehensive work of the impact of ultrasound and ultrasound in combination with other technologies on oil extraction, which emphasises the extraction yield and physicochemical properties of the oil, such as fatty acid composition, oxidative stability with the retention of the lipophilic phytochemicals and iodine, saponification values and colour parameters. Understanding of ultrasonication techniques for oil extraction served to be essential and useful information for the fats and oils scientists from academia and industries to explore the possibility of employing a sustainable and mild approaches for extracting oil from various crops.
Collapse
Affiliation(s)
- R. C. N. Thilakarathna
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor Malaysia
| | - Lee Fong Siow
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor Malaysia
| | - Teck-Kim Tang
- Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor Malaysia
- Monash Industry Palm Oil and Education Research Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor Malaysia
| |
Collapse
|
20
|
Zhang L, Piao X. Use of aromatic plant-derived essential oils in meat and derived products: Phytochemical compositions, functional properties, and encapsulation. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
21
|
Silva BN, Cadavez V, Caleja C, Pereira E, Calhelha RC, Añibarro-Ortega M, Finimundy T, Kostić M, Soković M, Teixeira JA, Barros L, Gonzales-Barron U. Phytochemical Composition and Bioactive Potential of Melissa officinalis L., Salvia officinalis L. and Mentha spicata L. Extracts. Foods 2023; 12:foods12050947. [PMID: 36900464 PMCID: PMC10000423 DOI: 10.3390/foods12050947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Plants are rich in bioactive phytochemicals that often display medicinal properties. These can play an important role in the production of health-promoting food additives and the replacement of artificial ones. In this sense, this study aimed to characterise the polyphenolic profile and bioactive properties of the decoctions, infusions and hydroethanolic extracts of three plants: lemon balm (Melissa officinalis L.), sage (Salvia officinalis L.) and spearmint (Mentha spicata L.). Total phenolic content ranged from 38.79 mg/g extract to 84.51 mg/g extract, depending on the extract. The main phenolic compound detected in all cases was rosmarinic acid. The results highlighted that some of these extracts may have the ability to prevent food spoilage (due to antibacterial and antifungal effects) and promote health benefits (due to anti-inflammatory and antioxidant capacities) while not displaying toxicity against healthy cells. Furthermore, although no anti-inflammatory capacity was observed from sage extracts, these stood out for often displaying the best outcomes in terms of other bioactivities. Overall, the results of our research provide insight into the potential of plant extracts as a source of active phytochemicals and as natural food additives. They also support the current trends in the food industry of replacing synthetic additives and developing foods with added beneficial health effects beyond basic nutrition.
Collapse
Affiliation(s)
- Beatriz Nunes Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tiane Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Marina Kostić
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - José António Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: ; Tel.: +35-12-7330-3325
| |
Collapse
|
22
|
Green Solvents: Emerging Alternatives for Carotenoid Extraction from Fruit and Vegetable By-Products. Foods 2023; 12:foods12040863. [PMID: 36832938 PMCID: PMC9956085 DOI: 10.3390/foods12040863] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Carotenoids have important implications for human health and the food industry due to their antioxidant and functional properties. Their extraction is a crucial step for being able to concentrate them and potentially include them in food products. Traditionally, the extraction of carotenoids is performed using organic solvents that have toxicological effects. Developing greener solvents and techniques for extracting high-value compounds is one of the principles of green chemistry and a challenge for the food industry. This review will analyze the use of green solvents, namely, vegetable oils, supercritical fluids, deep eutectic solvents, ionic liquids, and limonene, combined with nonconventional techniques (ultrasound-assisted extraction and microwave), for carotenoid extraction from fruit and vegetable by-products as upcoming alternatives to organic solvents. Recent developments in the isolation of carotenoids from green solvents and their inclusion in food products will also be discussed. The use of green solvents offers significant advantages in extracting carotenoids, both by decreasing the downstream process of solvent elimination, and the fact that the carotenoids can be included directly in food products without posing a risk to human health.
Collapse
|
23
|
Antibacterial Activity of Selected Essential Oils against Foodborne Pathogens and Their Application in Fresh Turkey Sausages. Antibiotics (Basel) 2023; 12:antibiotics12010182. [PMID: 36671383 PMCID: PMC9855142 DOI: 10.3390/antibiotics12010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Essential oils (EOs) isolated from different plant materials, namely Origanum majorana L., Satureja hortensis L., and Satureja montana L. (OMEO, SHEO, and SMEO, respectively), were used in fresh turkey sausage processing. The chemical composition and in vitro antimicrobial potential of selected EOs and their mixture were determined. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against foodborne pathogens (Escherichia coli, Salmonella Enteritidis, and Listeria monocytogenes) ranged in the interval of 0.44-7.1 µL/mL. Fresh turkey sausages were produced with EOs addition and marked as follows: TOMEO-0.150 µL/g OMEO; TSHEO-0.150 µL/g SHEO; TSMEO-0.150 µL/g SMEO; TEOM-0.050 µL/g OMEO, 0.050 µL/g SHEO and 0.050 µL/g SMEO, and control (C) (without EOs). Microbiological profile and biogenic amines content in fresh turkey sausages were recorded during storage. The selected EOs and their mixture efficiently reduced bacterial growth and biogenic amines formation and accumulation. The lowest Enterobacteriaceae count and total biogenic amine (BA) concentration were determined through treatment TSHEO. The results of this study show that selected EOs could be useful in fresh turkey sausage processing in order to improve safety and shelf-life.
Collapse
|
24
|
Kumar N, Kumar G, Prabhakar PK, Sahu JK, Naik S. Ultrasound‐assisted extraction of bioactive compounds from giloy (
Tinospora cordifolia
) stem: Quantitative process optimization and bioactives analysis. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nitin Kumar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Haryana India
- Centre for Rural Development and Technology Indian Institute of Technology Delhi New Delhi India
| | - Gaurav Kumar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Haryana India
| | - Pramod K Prabhakar
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Jatindra K Sahu
- Centre for Rural Development and Technology Indian Institute of Technology Delhi New Delhi India
| | - Satyanarayan Naik
- Centre for Rural Development and Technology Indian Institute of Technology Delhi New Delhi India
| |
Collapse
|
25
|
MUKHAMETOV A, PALIIVETS M, BERECHIKIDZE I, SERIKKYZY M. Evaluating the recovery of bioactive compounds and antioxidant activity of unripe red grape liquid extracts obtained by maceration. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.117922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
26
|
Woźniak-Budych M, Bajek A, Kowalczyk O, Giamberini M, Montornes JM, Staszak K, Tylkowski B. The Pragmatism of Polyphenols and Flavonoids Application as Drugs, from an Academic Lab to a Pharmacy Shelf. Curr Pharm Des 2023; 29:3421-3427. [PMID: 38083888 DOI: 10.2174/0113816128273103231204064507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/26/2023] [Indexed: 01/26/2024]
Abstract
Polyphenols and flavonoids, naturally occurring compounds found abundantly in plants, have gained considerable attention in recent years due to their potential health benefits. Research exploring their bioactive properties has revealed promising therapeutic applications in various diseases. This article aims to provide a comprehensive overview of the intricate journey from academic laboratory discoveries to the availability of polyphenols and flavonoids as drugs on pharmacy shelves. It was shown that the transformation of these natural compounds into effective therapies is a promising avenue for enhancing human health. Yet, fully realizing this potential necessitates sustained scientific exploration, cross-disciplinary collaboration, and continued investment in research and development. This article underscores the importance of sustained collaboration and investment as key pillars of progress towards innovative and effective therapies.
Collapse
Affiliation(s)
| | - Anna Bajek
- Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Oliwia Kowalczyk
- Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Marta Giamberini
- Departament d' Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep M Montornes
- Unitat de Tecnologia Química, Eurecat - Centre Tecnològic de Catalunya, Tarragona, Spain
| | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, Poznan, Poland
| | - Bartosz Tylkowski
- Unitat de Tecnologia Química, Eurecat - Centre Tecnològic de Catalunya, Tarragona, Spain
| |
Collapse
|
27
|
Cannavacciuolo C, Pagliari S, Frigerio J, Giustra CM, Labra M, Campone L. Natural Deep Eutectic Solvents (NADESs) Combined with Sustainable Extraction Techniques: A Review of the Green Chemistry Approach in Food Analysis. Foods 2022; 12:foods12010056. [PMID: 36613272 PMCID: PMC9818194 DOI: 10.3390/foods12010056] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Usual extraction processes for analyzing foods, supplements, and nutraceutical products involve massive amounts of organic solvents contributing to a negative impact on the environment and human health. In recent years, a new class of green solvents called natural deep eutectic solvents (NADES) have been considered a valid alternative to conventional solvents. Compared with conventional organic solvents, NADES have attracted considerable attention since they are sustainable, biodegradable, and non-toxic but also are easy to prepare, and have low production costs. Here we summarize the major aspects of NADEs such as the classification, preparation method physicochemical properties, and toxicity. Moreover, we provide an overview of novel extraction techniques using NADES as potential extractants of bioactive compounds from foods and food by-products, and application of NADEs in food analysis. This review aims to be useful for the further development of NAES and for broadening the knowledge of these new green solvents in order to increase their use for the extraction of bioactive compounds and in food analysis.
Collapse
|
28
|
Kumar M, Zhang B, Potkule J, Sharma K, Radha, Hano C, Sheri V, Chandran D, Dhumal S, Dey A, Rais N, Senapathy M, Natta S, Viswanathan S, Mohankumar P, Lorenzo JM. Cottonseed Oil: Extraction, Characterization, Health Benefits, Safety Profile, and Application. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
29
|
Recent Green Technologies in Natural Stilbenoids Production and Extraction: The Next Chapter in the Cosmetic Industry. COSMETICS 2022. [DOI: 10.3390/cosmetics9050091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stilbenoids are well-known phytoalexins in the group of polyphenolic compounds. Because of their potent bioactivities, including antioxidant, antityrosinase, photoprotective, and antibacterial activities, stilbenoids are utilized as pharmaceutical active ingredient in cosmetic products. Thus, the demand for stilbenoids in the cosmetic industry is increasing. The main sources of stilbenoids are plants. Although plants are green and sustainable source materials, some of them do not allow a regular and constant supply due to seasonal and geographic reasons. Stilbenoids typically have been extracted by conventional organic solvent extraction, and then purified by separation techniques. This method is unfriendly to the environment and may deteriorate human health. Hence, the procedures called “green technologies” are focused on novel extraction methods and sustainable stilbenoids production by using biotechnology. In this review, the chemical structures together with the biosynthesis and current plant sources of resveratrol, oxyresveratrol, and piceatannol are described. Furthermore, recent natural deep eutectic solvents (NADES) for green extraction as well as plant cell cultures for the production of those stilbene compounds are updated.
Collapse
|
30
|
Avilés-Betanzos KA, Oney-Montalvo JE, Cauich-Rodríguez JV, González-Ávila M, Scampicchio M, Morozova K, Ramírez-Sucre MO, Rodríguez-Buenfil IM. Antioxidant Capacity, Vitamin C and Polyphenol Profile Evaluation of a Capsicum chinense By-Product Extract Obtained by Ultrasound Using Eutectic Solvent. PLANTS (BASEL, SWITZERLAND) 2022; 11:2060. [PMID: 35956538 PMCID: PMC9370112 DOI: 10.3390/plants11152060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Habanero pepper leaves and stems (by-products) have been traditionally considered waste; however, bioactive compounds such as polyphenols, vitamin C and carotenoids have been identified that can be used for formulation of nutraceuticals or functional foods. Furthermore, the extraction of these bioactive compounds by using environmentally friendly methods and solvents is desirable. Thus, the aim of this study was to assess the antioxidant capacity, total polyphenol content (TPC), the phenolic profile and vitamin C content in extracts obtained from by-products (stems and leaves) of two varieties (Mayapan and Jaguar) of habanero pepper by ultrasound-assisted extraction (UAE) using natural deep eutectic solvents (NADES). The results showed that NADES leads to extracts with significantly higher TPC, higher concentrations of individual polyphenols (gallic acid, protocatechuic acid, chlorogenic acid, cinnamic acid, coumaric acid), vitamin C and, finally, higher antioxidant capacity (9.55 ± 0.02 eq mg Trolox/g DM) than UAE extraction performed with methanol as the solvent. The association of individual polyphenols with NADES was confirmed by principal component analysis (PCA). Overall, NADES is an innovative and promising "green" extraction technique that can be applied successfully for the extraction of phenolic compounds from habanero pepper by-products.
Collapse
Affiliation(s)
- Kevin Alejandro Avilés-Betanzos
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Subsede Sureste, Tablaje Catastral 31264, Km. 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de Yucatán, Sierra Papacal 97302, Mexico
| | - Julio Enrique Oney-Montalvo
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Subsede Sureste, Tablaje Catastral 31264, Km. 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de Yucatán, Sierra Papacal 97302, Mexico
| | - Juan Valerio Cauich-Rodríguez
- Centro de Investigación Científica de Yucatán, Unidad de Materiales, Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida 97205, Mexico
| | - Marisela González-Ávila
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Ex vivo Digestion Laboratory, CIATEJ, Normalistas No. 800, Colinas de la Normal 44270, Mexico
| | - Matteo Scampicchio
- Faculty of Science and Technology, Free University of Bolzen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Ksenia Morozova
- Faculty of Science and Technology, Free University of Bolzen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Manuel Octavio Ramírez-Sucre
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Subsede Sureste, Tablaje Catastral 31264, Km. 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de Yucatán, Sierra Papacal 97302, Mexico
| | - Ingrid Mayanin Rodríguez-Buenfil
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Subsede Sureste, Tablaje Catastral 31264, Km. 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de Yucatán, Sierra Papacal 97302, Mexico
| |
Collapse
|
31
|
Ultrasounds and a Postharvest Photoperiod to Enhance the Synthesis of Sulforaphane and Antioxidants in Rocket Sprouts. Antioxidants (Basel) 2022; 11:antiox11081490. [PMID: 36009208 PMCID: PMC9404791 DOI: 10.3390/antiox11081490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/05/2022] Open
Abstract
Ultrasounds (US) and LED illumination are being studied to optimize yield and quality. The objective was to evaluate the effect of a pre-sowing US treatment combined with a postharvest photoperiod including LEDs on rocket sprouts’ quality and phytochemicals during shelf life. A US treatment (35 kHz; 30 min) applied to seeds and a postharvest photoperiod of 14 h fluorescent light (FL) + 10 h White (W), Blue (B), Red (R) LEDs or Darkness (D) were assayed. Antioxidants as phenolics and sulfur compounds (glucosinolates and isothiocyanates) were periodically monitored over 14 days at 5 °C. The US treatment increased the sulforaphane content by ~4-fold compared to CTRL seeds and sprouts. The phenolic acids and the flavonoid biosynthesis were enhanced by ~25%, ~30%, and ~55% under photoperiods with W, B, and R, respectively, compared to darkness. The total glucosinolate content was increased by >25% (W) and >45% (B and R) compared to darkness, which also reported increases of ~2.7-fold (W), ~3.6-fold (B), and ~8-fold (R) of the sulforaphane content as a main isothiocyanate. Postharvest lighting is an interesting tool to stimulate the secondary metabolism, while a US treatment was able to increase the sulforaphane content in seeds and sprouts, although no synergistic effect was reported.
Collapse
|
32
|
Corrêa-Filho LC, Santos DI, Brito L, Moldão-Martins M, Alves VD. Storage Stability and In Vitro Bioaccessibility of Microencapsulated Tomato (Solanum Lycopersicum L.) Pomace Extract. Bioengineering (Basel) 2022; 9:bioengineering9070311. [PMID: 35877362 PMCID: PMC9312032 DOI: 10.3390/bioengineering9070311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
Tomato pomace is rich in carotenoids (mainly lycopene), which are related to important bioactive properties. In general, carotenoids are known to react easily under environmental conditions, which may create a barrier in producing stable functional components for food. This work intended to evaluate the storage stability and in vitro release of lycopene from encapsulated tomato pomace extract, and its bioaccessibility when encapsulates were incorporated in yogurt. Microencapsulation assays were carried out with tomato pomace extract as the core material and arabic gum or inulin (10 and 20 wt%) as wall materials by spray drying (160 and 200 °C). The storage stability results indicate that lycopene degradation was highly influenced by the presence of oxygen and light, even when encapsulated. In vitro release studies revealed that 63% of encapsulated lycopene was released from the arabic gum particles in simulated gastric fluid, whereas for the inulin particles, the release was only around 13%. The feed composition with 20% inulin showed the best protective ability and the one that enabled releasing the bioactives preferentially in the intestine. The bioaccessibility of the microencapsulated lycopene added to yogurt increased during simulated gastrointestinal digestion as compared to the microencapsulated lycopene alone. We anticipate a high potential for the inulin microparticles containing lycopene to be used in functional food formulations.
Collapse
|
33
|
Seaweed Phenolics as Natural Antioxidants, Aquafeed Additives, Veterinary Treatments and Cross-Linkers for Microencapsulation. Mar Drugs 2022; 20:md20070445. [PMID: 35877738 PMCID: PMC9319038 DOI: 10.3390/md20070445] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Driven by consumer demand and government policies, synthetic additives in aquafeed require substitution with sustainable and natural alternatives. Seaweeds have been shown to be a sustainable marine source of novel bioactive phenolic compounds that can be used in food, animal and aqua feeds, or microencapsulation applications. For example, phlorotannins are a structurally unique polymeric phenolic group exclusively found in brown seaweed that act through multiple antioxidant mechanisms. Seaweed phenolics show high affinities for binding proteins via covalent and non-covalent bonds and can have specific bioactivities due to their structures and associated physicochemical properties. Their ability to act as protein cross-linkers means they can be used to enhance the rheological and mechanical properties of food-grade delivery systems, such as microencapsulation, which is a new area of investigation illustrating the versatility of seaweed phenolics. Here we review how seaweed phenolics can be used in a range of applications, with reference to their bioactivity and structural properties.
Collapse
|
34
|
Carrillo C, Nieto G, Martínez-Zamora L, Ros G, Kamiloglu S, Munekata PES, Pateiro M, Lorenzo JM, Fernández-López J, Viuda-Martos M, Pérez-Álvarez JÁ, Barba FJ. Novel Approaches for the Recovery of Natural Pigments with Potential Health Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6864-6883. [PMID: 35040324 PMCID: PMC9204822 DOI: 10.1021/acs.jafc.1c07208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 05/27/2023]
Abstract
The current increased industrial food production has led to a significant rise in the amount of food waste generated. These food wastes, especially fruit and vegetable byproducts, are good sources of natural pigments, such as anthocyanins, betalains, carotenoids, and chlorophylls, with both coloring and health-related properties. Therefore, recovery of natural pigments from food wastes is important for both economic and environmental reasons. Conventional methods that are used to extract natural pigments from food wastes are time-consuming, expensive, and unsustainable. In addition, natural pigments are sensitive to high temperatures and prolonged processing times that are applied during conventional treatments. In this sense, the present review provides an elucidation of the latest research on the extraction of pigments from the agri-food industry and how their consumption may improve human health.
Collapse
Affiliation(s)
- Celia Carrillo
- Nutrición
y Bromatología, Facultad de Ciencias, Universidad de Burgos, E-09001 Burgos, Spain
| | - Gema Nieto
- Department
of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain
| | - Lorena Martínez-Zamora
- Department
of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain
| | - Gaspar Ros
- Department
of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain
| | - Senem Kamiloglu
- Department
of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Gorukle, Bursa, Turkey
- Science
and Technology Application and Research Center (BITUAM), Bursa Uludag University, 16059 Gorukle, Bursa, Turkey
| | - Paulo E. S. Munekata
- Centro
Tecnológico de la Carne de Galicia, Avenida Galicia No. 4, Parque Tecnológico
de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Mirian Pateiro
- Centro
Tecnológico de la Carne de Galicia, Avenida Galicia No. 4, Parque Tecnológico
de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - José M. Lorenzo
- Centro
Tecnológico de la Carne de Galicia, Avenida Galicia No. 4, Parque Tecnológico
de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
- Área
de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Juana Fernández-López
- IPOA
Research Group, Agro-Food Technology Department, Centro de Investigación
e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Alicante, Spain
| | - Manuel Viuda-Martos
- IPOA
Research Group, Agro-Food Technology Department, Centro de Investigación
e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Alicante, Spain
| | - José Ángel Pérez-Álvarez
- IPOA
Research Group, Agro-Food Technology Department, Centro de Investigación
e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Alicante, Spain
| | - Francisco J. Barba
- Nutrition
and Food Science Area, Preventive Medicine and Public Health, Food
Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| |
Collapse
|
35
|
Menta R, Rosso G, Canzoneri F. Plant-Based: A Perspective on Nutritional and Technological Issues. Are We Ready for "Precision Processing"? Front Nutr 2022; 9:878926. [PMID: 35571909 PMCID: PMC9094677 DOI: 10.3389/fnut.2022.878926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid evolution of consumers' preference despite being still rooted in taste is rapidly combining with an exponential growth of environmental awareness. Both are forcing innovation into the food industry sector. Today, it is common in the scientific literature to find awareness of nutrition and sustainability, functionality and freshness, taste, and pollution; the most relevant and recognized trends are evolving with unprecedent speed toward a new paradigm. The perfect storm of fast-growing population, together with an exploding level of environmental pollution, is combining with the request for functional foods with more defined health properties and is strongly pushing the food sector to new defined innovation objectives to keep and develop the economic role of most loved brands around the world. The most debated conundrum is how to provide healthy food for all human beings, without further affecting our Mother Earth. Innovation in food raw materials as well as innovation in food processing seems to be the magic solution to provide twice with half, that is, to double the food production combined with declining resources. One of the fastest growing segments in the food industry is the plant-based segment. The status of the available options in food processing applied to plant-based food will be discussed, with a special focus on novel physical processing technologies and atomic force microscopy as possible complementary weapons in science-based definition of a sustainable nutrition approach. A call for a new paradigm such as "precision processing" should be adopted to drive the evolution of the whole food system.
Collapse
|
36
|
Characterization and incorporation of extracts from olive leaves obtained through maceration and supercritical extraction in Canola oil: Oxidative stability evaluation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
37
|
Phong WN, Gibberd MR, Payne AD, Dykes GA, Coorey R. Methods used for extraction of plant volatiles have potential to preserve truffle aroma: A review. Compr Rev Food Sci Food Saf 2022; 21:1677-1701. [PMID: 35179824 DOI: 10.1111/1541-4337.12927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
Truffles are considered one of the world's most highly prized foods mainly due to their desirable organoleptic properties and rarity. However, truffles are seasonal (harvested mostly in winter from June to August in the Southern Hemisphere and from December to February in the Northern Hemisphere) and extremely perishable. Truffles deteriorate rapidly showing undesirable changes within 10 days from harvest in aroma and visual appearance after harvest. The very short postharvest shelf life (about 7-10 days) limits the potential for export and domestic consumption all year round. Several preservation methods have been studied to prolong their shelf life without the loss of aroma. However, all traditional preservation techniques have their own shortcomings and remain challenging. The extraction of natural truffle aroma volatiles for food applications could be a potential alternative to replace the existing synthetic flavoring used for processed truffle products. Four commonly used extraction methods for recovering volatile compounds from plants, namely, supercritical carbon dioxide extraction, Soxhlet extraction, distillation, and cold pressing, are critically analyzed. Up to date, existing research about the extraction of aroma volatiles from truffles is limited in the literature but based on the volatility of the key truffle volatile compounds, supercritical carbon dioxide extraction may offer the best possibility so that a natural truffle-based product that can be used in food applications throughout the year can be made available.
Collapse
Affiliation(s)
- Win Nee Phong
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Mark R Gibberd
- Centre for Crop and Disease Management School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Gary A Dykes
- School of Agriculture and Food Sciences, University of Queensland, Saint Lucia, Queensland, Australia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
38
|
Sustainable Extractions for Maximizing Content of Antioxidant Phytochemicals from Black and Red Currants. Foods 2022; 11:foods11030325. [PMID: 35159476 PMCID: PMC8833918 DOI: 10.3390/foods11030325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
Sustainable extraction techniques (ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and pressurized-liquid extraction (PLE)) were applied and compared with conventional solvent extraction to evaluate their efficiency in maximizing the bioactive compound content and antioxidant activity of black and red currants. The influence of ethanol concentrations (30%, 50%, 70%) were studied in all extraction methods, while different temperatures (30, 50, 70 °C/80, 100, 120 °C) were evaluated in UAE and PLE, respectively. Generally, higher total phenolics were determined in black currant extracts (1.93–3.41 g GAE/100 g) than in red currant extracts (1.27–2.63 g GAE/100 g). The results showed that MAE was the most efficient for the extraction of bioactives from black currants, with 3.41 g GAE/100 g and 0.7934 g CE/100 g, while PLE provided the highest TP and TF for black currant samples (2.63 g GAE/100 g and 0.77 g CE/100 g). Extracts obtained by MAE (10 min, 600 W, 30% ethanol) and PLE (50% ethanol, 10 min, 120 °C) had the highest antioxidant activity, as determined by various in vitro assays (DPPH, FRAP, and ABTS). In conclusion, sustainable extraction techniques can be considered an efficient tool to maximize the content of bioactive antioxidants from black and red currants.
Collapse
|
39
|
Santos TRJ, Santana LCLDA. Conventional and emerging techniques for extraction of bioactive compounds from fruit waste. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2022. [DOI: 10.1590/1981-6723.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Su K, Ee KH, Sun J, Liu SQ, Lassabliere B, Feiter U, Huang Y, Goh RMV, Pua A, Yu B. Simultaneous fractionation of multiple classes of polyphenols from honeybush tea using solid‐phase extraction. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Keran Su
- Department of Food Science and Technology National University of Singapore Singapore
| | | | | | - Shao Quan Liu
- Department of Food Science and Technology National University of Singapore Singapore
| | | | | | - Yunle Huang
- Department of Food Science and Technology National University of Singapore Singapore
- Mane SEA Pte Ltd Singapore
| | - Rui Min Vivian Goh
- Department of Food Science and Technology National University of Singapore Singapore
| | - Aileen Pua
- Department of Food Science and Technology National University of Singapore Singapore
- Mane SEA Pte Ltd Singapore
| | - Bin Yu
- Mane SEA Pte Ltd Singapore
| |
Collapse
|
41
|
Abstract
Sustainable food supply has gained considerable consumer concern due to the high percentage of spoilage microorganisms. Food industries need to expand advanced technologies that can maintain the nutritive content of foods, enhance the bio-availability of bioactive compounds, provide environmental and economic sustainability, and fulfill consumers’ requirements of sensory characteristics. Heat treatment negatively affects food samples’ nutritional and sensory properties as bioactives are sensitive to high-temperature processing. The need arises for non-thermal processes to reduce food losses, and sustainable developments in preservation, nutritional security, and food safety are crucial parameters for the upcoming era. Non-thermal processes have been successfully approved because they increase food quality, reduce water utilization, decrease emissions, improve energy efficiency, assure clean labeling, and utilize by-products from waste food. These processes include pulsed electric field (PEF), sonication, high-pressure processing (HPP), cold plasma, and pulsed light. This review describes the use of HPP in various processes for sustainable food processing. The influence of this technique on microbial, physicochemical, and nutritional properties of foods for sustainable food supply is discussed. This approach also emphasizes the limitations of this emerging technique. HPP has been successfully analyzed to meet the global requirements. A limited global food source must have a balanced approach to the raw content, water, energy, and nutrient content. HPP showed positive results in reducing microbial spoilage and, at the same time, retains the nutritional value. HPP technology meets the essential requirements for sustainable and clean labeled food production. It requires limited resources to produce nutritionally suitable foods for consumers’ health.
Collapse
|
42
|
Balasubramaniam VM. Process development of high pressure-based technologies for food: research advances and future perspectives. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Dini I. Bio Discarded from Waste to Resource. Foods 2021; 10:2652. [PMID: 34828933 PMCID: PMC8621767 DOI: 10.3390/foods10112652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
The modern linear agricultural production system allows the production of large quantities of food for an ever-growing population. However, it leads to large quantities of agricultural waste either being disposed of or treated for the purpose of reintroduction into the production chain with a new use. Various approaches in food waste management were explored to achieve social benefits and applications. The extraction of natural bioactive molecules (such as fibers and antioxidants) through innovative technologies represents a means of obtaining value-added products and an excellent measure to reduce the environmental impact. Cosmetic, pharmaceutical, and nutraceutical industries can use natural bioactive molecules as supplements and the food industry as feed and food additives. The bioactivities of phytochemicals contained in biowaste, their potential economic impact, and analytical procedures that allow their recovery are summarized in this study. Our results showed that although the recovery of bioactive molecules represents a sustainable means of achieving both waste reduction and resource utilization, further research is needed to optimize the valuable process for industrial-scale recovery.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
44
|
Donno D, Turrini F, Boggia R, Guido M, Gamba G, Mellano MG, Riondato I, Beccaro GL. Vitis vinifera L. Pruning Waste for Bud-Preparations as Source of Phenolic Compounds–Traditional and Innovative Extraction Techniques to Produce New Natural Products. PLANTS 2021; 10:plants10112233. [PMID: 34834596 PMCID: PMC8624332 DOI: 10.3390/plants10112233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
Herbal products are now considered among the most important sources of phenolic compounds: the FINNOVER project aimed at the creation and development of sustainable supply chains to extract and use natural biologically active agents. Vitis vinifera is one of the most utilised herbal products derived from buds and sprouts as polyphenolic food supplements for its homeostatic and astringent properties. This research was aimed to describe the antioxidant capacity and the phytochemical composition of V. vinifera herbal products by the application of spectroscopic and chromatographic fingerprints considering phenolics as potential markers to significantly differentiate traditional preparations (macerates) from innovative extracts obtained by an ultrasound extraction from V. vinifera buds. Two different commercial products were also considered. Flavonols were the most abundant class in ultrasound extracts (45%), while phenolic acids were the most important class in traditional macerates (49%) and commercial bud-preparations (about 50%). This study may support the potential use of V. vinifera bud-products (starting from pruning byproducts) as food supplements to integrate human diet with good amounts of phenolics. Finally, the use of different extraction methods on the same plant material could be an important development to produce innovative herbal products with a phytochemical composition similar to traditional preparations.
Collapse
Affiliation(s)
- Dario Donno
- Department of Agriculture, Forestry and Food Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy; (G.G.); (M.G.M.); (I.R.); (G.L.B.)
- Correspondence:
| | - Federica Turrini
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (F.T.); (R.B.)
| | - Raffaella Boggia
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (F.T.); (R.B.)
| | | | - Giovanni Gamba
- Department of Agriculture, Forestry and Food Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy; (G.G.); (M.G.M.); (I.R.); (G.L.B.)
| | - Maria Gabriella Mellano
- Department of Agriculture, Forestry and Food Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy; (G.G.); (M.G.M.); (I.R.); (G.L.B.)
| | - Isidoro Riondato
- Department of Agriculture, Forestry and Food Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy; (G.G.); (M.G.M.); (I.R.); (G.L.B.)
| | - Gabriele Loris Beccaro
- Department of Agriculture, Forestry and Food Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy; (G.G.); (M.G.M.); (I.R.); (G.L.B.)
| |
Collapse
|
45
|
Lucarini M, Durazzo A, Bernini R, Campo M, Vita C, Souto EB, Lombardi-Boccia G, Ramadan MF, Santini A, Romani A. Fruit Wastes as a Valuable Source of Value-Added Compounds: A Collaborative Perspective. Molecules 2021; 26:6338. [PMID: 34770747 PMCID: PMC8586962 DOI: 10.3390/molecules26216338] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 01/06/2023] Open
Abstract
The by-products/wastes from agro-food and in particular the fruit industry represents from one side an issue since they cannot be disposed as such for their impact on the environment but they need to be treated as a waste. However, on the other side, they are a source of bioactive healthy useful compounds which can be recovered and be the starting material for other products in the view of sustainability and a circular economy addressing the global goal of "zero waste" in the environment. An updated view of the state of art of the research on fruit wastes is here given under this perspective. The topic is defined as follows: (i) literature quantitative analysis of fruit waste/by-products, with particular regards to linkage with health; (ii) an updated view of conventional and innovative extraction procedures; (iii) high-value added compounds obtained from fruit waste and associated biological properties; (iv) fruit wastes presence and relevance in updated databases. Nowadays, the investigation of the main components and related bioactivities of fruit wastes is being continuously explored throughout integrated and multidisciplinary approaches towards the exploitation of emerging fields of application which may allow to create economic, environmental, and social value in the design of an eco-friendly approach of the fruit wastes.
Collapse
Affiliation(s)
- Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy;
| | - Margherita Campo
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement Technology and Analysis)-DiSIA, Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Via U. Schiff, 6-50019 Sesto Fiorentino, 50121 Florence, Italy; (M.C.); (A.R.)
| | - Chiara Vita
- QuMAP-PIN S.c.r.l.-Polo Universitario “Città di Prato” Servizi didattici e scientifici per l’Università di Firenze, Piazza Giovanni Ciardi, 25-59100 Prato, Italy;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Mohamed Fawzy Ramadan
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 24231, Saudi Arabia
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement Technology and Analysis)-DiSIA, Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Via U. Schiff, 6-50019 Sesto Fiorentino, 50121 Florence, Italy; (M.C.); (A.R.)
| |
Collapse
|
46
|
Value-Added Metabolites from Agricultural Waste and Application of Green Extraction Techniques. SUSTAINABILITY 2021. [DOI: 10.3390/su132011432] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The agricultural sector generates approximately 1300 million tonnes of waste annually, where up to 50% comprising of raw material are discarded without treatment. Economic development and rising living standards have increased the quantity and complexity of waste generated resulting in environmental, health and economic issues. This calls for a greener waste management system such as valorization or recovery of waste into products. For successful implementation, social acceptance is an essential component with involvement of all local stakeholders including community to learn and understand the process and objective of the implementation. The agricultural waste product manufacturing industry is expected to increase with the growing demand for organic food. Thus, proper livestock and crop waste management is vital for environmental protection. It will be essential to successfully convert waste into a sustainable product that is reusable and circulated in the system in line with the green concept of circular economy. This review identifies the commercially produced crops by-product that have been considered for valorization and implemented green extraction for recovery. We highlight the importance of social acceptance and the economic value to agricultural waste recycling. Successful implementation of these technologies will overcome current waste management problems, reduce environmental impacts of landfills, and sustainability issue for farm owners.
Collapse
|
47
|
Fighting coronaviruses with natural polyphenols. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021; 37:102179. [PMID: 34630764 PMCID: PMC8491928 DOI: 10.1016/j.bcab.2021.102179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/11/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023]
Abstract
Few licensed drugs and vaccines are available concerning COVID-19, a disease caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2). Furthermore, numerous recent SARS-COV-2 variants of have arisen globally, demonstrating the need to develop broadly protective interventions for different coronavirus strains. Polyphenols are the largest class of natural bioactive compounds, categorized as flavonoids (catechins, quercetin and kaempferol) and non-flavonoids (gallic acid and resveratrol), and these compounds have been described as effective antiviral agents. This is because they can inhibit coronavirus enzymes, blocking replication and infection. The present short manuscript aimed to summarize and report the current evidence from well-known powerful flavonoid (catechin, quercetin, and kaempferol) and non-flavonoid (gallic acid and resveratrol) polyphenols obtained from plant extracts that inhibit coronavirus strains in in vitro models or by computer modeling. The knowledge of strategies beyond conventional treatments may be helpful in the development of new coronavirus drugs, treatments/medicines, or formulations.
Collapse
|
48
|
Tripathy S, Verma DK, Thakur M, Patel AR, Srivastav PP, Singh S, Gupta AK, Chávez-González ML, Aguilar CN, Chakravorty N, Verma HK, Utama GL. Curcumin Extraction, Isolation, Quantification and Its Application in Functional Foods: A Review With a Focus on Immune Enhancement Activities and COVID-19. Front Nutr 2021; 8:747956. [PMID: 34621776 PMCID: PMC8490651 DOI: 10.3389/fnut.2021.747956] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
An entirely unknown species of coronavirus (COVID-19) outbreak occurred in December 2019. COVID-19 has already affected more than 180 million people causing ~3.91 million deaths globally till the end of June 2021. During this emergency, the food nutraceuticals can be a potential therapeutic candidate. Curcumin is the natural and safe bioactive compound of the turmeric (Curcuma longa L.) plant and is known to possess potent anti-microbial and immuno-modulatory properties. This review paper covers the various extraction and quantification techniques of curcumin and its usage to produce functional food. The potential of curcumin in boosting the immune system has also been explored. The review will help develop insight and new knowledge about curcumin's role as an immune-booster and therapeutic agent against COVID-19. The manuscript will also encourage and assist the scientists and researchers who have an association with drug development, pharmacology, functional foods, and nutraceuticals to develop curcumin-based formulations.
Collapse
Affiliation(s)
- Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Ami R. Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Gujarat, India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Smita Singh
- Department of Life Sciences (Food Technology), Graphic Era (Deemed to Be) University, Dehradun, India
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Chandigarh, India
| | - Alok Kumar Gupta
- Division of Post-Harvest Management, ICAR-Central Institute for Subtropical Horticulture (Ministry of Agriculture and Farmers Welfare, Government of India), Lucknow, India
| | - Mónica L. Chávez-González
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Mexico
| | - Cristobal Noe Aguilar
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Mexico
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Henu Kumar Verma
- Department of Immunopathology, Comprehensive Pneumology Center, Institute of Lungs Biology and Disease, Munich, Germany
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
49
|
Rahaman A, Kumari A, Farooq MA, Zeng XA, Hassan S, Khalifa I, Aadil RM, Jahangir Chughtai MF, Khaliq A, Ahmad N, Wajid MA. Novel Extraction Techniques: An Effective Way to Retrieve the Bioactive Compounds from Saffron (Crocus Sativus). FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1967377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Ankita Kumari
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Muhammad Adil Farooq
- Department of Food Science and Technology, Faculty of Engineering and Technology, Khwaja Fareed University Engineering and Information Technology, Rahimyar, Pakistan
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Sadia Hassan
- Department of Nutritional Sciences, Faculty of Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Egypt
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Farhan Jahangir Chughtai
- Department of Food Science and Technology, Faculty of Engineering and Technology, Khwaja Fareed University Engineering and Information Technology, Rahimyar, Pakistan
| | - Adnan Khaliq
- Department of Food Science and Technology, Faculty of Engineering and Technology, Khwaja Fareed University Engineering and Information Technology, Rahimyar, Pakistan
| | - Nabeel Ahmad
- School of Biotechnology, Iftm University, Moradabad, India
| | - Mohd Anas Wajid
- Department of Computer Science, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
50
|
Athanasiadis V, Lakka A, Palaiogiannis D, Pappas VM, Bozinou E, Ntourtoglou G, Makris DP, Dourtoglou VG, Lalas SI. Pulsed Electric Field and Salvia officinalis L. Leaves: A Successful Combination for the Extraction of High Value Added Compounds. Foods 2021; 10:2014. [PMID: 34574126 PMCID: PMC8469738 DOI: 10.3390/foods10092014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
The present study aimed to evaluate the pulsed electric field (PEF)-assisted extraction of phytochemicals from Salvia officinalis L. leaves. The study parameters included a PEF pulse duration of 10 or 100 μs for 30 min, using different "green" extraction solvents: pure ethanol, pure water, and their mixtures at 25, 50, and 75% v/v concentrations. The resulting extracts were evaluated against reference extracts obtained without PEF. For estimation of the extraction efficiency, the content in total polyphenols, individual polyphenols, and volatile compounds, as well as the resistance to oxidation, were determined. The optimal PEF contribution on the total and individual polyphenols, rosmarinic acid, extractability (up to 73.2% and 403.1% increase, respectively) was obtained by 25% v/v aqueous ethanol solvent using a pulse duration of 100 μs. PEF was proven to also affect the final concentration and composition of volatile compounds of the extracts obtained.
Collapse
Affiliation(s)
- Vassilis Athanasiadis
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.A.); (A.L.); (D.P.); (V.M.P.); (E.B.); (G.N.); (D.P.M.)
| | - Achillia Lakka
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.A.); (A.L.); (D.P.); (V.M.P.); (E.B.); (G.N.); (D.P.M.)
| | - Dimitrios Palaiogiannis
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.A.); (A.L.); (D.P.); (V.M.P.); (E.B.); (G.N.); (D.P.M.)
| | - Vasileios M. Pappas
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.A.); (A.L.); (D.P.); (V.M.P.); (E.B.); (G.N.); (D.P.M.)
| | - Eleni Bozinou
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.A.); (A.L.); (D.P.); (V.M.P.); (E.B.); (G.N.); (D.P.M.)
| | - George Ntourtoglou
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.A.); (A.L.); (D.P.); (V.M.P.); (E.B.); (G.N.); (D.P.M.)
- Department of Wine, Vine, & Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos Str., GR-12243 Egaleo, Athens, Greece;
| | - Dimitris P. Makris
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.A.); (A.L.); (D.P.); (V.M.P.); (E.B.); (G.N.); (D.P.M.)
| | - Vassilis G. Dourtoglou
- Department of Wine, Vine, & Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos Str., GR-12243 Egaleo, Athens, Greece;
| | - Stavros I. Lalas
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.A.); (A.L.); (D.P.); (V.M.P.); (E.B.); (G.N.); (D.P.M.)
| |
Collapse
|