1
|
Jaglan P, Kaushik D, Kumar M, Singh J, Oz F, Shubham S, Bansal V, Proestos C, Kumar V, Rani R. A critical review on Moringa oleifera: current status, physicochemical attributes, and food industrial applications. Nat Prod Res 2025; 39:2293-2307. [PMID: 39135442 DOI: 10.1080/14786419.2024.2387833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 04/09/2025]
Abstract
Phytomedicine as an alternative to conventional medications which become more interested for researcher. Moringa Oleifera (M. Oleifera) has been used for centuries to cure a range of illnesses. M. Oleifera, commonly known as the miracle tree, ben oil tree, and drumstick tree, is a Moringaceae family plant whose latin name is Moringa oleifera Lam. It has a high concentration of macro and micronutrients, as well as other bioactive components, all of which are necessary for the body's correct function and the prevention of different disorders. The plant's leaves, seeds, and blooms are all edible and offer a variety of medicinal benefits. Moringa is used to treat diabetes, bacterial, viral, and fungal infections, inflammation, heart disease, cancer, and joint pain. Numerous studies of Moringa oleifera have emphasised its phytochemical components, future possibilities, and usefulness in a variety of domains, including ethnomedicine, whereas this review is a collection of previous discoveries and an update on all previous work.
Collapse
Affiliation(s)
- Poonam Jaglan
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Deepika Kaushik
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Mukul Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Turkey
| | - Shubham Shubham
- Engineering for Innovation, University of Salento, Brindisi, Italy
| | - Vikas Bansal
- Department of Food Technology, School of Engineering and Technology, Jaipur National University, Jaipur, India
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Vishal Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Ritu Rani
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Arslan H, Aksu MI. Combined effects of encapsulated raspberry powder and phosphate on the lipid oxidation, microbiological properties and shelf life of modified atmosphere packaged chicken nuggets during chilled storage. Br Poult Sci 2025:1-16. [PMID: 39927849 DOI: 10.1080/00071668.2025.2453992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/29/2024] [Indexed: 02/11/2025]
Abstract
1. Further-processed poultry products, such as chicken nuggets, are susceptible to rapid lipid oxidation and microbial spoilage. Natural ingredients from various plants or fruits may contribute to improving the quality and extending the shelf life of meat products. In the present study, the use of encapsulated raspberry powder (ERP; control, 0.5%, 1.0%) in chicken nugget production with and without phosphate (0.0%, 0.3%) and its effects on chemical composition, lipid oxidation, microbial quality and shelf life were examined.2. Phosphate and ERP had effects on chemical composition and aw; (p < 0.01). During storage, the ratio of O2 and N2 increased and the amount of CO2 decreased (p < 0.05), but the increase in samples with 1.0% ERP addition was lower than in the control and 0.5% groups.3. Both the use of ERP (p < 0.01) and phosphate (p < 0.01) for nugget production prevented lipid oxidation. The lowest was determined in samples containing phosphate + 1.0% ERP (p < 0.05) during storage. However, the TBARS values were within acceptable limits (<1 mg MDA/kg) for all the samples with 0.5% and 1.0% ERP added with phosphate.4. The counts of total aerobic mesophilic bacteria decreased depending on the level of ERP added to the nugget composition (p < 0.01). Counts only exceeded 6 log CFU/g in the control samples on the 120th day of storage. Salmonella spp. and Listeria monocytogenes were negative in all nugget samples during storage. The counts of Enterobacteriaceae were below the detectable limit (<2.0 log CFU/g) during storage.
Collapse
Affiliation(s)
- H Arslan
- Faculty of Agriculture, Department of Food Engineering, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - M I Aksu
- Faculty of Agriculture, Department of Food Engineering, Atatürk University, Erzurum, Turkey
| |
Collapse
|
3
|
Kumar H, Guleria S, Dhalaria R, Nepovimova E, Bhardwaj N, Jha P, Dhanjal DS, Verma N, Malik T. Valorization of Moringa oleifera Lam.: Healthy green biomass for circular bioeconomy. Food Chem X 2025; 26:102358. [PMID: 40129732 PMCID: PMC11931315 DOI: 10.1016/j.fochx.2025.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Exploration of plant biodiversity that not only withstand extreme environmental conditions but also has the potential to fulfil sustainable development goals (SDGs) is the priority for researchers. Moringa oleifera is the best-suited plant in this category. It plays a primary role in SDGs due to its versatile features like health-beneficial effects. The polyphenols found in the different parts of this plant have exhibited health-promoting benefits and served as catalysts/resources for producing valuable ingredients. The current review outlines the potential application of Moringa oleifera in biofuel production, the synthesis of green nanomaterials, and the fortification of functional foods and feed to enhance nutritional value. Besides that, the application of Moringa oleifera in pharmaceutical products and the safety considerations associated with its utilization have also been examined. Conclusively, the review comprehensively aligns towards sustainable practices in the agro-industrial sector alongside the circular bioeconomy concept.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, 70800 Ostrava-Poruba, Czech Republic
| | - Nidhi Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Pooja Jha
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Narinder Verma
- School of Business Management, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Ethiopia
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab 144401, India
| |
Collapse
|
4
|
Chetia I, Vijayakumar A, Badwaik LS. Edible flowers' flavor, safety and their utilization as functional ingredients: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:11-23. [PMID: 39867620 PMCID: PMC11754579 DOI: 10.1007/s13197-024-06071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 01/28/2025]
Abstract
Edible flowers have been a part of various traditional dishes around the world. The consumption of edible flowers has been rising due to their nutritional properties, minerals, antioxidants, phenolic and bioactive compounds, therapeutic properties, and also aesthetic appeal. Along with the nutrients, some antinutrients and other chemical, biological, microbial hazards may render flowers non-edible. The components responsible for flavor in edible flowers are different from species to species. Bioactive compounds play a major role in sensory attributes of edible flowers. Various functional food products such as bakery items, dairy products, beverages etc. can be developed by incorporating edible flowers. Understanding various properties of edible flowers, their safe consumption, and utilization as functional ingredients in the development of various food products is not only useful but also necessary to popularize edible flowers for novel applications. It is important for food safety experts to recognize and reduce the risks connected with edible flowers. Graphical abstract
Collapse
Affiliation(s)
- Indrani Chetia
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam, Assam 784028 India
| | - Akhila Vijayakumar
- Teagasc Food Research Centre, Moorepark, Fermoy, Co.Cork Ireland
- Food Safety and Preservation Department, IATA-CSIC, SO Excellence Centre, Avda. Agustín Escardino 7, 46980 Paterna, Valencia Spain
| | - Laxmikant S. Badwaik
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam, Assam 784028 India
| |
Collapse
|
5
|
Aksu MI, Arslan H. Properties of encapsulated raspberry powder and its efficacy for improving the pH, colour quality and shelf life of modified atmosphere packaged chicken nuggets. Br Poult Sci 2024; 65:559-573. [PMID: 38994664 DOI: 10.1080/00071668.2024.2359988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 07/13/2024]
Abstract
1. Recent research has shown that encapsulated raspberry powder (RP) is a natural colourant for foodstuffs. However, no research has been conducted on its use in chicken nuggets. In addition, the effect of RP on products with and without phosphate addition is unknown. This study assessed the effects of RP (control, 0.5%, 1.0%) and phosphate (0.0%, 0.3%) on the pH and colour quality properties of nuggets.2. In the production of RP, red raspberry (Rubus ideaus L.) juices were encapsulated using maltodextrin in a spray-dryer. Antioxidant activity, total anthocyanin, total phenolics, colour, moisture and pH analyses of the RP were performed.3. Nuggets were packaged in modified atmosphere packaging (MAP; 40%CO2 + 60%N2) and were stored at 2.0 ± 0.5°C for 120 d. The pH and external and internal surface colour (L*, a*, b*, C* and h) values were measured on d 0, 15, 30, 45, 60, 75, 90, 105 and 120 of storage.4. The addition of phosphate increased the pH in the samples, while these decreased with the addition of RP (p < 0.05). During storage, the highest pH were seen in the phosphate samples and the lowest in the nuggets with 1.0% RP addition (p < 0.05).5. With the addition of phosphate, the external surface a* value of nuggets increased (p < 0.05). Depending on the level of RP added to the nuggets, the external surface L* value decreased and a* and b* values increased (p < 0.05). After d 30 of storage, the a* value increased in the samples with RP addition and this increase was higher in the with phosphate nuggets (p < 0.05).6. The internal surface a* value increased with the addition of RP during nugget production (p < 0.05). The increase in a* value was greater in samples with added phosphate (p < 0.05). During storage, the highest a* values were seen in nuggets treated with phosphate + 0.1% RP (p < 0.05). The addition of RP to chicken nugget emulsion improved redness, colour stability and shelf life.
Collapse
Affiliation(s)
- M I Aksu
- Faculty of Agriculture, Department of Food Engineering, Atatürk University, Erzurum, Turkey
| | - H Arslan
- Faculty of Agriculture, Department of Food Engineering, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
6
|
Kanbur G, Göçmen R, Ünal K. Effect of high-fibre diets supplemented with banana leaf on growth performance, meat quality, and serum cholesterol of quail. Trop Anim Health Prod 2024; 56:265. [PMID: 39304570 DOI: 10.1007/s11250-024-04139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Bananas are one of the most extensively cultivated fruits globally, yielding substantial amounts of greenery, including their leaves. Banana leaves (BL) have notable protein content, bioactive compounds, and a significant fiber component. This study aimed to investigate the impact of incorporating dried and nutrient-determined BL along with a multienzyme complex into the diet of quails. The experiment lasted 35 days, a total of 280 one-day-old quail chicks (Coturnix coturnix japonica) were allocated into four groups with seven replicates. Experimental diets were formulated with the addition of dried BL at levels of 0% (C), 3% (BL3), 6% (BL6), and 9% (BL9), with the inclusion of 1,000 mg/kg multienzyme complex to the basal diet. The total fiber content of diets was determined at 2.77%, 4.28%, 5.77%, and 7.28%, respectively. The inclusion of BL in the diet did not significantly affect growth performance. However, the addition of 3% and 6% BL to the diet resulted in a significant reduction in meat oxidation. A 6% BL inclusion led to the lowest serum low-density lipoprotein and the highest high-density lipoprotein concentrations (p < 0.05). Meat yellowness (b*) increased with all three levels of BL in the diet compared to the basal diet (p < 0.05), while L* and a* values remained unaffected. A 6% BL addition to quail diets may lead to improved meat quality and higher serum HDL concentration without detrimental effects on growth performance.
Collapse
Affiliation(s)
- Gülşah Kanbur
- Animal Science Department, Agriculture Faculty, Selcuk University, Konya, Selçuklu, Türkiye.
| | - Rabia Göçmen
- Animal Science Department, Agriculture Faculty, Selcuk University, Konya, Selçuklu, Türkiye
| | - Kübra Ünal
- Food Engineering Department, Agriculture Faculty, Selcuk University, Konya, Selçuklu, Türkiye
| |
Collapse
|
7
|
Hojati N, Amiri S, Abedi E, Radi M. Effect of cinnamaldehyde-nanoemulsion and nanostructured lipid carriers on physicochemical attributes of reduced-nitrite sausages. Food Chem 2024; 444:138658. [PMID: 38325076 DOI: 10.1016/j.foodchem.2024.138658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
This study aimed to produce cinnamaldehyde (CA)-loaded nanostructured lipid carriers (NLC) and nanoemulsion (NE) to replace nitrite in sausage. The NLC and NE droplet sizes were 132 and 116 nm with encapsulation efficiency of 98 and 96 %, respectively. In in vitro antimicrobial assessment, the free CA and NE showed higher microbial activity against S. aureus and E. coli than NLC. Meanwhile, NE showed a faster release profile for CA than NLC. Among the samples, NE and NE + nitrite indicated the lowest peroxide value (3.7 ± 0.1), TVBN amount (8.6 ± 0.2), acidity (0.3 ± 0.02), microbial quality (against E. coli, C. perfringens, lactic acid bacteria, psychrophilic bacteria, total mold and yeast, and total viable counts), and sensory attribute, while the NE + nitrite sample exhibited better color properties and higher oxymyoglobin content (5-10 % higher). Therefore, NE + nitrite can be the best choice due to supporting the different quality parameters of sausage.
Collapse
Affiliation(s)
- Narges Hojati
- Department of Food Science and Technology, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| | - Sedigheh Amiri
- Department of Food Science and Technology, Yasuj Branch, Islamic Azad University, Yasuj, Iran; Sustainable Agriculture and Food Security Research Group, Yasuj Branch, Islamic Azad University, Yasuj, Iran.
| | - Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran
| | - Mohsen Radi
- Department of Food Science and Technology, Yasuj Branch, Islamic Azad University, Yasuj, Iran; Sustainable Agriculture and Food Security Research Group, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| |
Collapse
|
8
|
Sik B, Ajtony Z, Lakatos E, Gál LH, Székelyhidi R. Evaluation of the physical, antioxidant, and organoleptic properties of biscuits fortified with edible flower powders. Food Sci Nutr 2024; 12:3265-3272. [PMID: 38726460 PMCID: PMC11077199 DOI: 10.1002/fsn3.3993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 05/12/2024] Open
Abstract
Foods enriched with plants have gradually become an area of increasing research interest because plant ingredients may offer several positive effects on human health and the body. The aim of our study was to develop biscuits fortified with three different types of edible flowers (marigold, lavender, and rose) and examine their physical and antioxidant characteristics, as well as consumer acceptability. The antioxidant properties and characterization of biscuits highlighted that edible flowers may cause increased total polyphenol and total flavonoid yields, as well as DPPH radical scavenging activities. Concerning biscuits fortified with rose petals, the total monomer anthocyanin content was also raised. In addition, the results showed that the antioxidant properties of biscuits increased with increasing concentration (from 2.5% to 5.0%) of edible flowers. Despite this, the consumer acceptability results clearly showed that the addition of marigold and lavender at a concentration of 5.0% caused significantly decreased overall acceptance. We found that the fortification step may increase the spread ratio, which is an important quality attribute of biscuits. We found slight variations in the diameter, thickness, and baking loss parameters of fortified biscuits compared to the control. All in all, the best results were obtained when the biscuits were fortified with rose petals at a concentration of 5%.
Collapse
Affiliation(s)
- Beatrix Sik
- Department of Food ScienceAlbert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University in MosonmagyaróvárMosonmagyaróvárHungary
| | - Zsolt Ajtony
- Department of Food ScienceAlbert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University in MosonmagyaróvárMosonmagyaróvárHungary
| | - Erika Lakatos
- Department of Food ScienceAlbert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University in MosonmagyaróvárMosonmagyaróvárHungary
| | - Laura Hanna Gál
- Department of Food ScienceAlbert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University in MosonmagyaróvárMosonmagyaróvárHungary
| | - Rita Székelyhidi
- Department of Food ScienceAlbert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University in MosonmagyaróvárMosonmagyaróvárHungary
| |
Collapse
|
9
|
Ferreira T, Gomes SM, Santos L. Elevating Cereal-Based Nutrition: Moringa oleifera Supplemented Bread and Biscuits. Antioxidants (Basel) 2023; 12:2069. [PMID: 38136189 PMCID: PMC10740771 DOI: 10.3390/antiox12122069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Enhancing the nutritional value of commonly consumed, cost-effective staple foods, such as bread and biscuits, by fortifying them with Moringa oleifera leaf powder (MOLP) and its phenolic-rich extract holds substantial potential for addressing malnutrition. This study evaluated the phenolic extract from MOLP obtained through Soxhlet extraction, focusing on its antioxidant, antibacterial, and antidiabetic properties. The resulting extract exhibited a total phenolic content (TPC) of 138.2 mg of gallic acid equivalents/g. The ABTS and DPPH assays presented IC50 values of 115.2 mg/L and 544.0 mg/L, respectively. Furthermore, the extract displayed notable α-amylase inhibition and no cytotoxicity towards human fibroblasts. The primary phenolic compounds identified were catechin, epicatechin, and caffeic acid. Subsequently, MOLP and its extract were incorporated into bread and biscuits, replacing 5% of wheat flour, resulting in fortified functional foods. The fortified products exhibited improved TPC and antioxidant activity compared to the non-fortified foods. Furthermore, they displayed the ability to inhibit microbial growth, leading to an extended shelf life. Sensory analysis indicated that the products incorporated with the extract were preferred over those with MOLP. These results have demonstrated the viability of using MOLP and its phenolic-rich extract as an environmentally sustainable strategy for enhancing the quality of cereal-based products.
Collapse
Affiliation(s)
- Teresa Ferreira
- FEUP—Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Sandra M. Gomes
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Santos
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Mishra BP, Mishra J, Paital B, Rath PK, Jena MK, Reddy BVV, Pati PK, Panda SK, Sahoo DK. Properties and physiological effects of dietary fiber-enriched meat products: a review. Front Nutr 2023; 10:1275341. [PMID: 38099188 PMCID: PMC10720595 DOI: 10.3389/fnut.2023.1275341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
Meat is a rich source of high biological proteins, vitamins, and minerals, but it is devoid of dietary fiber, an essential non-digestible carbohydrate component such as cellulose, hemicellulose, pectin, lignin, polysaccharides, and oligosaccharides. Dietary fibers are basically obtained from various cereals, legumes, fruits, vegetables, and their by-products and have numerous nutritional, functional, and health-benefiting properties. So, these fibers can be added to meat products to enhance their physicochemical properties, chemical composition, textural properties, and organoleptic qualities, as well as biological activities in controlling various lifestyle ailments such as obesity, certain cancers, type-II diabetes, cardiovascular diseases, and bowel disorders. These dietary fibers can also be used in meat products as an efficient extender/binder/filler to reduce the cost of production by increasing the cooking yield as well as by reducing the lean meat content and also as a fat replacer to minimize unhealthy fat content in the developed meat products. So, growing interest has been observed among meat processors, researchers, and scientists in exploring various new sources of dietary fibers for developing dietary fiber-enriched meat products in recent years. In the present review, various novel sources of dietary fibers, their physiological effects, their use in meat products, and their impact on various physicochemical, functional, and sensory attributes have been focused.
Collapse
Affiliation(s)
- Bidyut Prava Mishra
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | | | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - B. V. Vivekananda Reddy
- Department of Livestock Products Technology, NTR College of Veterinary Science, Gannavaram, India
| | - Prasad Kumar Pati
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Susen Kumar Panda
- College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
11
|
Sherpa K, Priyadarshini MB, Mehta NK, Vaishnav A, Singh NS, Pati BK. Shelf-Stability of Kiln- and Liquid-Smoked Inulin-Fortified Emulsion-Type Pangasius Mince Sausage at Refrigerated Temperature. ACS OMEGA 2023; 8:34431-34441. [PMID: 37779966 PMCID: PMC10536037 DOI: 10.1021/acsomega.3c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
The objective of this study was to investigate the effects of the kiln (SK-S) and liquid smoking (LS-S) processes on the quality of inulin-fortified emulsion-type Pangasius mince sausages. The moisture content during the storage significantly (p < 0.05) decreased in C-S (control) sausages and increased (p < 0.05) in SK-S and LS-S sausages. The protein content decreased (p < 0.05) in C-S, SK-S, and LS-S throughout the storage period. Initially, among the three processed sausages, LS-S showed a lower pH value, and as the days of storage progressed, all the treatments exhibited a declining trend (p < 0.05). A significant (p < 0.05) increase in the PV was observed in all the sausages during the storage days at 5 ± 1 °C, but the intensity of the increase was lower in SK-S and LS-S. The total viable count of C-S and SK-S sausages reached the limit of acceptability (6 log10cfu g-1) on the 20th day and on the 24th day of storage. The electrophoretic protein pattern of LS-S samples exhibited retention of all bands, indicating the lower proteolysis of MHC, actin, and troponin T in comparison with other treatments. The hardness (p < 0.05) and cohesiveness (p > 0.05) values of both SK-S and LS-S reduced as the storage days progressed. The present study indicates that the emulsion-type Pangasius sausages incorporated with inulin powder (2%) exposed to kiln smoking and commercial liquid smoking retained good-to-better sensory attributes up to day 16 (C-S) and day 20 (SK-S and LS-S) under refrigerated storage at 5 ± 1 °C in low-density vacuum polyethylene (LDPE) pouches.
Collapse
Affiliation(s)
- Kusang Sherpa
- Department of Fish Processing
Technology and Engineering, College of Fisheries, Lembucherra, West Tripura, Agartala, Tripura 799 210, India
| | - M Bhargavi Priyadarshini
- Department of Fish Processing
Technology and Engineering, College of Fisheries, Lembucherra, West Tripura, Agartala, Tripura 799 210, India
| | - Naresh Kumar Mehta
- Department of Fish Processing
Technology and Engineering, College of Fisheries, Lembucherra, West Tripura, Agartala, Tripura 799 210, India
| | - Anand Vaishnav
- Department of Fish Processing
Technology and Engineering, College of Fisheries, Lembucherra, West Tripura, Agartala, Tripura 799 210, India
| | - N Sureshchandra Singh
- Department of Fish Processing
Technology and Engineering, College of Fisheries, Lembucherra, West Tripura, Agartala, Tripura 799 210, India
| | - Bikash Kumar Pati
- Department of Fish Processing
Technology and Engineering, College of Fisheries, Lembucherra, West Tripura, Agartala, Tripura 799 210, India
| |
Collapse
|
12
|
Xu Y, Chen G, Muema FW, Xiao J, Guo M. Most Recent Research Progress in Moringa oleifera: Bioactive Phytochemicals and Their Correlated Health Promoting Effects. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2195189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Fernandes A, Mateus N, de Freitas V. Polyphenol-Dietary Fiber Conjugates from Fruits and Vegetables: Nature and Biological Fate in a Food and Nutrition Perspective. Foods 2023; 12:1052. [PMID: 36900569 PMCID: PMC10000549 DOI: 10.3390/foods12051052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
In the past few years, numerous studies have investigated the correlation between polyphenol intake and the prevention of several chronic diseases. Research regarding the global biological fate and bioactivity has been directed to extractable polyphenols that can be found in aqueous-organic extracts, obtained from plant-derived foods. Nevertheless, significant amounts of non-extractable polyphenols, closely associated with the plant cell wall matrix (namely with dietary fibers), are also delivered during digestion, although they are ignored in biological, nutritional, and epidemiological studies. These conjugates have gained the spotlight because they may exert their bioactivities for much longer than extractable polyphenols. Additionally, from a technological food perspective, polyphenols combined with dietary fibers have become increasingly interesting as they could be useful for the food industry to enhance technological functionalities. Non-extractable polyphenols include low molecular weight compounds such as phenolic acids and high molecular weight polymeric compounds such as proanthocyanidins and hydrolysable tannins. Studies concerning these conjugates are scarce, and usually refer to the compositional analysis of individual components rather than to the whole fraction. In this context, the knowledge and exploitation of non-extractable polyphenol-dietary fiber conjugates will be the focus of this review, aiming to access their potential nutritional and biological effect, together with their functional properties.
Collapse
Affiliation(s)
- Ana Fernandes
- Laboratório Associado para a Química Verde (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | | | | |
Collapse
|
14
|
Trigo C, Castelló ML, Ortolá MD. Potentiality of Moringa oleifera as a Nutritive Ingredient in Different Food Matrices. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:25-37. [PMID: 36357660 PMCID: PMC9947086 DOI: 10.1007/s11130-022-01023-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Given the growing interest of today's society in improving the nutritional profile of the food it consumes, industrial food reformulation is booming. In this sense, due to its high yield, good adaptation to climate change and high nutritional potential, Moringa oleifera may be an alternative means of fortifying products, in order to improve different food matrices. The different parts of this plant (leaves, seeds, flowers, pods, roots…) can be marketed for their nutritional and medicinal attributes. In this analysis, various scientific studies have been compiled that evaluate the potential of Moringa oleifera in terms of its incorporation into food matrices and its influence on the final sensory characteristics. In general, the incorporation of different parts of moringa into products, such as bread, pastries, snacks and beverages, increases the nutritional profile of the product (proteins, essential amino acids, minerals and fiber), the dried leaf powder representing an alternative to milk and eggs and helping vegans/vegetarians to consume the same protein content. In the case of dairy and meat products, the goal is to improve the antioxidant and antimicrobial capacity. In every food product, adding high concentrations of moringa leads to greenish colorations, herbal flavors and changes in the mechanical properties (texture, hardness, chewiness, volume and sponginess), negatively impacting the acceptance of the final product. This bibliographic review highlights the need to continue researching the technological properties with the dual aim of incorporating different parts of moringa into food matrices and increasing consumer familiarity with this product.
Collapse
Affiliation(s)
- Carla Trigo
- Institute of Food Engineering for Development, Universitat Politècnica de València, Camino de Vera S/N. 46022, Valencia, Spain
| | - María Luisa Castelló
- Institute of Food Engineering for Development, Universitat Politècnica de València, Camino de Vera S/N. 46022, Valencia, Spain
| | - María Dolores Ortolá
- Institute of Food Engineering for Development, Universitat Politècnica de València, Camino de Vera S/N. 46022, Valencia, Spain
| |
Collapse
|
15
|
Abdallah R, Mostafa NY, Kirrella GAK, Gaballah I, Imre K, Morar A, Herman V, Sallam KI, Elshebrawy HA. Antimicrobial Effect of Moringa oleifera Leaves Extract on Foodborne Pathogens in Ground Beef. Foods 2023; 12:foods12040766. [PMID: 36832841 PMCID: PMC9956989 DOI: 10.3390/foods12040766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Consumers nowadays are becoming more aware of the importance of using only meat products containing safe and natural additives. Hence, using natural food additives for extending the shelf life of meat along with delaying microbial growth has become an urgent issue. Given the increasingly popular view of Moringa oleifera leaves as a traditional remedy and also the scarcity of published data concerning its antimicrobial effect against foodborne pathogens in meat and meat products, we designed the present study to investigate the antimicrobial effect of Moringa oleifera leaves aqueous extract (0.5%, 1%, and 2%) on ground beef during refrigerated storage at 4 °C for 18 days. MLE revealed potent antimicrobial properties against spoilage bacteria, such as aerobic plate count and Enterobacteriaceae count. MLE 2% showed a significant (p < 0.01) reduction in the counts of E. coli O157:H7, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus artificially inoculated to ground beef by 6.54, 5.35, and 5.40 log10 CFU/g, respectively, compared to control, by the 18th day of storage. Moringa leaves extract (MLE) had no adverse effect on the overall acceptability and other sensory attributes; moreover, it induced a slight improvement in the tenderness and juiciness of treated ground beef, compared to the control. Therefore, MLE can be used as a healthy, natural, and safe preservative to increase meat products' safety, quality, and shelf stability during cold storage. A promising approach for using natural food additives rather than chemical preservatives could begin new frontiers in the food industry, as they are more safe and do not constitute health risks to consumers.
Collapse
Affiliation(s)
- Reda Abdallah
- Department of Food Control, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Nader Y. Mostafa
- Department of Food Control, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Ghada A. K. Kirrella
- Department of Food Control, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Ibrahim Gaballah
- Department of Food Control, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
- Correspondence: or (K.I.); (K.I.S.); Tel.: +40-256277186 (K.I.); +20-1000479670 (K.I.S.)
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
| | - Khalid Ibrahim Sallam
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: or (K.I.); (K.I.S.); Tel.: +40-256277186 (K.I.); +20-1000479670 (K.I.S.)
| | - Hend Ali Elshebrawy
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
16
|
Effect of Bamboo Essential Oil on the Oxidative Stability, Microbial Attributes and Sensory Quality of Chicken Meatballs. Foods 2023; 12:foods12010218. [PMID: 36613438 PMCID: PMC9819116 DOI: 10.3390/foods12010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
This study explores the efficacy of bamboo essential oil (BEO) incorporated at 15 ppm (T1, BEO-I) and 30 ppm (T2, BEO-II) on the overall physicochemical and oxidative stability, microbial deterioration, and sensory acceptability of meatballs stored for 20 days under refrigerated conditions. Analysis of various parameters, including physicochemical quality, color (CIE L*, CIE a* and CIE b*), generation of oxidative products (TBARS), microbial growth, and sensory acceptability of meatballs were evaluated at 5-day intervals. In addition, the total phenolics and flavonoid content of BEO were estimated, and fatty acids were determined by Gas chromatography (GC.) To gain insights into the biological activities of the BEO, antioxidant assays were determined in vitro using various methods. The antibacterial activity of BEO was also evaluated against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Vibrio cholera, Salmonella Typhimurium, Shigella flexneri, Proteus vulgaris, Escherichia coli and Klebsiella pneumoniae) bacterial strains. The BEO contained a good quantity of total phenolics and flavonoids. In addition, the oil exhibited very potent antioxidant activity scavenging reactive oxygen and other such species, effectively showing IC50 at a very minimal concentration. Further, the BEO exhibited a strong antibacterial effect with MICs within 2 µL and MBCs from 5 to 7 µL for Gram-positive as well as Gram-negative bacteria, respectively. At both the concentrations used, BEO did not show any negative effect on the color of cooked meatballs but rather increased the microbiological and oxidative stability during the overall storage period. Meatballs treated with BEO had considerably reduced oxidative changes in terms of TBARS levels compared to the control. The total viable microbial count was lowest in BEO-treated meatballs and the highest in control. Both control and treated meatballs had a desirable flavor and good acceptability. The sensory attributes and aroma of treated meatballs were better and acceptable during the storage study, whereas the control samples were disliked by the panelists on 15th day. From this study, it can be concluded that bamboo essential oil could be used as a benign and non-toxic preservative to improve the quality and shelf life of cooked meatballs stored under refrigerated conditions.
Collapse
|
17
|
Amaranth Seeds and Sprouts as Functional Ingredients for the Development of Dietary Fiber, Betalains, and Polyphenol-Enriched Minced Tilapia Meat Gels. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010117. [PMID: 36615309 PMCID: PMC9822371 DOI: 10.3390/molecules28010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022]
Abstract
There is an increasing interest in the development of meat processed products enriched with antioxidant dietary fiber to augment the consumption of these health beneficial compounds. This study aimed to evaluate the nutritional, nutraceutical, and antioxidant potential, as well as the physicochemical properties of minced tilapia fillets (meat) gels with added amaranth seed or sprout flours (0%, 2%, 4%, 8%, and 10% w/w). Dietary fiber content was significantly increased with the addition of amaranth seed (1.25-1.75-fold) and sprout flours (1.99-3.21-fold). Tilapia gels with added 10% amaranth seed flour showed a high content of extractable dihydroxybenzoic acid and cinnamic acid, whereas the addition of 10% amaranth sprout flour provided a high and wide variety of bioactive compounds, mainly amaranthine and bound ferulic acid. The addition of amaranth seed and sprout flours increased hardness (1.01-1.73-fold) without affecting springiness, decreased luminosity (1.05-1.15-fold), and increased redness and yellowness. Therefore, amaranth seed and sprout flours could be used as functional ingredients for the development of fish products rich in bioactive compounds.
Collapse
|
18
|
Bolouri P, Salami R, Kouhi S, Kordi M, Asgari Lajayer B, Hadian J, Astatkie T. Applications of Essential Oils and Plant Extracts in Different Industries. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248999. [PMID: 36558132 PMCID: PMC9781695 DOI: 10.3390/molecules27248999] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Essential oils (EOs) and plant extracts are sources of beneficial chemical compounds that have potential applications in medicine, food, cosmetics, and the agriculture industry. Plant medicines were the only option for preventing and treating mankind's diseases for centuries. Therefore, plant products are fundamental sources for producing natural drugs. The extraction of the EOs is the first important step in preparing these compounds. Modern extraction methods are effective in the efficient development of these compounds. Moreover, the compounds extracted from plants have natural antimicrobial activity against many spoilage and disease-causing bacteria. Also, the use of plant compounds in cosmetics and hygiene products, in addition to their high marketability, has been helpful for many beauty problems. On the other hand, the agricultural industry has recently shifted more from conventional production systems to authenticated organic production systems, as consumers prefer products without any pesticide and herbicide residues, and certified organic products command higher prices. EOs and plant extracts can be utilized as ingredients in plant antipathogens, biopesticides, and bioherbicides for the agricultural sector. Considering the need and the importance of using EOs and plant extracts in pharmaceutical and other industries, this review paper outlines the different aspects of the applications of these compounds in various sectors.
Collapse
Affiliation(s)
- Parisa Bolouri
- Department of Field Crops, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
- Department of Genetic and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| | - Robab Salami
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Shaghayegh Kouhi
- Department of Horticultural Sciences, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari 4818168984, Iran
| | - Masoumeh Kordi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz 5166616422, Iran
- Correspondence: (B.A.L.); (T.A.)
| | - Javad Hadian
- Department of Agriculture, University of The Fraser Valley, Abbotsford, BC V2S 7M7, Canada
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Correspondence: (B.A.L.); (T.A.)
| |
Collapse
|
19
|
Hadidi M, Orellana-Palacios JC, Aghababaei F, Gonzalez-Serrano DJ, Moreno A, Lorenzo JM. Plant by-product antioxidants: Control of protein-lipid oxidation in meat and meat products. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Nadeem HR, Akhtar S, Ismail T, Qamar M, Sestili P, Saeed W, Azeem M, Esatbeyoglu T. Antioxidant Effect of Ocimum basilicum Essential Oil and Its Effect on Cooking Qualities of Supplemented Chicken Nuggets. Antioxidants (Basel) 2022; 11:1882. [PMID: 36290605 PMCID: PMC9598151 DOI: 10.3390/antiox11101882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 12/23/2022] Open
Abstract
A commonly observed chicken meat issue is its lipid oxidation that leads to deterioration of its organoleptic and nutritional properties and its further-processed products. Basil (Ocimum basilicum L.) is one of the traditional culinary herbs exhibiting food preservation properties. The current study investigated the essential oil composition, antioxidant activity and in vitro cytotoxic capacity of the essential oil of basil indigenous to Pakistan. GC-MS analysis of the essential oil revealed the presence of 59 compounds that constituted 98.6% of the essential oil. O. basilicum essential oil (OB-EO) exhibited excellent antioxidant activity, i.e., IC50 5.92 ± 0.15 µg/mL as assayed by the DPPH assay, 23.4 ± 0.02 µmoL Fe/g by FRAP, and 14.6 ± 0.59% inhibition by H2O2. The brine shrimp lethality assay identified an average mortality of ~18% with OB-EO at 10-1000 µg/mL, while that of the same concentration range of the standard drug (etoposide) was 72%. OB-EO was found to be non-toxic to HeLa and PC-3 cell lines. TBARS contents were significantly decreased with increase of OB-EO in chicken nuggets. The lowest TBARS contents were recorded in nuggets supplemented with 0.3% OB-EO, whereas the highest overall acceptability score was marked to the treatments carrying 0.2% OB-EO. The results suggest OB-EO as a promising carrier of bioactive compounds with a broad range of food preservation properties, and which has a sensory acceptability threshold level for chicken nuggets falling between 0.2-0.3% supplementation. Future research must investigate the antibacterial impact of OB-EO on meat products preserved with natural rather than synthetic preservatives.
Collapse
Affiliation(s)
- Hafiz Rehan Nadeem
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Tariq Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Qamar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Piero Sestili
- Department of Biomolecular Sciences, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy
| | - Wisha Saeed
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Azeem
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbotabad 22060, Pakistan
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| |
Collapse
|
21
|
Domínguez R, Lorenzo JM, Pateiro M, Munekata PES, Alves Dos Santos B, Basso Pinton M, Cichoski AJ, Bastianello Campagnol PC. Main animal fat replacers for the manufacture of healthy processed meat products. Crit Rev Food Sci Nutr 2022; 64:2513-2532. [PMID: 36123812 DOI: 10.1080/10408398.2022.2124397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The technological, sensory, and nutritional characteristics of meat products are directly related to their animal fat content. Adding animal fat to meat products significantly influences their sensory properties, such as color, taste, and aroma. In addition, the physicochemical properties of fat decisively contribute to the texture of meat products, playing a fundamental role in improving the properties of viscosity, creaminess, chewiness, cohesiveness, and hardness. However, meat products' high animal fat content makes them detrimental to a healthy diet. Therefore, reducing the fat content of meat products is an urgent need, but it is a challenge for researchers and the meat industry. The fat reduction in meat products without compromising the product's quality and with minor impacts on the production costs is not a simple task. Thus, strategies to reduce the fat content of meat products should be studied with caution. During the last decades, several fat replacers were tested, but among all of them, the use of flours and fibers, hydrocolloids, mushrooms, and some animal proteins (such as whey and collagen) presented promising results. Additionally, multiple strategies to gel oils of vegetable origin are also a current topic of study, and these have certain advantages such as their appearance (attempts to imitate animal fat), while also improving the nutritional profile of the lipid fraction of the products meat. However, each of these fat substitutes has both advantages and limitations in their use, which will be discussed in subsequent sections. Therefore, due to the growing interest in this issue, this review focuses on the main substitutes for animal fat used in the production of meat products, offering detailed and updated information on the latest discoveries and advances in this area.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
| | | | | | | | | |
Collapse
|
22
|
Drying Kinetics of Pretreated Drumstick (Moringa oleifera) Leaves During Lyophillization. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02380-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Santos EM, Rodriguez JA, Lorenzo JM, Mondragón AC, Pateiro M, Gutiérrez E, Ferreira TA. Antioxidant Effect of Pumpkin Flower (Cucurbita maxima) in Chicken Patties. Foods 2022; 11:foods11152258. [PMID: 35954026 PMCID: PMC9368278 DOI: 10.3390/foods11152258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, the antioxidant effect of pumpkin flower powder was evaluated in chicken patties. For this purpose, three drying methods were proposed to obtain the pumpkin flower powder and preserve its properties (antioxidants, color, odor): foam-mat drying, freeze drying, and oven drying. The drying process of the powder plays an important role in the conservation of bioactive compounds. The foam-mat drying method would allow the preservation of these compounds after cooking and after cold storage due to encapsulation like mechanism of the added proteins. Thus, these powders were selected as the most adequate vehicle to incorporate in the formulation, since patties with these additives presented the better antioxidant scores for DPPH, ABTS, and FRAP even after 7 days of storage. In addition, total polyphenolic content and the presence or thiobarbituric acid reactive substances (TBARS) were better scored in samples with the pumpkin flowers. The incorporation of the pumpkin flower additives in the patty formulation improved sensorial attributes of the chicken patties and consumers acceptance after cold storage.
Collapse
Affiliation(s)
- Eva María Santos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico; (E.M.S.); (J.A.R.)
| | - Jose A. Rodriguez
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico; (E.M.S.); (J.A.R.)
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (J.M.L.); (M.P.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Alicia C. Mondragón
- Laboratorio de Higiene Inspeccion y Control de Alimentos, Departamento de Quimica Analitica Nutricion y Bromatologia, Universidad de Santiago de Compostela, 27002 Lugo, Spain;
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (J.M.L.); (M.P.)
| | - Evelin Gutiérrez
- Departamento de Ingenieria Mecatronica, Universidad Politécnica de Pachuca, Ex. Hacienda Sta. Barbara, Zempoala 43830, Mexico;
| | - Thania Alexandra Ferreira
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico; (E.M.S.); (J.A.R.)
- Correspondence:
| |
Collapse
|
24
|
Jafarzadeh S, Abdolmalek K, Javanmardi F, Hadidi M, Mousavi Khaneghah A. Recent advances in plant‐based compounds for mitigation of mycotoxin contamination in food products: current status, challenges, and perspectives. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shima Jafarzadeh
- School of Engineering Edith Cowan University Joondalup WA 6027 Australia
| | - Khadije Abdolmalek
- Research Center of Oils and Fats Kermanshah University of Medical Sciences Kermanshah Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Milad Hadidi
- Department of Food Science and Nutrition Faculty of Food Engineering University of Campinas Campinas São Paulo Brazil
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition Faculty of Food Engineering University of Campinas Campinas São Paulo Brazil
| |
Collapse
|
25
|
Zwolan A, Pietrzak D, Adamczak L, Chmiel M, Florowski T, Kalisz S, Hać‐Szymańczuk E, Bryś J, Oszmiański J. Characteristics of water and ethanolic extracts of
Scutellaria baicalensis
root and their effect on color, lipid oxidation, and microbiological quality of chicken meatballs during refrigerated storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Adam Zwolan
- Department of Food Technology and Assessment Institute of Food Sciences Warsaw University of Life Sciences—SGGW Warsaw Poland
| | - Dorota Pietrzak
- Department of Food Technology and Assessment Institute of Food Sciences Warsaw University of Life Sciences—SGGW Warsaw Poland
| | - Lech Adamczak
- Department of Food Technology and Assessment Institute of Food Sciences Warsaw University of Life Sciences—SGGW Warsaw Poland
| | - Marta Chmiel
- Department of Food Technology and Assessment Institute of Food Sciences Warsaw University of Life Sciences—SGGW Warsaw Poland
| | - Tomasz Florowski
- Department of Food Technology and Assessment Institute of Food Sciences Warsaw University of Life Sciences—SGGW Warsaw Poland
| | - Stanisław Kalisz
- Department of Food Technology and Assessment Institute of Food Sciences Warsaw University of Life Sciences—SGGW Warsaw Poland
| | - Elżbieta Hać‐Szymańczuk
- Department of Food Biotechnology and Food Microbiology Institute of Food Sciences Warsaw University of Life Sciences—SGGW Warsaw Poland
| | - Joanna Bryś
- Department of Chemistry Institute of Food Sciences Warsaw University of Life Sciences—SGGW Warsaw Poland
| | - Jan Oszmiański
- Department of Fruit, Vegetables and Nutraceutical Technology Wroclaw University of Environmental and Life Sciences Wroclaw Poland
| |
Collapse
|
26
|
Wu YY, Xu YM, Lau ATY. Anti-Cancer and Medicinal Potentials of Moringa Isothiocyanate. Molecules 2021; 26:molecules26247512. [PMID: 34946594 PMCID: PMC8708952 DOI: 10.3390/molecules26247512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023] Open
Abstract
Moringa oleifera (M. oleifera), which belongs to the Moringaceae family, is a common herb, rich in plant compounds. It has a variety of bioactive compounds that can act as antioxidants, antibiotics, anti-inflammatory and anti-cancer agents, etc., which can be obtained in different body parts of M. oleifera. Isothiocyanates (ITCs) from M. oleifera are one class of these active substances that can inhibit cancer proliferation and promote cancer cell apoptosis through multiple signaling pathways, thus curbing cancer migration and metastasis, at the same time they have little adverse effect on normal cells. There are multiple variants of ITCs in M. oleifera, but the predominant phytochemical is 4-(α-L-rhamnosyloxy)benzyl isothiocyanate, also known as moringa isothiocyanate (MIC-1). Studies have shown that MIC-1 has the possibility to be used clinically for the treatment of diabetes, neurologic diseases, obesity, ulcerative colitis, and several cancer types. In this review, we focus on the molecular mechanisms underlying the anti-cancer and anti-chronic disease effects of MIC-1, current trends, and future direction of MIC-1 based treatment strategies. This review combines the relevant literature of the past 10 years, in order to provide more comprehensive information of MIC-1 and to fully exploit its potentiality in the clinical settings.
Collapse
|
27
|
Wazir H, Chay SY, Ibadullah WZW, Zarei M, Mustapha NA, Saari N. Lipid oxidation and protein co-oxidation in ready-to-eat meat products as affected by temperature, antioxidant, and packaging material during 6 months of storage. RSC Adv 2021; 11:38565-38577. [PMID: 35493245 PMCID: PMC9044262 DOI: 10.1039/d1ra06872e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/13/2021] [Indexed: 12/18/2022] Open
Abstract
Ambient-storage-friendly, ready-to-eat (RTE) meat products are convenient in emergencies, such as earthquakes, flash floods and the current global Covid-19 lockdown. However, given the processing and long storage time of such food products, the lipid and protein components may be more susceptible to oxidation. Chicken serunding is a low-moisture, high-lipid, high-protein, RTE product that is prone to lipid oxidation and protein co-oxidation, causing product quality deterioration. The present study assessed the effects of storage temperature (25, 40, 60 °C), antioxidant (butylated hydroxyanisole, BHA), and multilayer packaging materials [metallised polyethene terephthalate (MPET) and aluminium] on the lipid oxidation and protein co-oxidation of chicken serunding during six months of storage. All lipid and protein markers elevated with increasing temperature (25 < 40 < 60 °C), indicating that storage of low-moisture meat at high temperature is not feasible. BHA was effective against lipid oxidation, as indicated by the significantly lower (p <0.05) extracted lipid content and delayed formation of malondialdehyde, a secondary lipid oxidation product. However, BHA is not effective against protein co-oxidation, as shown by the insignificant (p >0.05) effect on preventing tryptophan loss, protein carbonyl formation and Schiff base accumulation. MPET packaging with a superior light and oxygen barrier provided significant protection (p <0.05) compared to aluminium. In conclusion, low temperature (25 °C) storage of low-moisture, high-lipid, high-protein, cooked meat systems in MPET packaging is recommended for long-term storage to delay the progression of lipid oxidation and protein co-oxidation.
Collapse
Affiliation(s)
- Hazrati Wazir
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia +603-9769-1002 +603-9769-8352
| | - Shyan Yea Chay
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia +603-9769-1002 +603-9769-8352
| | - Wan Zunairah Wan Ibadullah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia +603-9769-1002 +603-9769-8352
| | - Mohammad Zarei
- Department of Food Science, University of Arkansas Fayetteville AR 72704 USA
| | - Nor Afizah Mustapha
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia +603-9769-1002 +603-9769-8352
| |
Collapse
|
28
|
Shen M, Li T, Qu L, Wang K, Hou Q, Zhao W, Wu P. Effect of dietary inclusion of Moringa oleifera leaf on productive performance, egg quality, antioxidant capacity and lipid levels in laying chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1964387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Manman Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou, China
- Jiangsu Key Laboratory of Animal genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tao Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Liang Qu
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou, China
| | - Kehua Wang
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou, China
| | - Qirui Hou
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Weiguo Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ping Wu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
29
|
Ruiz-Capillas C, Herrero AM. Novel Strategies for the Development of Healthier Meat and Meat Products and Determination of Their Quality Characteristics. Foods 2021; 10:foods10112578. [PMID: 34828859 PMCID: PMC8622704 DOI: 10.3390/foods10112578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
|
30
|
Kaur R, Gupta TB, Bronlund J, Kaur L. THE POTENTIAL OF ROSEMARY AS A FUNCTIONAL INGREDIENT FOR MEAT PRODUCTS- A REVIEW. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1950173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ramandeep Kaur
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Tanushree B. Gupta
- AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - John Bronlund
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Lovedeep Kaur
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
31
|
Mashau ME, Munandi M, Ramashia SE. Exploring the influence of Moringa oleifera leaves extract on the nutritional properties and shelf life of mutton patties during refrigerated storage. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1910732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mpho Edward Mashau
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou, South Africa
| | - Muwanwa Munandi
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou, South Africa
| | - Shonisani Eugenia Ramashia
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
32
|
Das AK, Nanda PK, Dandapat P, Bandyopadhyay S, Gullón P, Sivaraman GK, McClements DJ, Gullón B, Lorenzo JM. Edible Mushrooms as Functional Ingredients for Development of Healthier and More Sustainable Muscle Foods: A Flexitarian Approach. Molecules 2021; 26:molecules26092463. [PMID: 33922630 PMCID: PMC8122938 DOI: 10.3390/molecules26092463] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Consumers are increasingly interested in nutritious, safe and healthy muscle food products with reduced salt and fat that benefit their well-being. Hence, food processors are constantly in search of natural bioactive ingredients that offer health benefits beyond their nutritive values without affecting the quality of the products. Mushrooms are considered as next-generation healthy food components. Owing to their low content of fat, high-quality proteins, dietary fibre and the presence of nutraceuticals, they are ideally preferred in formulation of low-caloric functional foods. There is a growing trend to fortify muscle food with edible mushrooms to harness their goodness in terms of nutritive, bioactive and therapeutic values. The incorporation of mushrooms in muscle foods assumes significance, as it is favourably accepted by consumers because of its fibrous structure that mimics the texture with meat analogues offering unique taste and umami flavour. This review outlines the current knowledge in the literature about the nutritional richness, functional bioactive compounds and medicinal values of mushrooms offering various health benefits. Furthermore, the effects of functional ingredients of mushrooms in improving the quality and sensory attributes of nutritionally superior and next-generation healthier muscle food products are also highlighted in this paper.
Collapse
Affiliation(s)
- Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700 037, India; (P.K.N.); (P.D.); (S.B.)
- Correspondence: (A.K.D.); (J.M.L.)
| | - Pramod K. Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700 037, India; (P.K.N.); (P.D.); (S.B.)
| | - Premanshu Dandapat
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700 037, India; (P.K.N.); (P.D.); (S.B.)
| | - Samiran Bandyopadhyay
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700 037, India; (P.K.N.); (P.D.); (S.B.)
| | - Patricia Gullón
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain;
| | | | | | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, Campus Ourense, University of Vigo, As Lagoas, 32004 Ourense, Spain;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: (A.K.D.); (J.M.L.)
| |
Collapse
|
33
|
Optimum Additive Composition to Minimize Fat in Functional Goat Meat Nuggets: A Healthy Red Meat Functional Food. Processes (Basel) 2021. [DOI: 10.3390/pr9030475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Optimally designed functional foods are considered the most important part of a balanced and healthy diet. Goat meat nuggets, an otherwise healthy option, are packed with undesirable saturated and unsaturated fats. The present work suggests an optimal functional formulation to reduce the surplus fat content of goat meat nuggets by adding two optimally calculated functional ingredients, namely, fenugreek leaves (FL) and psyllium husk (PH). Response surface optimization was performed to determine the optimal content of the functional ingredients (FL and PH), resulting in minimum fat content without affecting the overall acceptability (OA) and other properties representing the taste and texture (e.g., ash content, pH, crude fiber content, and moisture content) of the nuggets. Functional additives at optimum levels successfully reduced the fat content of the weight-conserved nuggets by almost 39% compared with the control nuggets. Minimal and acceptable effects were observed regarding OA and other properties representative of the taste and texture of the nuggets. An optimally designed, fat-attenuated goat meat nugget formulation is therefore prescribed, which complies with the nutritional standards of a balanced diet.
Collapse
|
34
|
Das AK, Nanda PK, Chowdhury NR, Dandapat P, Gagaoua M, Chauhan P, Pateiro M, Lorenzo JM. Application of Pomegranate by-Products in Muscle Foods: Oxidative Indices, Colour Stability, Shelf Life and Health Benefits. Molecules 2021; 26:467. [PMID: 33477314 PMCID: PMC7830841 DOI: 10.3390/molecules26020467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, considerable importance is given to the use of agrifood wastes as they contain several groups of substances that are useful for development of functional foods. As muscle foods are prone to lipid and protein oxidation and perishable in nature, the industry is in constant search of synthetic free additives that help in retarding the oxidation process, leading to the development of healthier and shelf stable products. The by-products or residues of pomegranate fruit (seeds, pomace, and peel) are reported to contain bioactive compounds, including phenolic and polyphenolic compounds, dietary fibre, complex polysaccharides, minerals, vitamins, etc. Such compounds extracted from the by-products of pomegranate can be used as functional ingredients or food additives to harness the antioxidant, antimicrobial potential, or as substitutes for fat, and protein in various muscle food products. Besides, these natural additives are reported to improve the quality, safety, and extend the shelf life of different types of food products, including meat and fish. Although studies on application of pomegranate by-products on various foods are available, their effect on the physicochemical, oxidative changes, microbial, colour stabilizing, sensory acceptability, and shelf life of muscle foods are not comprehensively discussed previously. In this review, we vividly discuss these issues, and highlight the benefits of pomegranate by-products and their phenolic composition on human health.
Collapse
Affiliation(s)
- Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata 700037, India; (A.K.D.); (P.D.)
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata 700037, India; (A.K.D.); (P.D.)
| | - Nilabja Roy Chowdhury
- Department of Veterinary Biochemistry, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India;
| | - Premanshu Dandapat
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata 700037, India; (A.K.D.); (P.D.)
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin 15 D15 DY05, Ireland;
| | - Pranav Chauhan
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India;
| | - Mirian Pateiro
- Centro Tecnologico de la Carne de Galicia, Rua Galicia N° 4, Parque Tecnologico de Galicia, San Cibrao das Vinas, 32900 Ourense, Spain;
| | - Jose M. Lorenzo
- Centro Tecnologico de la Carne de Galicia, Rua Galicia N° 4, Parque Tecnologico de Galicia, San Cibrao das Vinas, 32900 Ourense, Spain;
- Area de Tecnologia de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
35
|
Ursachi CȘ, Perța-Crișan S, Munteanu FD. Strategies to Improve Meat Products' Quality. Foods 2020; 9:E1883. [PMID: 33348725 PMCID: PMC7766022 DOI: 10.3390/foods9121883] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Meat products represent an important component of the human diet, their consumption registering a global increase over the last few years. These foodstuffs constitute a good source of energy and some nutrients, such as essential amino acids, high biological value proteins, minerals like iron, zinc, selenium, manganese and B-complex vitamins, especially vitamin B12. On the other hand, nutritionists have associated high consumption of processed meat with an increased risk of several diseases. Researchers and processed meat producers are involved in finding methods to eliminate nutritional deficiencies and potentially toxic compounds, to obtain healthier products and at the same time with no affecting the sensorial quality and safety of the meat products. The present review aims to summarize the newest trends regarding the most important methods that can be applied to obtain high-quality products. Nutritional enrichment with natural bioactive plant compounds (antioxidants, dietary fibers) or probiotics, reduction of harmful components (salt, nitrate/nitrite, N-nitrosamines) and the use of alternative technologies (high-pressure processing, cold plasma, ultrasounds) are the most used current strategies to accomplish this aim.
Collapse
Affiliation(s)
| | | | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (C.Ș.U.); (S.P.-C.)
| |
Collapse
|
36
|
Alirezalu K, Hesari J, Yaghoubi M, Khaneghah AM, Alirezalu A, Pateiro M, Lorenzo JM. Combined effects of ε-polylysine and ε-polylysine nanoparticles with plant extracts on the shelf life and quality characteristics of nitrite-free frankfurter-type sausages. Meat Sci 2020; 172:108318. [PMID: 32980722 DOI: 10.1016/j.meatsci.2020.108318] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
In this study, ɛ-polylysine (ɛ-PL) or ɛ-polylysine nanoparticle (ɛ-PLN) combined with plants extracts (including green tea, olive leaves and stinging nettle extracts) were used as nitrite replacers in frankfurter-type sausages. The sausage samples were wrapped in polyethylene bags (in vacuum conditions) and their physicochemical, microbiological and sensory properties were evaluated during 45 days of refrigerated storage. The results showed that the incorporation of ɛ-polylysine had no significant effects on proximate composition of sausages. However, ɛ-PL and ɛ-PLN sausages had significantly (P < 0.05) lower lightness, redness and higher yellowness compared to control samples. At the end of storage, sausages formulated with ɛ-PLN had significantly (P < 0.05) higher contents of phenolic compounds and lowest TBARS values. Microbiological counts also indicated that ɛ-PLN displayed significantly higher inhibitory effects. Higher sensory indices were obtained in ɛ-PLN sausages. Based on the obtained results, ɛ-PLN was effective to improve frankfurter-type sausages shelf life. Therefore, these ingredients could be useful for frankfurter-type sausages production as nitrite replacers.
Collapse
Affiliation(s)
- Kazem Alirezalu
- Department of Food Science and Technology, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, Iran.
| | - Javad Hesari
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Milad Yaghoubi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Technology, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Abolfazl Alirezalu
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia n° 4, San Cibrao das Viñas, Ourense 32900, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia n° 4, San Cibrao das Viñas, Ourense 32900, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
37
|
Ozaki MM, Munekata PE, Lopes ADS, Nascimento MDSD, Pateiro M, Lorenzo JM, Pollonio MAR. Using chitosan and radish powder to improve stability of fermented cooked sausages. Meat Sci 2020; 167:108165. [DOI: 10.1016/j.meatsci.2020.108165] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/30/2022]
|
38
|
Carcelli A, Masuelli E, Diantom A, Vittadini E, Carini E. Probing the Functionality of Physically Modified Corn Flour as Clean Label Thickening Agent with a Multiscale Characterization. Foods 2020; 9:E1105. [PMID: 32806642 PMCID: PMC7466319 DOI: 10.3390/foods9081105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 11/17/2022] Open
Abstract
A multilevel and multianalytical approach, combining both traditional and unconventional analytical tools, was used to characterize two physically modified (heated and heated-extruded) corn flours to be used as a "clean label" food ingredient. Physical treatments decreased the resistant starch content and increased the water holding capacity and water binding capacity, more extensively in the product subjected to heating-extrusion, as compared to an untreated control. Heated-extruded flour had the highest ability to form homogeneous systems in cold water while all modified flours produced homogeneous systems when mixed with hot water. Systems made with heated-extruded flour were "more rigid" than other samples at all levels of investigation as they were harder (macroscopic) and had higher storage modulus (mesoscopic), as well as lower proton 1H mobility (molecular). Overall, the results highlighted the ability of the multiscale method to give a thorough overview of the flour-water interactions and showed highest water affinity of heated-extruded flour. Heated-extruded flour was then tested in three real-food industrial applications (carrot soup, tomato sauce and a meat patty), where it was successfully implemented as a clean label thickening agent.
Collapse
Affiliation(s)
- Alessandro Carcelli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 47/a, 43124 Parma, Italy; (A.C.); (E.M.)
| | - Erica Masuelli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 47/a, 43124 Parma, Italy; (A.C.); (E.M.)
| | - Agoura Diantom
- Ecole Supérieure des Techniques Biologiques et Alimentaires, University of Lome, BP 1515 Lome, Togo;
| | - Elena Vittadini
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy;
| | - Eleonora Carini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 47/a, 43124 Parma, Italy; (A.C.); (E.M.)
| |
Collapse
|
39
|
Ozaki MM, Munekata PES, Jacinto-Valderrama RA, Efraim P, Pateiro M, Lorenzo JM, Pollonio MAR. Beetroot and radish powders as natural nitrite source for fermented dry sausages. Meat Sci 2020; 171:108275. [PMID: 32853888 DOI: 10.1016/j.meatsci.2020.108275] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/27/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
The aim of this study was to investigate the use of radish and beetroot powders as potential substitutes of nitrite in fermented dry sausages due to their high nitrate content (around 16,000 and 14,000 mg/kg, respectively). Six treatments were prepared and evaluated during the ripening process and storage time: C1 (control with 150 mg/kg sodium nitrite and 150 mg/kg sodium nitrate), C2 (control without sodium nitrite/nitrate), R05 (0.5% radish powder), R1 (1% radish powder), B05 (0.5% beetroot powder) and B1 (1% beetroot powder). The addition of vegetable powders influenced moisture content, weight loss and water activity of sausages. Nitrite was formed from radish and beetroot powders during the ripening process, especially in R1 and B1 treatments. Beetroot powder affected colour, pigments and lactic acid bacteria counts. The results of pH, colour, lipid oxidation, nitrite and nitrate analysis suggest R1 treatment as a potential nitrite replacer obtained from a simple and feasible drying process.
Collapse
Affiliation(s)
- Maristela Midori Ozaki
- Department of Food Technology, School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | | | - Priscilla Efraim
- Department of Food Technology, School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | | |
Collapse
|
40
|
Das AK, Nanda PK, Bandyopadhyay S, Banerjee R, Biswas S, McClements DJ. Application of nanoemulsion-based approaches for improving the quality and safety of muscle foods: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 19:2677-2700. [PMID: 33336977 DOI: 10.1111/1541-4337.12604] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Recently, there has been growing interest in implementing innovative nanoscience-based technologies to improve the health, safety, and quality of food products. A major thrust in this area has been to use nanoemulsions because they can easily be formulated with existing food ingredients and technologies. In particular, oil-in-water nanoemulsions, which consist of small oil droplets (<200 nm) dispersed in water, are being utilized as delivery systems for various hydrophobic substances in foods, including nutrients, nutraceuticals, antioxidants, antimicrobials, colors, and flavors. In this article, we focus on the application of nanoemulsion-based delivery systems for improving the quality, safety, nutritional profile, and sensory attributes of muscle foods, such as meat and fish. The article also critically reviews the formulation and fabrication of food-grade nanoemulsions, their potential benefits and limitations in muscle food systems.
Collapse
Affiliation(s)
- Arun K Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Samiran Bandyopadhyay
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Rituparna Banerjee
- Department of Livestock Products Technology, West Bengal University of Animal & Fishery Sciences, 37 & 68 K B Sarani, Kolkata, West Bengal, 700 037, India
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal & Fishery Sciences, 37 & 68 K B Sarani, Kolkata, West Bengal, 700 037, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts, MA 01003, USA
| |
Collapse
|
41
|
A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Application of Enoki Mushroom ( Flammulina Velutipes) Stem Wastes as Functional Ingredients in Goat Meat Nuggets. Foods 2020; 9:foods9040432. [PMID: 32260391 PMCID: PMC7231162 DOI: 10.3390/foods9040432] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 01/07/2023] Open
Abstract
The impact of different amounts (2%, 4% and 6%) of enoki (Flammulina velutipes) mushroom stem waste (MSW) powder on the physicochemical quality, color and textural, oxidative stability, sensory attributes and shelf-life of goat meat nuggets was evaluated. These mushroom by-products (MSW powder) contained a good source of protein (13.5%), ash (8.2%), total phenolics content (6.3 mg GAE/g), and dietary fiber (32.3%) and also exhibited the potential to be strong antioxidants, due to their good metal chelating ability (41.3%), reducing power (60.1%), and free radical scavenging activity (84.2%). Mushroom stem waste improved (p < 0.05) the emulsion stability, dietary fiber, ash and phenolics content of nuggets compared to control. Although no significant differences (p > 0.05) in expressible water and textural properties were observed among the formulations, but MSW powder improved the water holding capacity and slightly decreased the hardness. Further, the inclusion of MSW significantly (p < 0.05) improved the oxidative stability and shelf-life of treated nuggets by reducing lipid oxidation during the nine-day storage period. Again, the inclusion of MSW did not negatively affect the color and sensory attributes of treated meat nuggets. Overall, our results suggest that enoki mushroom stem waste (4%) can be used as a value-added functional ingredient to produce nutritionally improved and healthier meat products.
Collapse
|
43
|
Takahashi JA, Rezende FAGG, Moura MAF, Dominguete LCB, Sande D. Edible flowers: Bioactive profile and its potential to be used in food development. Food Res Int 2020; 129:108868. [DOI: 10.1016/j.foodres.2019.108868] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
|
44
|
Munekata PES, Rocchetti G, Pateiro M, Lucini L, Domínguez R, Lorenzo JM. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: an overview. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Ashfaq F, Butt MS, Bilal A, Tehseen S, Suleria HAR. Effect of cabbage or its aqueous extract incorporated croquettes on chemical composition and storage stability in relation to antioxidant potential and sensory profile. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Faiza Ashfaq
- Department of Food Science and Technology; Faculty of Science and Technology; Government College Women University; Faisalabad Pakistan
| | - Masood Sadiq Butt
- National Institute of Food Science and Technology; Faculty of Food; Nutrition & Home Sciences; University of Agriculture; Faisalabad Pakistan
| | - Ahmad Bilal
- University Institute of Diet and Nutritional Sciences; Faculty of Allied Health Sciences; The University of Lahore; Lahore Pakistan
| | - Saima Tehseen
- Department of Food Science and Technology; Faculty of Science and Technology; Government College Women University; Faisalabad Pakistan
| | - Hafiz Ansar Rasul Suleria
- UQ Diamantina Institute; Translational Research Institute; Faculty of Medicine; The University of Queensland; Brisbane Queensland Australia
- Centre for Chemistry and Biotechnology; School of Life and Environmental Sciences; Deakin University; Waurn Ponds Victoria Australia
- School of Agriculture and Food; The University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
46
|
Propolis Extract as Antioxidant to Improve Oxidative Stability of Fresh Patties during Refrigerated Storage. Foods 2019; 8:foods8120614. [PMID: 31771302 PMCID: PMC6963608 DOI: 10.3390/foods8120614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/30/2022] Open
Abstract
The effect of propolis ethanol extract (PEE), butylated hydroxytoluene (BHT), and ascorbic acid (Asc) against lipid (Lox) and protein oxidation (Pox), color deterioration, and the antioxidant stabilizer of raw beef and pork patties during chilled storage (9 days at 2 °C/under darkness) was investigated. Total phenolic content (TPC), reducing power ability (RPA), DPPH● radical scavenging activity (FRSA) of the PEE was evaluated. Meat samples were evaluated for pH, Lox (TBARS), Pox (Carbonyls), color (L*, a*, b*, C*, and h*), metmyoglobin formation (MMb), TPC, RPA, and FRSA. Results indicated that PEE is rich in phenolic content and antioxidant activity, and their incorporation in beef and pork patties reduced (p < 0.05) Lox and Pox (TBARS-88.7 and 80% inhibition; Pox-47.3 and 30.6% inhibition, respectively), as well as loss of color and increased the oxidative stability throughout storage.
Collapse
|
47
|
Madane P, Das AK, Nanda PK, Bandyopadhyay S, Jagtap P, Shewalkar A, Maity B. Dragon fruit ( Hylocereus undatus) peel as antioxidant dietary fibre on quality and lipid oxidation of chicken nuggets. Journal of Food Science and Technology 2019; 57:1449-1461. [PMID: 32180641 DOI: 10.1007/s13197-019-04180-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/28/2019] [Accepted: 11/14/2019] [Indexed: 01/26/2023]
Abstract
In this study, the efficacy of dragon fruit peel (DFP) powder as antioxidant dietary fibre (ADF), at two different concentrations (T1-1.5% and T2-3.0%), on quality improvement and susceptibility to lipid oxidation of chicken nuggets during 20 days of refrigerated storage was assessed. DFP, rich in dietary fibre (56.91%) with higher insoluble dietary fibre, phenolics (36-39 mgGAE/100 g) content and possessing good radical scavenging activity as well as reducing power, contained 10.36% protein, 4.48% fat and 2.34% ash. HPLC analysis revealed presence of high concentrations of gallic and ferulic acid, among the phenolics. Incorporation of DFP in nuggets although decreased the pH but improved emulsion stability as well as cooking yield and had higher protein, ash and lower fat content. Further, the treated nuggets had significantly (p < 0.05) higher dietary fibre and total phenolics content than control. Incorporation of DFP decreased the hardness, gumminess and chewiness and improved (p < 0.05) the products' redness values. Sensory evaluation of the products revealed significant improvement in the appearance score and non-significant (p > 0.05) increase in the scores of other attributes compared to control samples. DFP significantly decreased lipid peroxidation, odour scores and microbial load in chicken nuggets during 20 days of storage period. From the study, it could be deduced that DFP rich in bioactive components had positive influence on the nutritional quality of chicken nuggets and could also be used as ADF in muscle food without affecting the quality and acceptability of products.
Collapse
Affiliation(s)
- Pratap Madane
- 1Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243 122 India
| | - Arun K Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute (IVRI), Kolkata, West Bengal 700 037 India
| | - P K Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute (IVRI), Kolkata, West Bengal 700 037 India
| | - Samiran Bandyopadhyay
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute (IVRI), Kolkata, West Bengal 700 037 India
| | - Prasant Jagtap
- Poultry Processing Unit, Shalimar Hatcheries Limited, Grand Trunk Road, Golsi, India
| | - Akshay Shewalkar
- Poultry Processing Unit, Shalimar Hatcheries Limited, Grand Trunk Road, Golsi, India
| | - B Maity
- Poultry Processing Unit, Shalimar Hatcheries Limited, Grand Trunk Road, Golsi, India
| |
Collapse
|
48
|
Domínguez R, Pateiro M, Gagaoua M, Barba FJ, Zhang W, Lorenzo JM. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants (Basel) 2019; 8:E429. [PMID: 31557858 PMCID: PMC6827023 DOI: 10.3390/antiox8100429] [Citation(s) in RCA: 788] [Impact Index Per Article: 131.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 11/17/2022] Open
Abstract
Meat and meat products are a fundamental part of the human diet. The protein and vitamin content, as well as essential fatty acids, gives them an appropriate composition to complete the nutritional requirements. However, meat constituents are susceptible to degradation processes. Among them, the most important, after microbial deterioration, are oxidative processes, which affect lipids, pigments, proteins and vitamins. During these reactions a sensory degradation of the product occurs, causing consumer rejection. In addition, there is a nutritional loss that leads to the formation of toxic substances, so the control of oxidative processes is of vital importance for the meat industry. Nonetheless, despite lipid oxidation being widely investigated for decades, the complex reactions involved in the process, as well as the different pathways and factors that influenced them, make that lipid oxidation mechanisms have not yet been completely understood. Thus, this article reviews the fundamental mechanisms of lipid oxidation, the most important oxidative reactions, the main factors that influence lipid oxidation, and the routine methods to measure compounds derived from lipid oxidation in meat.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain.
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain.
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Francisco J Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain.
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain.
| |
Collapse
|