1
|
Yu H, Han C, Ren G, Wu X, Qi S, Yang B, Cui M, Fan X, Zhu Z, Dai Z, Du D. Heat Wave Adaptations: Unraveling the Competitive Dynamics Between Invasive Wedelia trilobata and Native Wedelia chinensis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3480. [PMID: 39771177 PMCID: PMC11677177 DOI: 10.3390/plants13243480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Heat waves (HW) are projected to become more frequent and intense with climate change, potentially enhancing the invasiveness of certain plant species. This study aims to compare the physiological and photosynthetic responses of the invasive Wedelia trilobata and its native congener Wedelia chinensis under simulated heat wave conditions (40.1 °C, derived from local historical data). Results show that W. trilobata maintained higher photosynthetic efficiency, water-use efficiency (WUE), and total biomass under HW, suggesting that its ability to optimize above-ground growth contributes to its success in heat-prone environments. In contrast, W. chinensis focused more on root development and antioxidant protection, exhibiting a decrease in total biomass under heat wave conditions. These results indicate that W. trilobata employs a more effective strategy to cope with heat stress, likely enhancing its competitive advantage in regions affected by heat waves. This study highlights the importance of understanding species-specific responses to extreme climate events and underscores the potential for heat waves to drive ecological shifts, favoring invasive species with higher phenotypic plasticity.
Collapse
Affiliation(s)
- Haochen Yu
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cheng Han
- Shanghai Meteorological Service Centre, Shanghai 200030, China
| | - Guangqian Ren
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, China
| | - Xuanwen Wu
- School of Tourism Management, Jiangsu College of Tourism, Yangzhou 225000, China
| | - Shanshan Qi
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Yang
- College of Life Sciences, Shenyang Normal University, Shenyang 110034, China
| | - Miaomiao Cui
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Xue Fan
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoqi Zhu
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhicong Dai
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, China
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Trang NTT, Cuong NT, Van Vang L, Le Thi H. Evaluation of phytotoxic potential in Asteraceae plant extracts for biological control of Echinochloa crus-galli and Echinochloa colona. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e70009. [PMID: 39262832 PMCID: PMC11384620 DOI: 10.1002/pei3.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
This study evaluates the phytotoxic potential of methanolic extracts from six Asteraceae species: Wedelia chinensis, Helianthus annuus, Cosmos bipinnatus, Tagetes erecta, Tithonia diversifolia, and Zinnia elegans. The extracts were tested at concentrations of 0.03, 0.1, 0.3, and 1.0 g/mL to assess their inhibitory effects on the radicle and hypocotyl lengths of Echinochloa crus-galli and Echinochloa colona. The two most potent species, C. bipinnatus and T. diversifolia, were further evaluated using extracts from their roots, stems, and leaves. Among these, C. bipinnatus leaf extracts showed the most significant phytotoxicity and were tested at 20, 40, and 60 days of plant age. At 0.03 g/mL, C. bipinnatus extract inhibited the hypocotyl and radicle lengths of E. colona by 23.01% and 56.45%, and E. crus-galli by 8.5% and 36.35%, respectively. At 1.0 g/mL, the extract inhibited the hypocotyl lengths of E. colona and E. crus-galli by 97.54% and 88.15%, and the radicle lengths by 93.52% and 99.99%, respectively. The 60-day-old C. bipinnatus leaf extract exhibited the highest inhibitory effect, correlating with the identification of key allelochemicals such as cinnamic acid, caffeic acid, coumaric acid, ferulic acid, 2-4 dimethohydroxy benzoic acid, and salicylic acid. These findings suggest that the 60-day-old C. bipinnatus leaf extracts have strong potential for use in the biological control of these weed species, offering a promising avenue for the development of natural herbicides.
Collapse
Affiliation(s)
| | | | - Le Van Vang
- Plant Protection Faculty College of Agriculture, Can Tho University Can Tho Vietnam
| | - Ho Le Thi
- Plant Protection Faculty College of Agriculture, Can Tho University Can Tho Vietnam
| |
Collapse
|
3
|
Zhang H, Li S, Zhou S, Guo W, Chen P, Li Y, Wu W. Divergence of Phyllosphere Microbial Community Assemblies and Components of Volatile Organic Compounds between the Invasive Sphagneticola trilobata, the Native Sphagneticola calendulacea and Their Hybrids, and Its Implications for Invasiveness. Genes (Basel) 2024; 15:955. [PMID: 39062734 PMCID: PMC11275861 DOI: 10.3390/genes15070955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Closely-related plant groups with distinct microbiomes, chemistries and ecological characteristics represent tractable models to explore mechanisms shaping species spread, competitive dynamics and community assembly at the interface of native and introduced ranges. We investigated phyllosphere microbial communities, volatile organic compound (VOC) compositions, and potential interactions among introduced S. trilobata, native S. calendulacea and their hybrid in South China. S. trilobata exhibited higher α diversity but significantly different community composition compared to the native and hybrid groups. However, S. calendulacea and the hybrid shared certain microbial taxa, suggesting potential gene flow or co-existence. The potent antimicrobial VOC profile of S. trilobata, including unique compounds like p-cymene (13.33%), likely contributes to its invasion success. The hybrid's intermediate microbial and VOC profiles suggest possible consequences for species distribution, genetic exchange, and community assembly in heterogeneous environments. This hybrid deserves further study as both an opportunity for and threat to diversity maintenance. These differentiating yet connected plant groups provide insight into ecological and evolutionary dynamics shaping microbiome structure, species co-occurrence and competitive outcomes during biological exchange and habitat transformation. An interdisciplinary approach combining chemical and microbial ecology may reveal mechanisms underlying community stability and change, informing management of species spread in a globalized world.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Wu
- Scarce and Quality Economic Forest Engineering Technology Research Center, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (H.Z.); (S.L.); (S.Z.); (W.G.); (P.C.); (Y.L.)
| |
Collapse
|
4
|
Hossen K, Asato Y, Teruya T, Kato-Noguchi H. Identification of four allelopathic compounds including a novel compound from Elaeocarpus floribundus Blume and determination of their allelopathic activity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116728. [PMID: 36399811 DOI: 10.1016/j.jenvman.2022.116728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Allelopathic compounds can play a vital role in protecting the environment from pollution by synthetic herbicides. Compounds isolated from plant species with allelopathic potential can be used as natural herbicides to control weeds and help reduce environmental pollution. Elaeocarpus floribundus has been reported to contain allelopathic compounds. Aqueous methanolic extracts of the leaves of this plant showed strong growth inhibitory potential against two test species (monocotyledonous Italian ryegrass and dicotyledonous alfalfa) in plants- and dose-dependent technique. Several extensive chromatographic separations of the E. floribundus leaf extracts yielded four active compounds 1, 2, 3, and 4 (novel compound). All the identified compounds showed strong growth inhibitory potential against cress. The concentrations caused for 50% growth limitation (I50 values) of the cress seedlings were in the range 500.4-1913.1 μM. The findings indicate that the identified compounds might play a pivotal function in the allelopathic potential of E. floribundus tree. This report is the first on elaeocarpunone and its allelopathic potential.
Collapse
Affiliation(s)
- Kawsar Hossen
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, 761-0795, Japan; The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, 790-8566, Japan; Department of Agriculture, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Yuka Asato
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.
| | - Toshiaki Teruya
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.
| | - Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, 761-0795, Japan; The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, 790-8566, Japan.
| |
Collapse
|
5
|
Sansenya S, Payaka A. Inhibitory potential of phenolic compounds of Thai colored rice (Oryza sativa L.) against α-glucosidase and α-amylase through in vitro and in silico studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6718-6726. [PMID: 35620810 DOI: 10.1002/jsfa.12039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/30/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND This study investigated the inhibitory efficiency of phenolic compounds content methyl vanillate, syringic acid and vanillic acid against α-glucosidase and α-amylase. The phenolic compound contents of 10 Thai colored rice cultivars were also determined, and the relationship between the inhibitory efficiency of colored rice extract with methyl vanillate, syringic acid and vanillic acid was evaluated. RESULTS The results revealed that the inhibition efficiency of methyl vanillate, syringic acid and vanillic acid was higher against α-glucosidase than against α-amylase. Inhibitory activity of vanillic acid against α-glucosidase and α-amylase was highest, with IC50 of 0.100 ± 0.01 and 0.130 ± 0.02 mmol L-1 , respectively. Docking study showed strong binding by three hydrogen bonds and four hydrogen bonds between vanillic acid with the amino acid in the binding site of α-glucosidase and α-amylase, respectively. Inhibition modes of these phenolic compounds were defined as a mixed type inhibition against α-glucosidase. Highest phenolic compound contents of methyl vanillate, syringic acid and vanillic acid were obtained from methanol extracts of all rice cultivars. The methanol extracts of all colored rice cultivars such as Khao Leum Pua also showed the highest inhibition potential against α-glucosidase and α-amylase. The results indicated that these phenolic compound contents were closely related to the inhibition potential of colored rice extracts against α-glucosidase and α-amylase. CONCLUSION Our results suggest that rice, especially colored rice cultivars, has the source of phenolic compounds. Moreover, the phenolic compounds had the greatest source of natural inhibitor against α-glucosidase and α-amylase. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sompong Sansenya
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Apirak Payaka
- School of Science, Walailak University, Nakhon Si Thammarat, Thailand
- Research Group in Applied, Computational and Theoretical Science (ACTS), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
6
|
Differential effects of transgenerational plasticity on morphological and photosynthetic properties between an invasive plant and its congeneric native one. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Azlan Azizan K, Izzairy Zamani A, Azlan Nor Muhammad N, Khairudin K, Yusoff N, Firdaus Nawawi M. Dose-Dependent Effect of Wedelia trilobata Essential Oil (EO) on Lettuce (Lactuca sativa L.) with Multivariate Analysis. Chem Biodivers 2022; 19:e202100833. [PMID: 34962057 DOI: 10.1002/cbdv.202100833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/28/2021] [Indexed: 11/07/2022]
Abstract
Understanding metabolite changes and underlying metabolic pathways that may be affected in target plants following essential oils (EOs) exposure is of great importance. In this study, a gas chromatography-mass spectrometry (GC/MS) based metabolomics approach was used to determine the metabolite changes in lettuce (Lactuca sativa L.) shoot and root after exposure to different concentrations of W. trilobata EO. Multivariate analyses of principal component analysis (PCA) and orthogonal partial least-discriminant analysis (OPLS-DA) corroborated that shoot and root of lettuce responded differently to W. trilobata EO. In EO-exposed shoot samples, an increase in the levels of malic acid, glutamine, serine, lactose and α-glucopyranose affected important metabolism pathways such as glycolysis, fructose and mannose metabolism and galactose metabolism. The findings suggest that lettuce may be up-regulating these metabolites to increase tolerance against W. trilobata EO. In EO-exposed root samples, changes in fatty acid biosynthesis, elongation, degradation, phenylalanine, tyrosine and tryptophan metabolism were linked to a decrease in lyxose, palmitic acid, octadecanoic acid, aspartic acid, phenylalanine and myo-inositol. These results indicate that W. trilobata EO could cause alterations in fatty acid compositions and lead to inhibition of roots growth. Together, these findings provide insight into the metabolic responses of lettuce upon W. trilobata EO exposure, as well as potential mechanisms of action of W. trilobata EO as bio-herbicides.
Collapse
Affiliation(s)
- Kamalrul Azlan Azizan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan, Malaysia (UKM), Selangor, 43600 UKM, Bangi, Malaysia
| | - Arief Izzairy Zamani
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan, Malaysia (UKM), Selangor, 43600 UKM, Bangi, Malaysia
| | - Nor Azlan Nor Muhammad
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan, Malaysia (UKM), Selangor, 43600 UKM, Bangi, Malaysia
| | - Khairunisa Khairudin
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan, Malaysia (UKM), Selangor, 43600 UKM, Bangi, Malaysia
| | - Nornasuha Yusoff
- Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin (UniSZA), Kampus Besut, Terengganu Darul Iman, 2220, Besut, Malaysia
| | - Mohamad Firdaus Nawawi
- National Science Center (PSN), Persiaran Bukit Kiara, Bukit Damansara, 50490, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Hossen K, Ozaki K, Teruya T, Kato-Noguchi H. Three Active Phytotoxic Compounds from the Leaves of Albizia richardiana (Voigt.) King and Prain for the Development of Bioherbicides to Control Weeds. Cells 2021; 10:cells10092385. [PMID: 34572034 PMCID: PMC8472145 DOI: 10.3390/cells10092385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/10/2023] Open
Abstract
The global population is increasing day by day. To meet the food demand for such a huge number of people, crop production must increase without damaging the environment, and to prevent synthetic chemical herbicides from polluting the environment, controlling weeds using bioherbicides is essential. Accordingly, using phytotoxic substances obtained from plants for biological weed management has attracted attention. The plant Albizia richardiana possesses phytotoxic compounds that have been previously recorded. Hence, we have conducted this research to characterize more phytotoxic compounds in Albizia richardiana. Aqueous methanolic extracts of Albizia richardiana plant significantly restricted the growth of the examined plants lettuce and Italian ryegrass in a species- and concentration-dependent manner. Three active phytotoxic compounds were isolated through various chromatographic methods and identified as compound 1, 2, and 3. Compound 3 exhibited stronger phytotoxic potentials than the other two compounds and significantly suppressed the growth of Lepidium sativum (cress). The concentration of the compounds required for 50% growth reduction (I50 value) of the Lepidium sativum seedlings ranged between 0.0827 to 0.4133 mg/mL. The results suggest that these three phytotoxic compounds might contribute to the allelopathic potential of Albizia richardiana.
Collapse
Affiliation(s)
- Kawsar Hossen
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan;
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama 790-8566, Japan
| | - Kaori Ozaki
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Okinawa 903-0213, Japan;
| | - Toshiaki Teruya
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Okinawa 903-0213, Japan;
| | - Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan;
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama 790-8566, Japan
- Correspondence:
| |
Collapse
|
9
|
Secondary Metabolites in Edible Species: Looking beyond Nutritional Value. Foods 2021; 10:foods10051131. [PMID: 34069570 PMCID: PMC8161122 DOI: 10.3390/foods10051131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 11/23/2022] Open
|
10
|
Identification and Application of Bioactive Compounds from Garcinia xanthochymus Hook. for Weed Management. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The allelopathic potential of plant species and their related compounds has been increasingly reported to be biological tools for weed control. The allelopathic potential of Garcinia xanthochymus was assessed against several test plant species: lettuce, rapeseed, Italian ryegrass, and timothy. The extracts of G. xanthochymus leaves significantly inhibited all the test plants in a concentration- and species-specific manner. Therefore, to identify the specific compounds involved in the allelopathic activity of the G. xanthochymus extracts, assay-guided purification was carried out and two allelopathic compounds were isolated and identified as methyl phloretate {3-(4-hydroxyphenyl) propionic acid methyl ester} and vanillic acid (4-hydroxy-3-methoxybenzoic acid). Both of the substances significantly arrested the cress and timothy seedlings growth. I50 values (concentrations required for 50% inhibition) for shoots and roots growth of the cress and timothy were 113.6–104.6 and 53.3–40.5 μM, respectively, for methyl phloretate, and 331.6–314.7 and 118.8–107.4 μM, respectively, for vanillic acid, which implied that methyl phloretate was close to 3- and 2-fold more effective than vanillic acid against cress and timothy, respectively. This report is the first on the presence of methyl phloretate in a plant and its phytotoxic property. These observations suggest that methyl phloretate and vanillic acid might participate in the phytotoxicity of G. xanthochymus extract.
Collapse
|
11
|
Phytotoxic Activity and Growth Inhibitory Substances from Albizia richardiana (Voigt.) King & Prain. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Albizia richardiana, a fast-growing, large deciduous tree belonging to the Fabaceae family, grows well in hot and humid areas but mainly grows in the tropics of the Old World. The medicinal and other uses of Albizia richardiana are well documented, but the phytotoxic effects of this tree have not yet been investigated. We conducted this study to investigate the phytotoxic activity of Albizia richardiana leaves and to identify growth inhibitory substances for controlling weeds in a sustainable way. Aqueous methanol extracts of Albizia richardiana leaves greatly suppressed the growth of cress and barnyard grass seedlings in a concentration- and species-dependent manner. Two phytotoxic substances were separated using several purification steps and characterized through spectral analysis as dehydrovomifoliol and loliolide. Dehydrovomifoliol and loliolide significantly arrested the seedling growth of cress in the concentrations of 0.1 and 0.01 mM, respectively. The extract concentrations needed for 50% growth inhibition (I50 values) of cress seedlings were 3.16–3.01 mM for dehydrovomifoliol and 0.03–0.02 mM for loliolide. The results suggest that these two allelopathic substances might play a vital role in the phytotoxicity of Albizia richardiana leaves.
Collapse
|