1
|
Escalante-Aburto A, Hernández-García E, López-Rubio A, Fabra MJ, Salvia-Trujillo L, Odriozola-Serrano I, Chuck-Hernández C. Enhanced physicochemical properties, structure, and in vitro digestibility of olive oil-infused pigmented popcorn prepared via microwave processing. Food Chem 2025; 469:142608. [PMID: 39733570 DOI: 10.1016/j.foodchem.2024.142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/19/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
The study investigates the composition and properties of unpopped and expanded popcorn, analyzing monosaccharides, protein, amylose, polyphenols, physical traits, crystallinity, and in vitro digestion. Unpopped grains had high glucose content (mainly from starch), which decreased by 20 % in expanded popcorn, especially in black and red A samples. Expanded grains showed higher protein levels (up to 15 %), particularly in red B and yellow samples. Amylose content ranged from 18 % to 49 %, with no clear processing trend. Polyphenol levels were generally higher in expanded popcorn, and black-blue samples exhibited the highest whiteness index (∼82.96). Popping reduced crystallinity (∼52 %), making starch more amorphous. Expanded popcorn demonstrated greater antioxidant activity (>86 %, ABTS) during oral and intestinal digestion phases, attributed to the release of bound phenolics. These results suggest pigmented popcorn expanded with EVOO could serve as a functional snack, though further research is needed to explore additional properties.
Collapse
Affiliation(s)
- Anayansi Escalante-Aburto
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey 64849, Mexico; Tecnologico de Monterrey, School of Engineering and Sciences, Campus Toluca, 50110, Mexico.
| | - Eva Hernández-García
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain; Institute of Food Engineering FoodUPV, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain
| | - María José Fabra
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain
| | - Laura Salvia-Trujillo
- Department of Food Technology, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, Lleida 25198, Spain
| | - Isabel Odriozola-Serrano
- Department of Food Technology, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, Lleida 25198, Spain
| | | |
Collapse
|
2
|
Weaver CM, Givens DI. Overview: the food matrix and its role in the diet. Crit Rev Food Sci Nutr 2025:1-18. [PMID: 39905830 DOI: 10.1080/10408398.2025.2453074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The food matrix which includes the physiochemical structure and interaction with chemical constituents is a focus of investigation that is revealing potentially important influences on diet and health. This paper, the first in an article collection titled, The Important Role of the Dairy Matrix in Diet and Health, serves as an introduction to the food matrix to put into context the subsequent articles specific to the matrix effects of dairy milk, cheese and yogurt on human health. This introductory article describes the effects of processing on the food matrix and implications for diet and health, examines the contribution of nutrients compared to whole foods and food patterns, and characterizes examples of the complexity of the food matrix including current controversies of dairy fat and ultra-processed foods. The gaps in knowledge and research identified in this overview may help guide researchers and funding entities moving forward. Current knowledge indicates that translating research on the food matrix to the consumer through recommendations for the intake of whole foods and food patterns is prudent at this time.
Collapse
Affiliation(s)
- Connie M Weaver
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California, USA
| | - D Ian Givens
- Institute for Food, Nutrition and Health, Earley Gate, University of Reading, Reading, UK
| |
Collapse
|
3
|
Cuffaro D, Bertolini A, Silva AM, Rodrigues F, Gabbia D, De Martin S, Saba A, Bertini S, Digiacomo M, Macchia M. Comparative Analysis on Polyphenolic Composition of Different Olive Mill Wastewater and Related Extra Virgin Olive Oil Extracts and Evaluation of Nutraceutical Properties by Cell-Based Studies. Foods 2024; 13:3312. [PMID: 39456374 PMCID: PMC11507932 DOI: 10.3390/foods13203312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study reports a comparative analysis of the polyphenolic composition and nutraceutical properties of different olive mill wastewater (OMWW) and corresponding extra virgin olive oil (EVOO) extracts. Specifically, four OMWWs and corresponding EVOOs from cultivars Frantoio (A) and Leccino (B) obtained from different crushing seasons (early-stage (A1 and B1) and later-stage (A2 and B2)) were analyzed. Employing HPLC-DAD and LC-MS methods, the primary polyphenol content was identified and quantified. Overall, OMWW extracts showed a greater polyphenolic content compared to corresponding EVOO extracts, with OMWW B1 displaying the highest levels of polyphenols. The antiradical properties of extracts towards radical species (DPPH, ABTS, O2-, and HOCl-) were demonstrated in vitro, revealing a correlation with polyphenolic content. In fact, OMWW B1 and B2 demonstrated the strongest antiradical activity. Exploring nutraceutical properties of OMWWs, the intestinal permeation of the main polyphenols in a co-culture model (Caco-2 and HT29-MTX cell lines) was assessed, with tyrosol achieving a permeation of almost 60%. Furthermore, the involvement in the inflammation process has been evaluated in cell studies on THP1-derived macrophages by immunocytochemistry, demonstrating that OMWW B1 may exert an anti-inflammatory effect by modulating specific phenotype expression on macrophages. In conclusion, this study provides evidence supporting the reuse of OMWWs as a source of polyphenols with nutraceutical properties.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| | - Andrea Bertolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy;
| | - Ana Margarida Silva
- REQUIMTE/LAQV, ISEP, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; (A.M.S.); (F.R.)
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; (A.M.S.); (F.R.)
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 351131 Padova, Italy; (D.G.); (S.D.M.)
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 351131 Padova, Italy; (D.G.); (S.D.M.)
| | - Alessandro Saba
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy;
- Center for Instrument Sharing of the University of Pisa (CISUP), 56126 Pisa, Italy
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
- Center for Instrument Sharing of the University of Pisa (CISUP), 56126 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| |
Collapse
|
4
|
Saha R, Majie A, Baidya R, Sarkar B. Verbascoside: comprehensive review of a phenylethanoid macromolecule and its journey from nature to bench. Inflammopharmacology 2024:10.1007/s10787-024-01555-3. [PMID: 39162902 DOI: 10.1007/s10787-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Polyphenolic compounds are among the most widely researched compounds for various therapeutic applications. However, naturally occurring phenylethanoid glycosides are least explored under this class of compounds. One such phenylethanoid glycoside, verbascoside (Vb), abundantly found among 200 species of 23 families, has gained recent attention due to its wide-spectrum therapeutic properties such as antioxidant, antimicrobial, anti-inflammatory, neuroprotective, cardioprotective, skin-protective, and anti-cancer. Despite having multiple therapeutic benefits, due to its large size, the compound has poor bioavailability for oral and topical applications. To meet these limitations, current research on Vb focuses on delivering it through nanoformulations. Presently, most developed formulations are liposome based for various applications, such as corneal epithelial wound healing, anti-neuropathic, anti-wrinkle, anti-hyperalgesia, atopic dermatitis, alopecia, and cutaneous wound healing. Multiple studies have confirmed the least acute and sub-acute toxicity for Vb. Few clinical studies have been performed for the therapeutic application of Vb to manage COVID-19, nephropathy, platelet aggregation, chronic primary glomerulonephritis, and acute hepatitis. Recent studies have shown the immense therapeutic potential of Vb in wound healing, dermatitis, neuroprotection, and anti-cancer activities, which creates a need for developing novel formulations for their respective uses. Long-term toxicity studies and techniques for scaling up Vb production by biotechnological approaches should be emphasized.
Collapse
Affiliation(s)
- Rajdeep Saha
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Ankit Majie
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Ritika Baidya
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Biswatrish Sarkar
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
5
|
Mishra AK, Singh R, Rawat H, Kumar V, Jagtap C, Jain A. The influence of food matrix on the stability and bioavailability of phytochemicals: A comprehensive review. FOOD AND HUMANITY 2024; 2:100202. [DOI: 10.1016/j.foohum.2023.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
6
|
Balta V, Đikić D, Landeka Jurčević I, Odeh D, Oršolić N, Ferara N, Dilber D, Dragičević P, Dragović-Uzelac V. The Effect of a High-Protein Diet Supplemented with Blackthorn Flower Extract on Polyphenol Bioavailability and Antioxidant Status in the Organs of C57BL/6 Mice. Nutrients 2023; 15:4066. [PMID: 37764849 PMCID: PMC10535945 DOI: 10.3390/nu15184066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The health benefits of polyphenols are based on their bioavailability, which is why a significant portion of research focuses on factors that affect their bioavailability. Previous studies suggest that the intake of polyphenols along with macronutrients in food represents one of the key factors influencing the bioavailability of polyphenols and, consequently, their biological activity in the organism. Since polyphenols in the human diet are mainly consumed in food together with macronutrients, this study investigated the in vivo absorption, metabolism, and distribution of polyphenolic compounds from the water extract of blackthorn flower (Prunus spinosa L.) in combination with a protein-enriched diet in the organs (small intestine, liver, kidney) of C57BL/6 mice. The bioaccumulation of polyphenol molecules, biologically available maximum concentrations of individual groups of polyphenol molecules, and their effect on the oxidative/antioxidative status of organs were also examined. The results of this study indicate increased bioabsorption and bioavailability of flavan-3-ols (EC, EGCG) and reduced absorption kinetics of certain polyphenols from the groups of flavonols, flavones, and phenolic acids in the organs of C57BL/6 mice after intragastric administration of the water extract of blackthorn flower (Prunus spinosa L.) in combination with a diet enriched with whey proteins. Furthermore, subchronic intake of polyphenols from the water extract of blackthorn flower (Prunus spinosa L.) in combination with a diet enriched with whey proteins induces the synthesis of total glutathione (tGSH) in the liver and superoxide dismutase (SOD) in the liver and small intestine. The results of this study suggest potential applications in the development of functional foods aimed at achieving the optimal health status of the organism and the possibility of reducing the risk of oxidative stress-related disease.
Collapse
Affiliation(s)
- Vedran Balta
- Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (D.Đ.); (D.O.); (N.O.)
| | - Domagoj Đikić
- Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (D.Đ.); (D.O.); (N.O.)
| | - Irena Landeka Jurčević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (I.L.J.); (V.D.-U.)
| | - Dyana Odeh
- Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (D.Đ.); (D.O.); (N.O.)
| | - Nada Oršolić
- Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (D.Đ.); (D.O.); (N.O.)
| | - Nikola Ferara
- Department of Dermatovenereology, University Hospital Centre Sestre Milosrdnice, Vinogradska Cesta 29, 10000 Zagreb, Croatia;
| | - Dario Dilber
- Magdalena Clinic for Cardiovascular Diseases, Ljudevita Gaja 2, 49217 Krapinske Toplice, Croatia;
| | - Petar Dragičević
- University Hospital Centre Zagreb, 12 Kišpatićeva St, 10000 Zagreb, Croatia;
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (I.L.J.); (V.D.-U.)
| |
Collapse
|
7
|
Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr 2023; 10:1118761. [PMID: 37057062 PMCID: PMC10086256 DOI: 10.3389/fnut.2023.1118761] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are recognized as natural sources of antioxidants (e.g., polyphenols, flavonoids, vitamins, and other active compounds) that can be extracted by green solvents like water, ethanol, or their binary mixtures. Plant extracts are becoming more used as food additives in various food systems due to their antioxidant abilities. Their application in food increases the shelf life of products by preventing undesirable changes in nutritional and sensory properties, such as the formation off-flavors in lipid-rich food. This review summarizes the most recent literature about water or ethanol-water plant extracts used as flavors, colorings, and preservatives to fortify food and beverages. This study is performed with particular attention to describing the benefits of plant extract-fortified products such as meat, vegetable oils, biscuits, pastries, some beverages, yogurt, cheese, and other dairy products. Antioxidant-rich plant extracts can positively affect food safety by partially or fully replacing synthetic antioxidants, which have lately been linked to safety and health issues such as toxicological and carcinogenic consequences. On the other hand, the limitations and challenges of using the extract in food should be considered, like stability, level of purity, compatibility with matrix, price, sensory aspects like distinct taste, and others. In the future, continuous development and a tendency to use these natural extracts as food ingredients are expected, as indicated by the number of published works in this area, particularly in the past decade.
Collapse
Affiliation(s)
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czechia
| |
Collapse
|
8
|
Tretola M, Bee G, Dohme-Meier F, Silacci P. Review: Harmonised in vitro digestion and the Ussing chamber for investigating the effects of polyphenols on intestinal physiology in monogastrics and ruminants. Animal 2023; 17:100785. [PMID: 37060748 DOI: 10.1016/j.animal.2023.100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/17/2023] Open
Abstract
Because of the relevant effects of plant-derived polyphenols (PPs) on monogastrics and ruminants' nutrition, emissions and performance, an increasing number of in vivo and in vitro studies are being performed to better understand the mechanisms of action of polyphenols at both the ruminal and intestinal levels. The biological properties of these phenolic compounds strongly depend on their degradation, absorption and metabolism. The harmonised in vitro digestion method (INFOGEST) is one of the most reliable in vitro methods used to assess the bioaccessibility and or antioxidant activity of PP contained in different matrixes, as well as the interactions of PP and their degradation products with other feed ingredients. The effects of PP released from their matrix after in vitro digestion on different intestinal physiological parameters, such as epithelium integrity, can be further evaluated by the use of ex vivo models such as the Ussing chamber. This review aims to describe the combination of the INFOGEST method, coupled with the Ussing chamber as a valuable model for the digestion and subsequent effects and absorption of phenolic compounds in monogastrics and potentially in ruminants. The advances, challenges and limits of this approach are also discussed.
Collapse
Affiliation(s)
- M Tretola
- Agroscope, Animal Biology Group, La Tioleyre 4, 1725 Posieux, Switzerland; Agroscope, Swine Group, La Tioleyre 4, 1725 Posieux, Switzerland; Agroscope, Ruminant Research Group, La Tioleyre 4, 1725 Posieux, Switzerland; Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy.
| | - G Bee
- Agroscope, Swine Group, La Tioleyre 4, 1725 Posieux, Switzerland
| | - F Dohme-Meier
- Agroscope, Ruminant Research Group, La Tioleyre 4, 1725 Posieux, Switzerland
| | - P Silacci
- Agroscope, Animal Biology Group, La Tioleyre 4, 1725 Posieux, Switzerland
| |
Collapse
|
9
|
Phyto-Assisted Synthesis of Nanoselenium-Surface Modification and Stabilization by Polyphenols and Pectins Derived from Agricultural Wastes. Foods 2023; 12:foods12051117. [PMID: 36900634 PMCID: PMC10000393 DOI: 10.3390/foods12051117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Raw and purified mandarin peel-derived pectins were characterized and combined with olive pomace extract (OPE) in the green synthesis of selenium nanoparticles (SeNPs). SeNPs were characterized in terms of size distribution and zeta potential, and their stability was monitored during 30 days of storage. HepG2 and Caco-2 cell models were used for the assessment of biocompatibility, while antioxidant activity was investigated by the combination of chemical and cellular-based assays. SeNP average diameters ranged from 171.3 nm up to 216.9 nm; smaller SeNPs were obtained by the utilization of purified pectins, and functionalization with OPE slightly increased the average. At concentrations of 15 mg/L SeNPs were found to be biocompatible, and their toxicity was significantly lower in comparison to inorganic selenium forms. Functionalization of SeNPs with OPE increased their antioxidant activity in chemical models. The effect was not clear in cell-based models, even though all investigated SeNPs improved cell viability and protected intracellular reduced GSH under induced oxidative stress conditions in both investigated cell lines. Exposure of cell lines to SeNPs did not prevent ROS formation after exposure to prooxidant, probably due to low transepithelial permeability. Future studies should focus on further improving the bioavailability/permeability of SeNPs and enhancing the utilization of easily available secondary raw materials in the process of phyto-mediated SeNP synthesis.
Collapse
|
10
|
Ou SJL, Fu AS, Liu MH. Impact of Starch-Rich Food Matrices on Black Rice Anthocyanin Accessibility and Carbohydrate Digestibility. Foods 2023; 12:foods12040880. [PMID: 36832955 PMCID: PMC9957438 DOI: 10.3390/foods12040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Anthocyanins reduce starch digestibility via carbohydrase-inhibitory pathways, but food matrix effects during digestion may also influence its enzymatic function. Understanding anthocyanin-food matrix interactions is significant as the efficiency of carbohydrase inhibition relies on anthocyanin accessibility during digestion. Therefore, we aimed to evaluate the influence of food matrices on black rice anthocyanin accessibility in relation to starch digestibility in common settings of anthocyanin consumption-its co-ingestion with food, and consumption of fortified food. Our findings indicate that black rice anthocyanin extracts (BRAE) had reduced intestinal digestibility of bread to a larger extent for the co-digestion of BRAE with bread (39.3%) (4CO), than BRAE-fortified bread (25.9%) (4FO). Overall anthocyanin accessibility was about 5% greater from the co-digestion with bread than fortified bread across all digestion phases. Differences in anthocyanin accessibility were also noted with changes to gastrointestinal pH and food matrix compositions-with up to 10.1% (oral to gastric) and 73.4% (gastric to intestinal) reductions in accessibility with pH changes, and 3.4% greater accessibility in protein matrices than starch matrices. Our findings demonstrate that the modulation of starch digestibility by anthocyanin is a combined result of its accessibility, food matrix composition, and gastrointestinal conditions.
Collapse
Affiliation(s)
- Sean Jun Leong Ou
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Amanda Simin Fu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Mei Hui Liu
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Correspondence: ; Tel.: +65-6516-3523
| |
Collapse
|
11
|
Zhao W, Subbiah V, Xie C, Yang Z, Shi L, Barrow C, Dunshea F, Suleria HAR. Bioaccessibility and Bioavailability of Phenolic Compounds in Seaweed. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2094404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Wanrong Zhao
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Vigasini Subbiah
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Cundong Xie
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Zihong Yang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Linghong Shi
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Colin Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Frank Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
12
|
Morgana NM, Magdalena E, Angeles FMDL, Fernanda SM. NADES for food industry innovation: novel bioadditives based on olive oil byproducts. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Floros S, Toskas A, Pasidi E, Vareltzis P. Bioaccessibility and Oxidative Stability of Omega-3 Fatty Acids in Supplements, Sardines and Enriched Eggs Studied Using a Static In Vitro Gastrointestinal Model. Molecules 2022; 27:415. [PMID: 35056730 PMCID: PMC8780033 DOI: 10.3390/molecules27020415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
Modern dietary habits have created the need for the design and production of functional foods enriched in bioactive compounds for a healthy lifestyle. However, the fate of many of these bioactive compounds in the human gastrointestinal (GI) tract has not been thoroughly investigated. Thus, in the present study, the bioaccessibility of omega-3 fatty acids was examined. To that end, different foods and supplements underwent simulated digestion following the INFOGEST protocol. The selected samples were foods rich in omega-3 fatty acids both in free and bound form-i.e., dietary fish oil supplements, heat-treated fish, and eggs enriched with omega-3 fatty acids. The oxidation of polyunsaturated fatty acids (PUFAs) was measured at each stage of the digestion process using peroxide value (PV) and TBARS and by quantifying individual omega-3 fatty acids using a gas chromatograph with flame ionization detector (GC-FID). The final bioaccessibility values of omega-3 fatty acids were determined. Changes in the quantity of mono-saturated fatty acids (MUFAs) and saturated fatty acids (SFAs) were recorded as well. The results indicated a profound oxidation of omega-3 fatty acids, giving rise to both primary and secondary oxidation products. Additionally, stomach conditions seemed to exert the most significant effect on the oxidation of PUFAs during digestion, significantly decreasing their bioaccessibility. The oxidation rate of each fatty acid was found to be strongly correlated with its initial concentration. Finally, the oxidation pattern was found to be different for each matrix and emulsified lipids seemed to be better protected than non-emulsified lipids. It is concluded that digestion has a profound negative effect on omega-3 bioaccessibility and therefore there is a need for improved protective mechanisms.
Collapse
Affiliation(s)
- Stylianos Floros
- Department of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.F.); (E.P.)
| | - Alexandros Toskas
- Petros Androulakis Medical Biology Analytical Laboratories, 57001 Thermi, Greece;
| | - Evagelia Pasidi
- Department of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.F.); (E.P.)
| | - Patroklos Vareltzis
- Department of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.F.); (E.P.)
| |
Collapse
|
14
|
Alemán-Jiménez C, Domínguez-Perles R, Gallego-Gómez JI, Simonelli-Muñoz A, Moine E, Durand T, Crauste C, Ferreres F, Gil-Izquierdo Á, Medina S. Fatty Acid Hydroxytyrosyl Esters of Olive Oils Are Bioaccessible According to Simulated In Vitro Gastrointestinal Digestion: Unraveling the Role of Digestive Enzymes on Their Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14165-14175. [PMID: 34797062 DOI: 10.1021/acs.jafc.1c05373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, new bioactive compounds were identified in olive oil, lipophenols, which are composed of a fatty acid (FA) and a phenolic core, such as HT (HT-FA). However, their bioaccessibility remains unknown. Thus, the present study uncovers the impact of the separate phases of gastrointestinal digestion on the release and stability of HT-FAs from oily matrices under in vitro simulated conditions. Accordingly, it was found that the bioaccessibility of HT derivatives is largely dependent on the type of FA that esterifies HT, as well as the food matrix. Also, the generation of HT-FAs during intestinal digestion was observed, with pancreatin being the enzyme responsible, to a higher extent, for the de novo formation of lipophenolic derivatives. These findings prompt us to identify new applications to oily matrices and their byproducts as potential functional ingredients for the promotion of health, where the possible formation of new lipophenols during digestion should be taken into consideration.
Collapse
Affiliation(s)
| | - Raúl Domínguez-Perles
- Department of Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, Murcia 30100, Spain
| | - Juana I Gallego-Gómez
- Departamento de Enfermería, Universidad Católica de Murcia, UCAM, Murcia 30107, Spain
| | - Agustín Simonelli-Muñoz
- Departamento de Enfermería, Fisioterapia y Medicina. Universidad de Almería, Carretera Sacramento s/n, Almería 04120, Spain
| | - Espérance Moine
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, EN-SCM, Montpellier 34093, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, EN-SCM, Montpellier 34093, France
| | - Céline Crauste
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, EN-SCM, Montpellier 34093, France
| | - Federico Ferreres
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, Universidad Católica de Murcia, UCAM, Murcia 30107, Spain
| | - Ángel Gil-Izquierdo
- Department of Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, Murcia 30100, Spain
| | - Sonia Medina
- Department of Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, Murcia 30100, Spain
| |
Collapse
|
15
|
Sik B, Székelyhidi R, Lakatos E, Kapcsándi V, Ajtony Z. Analytical procedures for determination of phenolics active herbal ingredients in fortified functional foods: an overview. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03908-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractFortification of foods with phenolic compounds is becoming increasingly popular due to their beneficial physiological effects. The biological activities reported include antioxidant, anticancer, antidiabetic, anti-inflammatory, or neuroprotective effects. However, the analysis of polyphenols in functional food matrices is a difficult task because of the complexity of the matrix. The main challenge is that polyphenols can interact with other food components, such as carbohydrates, proteins, or lipids. The chemical reactions that occur during the baking technologies in the bakery and biscuit industry may also affect the results of measurements. The analysis of polyphenols found in fortified foods can be done by several techniques, such as liquid chromatography (HPLC and UPLC), gas chromatography (GC), or spectrophotometry (TPC, DPPH, FRAP assay etc.). This paper aims to review the available information on analytical methods to fortified foodstuffs while as presenting the advantages and limitations of each technique.
Collapse
|
16
|
Reboredo-Rodríguez P, González-Barreiro C, Martínez-Carballo E, Cambeiro-Pérez N, Rial-Otero R, Figueiredo-González M, Cancho-Grande B. Applicability of an In-Vitro Digestion Model to Assess the Bioaccessibility of Phenolic Compounds from Olive-Related Products. Molecules 2021; 26:6667. [PMID: 34771074 PMCID: PMC8588322 DOI: 10.3390/molecules26216667] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022] Open
Abstract
The Mediterranean diet includes virgin olive oil (VOO) as the main fat and olives as snacks. In addition to providing nutritional and organoleptic properties, VOO and the fruits (olives) contain an extensive number of bioactive compounds, mainly phenolic compounds, which are considered to be powerful antioxidants. Furthermore, olive byproducts, such as olive leaves, olive pomace, and olive mill wastewater, considered also as rich sources of phenolic compounds, are now valorized due to being mainly applied in the pharmaceutical and nutraceutical industries. The digestive system must physically and chemically break down these ingested olive-related products to release their phenolic compounds, which will be further metabolized to be used by the human organism. The first purpose of this review is to provide an overview of the current status of in-vitro static digestion models for olive-related products. In this sense, the in-vitro gastrointestinal digestion methods are widely used with the following aims: (i) to study how phenolic compounds are released from their matrices and to identify structural changes of phenolic compounds after the digestion of olive fruits and oils and (ii) to support the functional value of olive leaves and byproducts generated in the olive industry by assessing their health properties before and after the gastrointestinal process. The second purpose of this review is to survey and discuss all the results available to date.
Collapse
Affiliation(s)
| | | | | | | | | | - María Figueiredo-González
- Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo, 32004-Ourense, Spain; (P.R.-R.); (C.G.-B.); (E.M.-C.); (N.C.-P.); (R.R.-O.); (B.C.-G.)
| | | |
Collapse
|
17
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
18
|
The Effect of Balsamic Vinegar Dressing on Protein and Carbohydrate Digestibility is Dependent on the Food Matrix. Foods 2021; 10:foods10020411. [PMID: 33673211 PMCID: PMC7917894 DOI: 10.3390/foods10020411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 01/21/2023] Open
Abstract
The balsamic vinegar of Modena (BVM), a food specialty under the European Protected Geographical Indication system, is made from grape must blended with wine vinegar exclusively in the Italian province of Modena or Reggio Emilia. Vinegar is associated to an improved digestive function and glycemic response to carbohydrate-rich meals, appetite stimulation, and reduction of hyperlipidemia and obesity. Although many of these effects are attributed to the high concentration of bioactive molecules, the modulation of digestive enzymes activity could have a role. The aim of this study was to investigate the effect of BVM on the digestibility and component release of three foods that are often seasoned with this dressing but have different composition: Parmigiano Reggiano cheese, Bresaola (cured meat), and boiled potatoes. BVM modulated the protein digestion of protein-rich foods (cheese and cured meat) in a matrix-dependent manner, and the BVM effect was mainly related to the inhibition of pepsin in the gastric phase. In the starch-rich food (boiled potatoes), the most impressive effect of BVM was the lower release of anomeric and total carbohydrates, which was consistent with the observed reduction of pancreatic amylase activity. The present investigation shed a new light on the impact of BVM on the digestion process.
Collapse
|