1
|
Hasani A, Hamidi A, Nishori B, Xhelili V, Hasani E. Nitrite and chloride in meat and meat products in the Kosovo market. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2025:1-7. [PMID: 40277125 DOI: 10.1080/19393210.2025.2492040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
This study analysed the physicochemical properties of 93 different meat product samples from the Kosovo market, focusing on the critical examination of nitrite and chloride levels to assess food safety and public health implications. The samples involved fresh and minimally processed meats, cooked meat products, cured meats, and traditional sausages, adhering to ISO standard methodologies for assessing pH, water activity, sodium chloride and nitrite concentrations. The survey revealed that while nitrite levels in meat products comply with EU safety regulations, sodium chloride content in certain products, particularly sausages and dry cured meats, is significantly higher than recommended. Frequent consumption of these high-salt products may lead to excessive sodium intake among consumers. These findings underscore the need for regular monitoring of sodium chloride levels in meat products, implementation of sodium-reduction strategies by meat producers, and enhanced consumer education on health risks associated with high sodium intake.
Collapse
Affiliation(s)
- Arbenita Hasani
- Department of Food Technology with Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtina, Kosovo
| | - Afrim Hamidi
- Department of Veterinary, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtina, Kosovo
| | - Blerta Nishori
- Department of Food Technology with Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtina, Kosovo
| | - Veronika Xhelili
- Department of Food Technology with Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtina, Kosovo
| | - Endrit Hasani
- Department of Food Technology with Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtina, Kosovo
| |
Collapse
|
2
|
Hamad A, Singh P. Boosting nutritional value: the role of iron fortification in meat and meat products. Biometals 2025; 38:337-355. [PMID: 39836316 PMCID: PMC11965238 DOI: 10.1007/s10534-024-00659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Iron deficiency is a widespread nutritional problem affecting millions of people globally, leading to various health issues including anemia. Iron fortification of meat and meat products has emerged as an effective strategy to combat this issue. This review explores the process and benefits of iron fortification, focusing on the types of iron compounds suitable for fortification, such as ferrous sulfate and ferric pyrophosphate, their bioavailability, and their impact on the sensory and nutritional qualities of meat products. Technological challenges and solutions, including encapsulation, chelation, and microencapsulation techniques, have been examined to minimize their negative impacts on sensory qualities. This review also discusses the regulatory framework governing iron fortification and consumer acceptance. Analytical methods for determining iron content, such as spectrophotometric and colorimetric detection, are discussed. Although iron-fortified meat products offer health benefits, sensory aspects and consumer acceptance are important considerations. This review provides a comprehensive understanding of the role and significance of iron fortification in meat products as a public health intervention to address iron deficiency.
Collapse
Affiliation(s)
- Ahmed Hamad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Banha, 13736, Egypt.
| | - Pallavi Singh
- Faculty of Public Health, Poornima University, Jaipur, Rajasthan, India
| |
Collapse
|
3
|
Abubaker MA, Zhang D, Liu G, Ma H, He Y, Mala A, Li L, Al-Wraikat M, Liu Y. Polysaccharides as natural enhancers for meat quality, preservation, and protein functionality: A comprehensive review. Food Chem 2025; 468:142428. [PMID: 39693888 DOI: 10.1016/j.foodchem.2024.142428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/23/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Recent research focuses on developing meat products with health-promoting properties to reduce disease risk, particularly using natural polysaccharides due to their antioxidant and antibacterial effects. These polysaccharides, sourced from various materials, act through diverse structural mechanisms, inhibiting pathogen growth, enhancing oxidative stability, and improving meat flavor. This study highlights the role of meat proteins in achieving the Sustainable Development Goals (SDGs) and their importance in enhancing processed meat quality. It also examines the application of natural antioxidants and preservatives in meat processing. While some promising results demonstrate the potential of polysaccharides in meat science, their role in improving meat protein functions requires further investigation. Additionally, current solutions for improving meat quality face limitations, necessitating further research to reach industrial-scale applications. Thermal stability of meat proteins remains a critical factor throughout all stages of meat production, from processing and sterilization to consumption and preservation.
Collapse
Affiliation(s)
- Mohamed Aamer Abubaker
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; Department of Biology, Faculty of Education, University of Khartoum, Khartoum 11111, Sudan
| | - Duoduo Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Guanxu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Haorui Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yu He
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Azizza Mala
- Environmental, Natural Resource and Desertification Research Institute, National Center for Research, Ministry of High Education, Khartoum 11111, Sudan
| | - Linqiang Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Majida Al-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
4
|
Adeyemi KD, Kolade IO, Siyanbola AO, Bhadmus FO, Shittu RM, Ishola H, Chaosap C, Sivapirunthep P, Okukpe KM, Chimezie VO, Alli OI, Sulaimon RO, Ajao BH. Rice husk-fortified beef sausages: Cholesterol oxidation products, physicochemical properties, and sensory attributes. Meat Sci 2025; 220:109714. [PMID: 39603142 DOI: 10.1016/j.meatsci.2024.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/14/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The effect of rice husk flour (RHF) supplementation on the physicochemical properties, oxidative stability, and sensory attributes of beef sausages was examined. Beef sausages were formulated with either 0 % RHF + 15 % wheat flour (WF), RHF-0; 5 % RHF + 10 % WF, RHF-5; 10 % RHF + 5 % WF, RHF-10, or 15 % RHF + 0 % WF, RHF-15, and cooked at 200 °C for 20 min. RHF supplementation significantly increased dietary fiber while decreasing moisture content (P < 0.05). Beef sausages with RHF had lower L*, a*, TBARS, carbonyl content, hardness, chewiness, and gumminess, and a higher pH (P < 0.05). RHF-10 and RHF-15 sausages exhibited greater cook loss compared to other formulations (P < 0.05). The levels of 7-ketocholesterol decreased with increasing RHF levels, while 7α-hydroxycholesterol and 7-hydroperoxycholesterol were higher in RHF-0 and RHF-10 sausages compared to RHF-5 and RHF-15 sausages (P < 0.05). In addition, RHF improved the taste, juiciness, appearance, and overall acceptance of beef sausages. These findings suggest that RHF can be a valuable ingredient in beef sausages by increasing fiber content, reducing oxidative degradation, and maintaining sensory quality despite some moisture loss.
Collapse
Affiliation(s)
- Kazeem D Adeyemi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria.
| | - Isiaka O Kolade
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Amidat O Siyanbola
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Faidhat O Bhadmus
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Rafiat M Shittu
- Department of Food Science and Technology, Faculty of Agriculture, Kwara State University, Malete, Nigeria
| | - Hakeem Ishola
- Department of Animal Production, Faculty of Agriculture, Kwara State University, Malete, Nigeria
| | - Chanporn Chaosap
- Department of Agricultural Education, School of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Panneepa Sivapirunthep
- Department of Agricultural Education, School of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Kehinde M Okukpe
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Victoria O Chimezie
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Oluwasayope I Alli
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Rasheed O Sulaimon
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Babatunde H Ajao
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| |
Collapse
|
5
|
Weng G, Yu M, Deng C, Liu Y, Song M, Deng J, Yin Y, Ma X, Deng D. Effects of dietary Brevibacillus laterosporus BL1 supplementation on meat quality, antioxidant capacity, and the profiles of muscle amino acids and fatty acids in finishing pigs. Meat Sci 2025; 219:109646. [PMID: 39260183 DOI: 10.1016/j.meatsci.2024.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Consumer demand for tastier and higher-quality pork is increasing. Probiotics have been reported to improve meat quality, but the species of probiotics are limited, and efficacy is discrete. This study investigated the effects of dietary Brevibacillus laterosporus BL1 (live and heat-killed form) supplementation on the meat quality of finishing pigs. Results revealed that both live and heat-killed B. laterosporus BL1 supplementation increased pH24h and decreased drip loss (P < 0.05) compared to the control group (CON). Moreover, compared to the CON group, heat-killed B. laterosporus BL1 supplementation exhibited a stronger ability to improve meat quality (redness, shear force, inosine monophosphate, and intramuscular fat content, P < 0.05), antioxidant capacity, and free amino acid profiles of longissimus thoracis (LT) than live bacteria without impairing porcine growth performance. Further, heat-killed B. laterosporus BL1 supplementation favored up-regulating the expression of genes related to oxidative-type fiber in LT (P < 0.05). Proteomic analysis confirmed that Gene Ontology items related to oxidative metabolism were subsequently enriched with heat-killed B. laterosporus BL1 treatment in LT (P < 0.05). Overall, dietary heat-killed B. laterosporus BL1 supplementation may improve the meat quality of finishing pigs, which provides application guidance for B. laterosporus BL1 in producing higher-quality pork.
Collapse
Affiliation(s)
- Guangying Weng
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China; Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Miao Yu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Chenxi Deng
- Department of Animal Science and Technology, Jiangxi Biotech Vocational College, Nanchang, Jiangxi 330200, China
| | - Yucheng Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Min Song
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong 510642, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xianyong Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China.
| | - Dun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
6
|
Ahamba IS, Mary-Cynthia Ikele C, Kimpe L, Goswami N, Wang H, Li Z, Ren Z, Dong X. Unraveling the genetic and epigenetic landscape governing intramuscular fat deposition in rabbits: Insights and implications. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100222. [PMID: 39290671 PMCID: PMC11406001 DOI: 10.1016/j.fochms.2024.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
Intramuscular fat (IMF) content is a predominant factor recognized to affect rabbit meat quality, directly impacting flavor, juiciness, and consumer preference. Despite its significance, the major interplay of genetic and epigenetic factors regulating IMF in rabbits remains largely unexplored. This review sheds light on this critical knowledge gap, offering valuable insights and future directions. We delve into the potential role of established candidate genes from other livestock (e.g. PPARγ, FABP4, and SCD) in rabbits, while exploring the identified novel genes of IMF in rabbits. Furthermore, we explored the quantitative trait loci studies in rabbit IMF and genomic selection approaches for improving IMF content in rabbits. Beyond genetics, this review unveils the exciting realm of epigenetic mechanisms modulating IMF deposition. We explored the potential of DNA methylation patterns, histone modifications, and non-coding RNA-mediation as fingerprints for selecting rabbits with desirable IMF levels. Additionally, we explored the possibility of manipulating the epigenetic landscape through nutraceuticals interventions to promote favorable IMF depositions. By comprehensively deciphering the genomic and epigenetic terrain of rabbit intramuscular fat regulation, this study aims to assess the existing knowledge regarding the genetic and epigenetic factors that control the deposition of intramuscular fat in rabbits. By doing so, we identified gaps in the current research, and suggested potential areas for further investigation that would enhance the quality of rabbit meat. This can enable breeders to develop targeted breeding strategies, optimize nutrition, and create innovative interventions to enhance the quality of rabbit meat, meet consumer demands and increase market competitiveness.
Collapse
Affiliation(s)
- Ifeanyi Solomon Ahamba
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | | | - Lionel Kimpe
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Naqash Goswami
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Hui Wang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Zhen Li
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| |
Collapse
|
7
|
Liu T, Lei H, Zhen X, Liu J, Xie W, Tang Q, Gou D, Zhao J. Advancements in modifying insoluble dietary fiber: Exploring the microstructure, physicochemical properties, biological activity, and applications in food industry-A review. Food Chem 2024; 458:140154. [PMID: 38944924 DOI: 10.1016/j.foodchem.2024.140154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Recent research has primarily focused on strategies for modifying insoluble dietary fiber (IDF) to enhance its performance and functionality. IDF is obtained from various inexpensive sources and can be manipulated to alter its biological effects, making it possible to revolutionize food processing and nutrition. In this review, multiple IDF modification techniques are thoroughly examined and discussed, with particular emphasis on the resulting changes in the physicochemical properties, biological activities, and microstructure of the fiber. An extensive overview of the practical applications of modified IDF in food processing is provided. Our study aims to raise awareness about the vast possibilities presented by modified IDF and encourage further exploration and utilization of this field in the realm of food production.
Collapse
Affiliation(s)
- Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyu Lei
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xinyu Zhen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jiaxing Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Wenlong Xie
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Qilong Tang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
8
|
Espinales C, Baldeón M, Bravo C, Toledo H, Carballo J, Romero-Peña M, Cáceres PJ. Strategies for Healthier Meat Foods: An Overview. Prev Nutr Food Sci 2024; 29:18-30. [PMID: 38576885 PMCID: PMC10987382 DOI: 10.3746/pnf.2024.29.1.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 04/06/2024] Open
Abstract
Functional food products remain the focus of current market trends toward healthier nutrition. The consumption of meat-based functional foods has been a topic of interest in food innovation since some of these products generate controversy due to their possible adverse effects on health. However, studies have demonstrated that meat-based functional products are considered an opportunity to improve the nutritional profile of meat products through the addition of biologically valuable components and to meet the specific needs of consumers. In this sense, some strategies and techniques are applied for processing and developing functional meat products, such as modifying carcass composition through feeding, reformulating meat products, and processing conditions. This review focuses on presenting developed and evaluated strategies that allow the production of healthy and functional meat foods, which application has successfully achieved the sensory, nutritional, and technological parameters mainly affected by such application.
Collapse
Affiliation(s)
- Cindy Espinales
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - María Baldeón
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - Cinthya Bravo
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - Howard Toledo
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - José Carballo
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid 28040, Spain
| | - María Romero-Peña
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
- Saskatchewan Food Industry Development Centre (SFIDC), Saskatoon S7M 5V1, Canada
| | - Patricio J. Cáceres
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| |
Collapse
|
9
|
Santos B, Farias JHA, Simões MM, Medeiros MAA, Alves MS, Diniz AF, Soares APO, Cavalcante APTM, Silva BJN, Almeida JCS, Lemos JO, Rocha LES, Santos LC, Azevedo MLG, Vieira SWF, Araújo VE, Oliveira Filho AA. Evaluation of the antimicrobial activity of Eucalyptus radiata essential oil against Escherichia coli strains isolated from meat products. BRAZ J BIOL 2024; 84:e281361. [PMID: 38451631 DOI: 10.1590/1519-6984.281361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
The present study sought to evaluate the antimicrobial and anti-adherent potential of Eucalyptus radiata essential oil against food-borne strains of Escherichia coli. The study was performed using the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). In addition, the disk diffusion technique was used to evaluate the association of Eucalyptus radiata essential oil with synthetic antimicrobials. The Minimum Inhibitory Adherence Concentration (MIC) was also performed. The results revealed that E. radiata showed antimicrobial activity against the E. coli strains tested, with MIC values ranging from 500 μg/mL to 1000 μg/mL and MBC values ranging from 500 μg/mL to 1,024 μg/mL. As for the associations, it was observed that E. radiata oil exhibited a synergistic effect for some antibiotics, especially Ceftriaxone, with greater interference from the essential oil. Furthermore, it was effective in inhibiting the adherence of bacterial strains of E. coli, showing a more significant antibiofilm effect than the antibacterial agent 0.12% chlorhexidine digluconate. In summary, the essential oil of E. radiata showed antimicrobial potential against strains of E. coli of food origin, and can therefore, through in-depth studies, be used alone or in association with synthetic antimicrobials to combat infections caused by this pathogen.
Collapse
Affiliation(s)
- B Santos
- Universidade Federal de Campina Grande - UFCG, Programa de Pós-graduação em Ciência e Saúde Animal, Patos, PB, Brasil
| | - J H A Farias
- Universidade Federal de Campina Grande - UFCG, Programa de Pós-graduação em Ciência e Saúde Animal, Patos, PB, Brasil
| | - M M Simões
- Universidade Federal de Campina Grande - UFCG, Programa de Pós-graduação em Ciência e Saúde Animal, Patos, PB, Brasil
| | - M A A Medeiros
- Universidade Federal de Campina Grande - UFCG, Programa de Pós-graduação em Ciência e Saúde Animal, Patos, PB, Brasil
| | - M S Alves
- Universidade Federal de Campina Grande - UFCG, Programa de Pós-graduação em Ciência e Saúde Animal, Patos, PB, Brasil
| | - A F Diniz
- Universidade Federal de Campina Grande - UFCG, Programa de Pós-graduação em Ciência e Saúde Animal, Patos, PB, Brasil
| | - A P O Soares
- Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | | | - B J N Silva
- Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | - J C S Almeida
- Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | - J O Lemos
- Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | - L E S Rocha
- Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | - L C Santos
- Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | - M L G Azevedo
- Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | - S W F Vieira
- Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | - V E Araújo
- Universidade Federal de Campina Grande - UFCG, Patos, PB, Brasil
| | | |
Collapse
|
10
|
Mao J, Wang X, Chen H, Zhao Z, Liu D, Zhang Y, Nie X. The Contribution of Microorganisms to the Quality and Flavor Formation of Chinese Traditional Fermented Meat and Fish Products. Foods 2024; 13:608. [PMID: 38397585 PMCID: PMC10888149 DOI: 10.3390/foods13040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Guizhou sour meat and sour fish, Chaoshan fish sauce, Sichuan sausage and bacon, Cantonese sausage, Jinhua ham, and Xinjiang air-dried beef are eight representatives of Chinese traditional fermented meat and fish products (FMFPs), which are favored by Chinese consumers due to their high nutritional value and quality. The quality of the spontaneously fermented Chinese traditional FMFP is closely correlated with microorganisms. Moreover, the dominant microorganisms are significantly different due to regional differences. The effects of microorganisms on the texture, color, flavor, nutrition, functional properties, and safety of Chinese traditional FMFPs have not been not fully described. Additionally, metabolic pathways for flavor formation of Chinese traditional FMFPs have not well been summarized. This article describes the seven characteristic Chinese traditional FMFPs and correlated dominant microorganisms in different regions of China. The effects of microorganisms on the texture, color, and flavor of Chinese traditional FMFPs are discussed. Furthermore, the metabolic pathways of microbial regulation of flavor formation in Chinese traditional FMFPs are proposed. This work provides a theoretical basis for improvement of Chinese traditional FMFPs by inoculating functional microorganisms isolated from Chinese traditional fermented foods.
Collapse
Affiliation(s)
- Jingjing Mao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinyi Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Hongfan Chen
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Zhiping Zhao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xin Nie
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|
11
|
Dong S, Li L, Hao F, Fang Z, Zhong R, Wu J, Fang X. Improving quality of poultry and its meat products with probiotics, prebiotics, and phytoextracts. Poult Sci 2024; 103:103287. [PMID: 38104412 PMCID: PMC10966786 DOI: 10.1016/j.psj.2023.103287] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Remarkable changes have occurred in poultry farming and meat processing in recent years, driven by advancements in breeding technology, feed processing technology, farming conditions, and management practices. The incorporation of probiotics, prebiotics, and phytoextracts has made significant contributions to the development of poultry meat products that promote both health and functionality throughout the growth phase and during meat processing. Poultry fed with these substances improve meat quality, while incorporating probiotics, prebiotics, and phytoextracts in poultry processing, as additives or supplements, inhibits pathogens and offers health benefits to consumers. However, it is vital to assess the safety of functional fermented meat products containing these compounds and their potential effects on consumer health. Currently, there's still uncertainty in these aspects. Additionally, research on utilizing next-generation probiotic strains and synergistic combinations of probiotics and prebiotics in poultry meat products is in its early stages. Therefore, further investigation is required to gain a comprehensive understanding of the beneficial effects and safety considerations of these substances in poultry meat products in the future. This review offered a comprehensive overview of the applications of probiotics and prebiotics in poultry farming, focusing on their effects on nutrient utilization, growth efficiency, and gut health. Furthermore, potential of probiotics, prebiotics, and phytoextracts in enhancing poultry meat production was explored for improved health benefits and functionality, and possible issues associated with the use of these substances were discussed. Moreover, the conclusions drawn from this review and potential future perspectives in this field are presented.
Collapse
Affiliation(s)
- Sashuang Dong
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Lanyin Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Fanyu Hao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Ziying Fang
- Weiran Food Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518000, PR China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Jianfeng Wu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
12
|
Mishra BP, Mishra J, Paital B, Rath PK, Jena MK, Reddy BVV, Pati PK, Panda SK, Sahoo DK. Properties and physiological effects of dietary fiber-enriched meat products: a review. Front Nutr 2023; 10:1275341. [PMID: 38099188 PMCID: PMC10720595 DOI: 10.3389/fnut.2023.1275341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
Meat is a rich source of high biological proteins, vitamins, and minerals, but it is devoid of dietary fiber, an essential non-digestible carbohydrate component such as cellulose, hemicellulose, pectin, lignin, polysaccharides, and oligosaccharides. Dietary fibers are basically obtained from various cereals, legumes, fruits, vegetables, and their by-products and have numerous nutritional, functional, and health-benefiting properties. So, these fibers can be added to meat products to enhance their physicochemical properties, chemical composition, textural properties, and organoleptic qualities, as well as biological activities in controlling various lifestyle ailments such as obesity, certain cancers, type-II diabetes, cardiovascular diseases, and bowel disorders. These dietary fibers can also be used in meat products as an efficient extender/binder/filler to reduce the cost of production by increasing the cooking yield as well as by reducing the lean meat content and also as a fat replacer to minimize unhealthy fat content in the developed meat products. So, growing interest has been observed among meat processors, researchers, and scientists in exploring various new sources of dietary fibers for developing dietary fiber-enriched meat products in recent years. In the present review, various novel sources of dietary fibers, their physiological effects, their use in meat products, and their impact on various physicochemical, functional, and sensory attributes have been focused.
Collapse
Affiliation(s)
- Bidyut Prava Mishra
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | | | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - B. V. Vivekananda Reddy
- Department of Livestock Products Technology, NTR College of Veterinary Science, Gannavaram, India
| | - Prasad Kumar Pati
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Susen Kumar Panda
- College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
13
|
Malik A, Khan JM, Al-Amri AM, Altwaijry N, Sharma P, Alhomida A, Sen P. Hexametaphosphate, a Common Food Additive, Aggregated the Hen Egg White Lysozyme. ACS OMEGA 2023; 8:44086-44092. [PMID: 38027328 PMCID: PMC10666150 DOI: 10.1021/acsomega.3c06210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Polyphosphate polymers are chains of phosphate monomers chemically bonded together via phosphoanhydride bonds. They are found in all prokaryotic and eukaryotic organisms and are among the earliest, most anionic, and most mysterious molecules known. They are everywhere, from small cellular components to additives in our food. There is a strong association between hyperphosphatemia and mortality. That is why it is crucial to assess how polyphosphates, as food additives, affect the quality of edible proteins. This study investigated the effect of inexpensive and widely used food additives (hexametaphosphate labeled as E452) on bakery items, meat products, fish, and soft drinks. Using various spectroscopic and microscopic techniques, we examined how hexametaphosphate affected the aggregation propensity, structure, and stability of a commonly used food protein: hen egg white lysozyme (HEWL). The solubility of HEWL is affected in a bimodal fashion by the concentration of hexametaphosphate. The bimodal concentration-dependent effect was also observed in the tertiary and secondary structural changes. Hexametaphosphate-induced HEWL aggregates were amorphous, as evidenced by ThT fluorescence, far-UV CD, and TEM imaging. This study showed that the food additive (hexametaphosphate) may denature and aggregate proteins and may lead to undesirable health issues.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department
of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz M. Al-Amri
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Nojood Altwaijry
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Prerna Sharma
- Geisinger
Commonwealth School of Medicine Scranton, Scranton, Pennsylvania 18509-3240, United States
| | - Abdullah Alhomida
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Priyankar Sen
- Centre
for Bioseparation Technology, VIT University, Vellore 632014, India
| |
Collapse
|
14
|
Diniz AF, Santos B, Nóbrega LMMO, Santos VRL, Mariz WS, Cruz PSC, Nóbrega RO, Silva RL, Paula AFR, Santos JRDA, Pessôa HLF, Oliveira-Filho AA. Antibacterial activity of Thymus vulgaris (thyme) essential oil against strains of Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus saprophyticus isolated from meat product. BRAZ J BIOL 2023; 83:e275306. [PMID: 37585936 DOI: 10.1590/1519-6984.275306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 08/18/2023] Open
Abstract
Meat products represent an important component of the human diet and are a good source of nutrients. Food-borne microorganisms are the main pathogens that cause human diseases as a result of food consumption, especially products of animal origin. The objective of the present research was to verify the antibacterial activity of the essential oil of Thymus vulgaris against strains of Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus saprophyticus isolated from meat products. For this, the analyses of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were performed in microdilution plates. The association of the product with antimicrobials was also studied using disk diffusion. And the anti-adherent activity, which was determined in the presence of sucrose, in glass tubes. Thyme oil showed a strong inhibitory activity against K. pneumoniae, P. aeruginosa and S. saprophyticus, with the MIC values ranging from 64 to 512 μg/mL, and bactericidal effect for most strains, with MBC values ranging from 256 to 1,024 μg/mL. T. vulgaris oil exhibited varied interactions in association with the antimicrobials, with synergistic (41.67%), indifferent (50%) and antagonistic (8.33%) effects. Regarding the anti-adherent activity, the test product was effective in inhibiting the adherence of all bacterial strains under study. Therefore, thyme oil presents itself as an antibacterial and anti-adherent agent against K. pneumoniae, P. aeruginosa and S. saprophyticus, being a natural product that can represent an interesting alternative in the efforts to combat foodborne diseases.
Collapse
Affiliation(s)
- A F Diniz
- Universidade Federal de Campina Grande - UFCG, Centro de Saúde e Tecnologia Rural, Programa de Pós-graduação em Ciência e Saúde Animal, Patos, PB, Brasil
| | - B Santos
- Universidade Federal de Campina Grande - UFCG, Centro de Saúde e Tecnologia Rural, Programa de Pós-graduação em Ciência e Saúde Animal, Patos, PB, Brasil
| | - L M M O Nóbrega
- Universidade Federal de Campina Grande - UFCG, Centro de Saúde e Tecnologia Rural, Programa de Pós-graduação em Ciência e Saúde Animal, Patos, PB, Brasil
| | - V R L Santos
- Universidade Federal de Campina Grande - UFCG, Centro de Saúde e Tecnologia Rural, Programa de Pós-graduação em Ciência e Saúde Animal, Patos, PB, Brasil
| | - W S Mariz
- Universidade Federal de Campina Grande - UFCG, Centro de Saúde e Tecnologia Rural, Programa de Pós-graduação em Ciência e Saúde Animal, Patos, PB, Brasil
| | - P S C Cruz
- Universidade Federal de Campina Grande - UFCG, Centro de Saúde e Tecnologia Rural, Programa de Pós-graduação em Ciência e Saúde Animal, Patos, PB, Brasil
| | - R O Nóbrega
- Universidade Federal da Paraíba - UFPB, Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica de Medicamentos, João Pessoa, PB, Brasil
| | - R L Silva
- Universidade Federal da Paraíba - UFPB, Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica de Medicamentos, João Pessoa, PB, Brasil
| | - A F R Paula
- Universidade Federal da Paraíba - UFPB, Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica de Medicamentos, João Pessoa, PB, Brasil
| | - J R D A Santos
- Universidade Federal da Paraíba - UFPB, Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica de Medicamentos, João Pessoa, PB, Brasil
| | - H L F Pessôa
- Universidade Federal da Paraíba - UFPB, Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica de Medicamentos, João Pessoa, PB, Brasil
| | - A A Oliveira-Filho
- Universidade Federal de Campina Grande - UFCG, Centro de Saúde e Tecnologia Rural, Programa de Pós-graduação em Ciência e Saúde Animal, Patos, PB, Brasil
| |
Collapse
|
15
|
Untea AE, Varzaru I, Saracila M, Panaite TD, Oancea AG, Vlaicu PA, Grosu IA. Antioxidant Properties of Cranberry Leaves and Walnut Meal and Their Effect on Nutritional Quality and Oxidative Stability of Broiler Breast Meat. Antioxidants (Basel) 2023; 12:antiox12051084. [PMID: 37237949 DOI: 10.3390/antiox12051084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Dietary sources of bioactive compounds in animal diets, are the natural way to produce animal food products with improved nutritional quality. The present study aimed to test the hypothesis of a synergistic effect of bioactive compounds of cranberry leaf powder and walnut meal on the nutritional quality and antioxidant compounds of broiler meat. An experiment was conducted on 160 COBB 500 broiler chickens, housed in an experimental hall with permanent wood shave litter in boxes of 3 m2. The six dietary treatments were based on corn and soybean meal; three experimental groups were fed diets supplemented with cranberry leaves (CLs) with three inclusion rates (0% in the control group and CL 1% and CL 2%); two experimental groups were fed diets supplemented with walnut meal (WM) with two inclusion rates (0% and WM 6%); and two groups were fed diets with a combination of the selected supplements (CL 1% WM 6% and CL 2% WM 6%). The results show that the experimental groups registered higher concentrations of copper and iron compared with the control group. An antagonist effect was noticed on lipophilic compounds, and the lutein and zeaxanthin concentrations presented a dose-dependent increasing effect under CL influence, while vitamin E concentrations decreased in the same manner. The dietary WM positively influenced vitamin E deposits on breast tissue. The dietary supplements did not produce any effect on the primary oxidation products, but the secondary products were influenced, and the maximum effect on the TBARS values were recorded for the dietary combination of CL 1% and WM 6%.
Collapse
Affiliation(s)
- Arabela Elena Untea
- Food and Feed Quality Laboratory, National Research and Development Institute for Biology and Animal Nutrition, 077015 Balotesti, Ilfov, Romania
| | - Iulia Varzaru
- Food and Feed Quality Laboratory, National Research and Development Institute for Biology and Animal Nutrition, 077015 Balotesti, Ilfov, Romania
| | - Mihaela Saracila
- Food and Feed Quality Laboratory, National Research and Development Institute for Biology and Animal Nutrition, 077015 Balotesti, Ilfov, Romania
| | - Tatiana Dumitra Panaite
- Nutrition Physiology Laboratory, National Research and Development Institute for Biology and Animal Nutrition, 077015 Balotesti, Ilfov, Romania
| | - Alexandra Gabriela Oancea
- Food and Feed Quality Laboratory, National Research and Development Institute for Biology and Animal Nutrition, 077015 Balotesti, Ilfov, Romania
| | - Petru Alexandru Vlaicu
- Food and Feed Quality Laboratory, National Research and Development Institute for Biology and Animal Nutrition, 077015 Balotesti, Ilfov, Romania
| | - Iulian Alexandru Grosu
- Animal Biology Laboratory, National Research and Development Institute for Biology and Animal Nutrition, 077015 Balotesti, Ilfov, Romania
| |
Collapse
|
16
|
Indiarto R, Irawan AN, Subroto E. Meat Irradiation: A Comprehensive Review of Its Impact on Food Quality and Safety. Foods 2023; 12:1845. [PMID: 37174383 PMCID: PMC10178114 DOI: 10.3390/foods12091845] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Food irradiation is a proven method commonly used for enhancing the safety and quality of meat. This technology effectively reduces the growth of microorganisms such as viruses, bacteria, and parasites. It also increases the lifespan and quality of products by delaying spoilage and reducing the growth of microorganisms. Irradiation does not affect the sensory characteristics of meats, including color, taste, and texture, as long as the appropriate dose is used. However, its influence on the chemical and nutritional aspects of meat is complex as it can alter amino acids, fatty acids, and vitamins as well as generate free radicals that cause lipid oxidation. Various factors, including irradiation dose, meat type, and storage conditions, influence the impact of these changes. Irradiation can also affect the physical properties of meat, such as tenderness, texture, and water-holding capacity, which is dose-dependent. While low irradiation doses potentially improve tenderness and texture, high doses negatively affect these properties by causing protein denaturation. This research also explores the regulatory and public perception aspects of food irradiation. Although irradiation is authorized and controlled in many countries, its application is controversial and raises concerns among consumers. Food irradiation is reliable for improving meat quality and safety but its implication on the chemical, physical, and nutritional properties of products must be considered when determining the appropriate dosage and usage. Therefore, more research is needed to better comprehend the long-term implications of irradiation on meat and address consumer concerns.
Collapse
Affiliation(s)
- Rossi Indiarto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | | |
Collapse
|
17
|
Augustyńska-Prejsnar A, Kačániová M, Ormian M, Topczewska J, Sokołowicz Z. Quality and Microbiological Safety of Poultry Meat Marinated with the Use of Apple and Lemon Juice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3850. [PMID: 36900861 PMCID: PMC10001127 DOI: 10.3390/ijerph20053850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The aim of the study was to evaluate the use of apple juice for the marinating of poultry meat and its effect on the technological as well as sensory characteristics and microbiological safety of the raw product after heat treatment. Broiler chicken breast muscles were marinated for 12 h in apple juice (n = 30), a mixture of apple and lemon juice (n = 30) and compared with those in lemon juice (n = 30). The control group (n = 30) consisted of unmarinated breast muscles. Following the evaluation of the technological parameters (pH, L*, a*, b* colour, cutting force, cooking losses) quantitative and qualitative microbiological evaluations were performed on the raw and roasted products. The microbiological parameters were determined as total Mesophilic aerobic microorganisms, Enterobacteriaceae family, and Pseudomonas count. The bacterial identification was performed using a matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. The marinating resulted in lower pH value, but increased tenderness of raw and roasted products. Marinating chicken meat in both apple and lemon juices, including their mixtures and in the control sample, resulted in increased yellow saturation (b*). The highest flavour desirability and overall desirability were obtained in products marinated using a mixture of apple and lemon juice, while the most desirable aroma was obtained from products marinated with apple juice. A significant antimicrobial effect was observed in marinated meat products compared to unmarinated, irrespective of the type of marinade used. The lowest microbial reduction was observed in the roasted products. Apple juice can be used as a meat marinade because it promotes interesting sensory properties and improves the microbiological stability of poultry meat while maintaining the product's good technological characteristics. It makes a good combination with the addition of lemon juice.
Collapse
Affiliation(s)
- Anna Augustyńska-Prejsnar
- Department of Animal Production and Poultry Products Evaluation, Institute of Food Technology and Nutrition, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, 94976 Nitra, Slovakia
| | - Małgorzata Ormian
- Department of Animal Production and Poultry Products Evaluation, Institute of Food Technology and Nutrition, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Jadwiga Topczewska
- Department of Animal Production and Poultry Products Evaluation, Institute of Food Technology and Nutrition, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Zofia Sokołowicz
- Department of Animal Production and Poultry Products Evaluation, Institute of Food Technology and Nutrition, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
18
|
Bogucka J, Stadnicka K. Quality of poultry meat- the practical issues and knowledge based solutions. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2021-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Abstract
Animal protein is the most demanded and expensive source of nutritive protein, globally. Taking into account various types of poultry, the broiler (meat-type poultry) is widely accepted by various religious societies and relatively cheap amongst others animal protein sources. In particular, the chicken and turkey product is perceived to be healthier and of better quality due to a low content of fat, cholesterol and sodium compared to red meat. In order to maintain an unabated development and competitiveness of poultry industry, the priority is to focus on quality and safety of meat, during whole production and processing route. Consumers awareness of what should be considered a high quality product is constantly increasing, especially in the light of European and worldwide strategies to meet the common societal and environmental challenges, i.e. addressing the Zero Hunger goals, Green Deal and One Health concept. In this chapter, a common area of interest for a dialogue of poultry scientists and industrial practitioners is drawn from the background given on the consumer (demands and health)-centered issues.
Collapse
Affiliation(s)
- Joanna Bogucka
- The Independent Research Laboratory STANLAB LLC , Nakło nad Notecią , Poland
| | - Katarzyna Stadnicka
- Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Lu kasiewicza 1 , 85-821 , Bydgoszcz , Poland
| |
Collapse
|
19
|
Camprini L, Pellegrini M, Comi G, Iacumin L. Effects of anaerobic and respiratory adaptation of Lacticaseibacillus casei N87 on fermented sausages production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1044357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Lacticaseibacillus casei N87 was used as starter culture for the production of fermented sausages. The strain was cultivated in anaerobic (A) and respiratory (growth in presence of oxygen and supplementation with haeme and menaquinone in the growth medium; R) conditions. Control without the starter culture inoculation and with the addition of 150 mg/kg of nitrate was also included. The effect on physico-chemical parameters (pH, Aw, weight loss, and color), microbial population, volatilome, proteolysis as well as the survival of the strain was evaluated during 90 days of ripening. Q-PCR and DGGE-PCR analyses demonstrated the ability of the strain used in this study to adapt to this environment and carry out the sausage's fermentation process. The inoculation of the strain did not have any effect on the Aw values, which decreased similarly in the different samples whereas the pH was lower in A samples (5.2) and the weight loss in R samples (2.5% less than the others). The color parameters of the samples inoculated with the starter cultures were comparable to those of the control added with nitrate. The concentration of aldehydes that usually are identified as marker of oxidation processes was similar in the samples inoculated with the starter cultures adapted under respiratory conditions and in the control. On the contrary, a higher level was detected in the samples inoculated with the starter cultivated under anaerobic conditions. The proteolysis that occurred during the ripening indicates the differentiation of the A samples from the others. Nonetheless, the volatile profiles of the inoculated fermented sausages were similar. The study demonstrated that aerobic adaptation of Lcb. casei N87 starter culture gave similar color parameters and amounts of aldehydes in sausages fermentations without nitrate compared to conventional fermentations with nitrate.
Collapse
|
20
|
Sallan S, Yılmaz Oral ZF, Kaya M. A Review on the Role of Lactic Acid Bacteria in the Formation and Reduction of Volatile Nitrosamines in Fermented Sausages. Foods 2023; 12:foods12040702. [PMID: 36832777 PMCID: PMC9955677 DOI: 10.3390/foods12040702] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Nitrosamines are N-nitroso compounds with carcinogenic, mutagenic and teratogenic properties. These compounds could be found at certain levels in fermented sausages. Fermented sausages are considered to be a suitable environment for nitrosamine formation due to acid formation and reactions such as proteolysis and lipolysis during ripening. However, lactic acid bacteria (spontaneous or starter culture), which constitute the dominant microbiota, contribute significantly to nitrosamine reduction by reducing the amount of residual nitrite through nitrite degradation, and pH decrease has an important effect on the residual nitrite amount as well. These bacteria also play an indirect role in nitrosamine reduction by suppressing the growth of bacteria that form precursors such as biogenic amines. In recent years, research interest has focused on the degradation or metabolization of nitrosamines by lactic acid bacteria. The mechanism by which these effects are seen has not been fully understood yet. In this study, the roles of lactic acid bacteria on nitrosamine formation and their indirect or direct effects on reduction of volatile nitrosamines are discussed.
Collapse
Affiliation(s)
- Selen Sallan
- Department of Food Processing, Bandırma Vocational School, Bandırma Onyedi Eylul University, 10200 Balıkesir, Türkiye
| | - Zeynep Feyza Yılmaz Oral
- Department of Food Technology, Erzurum Vocational School, Atatürk University, 25240 Erzurum, Türkiye
| | - Mükerrem Kaya
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, 25240 Erzurum, Türkiye
- Correspondence:
| |
Collapse
|
21
|
Al-Khalili M, Al-Habsi N, Rahman MS. Applications of date pits in foods to enhance their functionality and quality: A review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Graphical AbstractSummary of the abstract
Collapse
|
22
|
Wahyono T, Wahyuningsih R, Setiyawan A, Pratiwi D, Kurniawan T, Hariyadi S, Sholikin M, Jayanegara A, Triyannanto E, Febrisiantosa A. Effect of dietary selenium supplementation
(organic and inorganic) on carcass characteristics
and meat quality of ruminants: a meta-analysis. JOURNAL OF ANIMAL AND FEED SCIENCES 2023. [DOI: 10.22358/jafs/157555/2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Augustyńska-Prejsnar A, Topczewska J, Ormian M, Sokołowicz Z. Quality of Poultry Roast Enriched with Hemp Seeds, Hemp Oil, and Hemp Flour. Foods 2022; 11:foods11233907. [PMID: 36496715 PMCID: PMC9740602 DOI: 10.3390/foods11233907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to add natural hemp components to poultry roast recipes, to enhance their quality (physical, chemical, and sensory qualities of the product). Two variants of poultry roast (group P1 and P2) with a 10.2% addition of hemp components and a traditional equivalent with the participation of animal fat (group K) were tested. In the roast of group P1, the share of hemp seeds was 8%, hemp flour 0.2%, and hemp oil 2%; while in group P2, the proportions were 4%, 0.2%, and 6%, respectively. Roasts with hemp components were found to be characterized by a darker color; lower cooking losses; higher fiber content, and lower cholesterol and fat content; a favorable fatty acid ratio PUFA; n-3 and n-6; and acceptable sensory characteristics compared to the control group. Products with a higher (8%) share of hemp seeds contained more protein and fiber and were characterized by a higher degree of yellow saturation (b*), lower cooking losses after heat treatment, and a higher desirability of taste and better binding. Products in group P2, with a higher (6%) hemp oil content, had a lower cholesterol content and a lower proportion of SFA fatty acids and a higher proportion of omega-3 fatty acids, but were assessed as rated lower in terms of taste and binding.
Collapse
|
24
|
Shakil MH, Trisha AT, Rahman M, Talukdar S, Kobun R, Huda N, Zzaman W. Nitrites in Cured Meats, Health Risk Issues, Alternatives to Nitrites: A Review. Foods 2022; 11:3355. [PMID: 36359973 PMCID: PMC9654915 DOI: 10.3390/foods11213355] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/28/2022] [Accepted: 10/15/2022] [Indexed: 09/10/2023] Open
Abstract
Nitrite is one of the most widely used curing ingredients in meat industries. Nitrites have numerous useful applications in cured meats and a vital component in giving cured meats their unique characteristics, such as their pink color and savory flavor. Nitrites are used to suppress the oxidation of lipid and protein in meat products and to limit the growth of pathogenic microorganisms such as Clostridium botulinum. Synthetic nitrite is frequently utilized for curing due to its low expenses and easier applications to meat. However, it is linked to the production of nitrosamines, which has raised several health concerns among consumers regarding its usage in meat products. Consumer desire for healthier meat products prepared with natural nitrite sources has increased due to a rising awareness regarding the application of synthetic nitrites. However, it is important to understand the various activities of nitrite in meat curing for developing novel substitutes of nitrites. This review emphasizes on the effects of nitrite usage in meat and highlights the role of nitrite in the production of carcinogenic nitrosamines as well as possible nitrite substitutes from natural resources explored also.
Collapse
Affiliation(s)
- Mynul Hasan Shakil
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Anuva Talukder Trisha
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mizanur Rahman
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Suvro Talukdar
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Rovina Kobun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Wahidu Zzaman
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
25
|
Kaur R, Kaur L, Gupta TB, Singh J, Bronlund J. Multitarget preservation technologies for chemical-free sustainable meat processing. J Food Sci 2022; 87:4312-4328. [PMID: 36120824 PMCID: PMC9825855 DOI: 10.1111/1750-3841.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 01/11/2023]
Abstract
Due to the growing consumer demand for safe and naturally processed meats, the meat industry is seeking novel methods to produce safe-to-consume meat products without affecting their sensory appeal. The green technologies can maintain the sensory and nutritive characteristics and ensure the microbial safety of processed meats and, therefore, can help to reduce the use of chemical preservatives in meat products. The use of chemical additives, especially nitrites in processed meat products, has become controversial because they may form carcinogenic N-nitrosamines, a few of which are suspected as cancer precursors. Thus, the objective of reducing or eliminating nitrite is of great interest to meat researchers and industries. This review, for the first time, discusses the influence of processing technologies such as microwave, irradiation, high-pressure thermal processing (HPTP) and multitarget preservation technology on the quality characteristics of processed meats, with a focus on their sensory quality. These emerging technologies can help in the alleviation of ingoing nitrite or formed nitrosamine contents in meat products. The multitarget preservation technology is an innovative way to enhance the shelf life of meat products through the combined use of different technologies/natural additives. The challenges and opportunities associated with the use of these technologies for processing meat are also reviewed.
Collapse
Affiliation(s)
- Ramandeep Kaur
- School of Food and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand,Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| | - Lovedeep Kaur
- School of Food and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand,Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| | - Tanushree B. Gupta
- AgResearch Ltd, Hopkirk Research InstituteMassey UniversityPalmerston NorthNew Zealand
| | - Jaspreet Singh
- School of Food and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand,Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| | - John Bronlund
- School of Food and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand,Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| |
Collapse
|
26
|
Mafra JF, de Santana TS, Cruz AIC, Ferreira MA, Miranda FM, Araújo FM, Ribeiro PR, Evangelista-Barreto NS. Influence of red propolis on the physicochemical, microbiological and sensory characteristics of tilapia (Oreochromis niloticus) salami. Food Chem 2022; 394:133502. [PMID: 35728465 DOI: 10.1016/j.foodchem.2022.133502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
To reduce the number of preservatives in foods, this study evaluated the oxidative, microbiological, and sensory stability of fish salami containing a red propolis hydroalcoholic extract (RPHE) in place of the butyl hydroxytoluene (BHT) antioxidant. Initially, the RPHE was characterized chemically and biologically. Subsequently, the antimicrobial and physicochemical activity of the most accepted salami formulation in sensory analysis (F3 = 0.4% RPHE) and of the control formulations (F1 = 0.01% BHT and F5 = without antioxidant) were evaluated during the maturation. RPHE showed promising biological activity. 16 chemical compounds were identified in the RPHE, including the chemical marker formononetin. Salami with 0.4% RPHE showed high sensory acceptance and effectively delayed deterioration (19.67 mg TVB-N 100/g) and lipid oxidation of salami (0.7 mg MDA eq/kg). The use of RPHE as a natural preservative is promising to produce fish salami.
Collapse
Affiliation(s)
- Jéssica Ferreira Mafra
- Centro de Ciências Agrárias, Ambiental e Biológicas - CCAAB, Núcleo de Estudos em Pesca e Aquicultura - NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas 44380 000, Bahia, Brazil
| | - Tiago Sampaio de Santana
- Centro de Ciências Agrárias, Ambiental e Biológicas - CCAAB, Núcleo de Estudos em Pesca e Aquicultura - NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas 44380 000, Bahia, Brazil
| | - Alexsandra Iarlen Cabral Cruz
- Centro de Ciências Agrárias, Ambiental e Biológicas - CCAAB, Núcleo de Estudos em Pesca e Aquicultura - NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas 44380 000, Bahia, Brazil
| | - Mariza Alves Ferreira
- Centro de Ciências Agrárias, Ambiental e Biológicas - CCAAB, Núcleo de Estudos em Pesca e Aquicultura - NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas 44380 000, Bahia, Brazil
| | - Fabrício Mendes Miranda
- Centro de Ciências Agrárias Ambientais e Biológicas-CCAAB, Laboratório de Química, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil
| | - Floricéa Magalhães Araújo
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115 Salvador, Brazil
| | - Paulo Roberto Ribeiro
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115 Salvador, Brazil
| | - Norma Suely Evangelista-Barreto
- Centro de Ciências Agrárias, Ambiental e Biológicas - CCAAB, Núcleo de Estudos em Pesca e Aquicultura - NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas 44380 000, Bahia, Brazil.
| |
Collapse
|
27
|
Yılmaz E, Toksöz B. Flaxseed oil-wax oleogels replacement for tallowfat in sucuk samples provided higher concentrations of polyunsaturated fatty acids and aromatic volatiles. Meat Sci 2022; 192:108875. [PMID: 35671628 DOI: 10.1016/j.meatsci.2022.108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
The aims of the present study were to partially replace tallowfat with oleogels in sucuk formulations, and compare the samples. Flaxseed oil-sunflower wax (SWO) and beeswax oleogels (BWO) were included at 17.17% in the same recipe against control with tallowfat. Sucuk-BWO had higher fat and lower moisture contents. There were color and pH differences, and weight (16.56%) and cooking loss (16.03%) values were highest in the control sample. Sucuk-SWO and Sucuk-BWO had around 32.20% and 33.32% of polyunsaturated fatty acids, while it was only 1.86% in the control sample. The instrumental texture values of oleogel-containing samples were usually lower. The number of volatiles were 11, 14, and 20 in control, Sucuk-SWO, and Sucuk-BWO samples. Almost all sensory descriptive attributes (appearance, hardness, chewiness, fattiness, juiciness, aroma, and flavor) were lower in the oleogel-containing samples. Likewise, consumer hedonic scores of the oleogel-containing samples were lower. Overall, oleogel replacement in sucuk yielded some nutritional benefits, but improvements are required for other quality traits.
Collapse
Affiliation(s)
- Emin Yılmaz
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Department of Food Engineering, 17020 Çanakkale, Turkey.
| | - Buse Toksöz
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Department of Food Engineering, 17020 Çanakkale, Turkey
| |
Collapse
|
28
|
Pomegranate ( Punica granatum L.) Peel Flour as Functional Ingredient for Chorizo: Effect Physicochemical and Sensory Characteristics of Functional Meat Products. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2022. [DOI: 10.2478/aucft-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Functional meat products are necessary to improve the health of consumers without detrimental effects on high biological value protein consumption. The incorporation of natural antioxidants and dietary fibre from agro-industrial coproducts is a good alternative to improve the nutritional characteristics of meat products. Pomegranate peel flour was employed as a functional ingredient to replace part of the fat, in a raw meat product like chorizo, determining changes in instrumental colour and texture, sensory acceptation, and neophobia. Pomegranate peel flour presented high content of polyphenols with considerable antioxidant activity, and high content of dietary fibre as well. Fibre retained moisture, decreasing water activity of the chorizos, decreasing pH during storage. Pomegranate peel flour increased the colour tone of the chorizos and decreased colour intensity, with a tough but easy to crumble texture. Sensory acceptation of chorizos with pomegranate peel flour was higher than control, although taste and texture were scored lower than the control sample. Results show that incorporation of pomegranate peel flour decreased Aw and pH, besides increased the samples luminosity and tone. Chorizo with pomegranate peel flour were harder than control. Nonetheless, as a functional ingredient improved health benefits with a positive consumers’ acceptance, non-neophobic, particularly in older consumers (40-50 years old). Pomegranate peel flour is a viable ingredient in the formulation of functional meat products.
Collapse
|
29
|
The Effect of the Addition of Hemp Seeds, Amaranth, and Golden Flaxseed on the Nutritional Value, Physical, Sensory Characteristics, and Safety of Poultry Pâté. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Food producers’ interest in improving the nutritional and pro-health values of meat products has grown. The study aims to assess the effect of replacing poultry pâté products wheat roll (24% group I) in recipes with a mixture of hemp seeds (8% each in groups II, III, IV), amaranth (10% group II, 6% group III, 8% group IV) and golden flaxseed (6% group II, 10% group III, 8% group IV). The quality assessment covered nutritional value, physical properties, the total number of bacteria and assessment of sensory characteristics. The findings indicate that replacing wheat roll with seed mixtures increased the nutritional value (protein, ash, fat, proportion of polyunsaturated and polyene acids) of pâtés in all groups while decreasing the proportion of saturated fatty acids and the ratio of omega-6/omega-3 acids (3:1). This resulted in enhanced brightness and hardness pâtés, as well as greater microbiological safety. Although the spread and firmness of pâtés with seed addition were rated lower than the control, their taste desirability and bonding were rated highest for pâté with 8% plant additives. Pâtés with 24% hemp, amaranth and flaxseed mixture fulfil the requirements to be referred to as functional meat products.
Collapse
|
30
|
Comparative Evaluation of the Effects of Different Dietary Fibers as Natural Additives on the Shelf Life of Cooked Sausages. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The incorporation of dietary fibers in meat and processed meats has been introduced as an approach to amend the nutritional quality and technological properties of the products. Objectives: This study explores the effects of four dietary fibers, including orange fiber (OF), wheat fiber (WF), bamboo fiber (BF), and carrot fiber (CF), on shelf life of emulsion-type cooked sausages. Methods: Microbiological and sensory analyses were performed to evaluate the shelf life of the treated products during 60 days of storage under refrigeration condition (4°C). Results: The results showed that all tested fibers improved the shelf life of the samples. The microbiological examinations revealed that while all the fibers could hinder the growth of spoilage bacteria, OF sample with the mesophilic, psychrotrophic, and lactic acid bacteria counts of 5.95, 4.78, and 5.27 log10 colony-forming unit per gram (CFU/g), respectively showed the highest microbiological quality at the end of the storage. Taste, odor, and overall acceptability of the samples were not significantly affected by the fibers, and texture was the sole sensory attribute that improved in the dietary fiber incorporated products, especially in the OF sample. Conclusions: According to our results, among the various fibers, OF is recommended to the meat industry to extend the shelf life of cooked sausages.
Collapse
|
31
|
Bulanda S, Janoszka B. Consumption of Thermally Processed Meat Containing Carcinogenic Compounds (Polycyclic Aromatic Hydrocarbons and Heterocyclic Aromatic Amines) versus a Risk of Some Cancers in Humans and the Possibility of Reducing Their Formation by Natural Food Additives-A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084781. [PMID: 35457645 PMCID: PMC9024867 DOI: 10.3390/ijerph19084781] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022]
Abstract
(1) Background: Thermal treatment of high-protein food may lead to the formation of mutagenic and carcinogenic compounds, e.g., polycyclic aromatic hydrocarbons and heterocyclic aromatic amines. Frequent consumption of processed meat was classified by the International Agency for Research on Cancer as directly carcinogenic for humans. (2) Methods: A literature review was carried out based on a search of online databases for articles on consuming thermally processed meat containing carcinogenic compounds versus a risk of cancers in humans published between 2001 and 2021. (3) Results: A review of the current literature on the participation of PAHs and HAA in the formation of certain neoplasms indicates a positive relationship between diet and the incidences of many cancers, especially colon cancer. A simple way to obtain dishes with reduced contents of harmful compounds is the use of spices and vegetables as meat additives. These seasonings are usually rich in antioxidants that influence the mechanism of HAA and PAH synthesis in food. (4) Conclusions: As there is a growing risk of a cancer tendency because of exposing humans to PAHs and HAAs, it is extremely vital to find a simple way to limit carcinogenic compound synthesis in a processed proteinaceous food. Disseminating the knowledge about the conditions for preparing dishes with a reduced content of carcinogenic compounds could become a vital element of cancer prevention programs.
Collapse
|
32
|
Inulin as a Fat-Reduction Ingredient in Pork and Chicken Meatballs: Its Effects on Physicochemical Characteristics and Consumer Perceptions. Foods 2022; 11:foods11081066. [PMID: 35454653 PMCID: PMC9032291 DOI: 10.3390/foods11081066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
Fat reduction in meat products represents a technological challenge, as it affects the physicochemical and sensory properties of foods. The objective of the present investigation was to develop reduced-fat pork and chicken meatballs. In the initial stage, a survey was performed on 387 individuals, in order to determine the consumer perception of the meaning of a healthy meatball and the likelihood that they would consume such a product. In the second stage, four pork and chicken meatball formulations were developed: control meatballs (AC), meatballs with inulin (AI), meatballs with fructo-oligosaccharides (AF), and meatballs with inulin and fructo-oligosaccharides (AM). In the third stage, physicochemical properties were evaluated (water activity, humidity, fat, protein, ash, weight loss, pH, color, and texture) and a sensorial profile was created with semi-trained panelists for the four meatball formulations. In the fourth stage, AI was selected as the meatball with sensorial and physicochemical characteristics most similar to AC. An analysis of nutritional characteristics and a home test (84 consumers) were performed. The present study established that the inclusion of inulin as a fat substitute in the preparation of pork and chicken meatballs, in the amount of 3.5 g of fiber/100 g of the mixture, imitates the technological properties characteristic of fat and showed acceptance by consumers.
Collapse
|
33
|
Šojić B, Putnik P, Danilović B, Teslić N, Bursać Kovačević D, Pavlić B. Lipid Extracts Obtained by Supercritical Fluid Extraction and Their Application in Meat Products. Antioxidants (Basel) 2022; 11:antiox11040716. [PMID: 35453401 PMCID: PMC9024703 DOI: 10.3390/antiox11040716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Supercritical fluid extraction (SFE) has been recognized as the green and clean technique without any negative impact on the environment. Although this technique has shown high selectivity towards lipophilic bioactive compounds, very few case studies on the application of these extracts in final products and different food matrices were observed. Considering the recent developments in food science and the increasing application of supercritical extracts in meat products in the last decade (2012–2022), the aim of this manuscript was to provide a systematic review of the lipid extracts and bioactives successfully obtained by supercritical fluid extraction and their application in meat products as antioxidant and/or antimicrobial agents. Lipophilic bioactives from natural resources were explained in the first step, which was followed by the fundamentals of supercritical fluid extraction and application on recovery of these bioactives. Finally, the application of natural extracts and bioactives obtained by this technique as functional additives in meat and meat products were thoroughly discussed in order to review the state-of-the-art techniques and set the challenges for further studies.
Collapse
Affiliation(s)
- Branislav Šojić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Predrag Putnik
- Department of Food Technology, University North, 48000 Koprivnica, Croatia;
| | - Bojana Danilović
- Faculty of Technology, University of Niš, 16000 Leskovac, Serbia;
| | - Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: (D.B.K.); (B.P.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
- Correspondence: (D.B.K.); (B.P.)
| |
Collapse
|
34
|
Manassi CF, de Souza SS, Hassemer GDS, Sartor S, Lima CMG, Miotto M, De Dea Lindner J, Rezzadori K, Pimentel TC, Ramos GLDPA, Esmerino E, Holanda Duarte MCK, Marsico ET, Verruck S. Functional meat products: Trends in pro-, pre-, syn-, para- and post-biotic use. Food Res Int 2022; 154:111035. [DOI: 10.1016/j.foodres.2022.111035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
|
35
|
The Effect of Salvia hispanica and Nigella sativa Seed on the Volatile Profile and Sensory Parameters Related to Volatile Compounds of Dry Fermented Sausage. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030652. [PMID: 35163917 PMCID: PMC8838188 DOI: 10.3390/molecules27030652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/17/2022]
Abstract
The aim of the study was to evaluate the effects of Salvia hispanica and Nigella sativa seed addition on the volatile compounds and sensory characteristics (with particular emphasis on odor and flavor) of traditionally produced dry fermented sausages with reduced nitrites. Five different sausage formulations were prepared: control sample; samples with 1% and 2% addition of chia seed; samples with 1% and 2% addition of black cumin seed. The sausages were subjected to analysis including proximate chemical composition, volatile compound determination, and sensory analysis. The sausages with chia seed in the amounts of 1% and 2% as well as the sample with 1% addition of black cumin seed were characterized by positive sensory features, and their overall quality was rated above 7 c.u. on a 10-point scale, similar to the control sausage. Sausage samples with the addition of cumin seed were characterized by the highest herbal odor and flavor. The addition of Salvia hispanica and Nigella sativa seed significantly affected the amount of volatile compounds in fermented sausages. Sausages with black cumin presented the greatest amount of total volatile compounds, mainly contributed by terpenes.
Collapse
|
36
|
Pereira A, Lee HC, Lammert R, Wolberg C, Ma D, Immoos C, Casassa F, Kang I. Effects of Red‐wine Grape Pomace on the Quality and Sensory Attributes of Beef Hamburger Patty. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- A. Pereira
- Departments of Food Science & Human Nutrition California Polytechnic State University San Luis Obispo CA 93407 United States
| | - H. C. Lee
- Animal Science California Polytechnic State University San Luis Obispo CA 93407 United States
| | - R. Lammert
- Chemistry & Biochemistry California Polytechnic State University San Luis Obispo CA 93407 United States
| | - C. Wolberg
- Department of Food Science and Technology, McGill University, 21,111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - D. Ma
- Animal Science California Polytechnic State University San Luis Obispo CA 93407 United States
| | - C. Immoos
- Chemistry & Biochemistry California Polytechnic State University San Luis Obispo CA 93407 United States
| | - F. Casassa
- Wine and Viticulture California Polytechnic State University San Luis Obispo CA 93407 United States
| | - I. Kang
- Animal Science California Polytechnic State University San Luis Obispo CA 93407 United States
| |
Collapse
|
37
|
Illippangama AU, Jayasena DD, Jo C, Mudannayake DC. Inulin as a functional ingredient and their applications in meat products. Carbohydr Polym 2022; 275:118706. [PMID: 34742431 DOI: 10.1016/j.carbpol.2021.118706] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Inulin, a fructan-type non-digestible carbohydrate, is a natural functional dietary fiber found in selected plants including chicory, garlic, onion, leeks and asparagus. Due to increasing popularity of inulin and rising awareness toward its low calorie value and prebiotic related health implications, consumers are becoming more conscious on consuming inulin incorporated foods. In this review, the scientific studies published in recent years regarding potential applications of inulin in meat products; and their effects on physicochemical and sensory properties, and health implications are discussed. Meat based functional foods with inulin can lead to enhance digestive health by reducing the risk of diseases like constipation, irritable bowel syndrome, inflammatory bowel disease and colorectal cancer. Inulin can be an interesting prebiotic ingredient in healthier meat formulations, apart from being a fat replacer and dietary fiber enhancer.
Collapse
Affiliation(s)
| | - Dinesh D Jayasena
- Department of Animal Science, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | | |
Collapse
|
38
|
Karwowska M, Kononiuk AD. Effect of nitrate reduction and storage time on the antioxidative properties, biogenic amines and amino acid profile of dry fermented loins. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Małgorzata Karwowska
- Department of Animal Raw Materials Technology Faculty of Food Science and Biotechnology University of Life Sciences in Lublin Skromna 8 Lublin 20‐704 Poland
| | - Anna D. Kononiuk
- Department of Animal Raw Materials Technology Faculty of Food Science and Biotechnology University of Life Sciences in Lublin Skromna 8 Lublin 20‐704 Poland
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences ul Tuwima 10 Olsztyn 10‐748 Poland
| |
Collapse
|
39
|
Karwowska M. Novel strategies towards increasing the nutritional value of meat products: Editorial. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Małgorzata Karwowska
- Department of Animal Raw Materials Technology Faculty of Food Science and Biotechnology University of Life Sciences in Lublin Skromna Lublin 20‐704 Poland
| |
Collapse
|
40
|
Chen R, Zhang D, Liu H, Wang Z, Hui T. Potential Alternative to Nitrite in Roasted Lamb for Sensory Attributes: Atmospheric Nonthermal Plasma Treatment. Foods 2021; 10:foods10061234. [PMID: 34071715 PMCID: PMC8229768 DOI: 10.3390/foods10061234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Reducing or replacing sodium nitrite without compromising the sensory attributes of meat products has always been a focus of the meat industry. In this study, five treatments, CT (without nitrite and plasma treatment), NT (with nitrite treatment), PT15, PT30, and PT45 (without nitrite and with plasma treatment for 15, 30, and 45 min, respectively), were designed to investigate the effect of atmospheric nonthermal plasma treatment replacing nitrite on the sensory attributes of roasted lamb. Results showed that PT45 decreased the residual nitrite of roasted lamb by 30% compared with NT, and nitrite was not detected in the PT15 and PT30 samples. The inhibition effect of plasma treatment on the lipid oxidation reached values from 86.69% to 89.89% compared with NT. Compared with CT, the redness of plasma-treated samples was increased by 9.30% to 31.40%, and the redness of NT samples was increased by 30.87%. In addition, the volatile compounds (OAVs > 1) of the PT30 sample were higher than those of the NT sample. The overall sensory score of the PT30 sample was higher than that of the CT sample and was similar to that of the NT samples. In conclusion, the sensory attributes of roasted lamb were enhanced by plasma treatment, and the 30 min plasma treatment is recommended.
Collapse
Affiliation(s)
- Ruixia Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (R.C.); (D.Z.); (H.L.); (Z.W.)
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (R.C.); (D.Z.); (H.L.); (Z.W.)
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Huan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (R.C.); (D.Z.); (H.L.); (Z.W.)
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (R.C.); (D.Z.); (H.L.); (Z.W.)
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Teng Hui
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (R.C.); (D.Z.); (H.L.); (Z.W.)
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62818740; Fax: +86-10-62818740
| |
Collapse
|
41
|
Valorization of Citrus Co-Products: Recovery of Bioactive Compounds and Application in Meat and Meat Products. PLANTS 2021; 10:plants10061069. [PMID: 34073552 PMCID: PMC8228688 DOI: 10.3390/plants10061069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/01/2022]
Abstract
Citrus fruits (orange, lemon, mandarin, and grapefruit) are one of the most extensively cultivated crops. Actually, fresh consumption far exceeds the demand and, subsequently, a great volume of the production is destined for the citrus-processing industries, which produce a huge quantity of co-products. These co-products, without proper treatment and disposal, might cause severe environmental problems. The co-products obtained from the citrus industry may be considered a very important source of high-added-value bioactive compounds that could be used in the pharmaceutical, cosmetic, and dietetic industries, and mainly in the food industry. Due to consumer demands, the food industry is exploring a new and economical source of bioactive compounds to develop novel foods with healthy properties. Thus, the aim of this review is to describe the possible benefits of citrus co-products as a source of bioactive compounds and their applications in the development of healthier meat and meat products.
Collapse
|
42
|
Genetic Association Analysis for Relative Growths of Body Compositions and Metabolic Traits to Body Weights in Broilers. Animals (Basel) 2021; 11:ani11020469. [PMID: 33578694 PMCID: PMC7916405 DOI: 10.3390/ani11020469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The relative growth of body components and metabolic traits relative to body weights are phenotypically characterized using joint allometric scaling models, and random regression models (RRMs) are constructed to map quantitative trait loci (QTLs) for allometries of body compositions and metabolic traits in broilers. Prior to statistically inferring the QTLs for the allometric scalings, the QTL candidates in RRMs are obtained by rapidly shrinking most of marker genetic effects to zero with the LASSO technique. Referred to as real joint allometric scaling models, statistical utility of the so-called LASSO-RRM mapping method is demonstrated by computer simulation analysis. Using the F2 population by crossing broiler × Fayoumi, we formulate optimal joint allometric scaling models of fat, shank weight (shank-w) and liver as well as thyroxine (T4) and glucose (GLC) to body weights. For body compositions, a total of 9 QTLs, including 4 additive and 5 dominant, were detected to control the allometric scalings of fat, shank-w and liver to body weights; while for metabolic traits, total 10 QTLs, were mapped to govern the allometries of T4 and GLC to body weights, among which 6 QTLs were of dominant genetic effect. The detected QTLs or highly linked markers can be used to regulate relative growths for meat quality traits to body weight in marker-assisted breeding of broilers. Abstract In animal breeding, body components and metabolic traits always fall behind body weights in genetic improvement, which leads to the decline in standards and qualities of animal products. Phenotypically, the relative growth of multiple body components and metabolic traits relative to body weights are characterized by using joint allometric scaling models, and then random regression models (RRMs) are constructed to map quantitative trait loci (QTLs) for relative grwoth allometries of body compositions and metabolic traits in chicken. Referred to as real joint allometric scaling models, statistical utility of the so-called LASSO-RRM mapping method is given a demonstration by computer simulation analysis. Using the F2 population by crossing broiler × Fayoumi, we formulated optimal joint allometric scaling models of fat, shank weight (shank-w) and liver as well as thyroxine (T4) and glucose (GLC) to body weights. For body compositions, a total of 9 QTLs, including 4 additive and 5 dominant QTLs, were detected to control the allometric scalings of fat, shank-w, and liver to body weights; while a total of 10 QTLs of which 6 were dominant, were mapped to govern the allometries of T4 and GLC to body weights. We characterized relative growths of body compositions and metabolic traits to body weights in broilers with joint allometric scaling models and detected QTLs for the allometry scalings of the relative growths by using RRMs. The identified QTLs, including their highly linked genetic markers, could be used to order relative growths of the body components or metabolic traits to body weights in marker-assisted breeding programs for improving the standard and quality of broiler meat products.
Collapse
|