1
|
Ding Y, Zong Q, Zhang Q, Wang Y, Wang J, Huang W, Sun W, Zhai Y. Gum arabic based multifunctional antibacterial adhesion hydrogel dressings loaded with doxycycline hydrochloride for wound healing. Int J Biol Macromol 2025; 306:141284. [PMID: 39978520 DOI: 10.1016/j.ijbiomac.2025.141284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Infection is a crucial factor impeding wound healing, and hydrogel with three-dimensional network structure has great advantages in promoting wound healing. Herein, a zwitterionic hydrogel is developed by gum arabic, acrylic acid, and sulfobetaine methacrylate. Zwitterions exhibit exceptional hydration properties, thereby imparting hydrogels with superior bacterial adhesion resistance, robust structural stability, and adjustable modulation capabilities. Furthermore, the incorporation of Doxycycline Hydrochloride (DOX) into the formulation aims to address potential wound infections while also imparting exceptional antioxidant properties to the hydrogel (DOX@GASGel). In vitro antibacterial experiments demonstrated that 99.55 ± 0.08 % of S. aureus and 99.55 ± 0.06 % of E. coli were killed, and it exhibited high reactive oxygen species (ROS) scavenging efficacy both in vitro and in vivo. The results of experiments in ICR mice with a full-thickness infected wound model showed a wound healing rate of 97 % for wounds treated with DOX@GASGel hydrogel. This outcome was primarily attributed to hydrogel's capacity to promote collagen deposition and angiogenesis within the wounds, while concurrently reducing ROS levels. In conclusion, the preparation method of the hydrogel dressing designed in this study is straightforward, demonstrating robust wound-healing effects, and holds promising applications in the treatment of infected wounds.
Collapse
Affiliation(s)
- Yan Ding
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qida Zong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qianwen Zhang
- Department of Biomedical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaxin Wang
- Department of Biomedical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wanru Huang
- Department of Biomedical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Sun
- Department of Biomedical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yinglei Zhai
- Department of Biomedical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
2
|
Loescher S, Liang C, Plamont R, Breu J, Ikkala O, Zhang H. Tunable mechanical properties and phase transitions in nanoconfined polyzwitterionic UCST hydrogels. SOFT MATTER 2025. [PMID: 40297953 PMCID: PMC12038794 DOI: 10.1039/d5sm00317b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
Stimuli-responsive hydrogels with thermal phase transitions serve as pivotal components in advancing biomedical and soft robotics applications. In contrast to widely studied LCST-type thermo-responsive hydrogels, UCST-type hydrogels provide reverse thermo-responses. However, conventional UCST-type hydrogels suffer from weak mechanical properties and fixed phase transition kinetics. Here, we present polyzwitterionic UCST-type hydrogels under coplanar nanoconfinement by large aspect ratio hectorite nanosheets. The nanoconfinement significantly enhances the strength and stiffness of the hydrogels. In addition, the nanosheets serve as kinetic barriers for water diffusion. This regulates the swelling and shrinking kinetics of the polyzwitterionic hydrogels and thus allows for tunable phase transitions dependent on the thermal history of the hydrogels. Furthermore, we demonstrate that the incorporation of gold nanoparticles allows precise control of the optical properties of the hydrogel through photothermal means. These findings pave the way for engineering both the mechanical and thermoresponsive properties in polyzwitterionic hydrogels, thus broadening their applications in smart soft materials.
Collapse
Affiliation(s)
- Sebastian Loescher
- Department of Applied Physics, Aalto University, P.O. Box 15100, 02150 Espoo, Finland.
| | - Chen Liang
- Department of Applied Physics, Aalto University, P.O. Box 15100, 02150 Espoo, Finland.
| | - Remi Plamont
- Department of Applied Physics, Aalto University, P.O. Box 15100, 02150 Espoo, Finland.
| | - Josef Breu
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, P.O. Box 15100, 02150 Espoo, Finland.
| | - Hang Zhang
- Department of Applied Physics, Aalto University, P.O. Box 15100, 02150 Espoo, Finland.
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 02150 Espoo, Finland
| |
Collapse
|
3
|
Li R, Liu L, Zhang Y, Zhao W, Zhao X, Liu Y, Yu B, Ma S, Zhou F. Scalable Preparation of Polyzwitterionic Hydrogels Based on Hydration Shielding-Accelerated Redox Self-Catalytic Polymerization (HS-A-RP). Angew Chem Int Ed Engl 2025:e202424129. [PMID: 40231600 DOI: 10.1002/anie.202424129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/16/2025]
Abstract
Traditional synthesis methods for polyzwitterionic hydrogels involve harsh conditions, such as thermal or UV irradiation, prolonged durations, and high monomer concentrations. Herein, we address these challenges at the meantime by proposing a novel chemical method, called hydration-shielding accelerated self-catalytic polymerization (HS-A-RP), facilitating the preparation of polyzwitterionic hydrogels. The discovery is that polyvinyl alcohol (PVA) chains can generate hydration shielding around hydrated zwitterionic monomers, promoting their effective aggregation and rapid crosslinking polymerization under the assistance of silver ions (Ag+)-potassium persulfate (S2O8 2-) redox catalyst. The HS-A-RP method performs under mild condition (-5 °C to 37 °C) without extra energy, overcomes the critical monomer polymerization concentration limitation (wt%: 0.3%), and completes within an ultrashort polymerization time (<60 s). The prepared polyzwitterionic hydrogels possesses a denser network and superior mechanical properties compared to those prepared by traditional thermal/UV methods, exhibiting good antiswelling behavior, excellent lubrication performance, and significant antibacterial and anti-fouling properties. These significant advances endow HS-A-RP with attractive application potentials in manufacturing functional hydrogel coatings for biomedical device, in situ encapsulation of thermally sensitive materials, and excellent sand fixation abilities. Moreover, HS-A-RP method is suitable for scalable manufacture and decorative coating of polyzwitterionic hydrogels on diverse substrates in extreme environmental conditions.
Collapse
Affiliation(s)
- Renjie Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lunkun Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031, China
| | - Yunlei Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Weiyi Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Shandong Laboratory of Advanced Materials and Green Manufacture at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Ying Liu
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Shandong Laboratory of Advanced Materials and Green Manufacture at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
4
|
Sun W, Jin Y, Wang Y, Wen Z, Sun J, Yao J, Duttwyler S, Li H. Oxidation-induced nucleophilic substitution at the electron-rich B(12) vertex in [CB 11H 12] - under catalyst-free conditions. Chem Sci 2025; 16:5942-5947. [PMID: 40060093 PMCID: PMC11884434 DOI: 10.1039/d5sc00234f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/24/2025] [Indexed: 04/04/2025] Open
Abstract
Highly regioselective B(12) substitutions of the monocarborane anion [CB11H12]- has been a challenge. Here, we synthesized a stable B-O-N zwitterionic compound with an impressive yield (isolated yield up to 98%) and excellent regioselectivity at the B(12) position under catalyst-free conditions. The kinetics, substituent effect, and capture experiments are paired with theoretical calculations, showing that the reaction mechanism is oxidation-induced nucleophilic substitution. The hydride anion at the B(12) position is abstracted by an oxoammonium oxidant with lower cleavage energy of 4.2 kcal mol-1 than B(7-11) positions, thereby changing the electronegativity upon the conversion of [CB11H12]- to neutral [CB11H11], in turn giving very high regioselectivity for nucleophilic substitution. This work presents an effective method for synthesizing B(12) oxygen derivatives of the [CB11H12]- anion.
Collapse
Affiliation(s)
- Wanqi Sun
- Department of Chemistry, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Yujie Jin
- Department of Chemistry, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Center of Chemistry for Frontier Technologies, ZJU-NHU United R&D Center, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Yongtao Wang
- Department of Chemistry, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Center of Chemistry for Frontier Technologies, ZJU-NHU United R&D Center, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Zeyu Wen
- Department of Chemistry, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Jizeng Sun
- Department of Chemistry, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Jia Yao
- Department of Chemistry, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Center of Chemistry for Frontier Technologies, ZJU-NHU United R&D Center, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Simon Duttwyler
- Department of Chemistry, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Haoran Li
- Department of Chemistry, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Center of Chemistry for Frontier Technologies, ZJU-NHU United R&D Center, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| |
Collapse
|
5
|
Steffè A, Milano F, Reyes SG, Buco F, Leonetti R, Roque-Diaz Y, Zuffi S, Di Gianvincenzo P, Cortese AR, Ritacco H, Andreozzi P, Ortore MG, Moya SE, Marradi M. Supramolecular dextran/polyamine phosphate nanocapsules with smart responsiveness for encapsulation of therapeutics. J Colloid Interface Sci 2025; 683:620-630. [PMID: 39706081 DOI: 10.1016/j.jcis.2024.12.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
The polyallylamine hydrochloride (PAH) polymer is here functionalized with branched and biocompatible polysaccharide dextran (DEX) molecules. Covalent conjugation of DEX to PAH has been achieved through a straightforward reductive amination approach, allowing for a controlled number of DEX chains per PAH polymer (PAH:DEXn, n = 0.1, 0.5, 1, 2, 5, 10). When exposed to phosphate buffer, PAH:DEXn polymers form supramolecular assemblies. Physico chemical characteristics and pH responsiveness of the assemblies are correlated with the number of dextran chains per PAH molecule. Nanocapsules (NCs) are formed when PAH:DEX ratio is 1. Capsule formation is explained by the branched nature of DEX and steric consideration ruling the organization of polyamine chains in phosphate buffer. NCs and glyconanoparticles formed with n < 1 are responsive to pH changes, being disassembled at endosomal pH < 6 and reassembled when 6 < pH < 9. Dynamic light Scattering (DLS), ζ-potential measurements, cryo-Electron Microscopy and Small Angle X-ray Scattering (SAXS) provided key information about their structure, morphology, size, polydispersity, surface charge, and stability over time. Protein entrapment into the NCs and pH-dependent release is demonstrated with bovine serum albumin (BSA) as model protein by diffusion measurements in fluorescence correlation spectroscopy (FCS), following changes in BSA conformation before and after triggering NC disassembly by circular dichroism (CD), and comparing NCs SAXS fingerprints with and without BSA. Our results show novel assemblies based on polyamine phosphate interactions with capacity of loading large molecules through the formation of capsules, which may find applications in the endosomal delivery of therapeutic proteins and enzymes.
Collapse
Affiliation(s)
- Aharon Steffè
- Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Francesca Milano
- Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Santiago Giménez Reyes
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 Donostia-San Sebastián, Guipúzcoa, Spain; Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - Francesca Buco
- Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Riccardo Leonetti
- Department of Life and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, 60131 Ancona, Italy
| | - Yessica Roque-Diaz
- Department of Life and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, 60131 Ancona, Italy
| | - Sofia Zuffi
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 Donostia-San Sebastián, Guipúzcoa, Spain; Molecular Oncology Laboratory, IIS BioGipuzkoa, P° Dr. Beguiristain s/n, 20014 San Sebastián, Gipuzkoa, Spain
| | - Paolo Di Gianvincenzo
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 Donostia-San Sebastián, Guipúzcoa, Spain
| | - Angela Roberta Cortese
- Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Hernan Ritacco
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - Patrizia Andreozzi
- Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, 60131 Ancona, Italy
| | - Sergio E Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 Donostia-San Sebastián, Guipúzcoa, Spain.
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy.
| |
Collapse
|
6
|
Uysal B, Madduma-Bandarage USK, Jayasinghe HG, Madihally S. 3D-Printed Hydrogels from Natural Polymers for Biomedical Applications: Conventional Fabrication Methods, Current Developments, Advantages, and Challenges. Gels 2025; 11:192. [PMID: 40136897 PMCID: PMC11942323 DOI: 10.3390/gels11030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Hydrogels are network polymers with high water-bearing capacity resembling the extracellular matrix. Recently, many studies have focused on synthesizing hydrogels from natural sources as they are biocompatible, biodegradable, and readily available. However, the structural complexities of biological tissues and organs limit the use of hydrogels fabricated with conventional methods. Since 3D printing can overcome this barrier, more interest has been drawn toward the 3D printing of hydrogels. This review discusses the structure of hydrogels and their potential biomedical applications with more emphasis on natural hydrogels. There is a discussion on various formulations of alginates, chitosan, gelatin, and hyaluronic acid. Furthermore, we discussed the 3D printing techniques available for hydrogels and their advantages and limitations.
Collapse
Affiliation(s)
- Berk Uysal
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA;
| | | | - Hasani G. Jayasinghe
- Mathematics, Physical and Natural Sciences Division, University of New Mexico-Gallup, 705 Gurley Ave., Gallup, NM 87301, USA;
| | - Sundar Madihally
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA;
| |
Collapse
|
7
|
Gao L, Varley A, Gao H, Li B, Li X. Zwitterionic Hydrogels: From Synthetic Design to Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3007-3026. [PMID: 39885654 DOI: 10.1021/acs.langmuir.4c04788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Zwitterionic hydrogels have emerged as a highly promising class of biomaterials, attracting considerable attention due to their unique properties and diverse biomedical applications. Zwitterionic moieties, with their balanced positive and negative charges, endow hydrogels with exceptional hydration, resistance to nonspecific protein adsorption, and low immunogenicity due to their distinctive molecular structure. These properties facilitate various biomedical applications, such as medical device coatings, tissue engineering, drug delivery, and biosensing. This review explores the structure-property relationships in zwitterionic hydrogels, highlighting recent advances in their design principles, synthesis methods, structural characteristics, and biomedical applications. To meet the evolving and growing demand for the biomedical field, this review examines current challenges and explores future research directions for optimizing the multifunctional properties of zwitterionic hydrogels. As promising candidates for advanced biomaterials, zwitterionic hydrogels are poised to address critical challenges in biomedical applications, paving the way for improved therapeutic outcomes and broader applicability in healthcare.
Collapse
Affiliation(s)
- Linran Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE), & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Andrew Varley
- RNA and Formulation Core, Michael Smith Laboratories, University of British Columbia, British Columbia, V6T 1Z4, Canada
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE), & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Bowen Li
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Xiaohui Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE), & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
8
|
Toan M, Choi J, Ngo HT, Bae JY, Shin S, Kwon K. Synthesis of Novel Zwitterionic Surfactants: Achieving Enhanced Water Resistance and Adhesion in Emulsion Polymer Adhesives. Polymers (Basel) 2024; 16:3504. [PMID: 39771356 PMCID: PMC11679416 DOI: 10.3390/polym16243504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Recent advancements in polymer materials have enabled the synthesis of bio-based monomers from renewable resources, promoting sustainable alternatives to fossil-based materials. This study presents a novel zwitterionic surfactant, SF, derived from 10-undecenoic acid obtained from castor oil through a four-step reaction, achieving a yield of 78%. SF has a critical micelle concentration (CMC) of 1235 mg/L, slightly higher than the commercial anionic surfactant Rhodacal DS-4 (sodium dodecyl benzene sulfonate), and effectively stabilizes monomer droplets, leading to excellent conversion and stable latex formation. The zwitterionic groups in SF enhance adhesion to hydrophilic substrates (glass, stainless steel, and skin). Films produced with SF exhibit outstanding water resistance, with only 18.48% water uptake after 1800 min, compared to 81% for the control using Rhodacal DS-4. Notably, SF maintains low water uptake across various concentrations, minimizing water penetration. Thus, the synthesized SF demonstrates improved adhesive properties and excellent water resistance in emulsion polymerization applications, highlighting its potential as a sustainable, high-performance alternative to petrochemical surfactants.
Collapse
Affiliation(s)
- Mai Toan
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (M.T.); (J.C.); (H.T.N.)
| | - Jaehyouk Choi
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (M.T.); (J.C.); (H.T.N.)
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Hang Thi Ngo
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (M.T.); (J.C.); (H.T.N.)
- Department of Green Process and System Engineering, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Jin-Young Bae
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Seunghan Shin
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (M.T.); (J.C.); (H.T.N.)
- Department of Green Process and System Engineering, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Kiok Kwon
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (M.T.); (J.C.); (H.T.N.)
| |
Collapse
|
9
|
Ran P, Qiu B, Zheng H, Xie S, Zhang G, Cao W, Li X. On-demand bactericidal and self-adaptive antifouling hydrogels for self-healing and lubricant coatings of catheters. Acta Biomater 2024; 186:215-228. [PMID: 39111681 DOI: 10.1016/j.actbio.2024.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
Catheter-related infections are one of the most common nosocomial infections with increasing morbidity and mortality, and robust antibacterial or antifouling catheter coatings remain great challenges for long-term implantation. Herein, multifunctional hydrogel coatings were developed to provide persistent and self-adaptive antifouling and antibacterial effects with self-healing and lubricant capabilities. Polyvinyl alcohol (PVA) with β-cyclodextrin (β-CD) grafts (PVA-Cd) and 4-arm polyethylene glycol (PEG) with adamantane and quaternary ammonium compound (QAC) terminals (QA-PEG-Ad) were crosslinked through host-guest recognitions between adamantane and β-CD moieties to acquire PVEQ coatings. In response to bacterial infections, QACs exhibit reversible transformation between zwitterions (pH 7.4) and cationic lactones (pH 5.5) to generate on-demand bactericidal effect. Highly hydrophilic PEG/PVA backbones and zwitterionic QACs build a lubricate surface and decrease the friction coefficient 10 times compared with that of bare catheters. The antifouling hydrated layer significantly inhibits blood protein adsorption and platelet activation and reveals negligible hemolysis and cytotoxicity. The dynamic host-guest crosslinking achieves full self-healing of cracks in PVEQ hydrogels, and the mechanical profiles were recovered to over 90 % after rejuvenating the broken hydrogels, exhibiting a long-term stability after mechanical stretching, twisting, knotting and compression. After subcutaneous implantation and local bacterial infection, the retrieved PVEQ-coated catheters display no tissue adhesion and 3 log folds lower bacterial number than that of bare catheters. PVEQ coatings effectively prevent the repeated bacterial infections and there are few inflammatory reactions in the surrounding tissue, while substantial lymphoid infiltration and inflammatory cell aggregation occur in muscle tissues around the bare catheter. Thus, this study demonstrates a catheter coating strategy by on-demand bactericidal, self-adaptive antifouling, self-healing and lubricant hydrogels to address medical devices-related infections. STATEMENT OF SIGNIFICANCE: It is estimated over two billion peripheral intravenous catheters are annually used in hospitals around the world, and catheter-associated infection has become a great clinical challenge with rapidly rising morbidity and mortality. Surface coating is considered a promising approach, but substantial challenges remain in the development of coatings that simultaneously satisfy both anti-fouling and antibacterial attributes. Even more, few attempts have been made to design mechanically robust coatings and reversible antibacterial or antifouling capabilities, which are critical for long-term medical implants. To address these challenges, we propose a concise strategy to develop hydrogel coatings from commercially available poly(ethylene glycol) and polyvinyl alcohol. In addition to self-healing and lubricant capabilities, the reversible conversion between zwitterionic and cationic lactones of quaternary ammonium compounds enables on-demand bactericidal and self-adaptive antifouling effects.
Collapse
Affiliation(s)
- Pan Ran
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; School of Bioscience and Technology, Chengdu Medical College, Chengdu 610051, PR China
| | - Bo Qiu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Huan Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Shuang Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Guiyuan Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Wenxiong Cao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiaohong Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
10
|
Gonçalves JD, Dias JH, Machado-Neves M, Vergani GB, Ahmadi B, Pereira Batista RIT, Souza-Fabjan JMG, Oliveira MEF, Bartlewski PM, da Fonseca JF. Transcervical uterine flushing and embryo transfer in sheep: Morphophysiological basis for approaches currently used, major challenges, potential improvements, and new directions (alas, including some old ideas). Reprod Biol 2024; 24:100920. [PMID: 38970979 DOI: 10.1016/j.repbio.2024.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
At present, the success of non-surgical embryo recovery (NSER) and transfer (NSET) hinges upon the cervical passage of catheters, but penetration of the uterine cervix in ewes is problematic due to its anatomical structure (i.e., long and narrow cervical lumen with misaligned folds and rings). It is a major obstacle limiting the widespread application of NSER and NSET in sheep. While initial attempts to traverse the uterine cervix focused on adapting or re-designing insemination catheters, more recent studies demonstrated that cervical relaxation protocols were instrumental for transcervical penetration in the ewe. An application of such protocols more than tripled cervical penetration rates (currently at 90-95 %) in sheep of different breeds (e.g., Dorper, Lacaune, Santa Inês, crossbred, and indigenous Brazilian breeds) and ages/parity. There is now sufficient evidence to suggest that even repeatedly performed cervical passages do not adversely affect overall health and reproductive function of ewes. Despite these improvements, appropriate selection of donors and recipients remains one of the most important requirements for maintaining high success rates of NSER and NSET, respectively. Non-surgical ovine embryo recovery has gradually become a commercially viable method as even though the procedure still cannot be performed by untrained individuals, it is inexpensive, yields satisfactory results, and complies with current public expectations of animal welfare standards. This article reviews critical morphophysiological aspects of transcervical embryo flushing and transfer, and the prospect of both techniques to replace surgical methods for multiple ovulation and embryo transfer (MOET) programs in sheep. We have also discussed some potential pharmacological and technical developments in the field of non-invasive embryo recovery and deposition.
Collapse
Affiliation(s)
- Joedson Dantas Gonçalves
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Jenniffer Hauschildt Dias
- Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, CEP 36570-000 Viçosa, MG, Brazil
| | - Mariana Machado-Neves
- Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, CEP 36570-000 Viçosa, MG, Brazil
| | - Gabriel Brun Vergani
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Bahareh Ahmadi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | - Maria Emilia Franco Oliveira
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Pawel Mieczyslaw Bartlewski
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
11
|
Ahmadi S, Pourebrahimi S, Malloum A, Pirooz M, Osagie C, Ghosh S, Zafar MN, Dehghani MH. Hydrogel-based materials as antibacterial agents and super adsorbents for the remediation of emerging pollutants: A comprehensive review. EMERGING CONTAMINANTS 2024; 10:100336. [DOI: 10.1016/j.emcon.2024.100336] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Yin H, You M, Shi X, Yu H, Chen Q. New insights into pure zwitterionic hydrogels with high strength and high toughness. MATERIALS HORIZONS 2024; 11:3946-3960. [PMID: 38874530 DOI: 10.1039/d4mh00164h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Zwitterionic hydrogels are electrically neutral materials with both cationic and anionic groups that impart excellent anti-fouling properties and ion channel orientations. However, pure zwitterionic hydrogels generally exhibit low strength and toughness. In this study, it has been discovered that polymerizable zwitterionic monomers in aqueous solution exhibit a unique liquid-liquid phase separation phenomenon at a high monomer concentration of ≥50 wt%, resulting in pure and commercial zwitterionic hydrogels with high compressive strength (6.5 MPa) and high toughness (2.12 kJ m-2). This phase separation and the corresponding aggregations might be caused by strong dipole-dipole interactions among residual zwitterionic monomers under the lack of free-water condition. The synergistic effect of liquid-liquid phase separation and polymer entanglement enhances the mechanical strength, toughness, self-recovery, and anti-freezing properties of pure polyzwitterionic hydrogels. Moreover, the high fracture energy of highly elongated yet tough polyzwitterionic hydrogels facilitates the development of high crack propagation resistance, which supports an expanded role in tissue engineering, soft flexible devices, and electronics applications with improved durability. A wide range of applications for the proposed polyzwitterionic hydrogels is demonstrated by the development and testing of a strain sensor and a triboelectric nanogenerator device. Our findings provide novel insights into the network structure of pure polyzwitterionic hydrogels.
Collapse
Affiliation(s)
- Haiyan Yin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, Zhejiang, China.
| | - Min You
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, Zhejiang, China.
| | - Xinlei Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, Zhejiang, China.
| | - Hui Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, Zhejiang, China.
| | - Qiang Chen
- Joint Research Center of Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, Zhejiang, China.
| |
Collapse
|
13
|
Nitta C, Ohsedo Y. Thixotropic Composite Hydrogel Electrode Composed of a Polymer Hydrogelator and Water-Dispersive Tungsten Oxide Flat Microparticles. Chemistry 2024; 30:e202401469. [PMID: 38747031 DOI: 10.1002/chem.202401469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 07/18/2024]
Abstract
Here, we introduce an organic/inorganic composite hydrogel as a versatile gel electrode material. This composite hydrogel was formed by simply mixing an aqueous solution of flat microparticles of tungsten oxide, exhibiting superior water dispersibility, with a hydrogel composed of a water-soluble polyaramide-based polymer hydrogelator. The resulting composite hydrogel exhibited uniform dispersion of tungsten oxide flat particles throughout the hydrogel matrix, supplementing the structure formed by the polymer hydrogelator. It maintained the gel-forming capability and thixotropic behavior inherent to the polymer hydrogelator while showcasing the electrochemical characteristics of tungsten oxide. With its spreadability and applicability to various electrode shapes, a composite hydrogel is presented as a potential spreadable gel electrode material.
Collapse
Affiliation(s)
- Chie Nitta
- Graduate School of Human Centered Engineering, Nara Women's University, Kitauoyahigashi-machi, Nara, 630-8506, Japan
| | - Yutaka Ohsedo
- Division of Engineering, Faculty of Engineering, Nara Women's University, Kitauoyahigashi-machi, Nara, 630-8506, Japan
| |
Collapse
|
14
|
Pan Z, Dorogin J, Lofts A, Randhawa G, Xu F, Slick R, Abraha M, Tran C, Lawlor M, Hoare T. Injectable and Dynamically Crosslinked Zwitterionic Hydrogels for Anti-Fouling and Tissue Regeneration Applications. Adv Healthc Mater 2024; 13:e2304397. [PMID: 38684223 DOI: 10.1002/adhm.202304397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/29/2024] [Indexed: 05/02/2024]
Abstract
A zwitterionic injectable and degradable hydrogel based on hydrazide and aldehyde-functionalized [2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl)ammonium hydroxide (DMAPS) precursor polymers that can address practical in vivo needs is reported. Zwitterion fusion interactions between the zwitterionic precursor polymers create a secondary physically crosslinked network to enable much more rapid gelation than previously reported with other synthetic polymers, facilitating rapid gelation at much lower polymer concentrations or degrees of functionalization than previously accessible in addition to promoting zero swelling and long-term degradation responses and significantly stiffer mechanics than are typically accessed with previously reported low-viscosity precursor gelation systems. The hydrogels maintain the highly anti-fouling properties of conventional zwitterionic hydrogels against proteins, mammalian cells, and bacteria while also promoting anti-fibrotic tissue responses in vivo. Furthermore, the use of the hydrogels for effective delivery and subsequent controlled release of viable cells with tunable profiles both in vitro and in vivo is demonstrated, including the delivery of myoblasts in a mouse skeletal muscle defect model for reducing the time between injury and functional mobility recovery. The combination of the injectability, degradability, and tissue compatibility achieved offers the potential to expand the utility of zwitterionic hydrogels in minimally invasive therapeutic applications.
Collapse
Affiliation(s)
- Zhicheng Pan
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Jonathan Dorogin
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Andrew Lofts
- Department of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Gurpreet Randhawa
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
- Department of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Fei Xu
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Rebecca Slick
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Mosana Abraha
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Cecilia Tran
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Michael Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| |
Collapse
|
15
|
Yan K, He B, Wu S, Zeng Y, Wang P, Liu S, Ye Q, Zhou F, Liu W. Fabrication of Poly(ionic liquid) Hydrogels Incorporating Liquid Metal Microgels for Enhanced Synergistic Antifouling Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30453-30461. [PMID: 38832492 DOI: 10.1021/acsami.4c06361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Hydrogels are ideal for antifouling materials due to their high hydrophilicity and low adhesion properties. Herein, poly(ionic liquid) hydrogels integrated with zwitterionic copolymer-functionalized gallium-based liquid metal (PMPC-GLM) microgels were successfully prepared by a one-pot reaction. Poly(ionic liquid) hydrogels (IL-Gel) were obtained by chemical cross-linking the copolymer of ionic liquid, acrylic acid, and acrylamide, and the introduction of ionic liquid (IL) significantly increased the cross-linking density; this approach consequently enhanced the mechanical and antiswelling properties of the hydrogels. The swelling ratio of IL-Gel decreased eight times compared to the original hydrogels. PMPC-GLM microgels were prepared through grafting the zwitterionic polymer PMPC onto the GLM nanodroplet surface, which exhibited efficient antifouling performance attributed to the bactericidal effect of Ga3+ and the antibacterial effect of the zwitterionic polymer layer PMPC. Based on the synergistic effect of PMPC-GLM microgels and IL, the composite hydrogels PMPC-GLM@IL-Gel not only exhibited excellent mechanical and antiswelling properties but also showed outstanding antibacterial and antifouling properties. Consequently, PMPC-GLM@IL-Gel hydrogels achieved inhibition rates of over 90% against bacteria and more than 85% against microalgae.
Collapse
Affiliation(s)
- Kaige Yan
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Baoluo He
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Shihan Wu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yixin Zeng
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Peng Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Qian Ye
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Feng Zhou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
16
|
Wang B, Xu Y, Yao Q, Song L, Liang M, Cao H, Gao C. Prolonged resident nanoparticles effectively treat acute lung injury via the selective upregulation of intracellular hydrogen peroxide. NANO TODAY 2024; 56:102278. [DOI: 10.1016/j.nantod.2024.102278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
|
17
|
Peel A, Bennion D, Horne R, Hansen MR, Guymon CA. Photografted Zwitterionic Hydrogel Coating Durability for Reduced Foreign Body Response to Cochlear Implants. ACS APPLIED BIO MATERIALS 2024; 7:3124-3135. [PMID: 38584364 PMCID: PMC11110053 DOI: 10.1021/acsabm.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
The durability of photografted zwitterionic hydrogel coatings on cochlear implant biomaterials was examined to determine the viability of these antifouling surfaces during insertion and long-term implant usage. Tribometry was used to determine the effect of zwitterionic coatings on the lubricity of surfaces with varying hydration levels, applied normal force, and time frame. Additionally, flexural resistance was investigated using mandrel bending. Ex vivo durability was assessed by determining the coefficient of friction between tissues and treated surfaces. Furthermore, cochlear implantation force was measured using cadaveric human cochleae. Hydrated zwitterionic hydrogel coatings reduced frictional resistance approximately 20-fold compared to uncoated PDMS, which led to significantly lower mean force experienced by coated cochlear implants during insertion compared to uncoated systems. Under flexural force, zwitterionic films resisted failure for up to 60 min of desiccation. The large increase in lubricity was maintained for 20 h under continual force while hydrated. For loosely cross-linked systems, films remained stable and lubricious even after rehydration following complete drying. All coatings remained hydrated and functional under frictional force for at least 30 min in ambient conditions allowing drying, with lower cross-link densities showing the greatest longevity. Moreover, photografted zwitterionic hydrogel samples showed no evidence of degradation and nearly identical lubricity before and after implantation. This work demonstrates that photografted zwitterionic hydrogel coatings are sufficiently durable to maintain viability before, during, and after implantation. Mechanical properties, including greatly increased lubricity, are preserved after complete drying and rehydration for various applied forces. Additionally, this significantly enhanced lubricity translates to significantly decreased force during insertion of implants which should result in less trauma and scarring.
Collapse
Affiliation(s)
- Adreann Peel
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Douglas Bennion
- Department
of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ryan Horne
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Marlan R. Hansen
- Department
of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
| | - C. Allan Guymon
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
18
|
Raja IS, Kim B, Han DW. Nanofibrous Material-Reinforced Printable Ink for Enhanced Cell Proliferation and Tissue Regeneration. Bioengineering (Basel) 2024; 11:363. [PMID: 38671784 PMCID: PMC11047974 DOI: 10.3390/bioengineering11040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The three-dimensional (3D) printing of biomaterials, cells, and bioactive components, including growth factors, has gained interest among researchers in the field of tissue engineering (TE) with the aim of developing many scaffolds to sustain size, shape fidelity, and structure and retain viable cells inside a network. The biocompatible hydrogel employed in 3D printing should be soft enough to accommodate cell survival. At the same time, the gel should be mechanically strong to avoid the leakage of cells into the surrounding medium. Considering these basic criteria, researchers have developed nanocomposite-based printable inks with suitable mechanical and electroconductive properties. These nanomaterials, including carbon family nanomaterials, transition metal dichalcogenides, and polymeric nanoparticles, act as nanofillers and dissipate stress across polymeric networks through their electroactive interactions. Nanofiber-reinforced printable ink is one kind of nanocomposite-based ink that comprises dispersed nanofiber components in a hydrogel matrix. In this current review, we compile various TE applications of nanofiber-reinforced printable ink and describe the 3D-printing parameters, classification, and impact of cross-linkage. Furthermore, we discuss the challenges and future perspectives in this field.
Collapse
Affiliation(s)
| | - Bongju Kim
- Dental Life Science Research Institute, Seoul National University Dental Hospital, Seoul 03080, Republic of Korea;
| | - Dong-Wook Han
- Institute of Nano-Bio Convergence, Pusan National University, Busan 46241, Republic of Korea
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
19
|
Singh AN, Meena A, Nam KW. Gels in Motion: Recent Advancements in Energy Applications. Gels 2024; 10:122. [PMID: 38391452 PMCID: PMC10888500 DOI: 10.3390/gels10020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Gels are attracting materials for energy storage technologies. The strategic development of hydrogels with enhanced physicochemical properties, such as superior mechanical strength, flexibility, and charge transport capabilities, introduces novel prospects for advancing next-generation batteries, fuel cells, and supercapacitors. Through a refined comprehension of gelation chemistry, researchers have achieved notable progress in fabricating hydrogels endowed with stimuli-responsive, self-healing, and highly stretchable characteristics. This mini-review delineates the integration of hydrogels into batteries, fuel cells, and supercapacitors, showcasing compelling instances that underscore the versatility of hydrogels, including tailorable architectures, conductive nanostructures, 3D frameworks, and multifunctionalities. The ongoing application of creative and combinatorial approaches in functional hydrogel design is poised to yield materials with immense potential within the domain of energy storage.
Collapse
Affiliation(s)
- Aditya Narayan Singh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Abhishek Meena
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
- Center for Next Generation Energy and Electronic Materials, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| |
Collapse
|
20
|
Kousalová J, Šálek P, Pavlova E, Konefał R, Kobera L, Brus J, Kočková O, Etrych T. Biodegradable Covalently Crosslinked Poly[ N-(2-Hydroxypropyl) Methacrylamide] Nanogels: Preparation and Physicochemical Properties. Polymers (Basel) 2024; 16:263. [PMID: 38257062 PMCID: PMC10821105 DOI: 10.3390/polym16020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Recently, suitably sized polymer-based nanogels containing functional groups for the binding of biologically active substances and ultimately degradable to products that can be removed by glomerular filtration have become extensively studied systems in the field of drug delivery. Herein, we designed and tailored the synthesis of hydrophilic and biodegradable poly[N-(2-hydroxypropyl) methacrylamide-co-N,N'-bis(acryloyl) cystamine-co-6-methacrylamidohexanoyl hydrazine] (PHPMA-BAC-BMH) nanogels. The facile and versatile dispersion polymerization enabled the preparation of nanogels with a diameter below 50 nm, which is the key parameter for efficient and selective passive tumor targeting. The effects of the N,N'-bis(acryloyl) cystamine crosslinker, polymerization composition, and medium including H2O/MetCel and H2O/EtCel on the particle size, particle size distribution, morphology, and polymerization kinetics and copolymer composition were investigated in detail. We demonstrated the formation of a 38 nm colloidally stable PHPMA-BAC-BMH nanogel with a core-shell structure that can be rapidly degraded in the presence of 10 mM glutathione solution under physiologic conditions. The nanogels were stable in an aqueous solution modeling the bloodstream; thus, these nanogels have the potential to become highly important carriers in the drug delivery of various molecules.
Collapse
Affiliation(s)
| | - Petr Šálek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského Nám. 2, 162 00 Prague, Czech Republic; (J.K.); (E.P.); (R.K.); (L.K.); (J.B.); (O.K.); (T.E.)
| | | | | | | | | | | | | |
Collapse
|
21
|
He B, Wang P, Xue S, Liu S, Ye Q, Zhou F, Liu W. Self-healing and durable antifouling zwitterionic hydrogels based on functionalized liquid metal microgels. J Colloid Interface Sci 2024; 653:463-471. [PMID: 37725876 DOI: 10.1016/j.jcis.2023.09.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
Hydrogels are a promising new class of antifouling materials. But their utility is constrained by low mechanical strength and unsatisfactory antifouling performance over the long term. Herein, we successfully prepared zwitterionic polymer PEIS cross-linked gallium-based liquid metal microgels-based (PEIS-Gel@PMPC-GLM) hydrogels via UV-curing and amidation reaction. The as-prepared hydrogels showed preferable mechanical properties and superior hydrophilicity to the original hydrogels. The PEIS-Gel@PMPC-GLM hydrogels could prevent the adhesion of more than 90 % of microalgae and nearly 100 % of bacteria in a short-term antifouling test. PEIS-Gel@PMPC-GLM hydrogels also performed exceptionally well in the high concentration antibacterial test and the long-term antifouling test (remove more than 90 % bacteria and 80 % microalgae). In addition to releasing a high concentration of gallium ions, as shown by the ICP-OES test, PEIS-Gel@PMPC-GLM hydrogels also exhibitedexcellent lubrication performance, as demonstrated by the friction test (coefficient of friction as low as 0.023). Therefore, the antifouling effect of gallium ions combined with the strong hydration ability of the surfaces endowed the hydrogels remarkable antibacterial and antifouling properties. As a result of the exposed gallium atoms inducing further crosslinking of residual vinyl monomer in hydrogels, PEIS-Gel@PMPC-GLM hydrogels revealed certain self-healing performance.
Collapse
Affiliation(s)
- Baoluo He
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Peng Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Shenghua Xue
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Shujuan Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Qian Ye
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Feng Zhou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| |
Collapse
|
22
|
Chen B, Zhu D, Li Q, Wang C, Cui J, Zheng Z, Wang X. Mechanically Reinforced and Injectable Universal Adhesive Based on a PEI-PAA/Alg Dual-Network Hydrogel Designed by Topological Entanglement and Catechol Chemistry. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59826-59837. [PMID: 38098133 DOI: 10.1021/acsami.3c14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Universal adhesion of hydrogels to diverse materials is essential to their extensive applications. Unfortunately, tough adhesion of wet surfaces remains an urgent challenge so far, requiring robust cohesion strength for effective stress dissipation. In this work, a dual-network hydrogel polyethylenimine-poly(acrylic acid)/alginate (PEI-PAA/Alg) with excellent mechanical strength is realized via PEI-PAA complex and calcium alginate coordination for universal adhesion by the synergistic effort of topological entanglement and catechol chemistry. The dual networks of PEI-PAA/Alg provide mechanically reinforced cohesion strength, which is sufficient for energy dissipation during adhesion with universal materials. After the integration of mussel-inspired dopamine into PAA or Alg, the adhesive demonstrates further improved adhesion performance with a solid adherend and capability to bond cancellous bones. Notably, the dopamine-modified adhesive exhibits better instant adhesion and reversibility with wet surfaces compared with commercial fibrin. Adhesion interfaces are investigated by SEM and micro-FTIR to verify the effectiveness of strategies of topological entanglement. Furthermore, the adhesive also possesses great injectability, stability, tissue adhesion, and biocompatibility. In vivo wound healing and histological analysis indicate that the hydrogel can promote wound closure, epidermis regeneration, and tissue refunctionalization, implying its potential application for bioadhesive and wound dressing.
Collapse
Affiliation(s)
- Buyun Chen
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dandan Zhu
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Li
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenhao Wang
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Zheng
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinling Wang
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Wu KY, Akbar D, Giunta M, Kalevar A, Tran SD. Hydrogels in Ophthalmology: Novel Strategies for Overcoming Therapeutic Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 17:86. [PMID: 38203940 PMCID: PMC10780040 DOI: 10.3390/ma17010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The human eye's intricate anatomical and physiological design necessitates tailored approaches for managing ocular diseases. Recent advancements in ophthalmology underscore the potential of hydrogels as a versatile therapeutic tool, owing to their biocompatibility, adaptability, and customizability. This review offers an exploration of hydrogel applications in ophthalmology over the past five years. Emphasis is placed on their role in optimized drug delivery for the posterior segment and advancements in intraocular lens technology. Hydrogels demonstrate the capacity for targeted, controlled, and sustained drug release in the posterior segment of the eye, potentially minimizing invasive interventions and enhancing patient outcomes. Furthermore, in intraocular lens domains, hydrogels showcase potential in post-operative drug delivery, disease sensing, and improved biocompatibility. However, while their promise is immense, most hydrogel-based studies remain preclinical, necessitating rigorous clinical evaluations. Patient-specific factors, potential complications, and the current nascent stage of research should inform their clinical application. In essence, the incorporation of hydrogels into ocular therapeutics represents a seminal convergence of material science and medicine, heralding advancements in patient-centric care within ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Michel Giunta
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
24
|
Kaur K, Müller M, Müller M, Schönherr H. Photodynamic Eradication of Pseudomonas aeruginosa with Ru-Photosensitizers Encapsulated in Enzyme Degradable Nanocarriers. Pharmaceutics 2023; 15:2683. [PMID: 38140023 PMCID: PMC10747122 DOI: 10.3390/pharmaceutics15122683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The development of new approaches for the treatment of the increasingly antibiotic-resistant pathogen Pseudomonas aeruginosa was targeted by enhancing the effect of local antimicrobial photodynamic therapy (aPDT) using poly(ethylene glycol)-block-poly(lactic acid) (PEG114-block-PLAx) nanocarriers that were loaded with a ruthenium-based photosensitizer (PS). The action of tris(1,10-phenanthroline) ruthenium (II) bis(hexafluorophosphate) (RuPhen3) encapsulated in PEG114-block-PLAx micelles and vesicles was shown to result in an appreciable aPDT inactivation efficiency against planktonic Pseudomonas aeruginosa. In particular, the encapsulation of the PS, its release, and the efficiency of singlet oxygen (1O2) generation upon irradiation with blue light were studied spectroscopically. The antimicrobial effect was analyzed with two strains of Pseudomonas aeruginosa. Compared with PS-loaded micelles, formulations of the PS-loaded vesicles showed 10 times enhanced activity with a strong photodynamic inactivation effect of at least a 4.7 log reduction against both a Pseudomonas aeruginosa lab strain and a clinical isolate collected from the lung of a cystic fibrosis (CF) patient. This work lays the foundation for the targeted eradication of Pseudomonas aeruginosa using aPDT in various medical application areas.
Collapse
Affiliation(s)
| | | | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, 57076 Siegen, Germany (M.M.)
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, 57076 Siegen, Germany (M.M.)
| |
Collapse
|
25
|
Balla E, Zamboulis A, Klonos P, Kyritsis A, Barmpalexis P, Bikiaris DΝ. Synthesis of novel interpenetrated network for ocular co-administration of timolol maleate and dorzolamide hydrochloride drugs. Int J Pharm 2023; 646:123439. [PMID: 37742821 DOI: 10.1016/j.ijpharm.2023.123439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
In the present work, novel interpenetrated networks (IPNs) of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide) (SBMA) and poly(vinyl alcohol) (PVA) were prepared for the ocular co-administration of timolol maleate (TIM) and dorzolamide hydrochloride (DORZ), two drugs widely used for the treatment of glaucoma. The successful polymerization of SBMA, in the presence of PVA, led to the formation of semi-interpenetrated pSBMA-PVA networks (IPNs), in the form of sponges, exhibiting intrinsic antimicrobial properties attributed to SBMA. Fourier-transform infrared spectroscopy (FTIR) was utilized to confirm the successful synthesis of the IPNs. Further assessments, including contact angle and water sorption measurements, highlighted their significant hydrophilicity, a feature that makes them suitable for ocular applications. Differential scanning calorimetry (DSC) measurements indicated that PVA serves as a plasticizer, while an assessment of the water sorption capacity of these materials suggested that although the incorporation of PVA results in slightly less hydrophilic materials, the prepared sponges still remain sufficiently hydrophilic for ocular use. Following their characterization, the optimal pSBMA-PVA IPN was used to encapsulate TIM and DORZ. Irritation tests, performed using the HET-CAM method, confirmed that the drug-loaded sponges were safe and potentially well-tolerated for ophthalmic use. Finally, the co-release study for the two drugs revealed a sustained release pattern in both cases, while drug release from the sponges was primarily controlled by diffusion.
Collapse
Affiliation(s)
- Evangelia Balla
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Alexandra Zamboulis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Panagiotis Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Panagiotis Barmpalexis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios Ν Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
26
|
Zarenezhad E, Marzi M, Abdulabbas HT, Jasim SA, Kouhpayeh SA, Barbaresi S, Ahmadi S, Ghasemian A. Bilosomes as Nanocarriers for the Drug and Vaccine Delivery against Gastrointestinal Infections: Opportunities and Challenges. J Funct Biomater 2023; 14:453. [PMID: 37754867 PMCID: PMC10531812 DOI: 10.3390/jfb14090453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 09/28/2023] Open
Abstract
The gastrointestinal tract (GIT) environment has an intricate and complex nature, limiting drugs' stability, oral bioavailability, and adsorption. Additionally, due to the drugs' toxicity and side effects, renders are continuously seeking novel delivery systems. Lipid-based drug delivery vesicles have shown various loading capacities and high stability levels within the GIT. Indeed, most vesicular platforms fail to efficiently deliver drugs toward this route. Notably, the stability of vesicular constructs is different based on the different ingredients added. A low GIT stability of liposomes and niosomes and a low loading capacity of exosomes in drug delivery have been described in the literature. Bilosomes are nonionic, amphiphilic, flexible surfactant vehicles that contain bile salts for the improvement of drug and vaccine delivery. The bilosomes' stability and plasticity in the GIT facilitate the efficient carriage of drugs (such as antimicrobial, antiparasitic, and antifungal drugs), vaccines, and bioactive compounds to treat infectious agents. Considering the intricate and harsh nature of the GIT, bilosomal formulations of oral substances have a remarkably enhanced delivery efficiency, overcoming these conditions. This review aimed to evaluate the potential of bilosomes as drug delivery platforms for antimicrobial, antiviral, antifungal, and antiparasitic GIT-associated drugs and vaccines.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa P.O. Box 7461686688, Iran; (E.Z.); (M.M.); (S.A.)
| | - Mahrokh Marzi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa P.O. Box 7461686688, Iran; (E.Z.); (M.M.); (S.A.)
| | - Hussein T. Abdulabbas
- Department of Medical Microbiology, Medical College, Al Muthanna University, Al Muthanna P.O. Box 07835544777, Iraq;
| | | | - Seyed Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa P.O. Box 7461686688, Iran;
| | - Silvia Barbaresi
- Department of Movement and Sports Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Shiva Ahmadi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa P.O. Box 7461686688, Iran; (E.Z.); (M.M.); (S.A.)
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa P.O. Box 7461686688, Iran; (E.Z.); (M.M.); (S.A.)
| |
Collapse
|
27
|
Ihlenburg RBJ, Petracek D, Schrank P, Davari MD, Taubert A, Rothenstein D. Identification of the First Sulfobetaine Hydrogel-Binding Peptides via Phage Display Assay. Macromol Rapid Commun 2023; 44:e2200896. [PMID: 36703485 DOI: 10.1002/marc.202200896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Indexed: 01/28/2023]
Abstract
Using the M13 phage display, a series of 7- and 12-mer peptides which interact with new sulfobetaine hydrogels are identified. Two peptides each from the 7- and 12-mer peptide libraries bind to the new sulfobetaine hydrogels with high affinity compared to the wild-type phage lacking a dedicated hydrogel binding peptide. This is the first report of peptides binding to zwitterionic sulfobetaine hydrogels and the study therefore opens up the pathway toward new phage or peptide/hydrogel hybrids with high application potential.
Collapse
Affiliation(s)
- Ramona B J Ihlenburg
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - David Petracek
- Department Bioinspired Materials, Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, D-70569, Stuttgart, Germany
| | - Paul Schrank
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Dirk Rothenstein
- Department Bioinspired Materials, Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, D-70569, Stuttgart, Germany
| |
Collapse
|
28
|
Amiri N, Ghaffari S, Hassanpour I, Chae T, Jalili R, Kilani RT, Ko F, Ghahary A, Lange D. Antibacterial Thermosensitive Silver-Hydrogel Nanocomposite Improves Wound Healing. Gels 2023; 9:542. [PMID: 37504421 PMCID: PMC10379397 DOI: 10.3390/gels9070542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Bacterial infection and poor cell recruitment are among the main factors that prolong wound healing. To address this, a strategy is required that can prevent infection while promoting tissue repair. Here, we have created a silver nanoparticle-based hydrogel composite that is antibacterial and provides nutrients for cell growth, while filling cavities of various geometries in wounds that are difficult to reach with other dressings. Silver nanoparticles (AgNPs) were synthesized by chemical reduction and characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and inductively coupled plasma-mass spectroscopy (ICP-MS). Using varying concentrations of AgNPs (200, 400, and 600 ppm), several collagen-based silver-hydrogel nanocomposite candidates were generated. The impact of these candidates on wound healing was assessed in a rat splinted wound model, while their ability to prevent wound infection from a contaminated surface was assessed using a rat subcutaneous infection model. Biocompatibility was assessed using the standard MTT assay and in vivo histological analyses. Synthesized AgNPs were spherical and stable, and while hydrogel alone did not have any antibacterial effect, AgNP-hydrogel composites showed significant antibacterial activity both in vitro and in vivo. Wound healing was found to be accelerated with AgNP-hydrogel composite treatment, and no negative effects were observed compared to the control group. The formulations were non-cytotoxic and did not differ significantly in hematological and biochemical factors from the control group in the in vivo study. By presenting promising antibacterial and wound healing activities, silver-hydrogel nanocomposite offers a safe therapeutic option that can be used as a functional scaffold for an acceleration of wound healing.
Collapse
Affiliation(s)
- Nafise Amiri
- Professional Fire Fighters' Burn and Wound Healing Research Laboratory, Division of Plastic Surgery, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- ICORD and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Sahand Ghaffari
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Ida Hassanpour
- Professional Fire Fighters' Burn and Wound Healing Research Laboratory, Division of Plastic Surgery, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Taesik Chae
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Reza Jalili
- Aspect Biosystems, Vancouver, BC V6P 6P2, Canada
| | - Ruhangiz Taghi Kilani
- Professional Fire Fighters' Burn and Wound Healing Research Laboratory, Division of Plastic Surgery, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Frank Ko
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aziz Ghahary
- Professional Fire Fighters' Burn and Wound Healing Research Laboratory, Division of Plastic Surgery, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Dirk Lange
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
29
|
Köck H, Striegl B, Kraus A, Zborilova M, Christiansen S, Schäfer N, Grässel S, Hornberger H. In Vitro Analysis of Human Cartilage Infiltrated by Hydrogels and Hydrogel-Encapsulated Chondrocytes. Bioengineering (Basel) 2023; 10:767. [PMID: 37508794 PMCID: PMC10376441 DOI: 10.3390/bioengineering10070767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease causing loss of articular cartilage and structural damage in all joint tissues. Given the limited regenerative capacity of articular cartilage, methods to support the native structural properties of articular cartilage are highly anticipated. The aim of this study was to infiltrate zwitterionic monomer solutions into human OA-cartilage explants to replace lost proteoglycans. The study included polymerization and deposition of methacryloyloxyethyl-phosphorylcholine- and a novel sulfobetaine-methacrylate-based monomer solution within ex vivo human OA-cartilage explants and the encapsulation of isolated chondrocytes within hydrogels and the corresponding effects on chondrocyte viability. The results demonstrated that zwitterionic cartilage-hydrogel networks are formed by infiltration. In general, cytotoxic effects of the monomer solutions were observed, as was a time-dependent infiltration behavior into the tissue accompanied by increasing cell death and penetration depth. The successful deposition of zwitterionic hydrogels within OA cartilage identifies the infiltration method as a potential future therapeutic option for the repair/replacement of OA-cartilage extracellular suprastructure. Due to the toxic effects of the monomer solutions, the focus should be on sealing the OA-cartilage surface, instead of complete infiltration. An alternative treatment option for focal cartilage defects could be the usage of monomer solutions, especially the novel generated sulfobetaine-methacrylate-based monomer solution, as bionic for cell-based 3D bioprintable hydrogels.
Collapse
Affiliation(s)
- Hannah Köck
- Biomaterials Laboratory, Faculty of Mechanical Engineering, Ostbayerische Technische Hochschule (OTH), 93053 Regensburg, Germany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, 93053 Regensburg, Germany
- Regensburg Center of Biomedical Engineering (RCBE), Ostbayerische Technische Hochschule (OTH) and University of Regensburg, 93053 Regensburg, Germany
| | - Birgit Striegl
- Regensburg Center of Biomedical Engineering (RCBE), Ostbayerische Technische Hochschule (OTH) and University of Regensburg, 93053 Regensburg, Germany
| | - Annalena Kraus
- Institute for Nanotechnology and Correlative Microscopy eV INAM, 91301 Forchheim, Germany
| | - Magdalena Zborilova
- Department of Orthopaedic Surgery, University of Regensburg, 93053 Regensburg, Germany
| | - Silke Christiansen
- Institute for Nanotechnology and Correlative Microscopy eV INAM, 91301 Forchheim, Germany
| | - Nicole Schäfer
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, 93053 Regensburg, Germany
| | - Susanne Grässel
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, 93053 Regensburg, Germany
- Department of Orthopaedic Surgery, University of Regensburg, 93053 Regensburg, Germany
| | - Helga Hornberger
- Biomaterials Laboratory, Faculty of Mechanical Engineering, Ostbayerische Technische Hochschule (OTH), 93053 Regensburg, Germany
- Regensburg Center of Biomedical Engineering (RCBE), Ostbayerische Technische Hochschule (OTH) and University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
30
|
Uçar A, González-Fernández E, Staderini M, Murray AF, Mount AR, Bradley M. pH-Activated Dissolvable Polymeric Coatings to Reduce Biofouling on Electrochemical Sensors. J Funct Biomater 2023; 14:329. [PMID: 37367293 DOI: 10.3390/jfb14060329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Implantable electrochemical sensors that enable the real-time detection of significant biomarkers offer huge potential for the enhancement and personalisation of therapies; however, biofouling is a key challenge encountered by any implantable system. This is particularly an issue immediately after implantation, when the foreign body response and associated biofouling processes are at their most active in passivating a foreign object. Here, we present the development of a sensor protection and activation strategy against biofouling, based on coatings consisting of a pH-triggered, dissolvable polymer, that covered a functionalised electrode surface. We demonstrate that reproducible delayed sensor activation can be achieved, and that the length of this delay can be controlled by the optimisation of coating thickness, homogeneity and density through tuning of the coating method and temperature. Comparative evaluation of the polymer-coated and uncoated probe-modified electrodes in biological media revealed significant improvements in their anti-biofouling characteristics, demonstrating that this offers a promising approach to the design of enhanced sensing devices.
Collapse
Affiliation(s)
- Ahmet Uçar
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
- Department of Energy Systems Engineering, Faculty of Engineering and Natural Sciences, Ankara Yıldırım Beyazıt University, 06010 Ankara, Turkey
| | - Eva González-Fernández
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh EH9 3FJ, UK
| | - Matteo Staderini
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh EH9 3FJ, UK
| | - Alan F Murray
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Andrew R Mount
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh EH9 3FJ, UK
| | - Mark Bradley
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh EH9 3FJ, UK
| |
Collapse
|
31
|
Lupu A, Gradinaru LM, Gradinaru VR, Bercea M. Diversity of Bioinspired Hydrogels: From Structure to Applications. Gels 2023; 9:gels9050376. [PMID: 37232968 DOI: 10.3390/gels9050376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels are three-dimensional networks with a variety of structures and functions that have a remarkable ability to absorb huge amounts of water or biological fluids. They can incorporate active compounds and release them in a controlled manner. Hydrogels can also be designed to be sensitive to external stimuli: temperature, pH, ionic strength, electrical or magnetic stimuli, specific molecules, etc. Alternative methods for the development of various hydrogels have been outlined in the literature over time. Some hydrogels are toxic and therefore are avoided when obtaining biomaterials, pharmaceuticals, or therapeutic products. Nature is a permanent source of inspiration for new structures and new functionalities of more and more competitive materials. Natural compounds present a series of physico-chemical and biological characteristics suitable for biomaterials, such as biocompatibility, antimicrobial properties, biodegradability, and nontoxicity. Thus, they can generate microenvironments comparable to the intracellular or extracellular matrices in the human body. This paper discusses the main advantages of the presence of biomolecules (polysaccharides, proteins, and polypeptides) in hydrogels. Structural aspects induced by natural compounds and their specific properties are emphasized. The most suitable applications will be highlighted, including drug delivery, self-healing materials for regenerative medicine, cell culture, wound dressings, 3D bioprinting, foods, etc.
Collapse
Affiliation(s)
- Alexandra Lupu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Luiza Madalina Gradinaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, "Alexandru Ioan Cuza" University, 11 Carol I Bd., 700506 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
32
|
Jing Z, Jie L, Sunxiang Q, Haifeng N, Jie F. Injectable zwitterionic cryogels for accurate and sustained chemoimmunotherapy. J Mater Chem B 2023; 11:2733-2744. [PMID: 36880267 DOI: 10.1039/d3tb00170a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Chemoimmunotherapy is an effective method to treat cancer, and thus various vehicles have been constructed to co-deliver immune agents and anticancer drugs. But the immune induction process in vivo is highly susceptible to the influence of the material itself. To avoid immune reactions by the materials of delivery systems, herein, a new kind of zwitterionic cryogels (SH cryogels) with extremely low immunogenicity was prepared for chemoimmunotherapy of cancer. Their macroporous structure enabled the SH cryogels to have good compressibility and be injected through a conventional syringe. The loaded chemotherapeutic drugs and immune adjuvants were accurately, locally and long-termly released in the vicinity of tumors, enhancing the outcome of tumor therapy and minimizing the damage caused by the chemotherapeutic drugs to other organ tissues. In vivo tumor treatment experiments indicated that chemoimmunotherapy using the SH cryogel platform could inhibit the growth of breast cancer tumors to the greatest extent. Furthermore, macropores of SH cryogels supported cells to move freely in the cryogels, which could promote the dendritic cells to capture the in situ produced tumor antigens and present them to T cells. The ability to act as cradles for cell infiltration made the SH cryogels promising for applications as vaccine platforms.
Collapse
Affiliation(s)
- Zhang Jing
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Lu Jie
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Qian Sunxiang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Ni Haifeng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Feng Jie
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| |
Collapse
|
33
|
Kougkolos G, Golzio M, Laudebat L, Valdez-Nava Z, Flahaut E. Hydrogels with electrically conductive nanomaterials for biomedical applications. J Mater Chem B 2023; 11:2036-2062. [PMID: 36789648 DOI: 10.1039/d2tb02019j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydrogels, soft 3D materials of cross-linked hydrophilic polymer chains with a high water content, have found numerous applications in biomedicine because of their similarity to native tissue, biocompatibility and tuneable properties. In general, hydrogels are poor conductors of electric current, due to the insulating nature of commonly-used hydrophilic polymer chains. A number of biomedical applications require or benefit from an increased electrical conductivity. These include hydrogels used as scaffolds for tissue engineering of electroactive cells, as strain-sensitive sensors and as platforms for controlled drug delivery. The incorporation of conductive nanomaterials in hydrogels results in nanocomposite materials which combine electrical conductivity with the soft nature, flexibility and high water content of hydrogels. Here, we review the state of the art of such materials, describing the theories of current conduction in nanocomposite hydrogels, outlining their limitations and highlighting methods for improving their electrical conductivity.
Collapse
Affiliation(s)
- Georgios Kougkolos
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France. .,LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France.
| | - Muriel Golzio
- IPBS, Université de Toulouse, NRS UMR, UPS, 31077 Toulouse CEDEX 4, France
| | - Lionel Laudebat
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France. .,INU Champollion, Université de Toulouse, 81012 Albi, France
| | - Zarel Valdez-Nava
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France.
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France.
| |
Collapse
|
34
|
Jiang YJ, Jeng JH, Wu PH, Chien HW. A Rapidly and Highly Self-Healing Poly(Sulfobetaine Methacrylate) Hydrogel with Stretching Properties, Adhesive Properties, and Biocompatibility. Macromol Biosci 2023; 23:e2200368. [PMID: 36404641 DOI: 10.1002/mabi.202200368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/11/2022] [Indexed: 11/22/2022]
Abstract
This study focuses on the preparation of stretchable zwitterionic poly(sulfobetaine methacrylate) (PSBMA) hydrogels. To address the weak mechanical properties of chemically crosslinked PSBMA hydrogels, a physical crosslinking method utilizing hydrophobic interactions to crosslink hydrogels to approach tough properties is developed. Here, sodium dodecyl sulfate (SDS)-based micelle is used as a physical crosslinker to prepare physically crosslinked PSBMA (PSBMAphy ) hydrogels, and ethylene glycol dimethylacrylate (EGDMA) is used to prepare a control group of chemically crosslinked PSBMA (PSBMAchem ) hydrogels. The mechanical properties of the two hydrogels are compared, and PSBMAphy hydrogels exhibit greater flexibility than the PSBMAchem hydrogels. When the PSBMAphy hydrogels are subjected to external forces, the micelles act as dynamic crosslinking sites, allowing the stress to disperse and prevent the hydrogel from breaking. In addition, the PSBMAphy hydrogels have nearly 100% self-healing properties within 2.5 min. The PSBMAphy hydrogels exhibit usable adhesive properties to porcine skin and subcutis. MTT and hemolysis tests show that the PSBMAphy hydrogels have excellent biocompatibility and hemocompatibility. This study proposes that the multifunctional PSBMAphy hydrogels with micelles will be potential to carry drugs for use in drug delivery systems in the future.
Collapse
Affiliation(s)
- Yi-Jie Jiang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Pin-Hsuan Wu
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan.,Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
| |
Collapse
|
35
|
Yu Q, Sun H, Yue Z, Yu C, Jiang L, Dong X, Yao M, Shi M, Liang L, Wan Y, Zhang H, Yao F, Li J. Zwitterionic Polysaccharide-Based Hydrogel Dressing as a Stem Cell Carrier to Accelerate Burn Wound Healing. Adv Healthc Mater 2023; 12:e2202309. [PMID: 36447378 DOI: 10.1002/adhm.202202309] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Stem cell therapy integrated with hydrogels has shown promising potential in wound healing. However, the existing hydrogels usually cannot reach the desired therapeutic efficacy for burn wounds due to the inadaptability to wound shape and weak anti-infection ability. Moreover, it is difficult to improve the environment for the survival and function of stem cells under complicated wound microenvironments. In this study, an injectable and self-healing hydrogel (DSC), comprising sulfobetaine-derived dextran and carboxymethyl chitosan, is fabricated through a Schiff-base reaction. Meanwhile, the DSC hydrogel shows high nonfouling properties, including resistance to bacteria and nonspecific proteins; moreover, the prepared hydrogel can provide a biomimetic microenvironment for cell proliferation whilst maintaining the stemness of adipose-derived stem cells (ADSCs) regardless of complex microenvironments. In burnt murine animal models, the ADSCs-laden hydrogel can significantly accelerate wound healing rate and scarless skin tissue regeneration through multiple pathways. Specifically, the ADSCs-laden DSC hydrogel can avoid immune system recognition and activation and thus reduce the inflammatory response. Moreover, the ADSCs-laden DSC hydrogel can promote collagen deposition, angiogenesis, and enhance macrophage M2 polarization in the wound area. In summary, sulfobetaine-derived polysaccharide hydrogel can serve as a versatile platform for stem cell delivery to promote burn wound healing.
Collapse
Affiliation(s)
- Qingyu Yu
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hong Sun
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Zhiwei Yue
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Chaojie Yu
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Lijie Jiang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Xiaoru Dong
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Mengmeng Yao
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Mingyue Shi
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Lei Liang
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yizao Wan
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Jiangxi Key Laboratory of Nanobiomaterials and Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
| | - Hong Zhang
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Fanglian Yao
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Junjie Li
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
36
|
Luanda A, Badalamoole V. Past, present and future of biomedical applications of dextran-based hydrogels: A review. Int J Biol Macromol 2023; 228:794-807. [PMID: 36535351 DOI: 10.1016/j.ijbiomac.2022.12.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
This review extensively surveys the biomedical applications of hydrogels containing dextran. Dextran has gained much attention as a biomaterial due to its distinctive properties such as biocompatibility, non-toxicity, water solubility and biodegradability. It has emerged as a critical constituent of hydrogels for biomedical applications including drug delivery devices, tissue engineering scaffolds and biosensor materials. The benefits, challenges and potential prospects of dextran-based hydrogels as biomaterials are highlighted in this review.
Collapse
Affiliation(s)
- Amos Luanda
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India; Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| | - Vishalakshi Badalamoole
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India.
| |
Collapse
|
37
|
Gugoasa AI, Racovita S, Vasiliu S, Popa M. Semi-Interpenetrating Polymer Networks Based on Hydroxy-Ethyl Methacrylate and Poly(4-vinylpyridine)/Polybetaines, as Supports for Sorption and Release of Tetracycline. Polymers (Basel) 2023; 15:polym15030490. [PMID: 36771791 PMCID: PMC9919840 DOI: 10.3390/polym15030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Semi-interpenetrating polymer networks (semi-IPN) represent a type of polymeric material that has gained increasing amount of interest for their potential biomedical application. This study presents the synthesis, characterization and tetracycline loading/release capacities of semi-IPNs based on hydroxyethyl methacrylate (HEMA) and poly(4-vinylpyridine) (P4VP) or poly (1-vinyl-4-(1-carboxymethyl) pyridinium betaine) (P4VPB-1) and poly (1-vinyl-4-(2-carboxyethyl) pyridinium betaine) (P4VPB-2). The optimization of the semi-IPNs synthesis was achieved by studying the influence of reaction parameters (chemical structure of the cross-linking agent, HEMA:crosslinker ratio, HEMA:linear polymers ratio and the type of solvent of the linear polymers) on the yield of obtaining semi-IPNs and swelling capacity of these systems. Fourier-transform infrared analysis and scanning electron microscopy highlighted the chemical structures and morphologies of the semi-IPNs. The higher swelling capacity was observed in the case of the PHEMA/P4VPB-2 network due to the increased hydrophilicity of P4VPB-2 compared with P4VP and P4VPB-1 polymers. In vitro release studies of tetracycline reveal that the release mechanism is represented by non-Fickian diffusion being controlled by both diffusion and swelling processes. The antimicrobial activity of semi-IPN-tetracycline systems was tested against E. coli and S. aureus, demonstrating that tetracycline is released from the semi-IPN and retains its bactericidal activity. An increased value of the inhibition zone diameter compared with that of tetracycline indicates the possibility that the semi-IPN containing P4VPB-2 also exhibits intrinsic antimicrobial activity due to the presence of the polybetaine in the network structure.
Collapse
Affiliation(s)
- Aurica Ionela Gugoasa
- Departament of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asahi” Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania
| | - Stefania Racovita
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41 A, 700487 Iasi, Romania
| | - Silvia Vasiliu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41 A, 700487 Iasi, Romania
| | - Marcel Popa
- Departament of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asahi” Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania
- Academy of Romanian Scientists, Ilfov Str., Nr. 3, Sector 5, 050044 Bucuresti, Romania
- Correspondence:
| |
Collapse
|
38
|
Jayakumar K, Lielpetere A, Domingo-Lopez DA, Levey RE, Duffy GP, Schuhmann W, Leech D. Tethering zwitterionic polymer coatings to mediated glucose biosensor enzyme electrodes can decrease sensor foreign body response yet retain sensor sensitivity to glucose. Biosens Bioelectron 2023; 219:114815. [PMID: 36302333 DOI: 10.1016/j.bios.2022.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
Foreign body response (FBR) is a major challenge that affects implantable biosensors and medical devices, including glucose biosensors, leading to a deterioration in device response over time. Polymer shields are often used to mitigate this issue. Zwitterionic polymers (ZPs) are a promising class of materials that reduce biofouling of implanted devices. A series of ZPs each containing tetherable epoxide functional groups was synthesised for application as a polymer shield for eventual application as implantable glucose biosensors. The polymer shields were initially tested for the ability to resist fibrinogen adsorption and fibroblast adhesion. All synthesised ZPs showed comparable behaviour to a commercial Lipidure ZP in resisting fibrinogen adsorption. Nafion, a common anionic shield used against electrochemical interferents, showed higher protein adsorption and comparable cell adhesion resistance as uncoated control surfaces. However, a poly(2-methacryloyloxyethyl phosphorylcholine-co-glycidyl methacrylate) (MPC)-type ZP showed similar behaviour to Lipidure, with approximately 50% reduced fibrinogen adsorption and 80% decrease in fibroblast adhesion compared to uncoated controls. An MPC-coated amperometric glucose biosensor showed comparable current density and a 1.5-fold increase in sensitivity over an uncoated control biosensor, whereas all other polymer shields tested, including Lipidure, Nafion and a poly(ethyleneglycol) polymer, resulted in lower sensitivity and current density. Collectively, these characteristics make MPC-polymer shield coatings an appealing possibility for use in implantable glucose sensors and other implanted devices with the aim of reducing FBR while maintaining sensor performance.
Collapse
Affiliation(s)
- Kavita Jayakumar
- School of Biological & Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Anna Lielpetere
- Analytical Chemistry-Center for Electrochemical Sciences, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Daniel A Domingo-Lopez
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, University Road, ,Galway, H91 TK33, Ireland
| | - Ruth E Levey
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, University Road, ,Galway, H91 TK33, Ireland
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, University Road, ,Galway, H91 TK33, Ireland
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| | - Dónal Leech
- School of Biological & Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
39
|
Meng L, Huang C, Liu X, Qu H, Wang Q. Zwitterionic coating assisted by dopamine with metal-phenolic networks loaded on titanium with improved biocompatibility and antibacterial property for artificial heart. Front Bioeng Biotechnol 2023; 11:1167340. [PMID: 37139045 PMCID: PMC10150318 DOI: 10.3389/fbioe.2023.1167340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction: Titanium (Ti) and Ti-based alloy materials are commonly used to develop artificial hearts. To prevent bacterial infections and thrombus in patients with implanted artificial hearts, long-term prophylactic antibiotics and anti-thrombotic drugs are required, and this may lead to health complications. Therefore, the development of optimized antibacterial and antifouling surfaces for Ti-based substrate is especially critical when designing artificial heart implants. Methods: In this study, polydopamine and poly-(sulfobetaine methacrylate) polymers were co-deposited to form a coating on the surface of Ti substrate, a process initiated by Cu2+ metal ions. The mechanism for the fabrication of the coating was investigated by coating thickness measurements as well as Ultraviolet-visible and X-ray Photoelectron (XPS) spectroscopy. Characterization of the coating was observed by optical imaging, scanning electron microscope (SEM), XPS, atomic force microscope (AFM), water contact angle and film thickness. In addition, antibacterial property of the coating was tested using Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as model strains, while the material biocompatibility was assessed by the antiplatelet adhesion test using platelet-rich plasma and in vitro cytotoxicity tests using human umbilical vein endothelial cells and red blood cells. Results and discussion: Optical imaging, SEM, XPS, AFM, water contact angle, and film thickness tests demonstrated that the coating was successfully deposited on the Ti substrate surface. The biocompatibility and antibacterial assays showed that the developed surface holds great potential for improving the antibacterial and antiplatelet adhesion properties of Ti-based heart implants.
Collapse
Affiliation(s)
- Lingwei Meng
- School of Rare Earth, University of Science and Technology of China, Hefei, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou, China
| | - Chuangxin Huang
- School of Rare Earth, University of Science and Technology of China, Hefei, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou, China
| | - Xin Liu
- School of Rare Earth, University of Science and Technology of China, Hefei, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou, China
| | - Hongyi Qu
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou, China
- Institute of Electrical Engineering, Chinese Academy of Science, Beijing, China
- *Correspondence: Hongyi Qu, ; Qiuliang Wang,
| | - Qiuliang Wang
- School of Rare Earth, University of Science and Technology of China, Hefei, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou, China
- Institute of Electrical Engineering, Chinese Academy of Science, Beijing, China
- *Correspondence: Hongyi Qu, ; Qiuliang Wang,
| |
Collapse
|
40
|
Sójka O, van der Mei HC, van Rijn P, Gagliano MC. Zwitterionic poly(sulfobetaine methacrylate)-based hydrogel coating for drinking water distribution systems to inhibit adhesion of waterborne bacteria. Front Bioeng Biotechnol 2023; 11:1066126. [PMID: 36896012 PMCID: PMC9989184 DOI: 10.3389/fbioe.2023.1066126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Presence of biofilms in drinking water distribution systems (DWDS) can be a nuisance, leading to several operational and maintenance issues (i.e., increased secondary disinfectants demand, pipe damage or increased flow resistance), and so far, no single control practice was found to be sufficiently effective. Here, we propose poly (sulfobetaine methacrylate) (P(SBMA))-based hydrogel coating application as a biofilm control strategy in DWDS. The P(SBMA) coating was synthetized through photoinitiated free radical polymerization on polydimethylsiloxane with different combinations of SBMA as a monomer, and N, N'-methylenebis (acrylamide) (BIS) as a cross-linker. The most stable coating in terms of its mechanical properties was obtained using 20% SBMA with a 20:1 SBMA:BIS ratio. The coating was characterized using Scanning Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, and water contact angle measurements. The anti-adhesive performance of the coating was evaluated in a parallel-plate flow chamber system against adhesion of four bacterial strains representing genera commonly identified in DWDS biofilm communities, Sphingomonas and Pseudomonas. The selected strains exhibited varying adhesion behaviors in terms of attachment density and bacteria distribution on the surface. Despite these differences, after 4 h, presence of the P(SBMA)-based hydrogel coating significantly reduced the number of adhering bacteria by 97%, 94%, 98% and 99%, for Sphingomonas Sph5, Sphingomonas Sph10, Pseudomonas extremorientalis and Pseudomonas aeruginosa, respectively, compared to non-coated surfaces. These findings motivate further research into a potential application of a hydrogel anti-adhesive coating as a localized biofilm control strategy in DWDS, especially on materials known to promote excessive biofilm growth.
Collapse
Affiliation(s)
- Olga Sójka
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands.,Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Patrick van Rijn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maria Cristina Gagliano
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
| |
Collapse
|
41
|
Aini HN, Maggay I, Chang Y, Venault A. A Green Stable Antifouling PEGylated PVDF Membrane Prepared by Vapor-Induced Phase Separation. MEMBRANES 2022; 12:1277. [PMID: 36557184 PMCID: PMC9784106 DOI: 10.3390/membranes12121277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
While green solvents are being implemented in the fabrication of polyvinylidene fluoride (PVDF) membranes, most are not compatible with the vapor-induced phase separation (VIPS) process for which relatively low dissolution temperatures are required. Additionally, preparing antifouling green membranes in one step by blending the polymer with an antifouling material before inducing phase separation remains extremely challenging due to the solubility issues. Here, the green solvent triethyl phosphate (TEP) was used to solubilize both PVDF and a copolymer (synthesized from styrene monomer and poly(ethylene glycol) methyl ether methacrylate). VIPS was then used, yielding symmetric bi-continuous microfiltration membranes. For a 2 wt% copolymer content in the casting solution, the corresponding membrane P2 showed a homogeneous and dense surface distribution of the copolymer, resulting in a high hydration capacity (>900 mg/cm3) and effective resistance to biofouling during the adsorption tests using bovine serum albumin, Escherichia coli or whole blood, with a measured fouling reduction of 80%, 89% and 90%, respectively. Cyclic filtration tests using bacteria highlighted the competitive antifouling properties of the membranes with a flux recovery ratio after two water/bacterial solution cycles higher than 70%, a reversible flux decline ratio of about 62% and an irreversible flux decline ratio of 28%. Finally, these green antifouling membranes were shown to be stable despite several weeks of immersion in water.
Collapse
|
42
|
Lin W, Wei X, Liu S, Zhang J, Yang T, Chen S. Recent Advances in Mechanical Reinforcement of Zwitterionic Hydrogels. Gels 2022; 8:gels8090580. [PMID: 36135292 PMCID: PMC9498500 DOI: 10.3390/gels8090580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/28/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
As a nonspecific protein adsorption material, a strong hydration layer provides zwitterionic hydrogels with excellent application potential while weakening the interaction between zwitterionic units, leading to poor mechanical properties. The unique anti-polyelectrolyte effect in ionic solution further restricts the application value due to the worsening mechanical strength. To overcome the limitations of zwitterionic hydrogels that can only be used in scenarios that do not require mechanical properties, several methods for strengthening mechanical properties based on enhancing intermolecular interaction forces and polymer network structure design have been extensively studied. Here, we review the works on preparing tough zwitterionic hydrogel. Based on the spatial and molecular structure design, tough zwitterionic hydrogels have been considered as an important candidate for advanced biomedical and soft ionotronic devices.
Collapse
Affiliation(s)
- Weifeng Lin
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xinyue Wei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sihang Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (S.L.); (S.C.)
| | - Juan Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Zhejiang Poly Pharm Co., Ltd., Hangzhou 311199, China
| | - Tian Yang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Correspondence: (S.L.); (S.C.)
| |
Collapse
|
43
|
Park K, Kim S, Jo Y, Park J, Kim I, Hwang S, Lee Y, Kim SY, Seo J. Lubricant skin on diverse biomaterials with complex shapes via polydopamine-mediated surface functionalization for biomedical applications. Bioact Mater 2022; 25:555-568. [PMID: 37056251 PMCID: PMC10088055 DOI: 10.1016/j.bioactmat.2022.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 12/28/2022] Open
Abstract
Implantable biomedical devices require an anti-biofouling, mechanically robust, low friction surface for a prolonged lifespan and improved performance. However, there exist no methods that could provide uniform and effective coatings for medical devices with complex shapes and materials to prevent immune-related side effects and thrombosis when they encounter biological tissues. Here, we report a lubricant skin (L-skin), a coating method based on the application of thin layers of bio-adhesive and lubricant-swellable perfluoropolymer that impart anti-biofouling, frictionless, robust, and heat-mediated self-healing properties. We demonstrate biocompatible, mechanically robust, and sterilization-safe L-skin in applications of bioprinting, microfluidics, catheter, and long and narrow medical tubing. We envision that diverse applications of L-skin improve device longevity, as well as anti-biofouling attributes in biomedical devices with complex shapes and material compositions.
Collapse
Affiliation(s)
- Kijun Park
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seunghoi Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technologies, Seoul, 02792, Republic of Korea
| | - Yejin Jo
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Park
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inwoo Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technologies, Seoul, 02792, Republic of Korea
| | - Sooyoung Hwang
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeontaek Lee
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - So Yeon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technologies, Seoul, 02792, Republic of Korea
| | - Jungmok Seo
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Corresponding author.
| |
Collapse
|
44
|
Wang CG, Surat'man NEB, Chang JJ, Ong ZL, Li B, Fan X, Loh XJ, Li Z. Polyelectrolyte hydrogels for tissue engineering and regenerative medicine. Chem Asian J 2022; 17:e202200604. [DOI: 10.1002/asia.202200604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Chen-Gang Wang
- Institute of Sustainability for Chemicals Energy and Environment Sustainable Polymers SINGAPORE
| | | | - Jun Jie Chang
- Institute of Materials Research and Engineering Strategic research initiatives SINGAPORE
| | - Zhi Lin Ong
- Nanyang Technological University School of Chemical and Biomedical Engineering SINGAPORE
| | - Bofan Li
- Institute of Sustainability for Chemicals Energy and Environment Sustainable Polymers SINGAPORE
| | - Xiaotong Fan
- Institute of Sustainability for Chemicals Energy and Environment Sustainable Polymers SINGAPORE
| | - Xian Jun Loh
- Institute of Materials Research and Engineering Strategic research initiatives SINGAPORE
| | - Zibiao Li
- Institute of Materials Research and Engineering 2 Fusionopolis Way, Innovis, #08-03Singapore 138634 Singapore SINGAPORE
| |
Collapse
|
45
|
Anti-Fouling Performance of Hydrophobic Hydrogels with Unique Surface Hydrophobicity and Nanoarchitectonics. Gels 2022; 8:gels8070407. [PMID: 35877492 PMCID: PMC9324747 DOI: 10.3390/gels8070407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrogel is a kind of soft and wet matter, which demonstrates favorable fouling resistance owing to the hydration anti-adhesive surfaces. Different from conventional hydrogels constructed by hydrophilic or amphiphilic polymers, the recently invented “hydrophobic hydrogels” composed of hydrophobic polymers exhibit many unique properties, e.g., surface hydrophobicity and high water content, suggesting promising applications in anti-fouling. In this paper, a series of hydrophobic hydrogels were prepared with different chemical structures and water content for anti-fouling investigations. The hydrophobic hydrogels showed high static water contact angles (WCAs > 90°), indicating remarkable surface hydrophobicity, which is abnormal for conventional hydrogels. Compared with the conventional hydrogels, all the hydrophobic hydrogels exhibited less than 4% E. coli biofilm coverage, showing a contrary trend of anti-fouling ability to the water content inside the polymer. Typically, the poly(2-(2-ethoxyethoxy)ethyl acrylate) (PCBA) and poly(tetrahydrofurfuryl acrylate) (PTHFA) hydrogels with relatively high surface hydrophobicity showed as low as 5.1% and 2.4% E. coli biofilm coverage even after incubation for 7 days in bacteria suspension, which are about 0.32 and 0.15 times of that on the hydrophilic poly(N,N-dimethylacrylamide) (PDMA) hydrogels, respectively. Moreover, the hydrophobic hydrogels exhibited a similar anti-adhesion ability and trend to algae S. platensis. Based on the results, the surface hydrophobicity mainly contributes to the excellent anti-fouling ability of hydrophobic hydrogels. In the meantime, the too-high water content may be somehow detrimental to anti-fouling performance.
Collapse
|
46
|
Ding J, Ding X, Sun J. Zwitterionic Polypeptoids: A Promising Class of Antifouling Bioinspired Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4498. [PMID: 35806622 PMCID: PMC9267628 DOI: 10.3390/ma15134498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023]
Abstract
Biofouling caused by protein adsorption and microbial colonization remains a great challenge in many applications. In this work, we synthesized a new type of zwitterionic polypeptoid containing carboxybetaine (CB) moieties (PeptoidCB) through thiol-ene chemistry of poly(N-allylglycine) (PNAG). The zwitterionic antifouling hydrogel was subsequently prepared by co-mixing PeptoidCB with agarose, which exhibited excellent resistance to non-specific protein adsorption and bacterial adhesion. Further, PeptoidCB-modified block copolypeptoids with amphiphilic structure were synthesized to form nanoparticles in an aqueous solution with neglected protein adsorption. The ability of PeptoidCB to resist non-specific protein adsorption and bacterial adhesion makes it a promising candidate for biomedical and industrial applications.
Collapse
Affiliation(s)
- Jian Ding
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (J.D.); (X.D.)
| | - Xiangmin Ding
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (J.D.); (X.D.)
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun 130012, China
| |
Collapse
|
47
|
A Soft Zwitterionic Hydrogel as Potential Coating on a Polyimide Surface to Reduce Foreign Body Reaction to Intraneural Electrodes. Molecules 2022; 27:molecules27103126. [PMID: 35630604 PMCID: PMC9147366 DOI: 10.3390/molecules27103126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Invasive intraneural electrodes can control advanced neural-interfaced prostheses in human amputees. Nevertheless, in chronic implants, the progressive formation of a fibrotic capsule can gradually isolate the electrode surface from the surrounding tissue leading to loss of functionality. This is due to a nonspecific inflammatory response called foreign-body reaction (FBR). The commonly used poly(ethylene glycol) (PEG)-based low-fouling coatings of implantable devices can be easily encapsulated and are susceptible to oxidative damage in long-term in vivo applications. Recently, sulfobetaine-based zwitterionic hydrogels have emerged as an important class of robust ultra-low fouling biomaterials, holding great potential to mitigate FBR. The aim of this proof-of-principle in vitro work was to assess whether the organic zwitterionic—poly(sulfobetaine methacrylate) [poly(SBMA)]—hydrogel could be a suitable coating for Polyimide (PI)-based intraneural electrodes to reduce FBR. We first synthesized and analyzed the hydrogel through a mechanical characterization (i.e., Young’s modulus). Then, we demonstrated reduced adhesion and activation of fibrogenic and pro-inflammatory cells (i.e., human myofibroblasts and macrophages) on the hydrogel compared with PEG-coated and polystyrene surfaces using cell viability assays, confocal fluorescence microscopy and high-content analysis of oxidative stress production. Interestingly, we successfully coated PI surfaces with a thin film of the hydrogel through covalent bond and demonstrated its high hydrophilicity via water contact angle measurement. Importantly, we showed the long-term release of an anti-fibrotic drug (i.e., Everolimus) from the hydrogel. Because of the low stiffness, biocompatibility, high hydration and ultra-low fouling characteristics, our zwitterionic hydrogel could be envisioned as long-term diffusion-based delivery system for slow and controlled anti-inflammatory and anti-fibrotic drug release in vivo.
Collapse
|
48
|
Molecular Dynamics Study on Properties of Hydration Layers above Polymer Antifouling Membranes. Molecules 2022; 27:molecules27103074. [PMID: 35630551 PMCID: PMC9143230 DOI: 10.3390/molecules27103074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Zwitterionic polymers as crucial antifouling materials exhibit excellent antifouling performance due to their strong hydration ability. The structure−property relationship at the molecular level still remains to be elucidated. In this work, the surface hydration ability of three antifouling polymer membranes grafting on polysiloxane membranes Poly(sulfobetaine methacrylate) (T4-SB), poly(3-(methacryloyloxy)propane-1-sulfonate) (T4-SP), and poly(2-(dimethylamino)ethyl methacrylate) (T4-DM) was investigated. An orderly packed, and tightly bound surface hydration layer above T4-SP and T4-SB antifouling membranes was found by means of analyzing the dipole orientation distribution, diffusion coefficient, and average residence time. To further understand the surface hydration ability of three antifouling membranes, the surface structure, density profile, roughness, and area percentage of hydrophilic surface combining electrostatic potential, RDFs, SDFs, and noncovalent interactions of three polymers’ monomers were studied. It was concluded that the broadest distribution of electrostatic potential on the surface and the nature of anionic SO3- groups led to the following antifouling order of T4-SB > T4-SP > T4-DM. We hope that this work will gain some insight for the rational design and optimization of ecofriendly antifouling materials.
Collapse
|
49
|
Wang K, Arado T, Huner A, Seol H, Liu X, Wang H, Hassan L, Suresh K, Kim S, Cheng G. Thermoplastic zwitterionic elastomer with critical antifouling properties. Biomater Sci 2022; 10:2892-2906. [PMID: 35446327 DOI: 10.1039/d2bm00190j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermoplastic elastomers are widely used in the medical industry for advanced medical and healthcare products, helping millions of patients achieve a better quality of life. Yet, microbial contamination and material-associated biofilms on devices remain a critical challenge because it is challenging for currently available materials to provide critical antifouling properties, thermoplasticity, and elastic properties simultaneously. We developed a highly flexible zwitterionic thermoplastic polyurethane with critical antifouling properties. A series of poly((diethanolamine ethyl acetate)-co-poly(tetrahydrofuran)-co-(1,6-diisocyanatohexane)) (PCB-PTHFUs) were synthesized. The PCB-PTHFUs exhibit a breaking strain of more than 400%, a high resistance to fibroblast cells for 24 h, and the excellent ability to prevent biofilm formation for up to three weeks. This study lays a foundation for clarifying the structure-function relationships of zwitterionic polymers. This thermoplastic PCB-PTHFU platform, with its unmatched antifouling properties and high elasticity, has potential for implanted medical devices and a broad spectrum of applications that suffer from biofouling, such as material-associated infection.
Collapse
Affiliation(s)
- Kun Wang
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Theo Arado
- University of Chicago Laboratory Schools, Chicago, IL 60637, USA
| | - Ardith Huner
- University of Chicago Laboratory Schools, Chicago, IL 60637, USA
| | - Hyang Seol
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Xuan Liu
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Huifeng Wang
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Lena Hassan
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Karthika Suresh
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Sangil Kim
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
50
|
Chen Z. Surface Hydration and Antifouling Activity of Zwitterionic Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4483-4489. [PMID: 35380850 DOI: 10.1021/acs.langmuir.2c00512] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is believed that the strong surface hydration of zwitterionic polymers leads to excellent antifouling properties. This Perspective presents the recent developments in studies on such surface hydration in situ using sum frequency generation (SFG) vibrational spectroscopy. SFG research provides direct molecular level evidence that zwitterionic polymers have strong surface hydration, which prevents protein adsorption and marine animal attachment. The salt effect and protein interaction on surface hydration of zwitterionic polymers have also been examined using SFG. Possible future research directions on surface hydration of new zwitterionic polymers including zwitterionic hydrogels, copolymers, and mixed charged polymers are discussed. It is also important to combine experimental SFG studies with computer simulations to further elucidate the surface hydration to understand antifouling mechanisms.
Collapse
Affiliation(s)
- Zhan Chen
- Departments of Chemistry and Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|