1
|
Liu Z, Zhao R, Zhang X, Wang H, Zhang C, Liu J, Zhu P. Comparison of bacterial cellulose production by various biomass wastes as culture media. Int J Biol Macromol 2025; 309:143091. [PMID: 40220813 DOI: 10.1016/j.ijbiomac.2025.143091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Bacterial cellulose (BC) has been widely used in various fields because of its excellent physical and chemical characteristics. However, the high production cost limits its applications. This study focused on the investigation of culture media prepared from three kinds of biomass wastes including vinegar residue (VR), paper mulberry (PM), and seagrass (SG), and their potential for BC production using kombucha was evaluated. VR, PM, and SG were hydrolyzed using acetic acid and enzyme treatment to obtain reducing sugars in concentrations of 14.78 g/L, 11.73 g/L, and 12.23 g/L, respectively, under optimized thermohydrolytic and enzymatic hydrolysis conditions. All biomass wastes applied in this study supported BC production, among which BC yields from VR (5.36 g/L) and PM (4.27 g/L) media were higher than Hestrin-Schramm (HS) (1.13 g/L) medium. In comparison, the SG (0.70 g/L) medium was lower. The BC samples were evaluated using SEM, FTIR, XRD, and TG analysis. Average fiber diameters and crystallinities of BC obtained from VR (60 nm, 77.39 %) and PM (58 nm, 67.54 %) media were higher than those obtained from HS (38 nm, 66.88 %) and SG (35 nm, 62.81 %) media. Iα content of BC from the three biomass waste media ranged from 0.47 to 0.48 and was higher than from the HS (0.43) medium. The thermal stability of BC from the SG medium was higher than that of other media. The current study demonstrated that biomass wastes especially VR and PM are promising carbon sources for sustainable production of BC.
Collapse
Affiliation(s)
- Zhanna Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, Industrial Research Institute of Nonwovens & Technical Textiles, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China; Zibo Key Laboratory of Bio-based Textile Materials, Shandong Vocational College of Light Industry, Mishan Road 30, Zibo, Shandong 255300, China
| | - Renhai Zhao
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, Industrial Research Institute of Nonwovens & Technical Textiles, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiaoyun Zhang
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, Industrial Research Institute of Nonwovens & Technical Textiles, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China
| | - Huaifang Wang
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, Industrial Research Institute of Nonwovens & Technical Textiles, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China
| | - Chuanjie Zhang
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, Industrial Research Institute of Nonwovens & Technical Textiles, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China
| | - Jie Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, Industrial Research Institute of Nonwovens & Technical Textiles, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China.
| | - Ping Zhu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, Industrial Research Institute of Nonwovens & Technical Textiles, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China.
| |
Collapse
|
2
|
Daget TM, Kassie BB, Tassew DF. A shift from synthetic to bio-based polymer for functionalization of textile materials: A review. Int J Biol Macromol 2025; 306:141637. [PMID: 40037460 DOI: 10.1016/j.ijbiomac.2025.141637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Textiles are used in various wearable and technical applications, requiring diverse properties. Functionalization refers to processes that impart new properties, such as flame retardancy, anti-microbial effects, UV protection, and hydrophobicity. The textile industry is shifting from synthetic polymers to eco-friendly biopolymers, which offer biodegradability and sustainability, reducing environmental impact. Biopolymer-based finishes improve performance while being safer and greener, supporting global sustainability goals. This review focuses on biopolymers used for textile functionalization and their potential in advanced medical applications like drug delivery and tissue engineering. Common biopolymer sources include renewable resources such as plants, microorganisms, and animals. Notable biopolymers, like bacterial and plant-based nanocellulose, lignin, chitosan, alginate, gelatin, collagen, keratin, and polylactic acid (PLA), are used for functions like anti-microbial, flame retardant, UV protective, and antioxidant properties. These biopolymers are also applied in tissue engineering, drug delivery, wound healing, and cosmetics as eco-friendly, biodegradable alternatives to petroleum-based materials.
Collapse
Affiliation(s)
- Tekalgn Mamay Daget
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Bantamlak Birlie Kassie
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Dehenenet Flatie Tassew
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
3
|
Suneetha M, Kim E, Ji SM, Rosaiah P, Karim MR, Han SS. Highly efficient dip catalysts using bacterial cellulose impregnated with self-crosslinked glycol chitosan and silver nanoparticles for 4-nitrophenol reduction. Int J Biol Macromol 2024; 281:136613. [PMID: 39419155 DOI: 10.1016/j.ijbiomac.2024.136613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The application of environmentally friendly and sustainable catalysts requires efficient and safe preparation methods using cheap and renewable materials. Although many metal nanoparticles (NPs) have low colloidal stability, they are still very effective as catalysts. Using a straightforward method, we developed a bacterial cellulose-glycol chitosan-silver (BC-GCS-Ag) nanocomposite, by introducing both AgNPs and self-crosslinked GCS within the BC network. Self-crosslinking of GCS occurred during the formation of AgNPs by employing the glycol moieties for reduction to produce aldehyde functionalities, thereby forming Schiff's base bonds within the GCS structure. Using GCS, well-defined AgNPs within the BC matrix. The formation of AgNPs and the self-crosslinking of GCS were characterized using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that spherical AgNPs with a mean diameter of 10 nm exhibited a well-organized structure within the BC-GCS matrix. The BC-GCS-Ag nanocomposite was applied as dip catalyst for the reduction of 4-nitrophenol (4NP) to 4-aminophenol (4AP), chosen as a model reaction. The results showed that the catalytic reaction was completed within 4 min, with high reusability (10 times) and without loss of catalyst. The reaction followed pseudo-first-order kinetics with a high rate constant of 0.582 min-1. Therefore, the BC-GCS-Ag dip catalyst is an attractive alternative for environmentally friendly and sustainable catalysis, owing to its exceptional catalytic performance, high recyclability, and stability, as well as the minimal environmental footprint of the supporting materials.
Collapse
Affiliation(s)
- Maduru Suneetha
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Eunbi Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Seong Min Ji
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - P Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, India
| | - Mohammad Rezaul Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
4
|
Henry S, Dhital S, Sumer H, Butardo V. Solid-State Fermentation of Cereal Waste Improves the Bioavailability and Yield of Bacterial Cellulose Production by a Novacetimonas sp. Isolate. Foods 2024; 13:3052. [PMID: 39410086 PMCID: PMC11475563 DOI: 10.3390/foods13193052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Cereal wastes such as rice bran and cereal dust are valuable yet underutilised by-products of grain processing. This study aimed to bio-convert these wastes into bacterial cellulose (BC), an emerging sustainable and renewable biomaterial, via an inexpensive solid-state fermentation (SSF) pre-treatment using three mould isolates. Medium substitution by directly using untreated rice bran or cereal dust did not significantly increase the yield of bacterial cellulose produced by Novacetimonas sp. (NCBI accession number PP421219) compared to the standard Hestrin-Schramm (HS) medium. In contrast, rice bran fermented with Rhizopus oligosporus yielded the highest bacterial cellulose (1.55 ± 0.6 g/L dry weight) compared to the untreated control (0.45 ± 0.1 g/L dry weight), demonstrating an up to 22% increase in yield. Using the SSF process, the media production costs were reduced by up to 90% compared to the standard HS medium. Physicochemical characterisation using SEM, EDS, FTIR, XPS, XRD, and TGA was performed to gain insights into the internal structure, morphology, and chemical bonding of differently produced BC, which revealed comparable biopolymer properties between BC produced in standard and waste-based media. Hence, our findings demonstrate the effectiveness of fungal SSF for transforming abundant cereal waste into BC, providing a circular economy solution to reduce waste and convert it into by-products to enhance the sustainability of the cereal industry.
Collapse
Affiliation(s)
- Shriya Henry
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia; (S.H.); (H.S.)
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia; (S.H.); (H.S.)
| | - Vito Butardo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia; (S.H.); (H.S.)
| |
Collapse
|
5
|
Avcioglu NH. Enhanced bacterial cellulose production by Komagataeibacter species and Hibiscus sabdariffa herbal tea. Int J Biol Macromol 2024; 276:133904. [PMID: 39084992 DOI: 10.1016/j.ijbiomac.2024.133904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024]
Abstract
This study proposed Hibiscus sabdariffa as a novel substrate for BC production with Komagataeibacter species and their consortia. K. intermedius is found as the most efficient producer (5.98 g/L BC, 3.56 × 10-2 g-1 h-1 productivity rate) following K. maltaceti (4.44 g/L BC, 2.64 × 10-2 g-1 h-1 productivity rate) and K. nataicola (3.67 g/L BC, 2.18 × 10-2 g-1 h-1 productivity rate). Whereas agitation increased BC production with K. nataicola (1.22-fold, 4.49 g/L BC), K. maltaceti (1.24-fold, 5.52 g/L BC) and K. intermedius (1.27-fold, 7.63 g/L BC), irregular shaped BC was obtained. This could be a novel result as Komagataeibacter consortia increased BC production by 1.17-2.01-fold compared to monocultures resulting as 8.11 g/L BC through the co-cultivation of K. maltaceti-K. intermedius. Maximum increase was found to be 1.75-fold (1.79-fold WHC), occurring with monoculture of K. maltaceti, while 1.94-fold (1.26-fold WHC) with K. maltaceti-K. intermedius consortium when H. sabdariffa-based media compared Hestrin-Schramm media. Based on these results, this could be a novel result as H. sabdariffa-based media may replace the use of HS media in BC production by means of a bioactive content-rich plant and obtaining 3-D ultrafine porous structure with high thermal resistant (∼460-500 °C) BC with mono and co-cultivation of Komagataeibacter species to be used in industrial area.
Collapse
Affiliation(s)
- Nermin Hande Avcioglu
- Hacettepe University, Faculty of Science, Biology Department, Biotechnology Section, Beytepe, Ankara, Turkey.
| |
Collapse
|
6
|
Shishparenok AN, Furman VV, Dobryakova NV, Zhdanov DD. Protein Immobilization on Bacterial Cellulose for Biomedical Application. Polymers (Basel) 2024; 16:2468. [PMID: 39274101 PMCID: PMC11397966 DOI: 10.3390/polym16172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
New carriers for protein immobilization are objects of interest in various fields of biomedicine. Immobilization is a technique used to stabilize and provide physical support for biological micro- and macromolecules and whole cells. Special efforts have been made to develop new materials for protein immobilization that are non-toxic to both the body and the environment, inexpensive, readily available, and easy to modify. Currently, biodegradable and non-toxic polymers, including cellulose, are widely used for protein immobilization. Bacterial cellulose (BC) is a natural polymer with excellent biocompatibility, purity, high porosity, high water uptake capacity, non-immunogenicity, and ease of production and modification. BC is composed of glucose units and does not contain lignin or hemicellulose, which is an advantage allowing the avoidance of the chemical purification step before use. Recently, BC-protein composites have been developed as wound dressings, tissue engineering scaffolds, three-dimensional (3D) cell culture systems, drug delivery systems, and enzyme immobilization matrices. Proteins or peptides are often added to polymeric scaffolds to improve their biocompatibility and biological, physical-chemical, and mechanical properties. To broaden BC applications, various ex situ and in situ modifications of native BC are used to improve its properties for a specific application. In vivo studies showed that several BC-protein composites exhibited excellent biocompatibility, demonstrated prolonged treatment time, and increased the survival of animals. Today, there are several patents and commercial BC-based composites for wounds and vascular grafts. Therefore, further research on BC-protein composites has great prospects. This review focuses on the major advances in protein immobilization on BC for biomedical applications.
Collapse
Affiliation(s)
| | - Vitalina V Furman
- The Center for Chemical Engineering, ITMO University, 197101 Saint Petersburg, Russia
| | | | - Dmitry D Zhdanov
- Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
- Department of Biochemistry, People's Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
7
|
Lima NF, Maciel GM, Lima NP, Fernandes IDAA, Haminiuk CWI. Bacterial cellulose in cosmetic innovation: A review. Int J Biol Macromol 2024; 275:133396. [PMID: 38945719 DOI: 10.1016/j.ijbiomac.2024.133396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Bacterial cellulose (BC) emerges as a versatile biomaterial with a myriad of industrial applications, particularly within the cosmetics sector. The absence of hemicellulose, lignin, and pectin in its pure cellulose structure enables favorable interactions with both hydrophilic and hydrophobic biopolymers. This enhances compatibility with active ingredients commonly employed in cosmetics, such as antioxidants, vitamins, and botanical extracts. Recent progress in BC-based materials, which encompasses membranes, films, gels, nanocrystals, and nanofibers, highlights its significant potential in cosmetics. In this context, BC not only serves as a carrier for active ingredients but also plays a crucial role as a structural agent in formulations. The sustainability of BC production and processing is a central focus, highlighting the need for innovative approaches to strengthen scalability and cost-effectiveness. Future research endeavors, including the exploration of novel cultivation strategies and functionalization techniques, aim to maximize BC's therapeutic potential while broadening its scope in personalized skincare regimes. Therefore, this review emphasizes the crucial contribution of BC to the cosmetics sector, underlining its role in fostering innovation, sustainability, and ethical skincare practices. By integrating recent research findings and industry trends, this review proposes a fresh approach to advancing both skincare science and environmental responsibility in the cosmetics industry.
Collapse
Affiliation(s)
- Nicole Folmann Lima
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340) Curitiba, Paraná, Brazil
| | - Nayara Pereira Lima
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Isabela de Andrade Arruda Fernandes
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA), Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340) Curitiba, Paraná, Brazil
| | | |
Collapse
|
8
|
Qiao W, Jia C, Yang J, Gao G, Guo D, Xu X, Wu Z, Saris PEJ, Xu H, Qiao M. Production of bacterial cellulose-based peptidopolysaccharide BC-L with anti-listerial properties using a co-cultivation strategy. Int J Biol Macromol 2024; 274:133047. [PMID: 38857722 DOI: 10.1016/j.ijbiomac.2024.133047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Bacterial cellulose (BC) has been found extensive applications in diverse domains for its exceptional attributes. However, the lack of antibacterial properties hampers its utilization in food and biomedical sectors. Leucocin, a bacteriocin belonging to class IIa, is synthesized by Leuconostoc that demonstrates potent efficacy against the foodborne pathogen, Listeria monocytogenes. In the current study, co-culturing strategy involving Kosakonia oryzendophytica FY-07 and Leuconostoc carnosum 4010 was used to confer anti-listerial activity to BC, which resulted in the generation of leucocin-containing BC (BC-L). The physical characteristics of BC-L, as determined by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), were similar to the physical characteristics of BC. Notably, the experimental results of disc diffusion and growth curve indicated that the BC-L film exhibited a potent inhibitory effect against L. monocytogenes. Scanning electron microscopy (SEM) showed that BC-L exerts its bactericidal activity by forming pores on the bacterial cell wall. Despite the BC-L antibacterial mechanism, which involves pore formation, the mammalian cell viability remained unaffected by the BC-L film. The measurement results of zeta potential indicated that the properties of BC changed after being loaded with leucocin. Based on these findings, the anti-listerial BC-L generated through this co-culture system holds promise as a novel effective antimicrobial agent for applications in meat product preservation and packaging.
Collapse
Affiliation(s)
- Wanjin Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00940, Finland
| | - Chunhui Jia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiyuan Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ge Gao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dingyi Guo
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xian Xu
- School of Life Science, Shanxi University, Taiyuan 030000, China
| | - Zhenzhou Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00940, Finland
| | - Haijin Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Mingqiang Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; School of Life Science, Shanxi University, Taiyuan 030000, China.
| |
Collapse
|
9
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Nguyen DTC, Tran TV. Synthesis strategies, regeneration, cost analysis, challenges and future prospects of bacterial cellulose-based aerogels for water treatment: A review. CHEMOSPHERE 2024; 362:142654. [PMID: 38901705 DOI: 10.1016/j.chemosphere.2024.142654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/12/2023] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Clean water is an integral part of industries, agricultural activities and human life, but water contamination by toxic dyes, heavy metals, and oil spills is increasingly serious in the world. Aerogels with unique properties such as highly porous and extremely low density, tunable surface modification, excellent reusability, and thermal stability can contribute to addressing these issues. Thanks to high purity, biocompatibility and biodegradability, bacterial cellulose can be an ideal precursor source to produce aerogels. Here, we review the modification, regeneration, and applications of bacterial cellulose-based aerogels for water treatment. The modification of bacterial cellulose-based aerogels undergoes coating of hydrophobic agents, carbonization, and incorporation with other materials, e.g., ZIF-67, graphene oxide, nanoparticles, polyaniline. We emphasized features of modified aerogels on porosity, hydrophobicity, density, surface chemistry, and regeneration. Although major limits are relevant to the use of toxic coating agents, difficulty in bacterial culture, and production cost, the bacterial cellulose aerogels can obtain high performance for water treatment, particularly, catastrophic oil spills.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Luan Minh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, District 12, Ho Chi Minh City, 700000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Viet Nam
| | | | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
10
|
Shahaban OPS, Khasherao BY, Shams R, Dar AH, Dash KK. Recent advancements in development and application of microbial cellulose in food and non-food systems. Food Sci Biotechnol 2024; 33:1529-1540. [PMID: 38623437 PMCID: PMC11016021 DOI: 10.1007/s10068-024-01524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 04/17/2024] Open
Abstract
Microbial cellulose is a fermented form of very pure cellulose with a fibrous structure. The media rich in glucose or other carbon sources are fermented by bacteria to produce microbial cellulose. The bacteria use the carbon to produce cellulose, which grows as a dense, gel-like mat on the surface of the medium. The product was then collected, cleaned, and reused in various ways. The properties of microbial cellulose, such as water holding capacity, gas permeability, and ability to form a flexible, transparent film make it intriguing for food applications. Non-digestible microbial cellulose has been shown to improve digestive health and may have further advantages. It is also very absorbent, making it a great option for use in wound dressings. The review discusses the generation of microbial cellulose and several potential applications of microbial cellulose in fields including pharmacy, biology, materials research, and the food industry.
Collapse
Affiliation(s)
- O. P. Shemil Shahaban
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Bhosale Yuvraj Khasherao
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Awantipora, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology Malda, Maligram, West Bengal India
| |
Collapse
|
11
|
Kolesovs S, Neiberts K, Semjonovs P, Beluns S, Platnieks O, Gaidukovs S. Evaluation of hydrolyzed cheese whey medium for enhanced bacterial cellulose production by Komagataeibacter rhaeticus MSCL 1463. Biotechnol J 2024; 19:e2300529. [PMID: 38896375 DOI: 10.1002/biot.202300529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
Industrial production of bacterial cellulose (BC) remains challenging due to significant production costs, including the choice of appropriate growth media. This research focuses on optimization of cheese whey (CW) based media for enhanced production of BC. Two modifications were made for CW medium for BC production with Komagataeibacter rhaeticus MSCL 1463. BC production in a medium of enzymatically hydrolyzed CW (final concentration of monosaccharides: glucose 0.13 g L-1, galactose 1.24 g L-1) was significantly enhanced, achieving a yield of 4.95 ± 0.25 g L-1, which markedly surpasses the yields obtained with the standard Hestrin-Schramm (HS) medium containing 20 g L-1 glucose and acid-hydrolyzed CW (final concentration of monosaccharides: glucose 1.15 g L-1, galactose 2.01 g L-1), which yielded 3.29 ± 0.12 g L-1 and 1.01 ± 0.14 g L-1, respectively. We explored the synergistic effects of combining CW with various agricultural by-products (corn steep liquor (CSL), apple juice, and sugar beet molasses). Notably, the supplementation with 15% corn steep liquor significantly enhanced BC productivity, achieving 6.97 ± 0.17 g L-1. A comprehensive analysis of the BC's physical and mechanical properties indicated significant alterations in fiber diameter (62-167 nm), crystallinity index (71.1-85.9%), and specific strength (35-82 MPa × cm3 g-1), as well as changes in the density (1.1-1.4 g cm-3). Hydrolyzed CW medium supplemented by CSL could be used for effective production of BC.
Collapse
Affiliation(s)
- Sergejs Kolesovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Riga, Latvia
| | - Kristaps Neiberts
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Riga, Latvia
| | - Pavels Semjonovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Riga, Latvia
| | - Sergejs Beluns
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
| | - Oskars Platnieks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
| | - Sergejs Gaidukovs
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
| |
Collapse
|
12
|
Dáger-López D, Chenché Ó, Ricaurte-Párraga R, Núñez-Rodríguez P, Bajaña JM, Fiallos-Cárdenas M. Advances in the Production of Sustainable Bacterial Nanocellulose from Banana Leaves. Polymers (Basel) 2024; 16:1157. [PMID: 38675076 PMCID: PMC11054657 DOI: 10.3390/polym16081157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Interest in bacterial nanocellulose (BNC) has grown due to its purity, mechanical properties, and biological compatibility. To address the need for alternative carbon sources in the industrial production of BNC, this study focuses on banana leaves, discarded during harvesting, as a valuable source. Banana midrib juice, rich in nutrients and reducing sugars, is identified as a potential carbon source. An optimal culture medium was designed using a simplex-centroid mixing design and evaluated in a 10 L bioreactor. Techniques such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) were used to characterize the structural, thermal, and morphological properties of BNC. Banana midrib juice exhibited specific properties, such as pH (5.64), reducing sugars (15.97 g/L), Trolox (45.07 µM), °Brix (4.00), and antioxidant activity (71% DPPH). The model achieved a 99.97% R-adjusted yield of 6.82 g BNC/L. Physicochemical analyses revealed distinctive attributes associated with BNC. This approach optimizes BNC production and emphasizes the banana midrib as a circular solution for BNC production, promoting sustainability in banana farming and contributing to the sustainable development goals.
Collapse
Affiliation(s)
- David Dáger-López
- Facultad de Ciencias e Ingeniería, Universidad Estatal de Milagro, Milagro 091050, Ecuador; (D.D.-L.); (Ó.C.); (R.R.-P.)
| | - Óscar Chenché
- Facultad de Ciencias e Ingeniería, Universidad Estatal de Milagro, Milagro 091050, Ecuador; (D.D.-L.); (Ó.C.); (R.R.-P.)
| | - Rayner Ricaurte-Párraga
- Facultad de Ciencias e Ingeniería, Universidad Estatal de Milagro, Milagro 091050, Ecuador; (D.D.-L.); (Ó.C.); (R.R.-P.)
| | - Pablo Núñez-Rodríguez
- Facultad de Ciencias Agrarias, Campus Milagro, Universidad Agraria del Ecuador, Milagro 091050, Ecuador; (P.N.-R.); (J.M.B.)
| | - Joaquin Morán Bajaña
- Facultad de Ciencias Agrarias, Campus Milagro, Universidad Agraria del Ecuador, Milagro 091050, Ecuador; (P.N.-R.); (J.M.B.)
| | - Manuel Fiallos-Cárdenas
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090902, Ecuador
| |
Collapse
|
13
|
Sreedharan M, Vijayamma R, Liyaskina E, Revin VV, Ullah MW, Shi Z, Yang G, Grohens Y, Kalarikkal N, Ali Khan K, Thomas S. Nanocellulose-Based Hybrid Scaffolds for Skin and Bone Tissue Engineering: A 10-Year Overview. Biomacromolecules 2024; 25:2136-2155. [PMID: 38448083 DOI: 10.1021/acs.biomac.3c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Cellulose, the most abundant polymer on Earth, has been widely utilized in its nanoform due to its excellent properties, finding applications across various scientific fields. As the demand for nanocellulose continues to rise and its ease of use becomes apparent, there has been a significant increase in research publications centered on this biomaterial. Nanocellulose, in its different forms, has shown tremendous promise as a tissue engineered scaffold for regeneration and repair. Particularly, nanocellulose-based composites and scaffolds have emerged as highly demanding materials for both soft and hard tissue engineering. Medical practitioners have traditionally relied on collagen and its analogue, gelatin, for treating tissue damage. However, the limited mechanical strength of these biopolymers restricts their direct use in various applications. This issue can be overcome by making hybrids of these biopolymers with nanocellulose. This review presents a comprehensive analysis of the recent and most relevant publications focusing on hybrid composites of collagen and gelatin with a specific emphasis on their combination with nanocellulose. While bone and skin tissue engineering represents two areas where a majority of researchers are concentrating their efforts, this review highlights the use of nanocellulose-based hybrids in these contexts.
Collapse
Affiliation(s)
- Mridula Sreedharan
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Raji Vijayamma
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Elena Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, Saransk 430005, Russia
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, Saransk 430005, Russia
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yves Grohens
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56321 Lorient, France
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| |
Collapse
|
14
|
Da Silva Pereira EH, Mojicevic M, Tas CE, Lanzagorta Garcia E, Brennan Fournet M. Targeting Bacterial Nanocellulose Properties through Tailored Downstream Techniques. Polymers (Basel) 2024; 16:678. [PMID: 38475361 DOI: 10.3390/polym16050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Bacterial nanocellulose (BNC) is a biodegradable polysaccharide with unique properties that make it an attractive material for various industrial applications. This study focuses on the strain Komagataeibacter medellinensis ID13488, a strain with the ability to produce high yields of BNC under acidic growth conditions and a promising candidate to use for industrial production of BNC. We conducted a comprehensive investigation into the effects of downstream treatments on the structural and mechanical characteristics of BNC. When compared to alkaline-treated BNC, autoclave-treated BNC exhibited around 78% superior flexibility in average, while it displayed nearly 40% lower stiffness on average. An SEM analysis revealed distinct surface characteristics, indicating differences in cellulose chain compaction. FTIR spectra demonstrated increased hydrogen bonding with prolonged interaction time with alkaline solutions. A thermal analysis showed enhanced thermal stability in alkaline-treated BNC, withstanding temperatures of nearly 300 °C before commencing degradation, compared to autoclaved BNC which starts degradation around 200 °C. These findings provide valuable insights for tailoring BNC properties for specific applications, particularly in industries requiring high purity and specific mechanical characteristics.
Collapse
Affiliation(s)
- Everton Henrique Da Silva Pereira
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Rd, Co. Westmeath, N37 HD68 Athlone, Ireland
| | - Marija Mojicevic
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Rd, Co. Westmeath, N37 HD68 Athlone, Ireland
| | - Cuneyt Erdinc Tas
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Rd, Co. Westmeath, N37 HD68 Athlone, Ireland
| | - Eduardo Lanzagorta Garcia
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Rd, Co. Westmeath, N37 HD68 Athlone, Ireland
| | - Margaret Brennan Fournet
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Rd, Co. Westmeath, N37 HD68 Athlone, Ireland
| |
Collapse
|
15
|
Hou S, Xia Z, Pan J, Wang N, Gao H, Ren J, Xia X. Bacterial Cellulose Applied in Wound Dressing Materials: Production and Functional Modification - A Review. Macromol Biosci 2024; 24:e2300333. [PMID: 37750477 DOI: 10.1002/mabi.202300333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/12/2023] [Indexed: 09/27/2023]
Abstract
In recent years, the development of new type wound dressings has gradually attracted more attention. Bacterial cellulose (BC) is a natural polymer material with various unique properties, such as ultrafine 3D nanonetwork structure, high water retention capacity, and biocompatibility. These properties allow BC to be used independently or in combination with different components (such as biopolymers and nanoparticles) to achieve diverse effects. This means that BC has great potential as a wound dressing. However, systematic summaries for the production and commercial application of BC-based wound dressings are still lacking. Therefore, this review provides a detailed introduction to the production fermentation process of BC, including various production strains and their biosynthetic mechanisms. Subsequently, with regard to the functional deficiencies of bacterial cellulose as a wound dressing, recent research progress in this area is enumerated. Finally, prospects are discussed for the low-cost production and high-value-added product development of BC-based wound dressings.
Collapse
Affiliation(s)
- Shuaiwen Hou
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Zhaopeng Xia
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jiajun Pan
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Ning Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hanchao Gao
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jingli Ren
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Xuekui Xia
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
16
|
Liu Z, Wang Y, Guo S, Liu J, Zhu P. Preparation and characterization of bacterial cellulose synthesized by kombucha from vinegar residue. Int J Biol Macromol 2024; 258:128939. [PMID: 38143062 DOI: 10.1016/j.ijbiomac.2023.128939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Bacterial cellulose (BC) has been widely applied in various fields due to its excellent physicochemical properties, but its high production cost remains a challenge. Herein, the present study aimed to utilize the hydrolysate of vinegar residue (VR) as the only medium to realize the cost-effective production of BC. The BC production was optimized by the single-factor test. The treatment of 6 % VR concentration with 3 % acid concentration at 100 °C for 1.5 h and 96 U/mL of cellulase for 4 h at 50 °C obtained a maximum reducing sugar concentration of about 32 g/L. Additionally, the VR hydrolysate treated with 3 % active carbon (AC) at 40 °C for 0.5 h achieved a total phenol removal ratio of 86 %. The yield of BC reached 2.1 g/L under the optimum conditions, which was twice compared to the standard medium. The produced BC was characterized by SEM, FT-IR, XRD, and TGA analyses, and the results indicated that the BC prepared by AC-treated VR hydrolysate had higher fiber density, higher crystallinity, and good thermal stability. Furthermore, the regenerated BC (RBC) fibers with a tensile stress of 400 MPa were prepared successfully using AmimCl solution as a solvent by dry-wet-spinning method. Overall, the VR waste could be used as an alternative carbon source for the sustainable production of BC, which could be further applied to RBC fibers preparation.
Collapse
Affiliation(s)
- Zhanna Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China; Zibo Key Laboratory of Bio-based Textile Materials, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China
| | - Yingying Wang
- Zibo Key Laboratory of Bio-based Textile Materials, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China
| | - Shengnan Guo
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China
| | - Jie Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China; Haima Carpet Group Co., Ltd, Weihai, Shandong 264200, China.
| | - Ping Zhu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China.
| |
Collapse
|
17
|
Ahmed M, Saini P, Iqbal U. Production, Optimization, and Characterization of Bio-cellulose Produced from Komagataeibacter (Acetobacter aceti MTCC 3347) Usage of Food Sources as Media. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:215-227. [PMID: 38305312 DOI: 10.2174/012772574x284979231231102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Bio-cellulose is a type of cellulose that is produced by some particular group of bacteria, for example, Komagataeibacter (previously known as Acetobacter), due to their natural ability to synthesize exopolysaccharide as a byproduct. Gluconacetobacter xylinus is mostly employed for the production of bio-cellulose throughout the world. Therefore, exploring other commonly available strains, such as Komagataeibacter aceti (Acetobacter aceti), is needed for cellulose production. METHODS Bio-cellulose is one of the most reliable biomaterials in the limelight because it is highly pure, crystalline, and biocompatible. Hence, it is necessary to enhance the industrial manufacturing of bio-cellulose with low costs. Different media such as fruit waste, milk whey, coconut water, sugarcane juice, mannitol broth, and H&S (Hestrin and Schramm's) broth were utilized as a medium for culture growth. Other factors like temperature, pH, and time were also optimized to achieve the highest yield of bio-cellulose. Moreover, after the synthesis of biocellulose, its physicochemical and structural properties were evaluated. RESULTS The results depicted that the highest yield of bio-cellulose (45.735 mg/mL) was found at 30 °C, pH 5, and on the 7th day of incubation. Though every culture media experimented with synthesized bio-cellulose, the maximum production (90.25 mg/mL) was reported in fruit waste media. The results also indicated that bio-cellulose has high water-holding capacity and moisture content. XRD results showed that bio-cellulose is highly crystalline in nature (54.825% crystallinity). SEM micrograph demonstrated that bio-cellulose exhibited rod-shaped, highly porous fibers. The FTIR results demonstrated characteristic and broad peaks for O-H at 3336.25 cm-1, which indicated strong O-H bonding. The thermal tests, such as DSC and TGA, indicated that bio-cellulose is a thermally stable material that can withstand temperatures even beyond 500 °C. CONCLUSION The findings demonstrated that the peel of fruits could be utilized as a substrate for synthesizing bio-cellulose by a rather cheap and easily available strain, Komagataeibacter (Acetobacter aceti MTCC 3347). This alternative culture media reduces environmental pollution, promotes economic advantages, and initiates research on sustainable science.
Collapse
Affiliation(s)
- Mazia Ahmed
- Centre of Food Technology, University of Allahabad, Prayagraj - 211002, India
| | - Pinki Saini
- Centre of Food Technology, University of Allahabad, Prayagraj - 211002, India
| | - Unaiza Iqbal
- Centre of Food Technology, University of Allahabad, Prayagraj - 211002, India
| |
Collapse
|
18
|
Lee S, Ahn G, Shin WR, Choi JW, Kim YH, Ahn JY. Synergistic outcomes of Chlorella-bacterial cellulose based hydrogel as an ethylene scavenger. Carbohydr Polym 2023; 321:121256. [PMID: 37739491 DOI: 10.1016/j.carbpol.2023.121256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 09/24/2023]
Abstract
Increasing the freshness of vegetables requires the elimination of ethylene, which can be done through chemical methods. However, the development of eco-friendly approaches is required for environmental reasons. Chlorella vulgaris (C. vulgaris) was selected as a new biological material for demonstrating an excellent performance in ethylene removal. To support C. vulgaris, bacterial cellulose (BC) produced by Gluconacetobacter hansenii (G. hansenii) was chosen due to its high water content and biodegradability. To increase BC productivity, UV-induced mutant G. hansenii was isolated, and they produced high yields of BC (9.80 ± 0.52 g/L). Furthermore, comparative transcriptome analysis revealed metabolic flux changes toward UDP-glucose accumulation and enhanced BC production. BC-based hydrogels (BC hydrogels) were successfully prepared using a 2.4 % carboxymethyl cellulose (CMC) and 1 % agar mixture. We used Chlorella-BC hydrogels as an ethylene scavenger, which reduced 90 % of ethylene even when the immobilized C. vulgaris was preserved for 14 days at room temperature without media supplementation. We demonstrated for the first time the potential of BC hydrogels to integrate C. vulgaris as a sustainable ethylene absorber for green food packaging and biomass technology.
Collapse
Affiliation(s)
- SeonHyung Lee
- School of Biological Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Gna Ahn
- School of Biological Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea; Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea; Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA 19104, USA
| | - Jae-Won Choi
- Department of Biopharmaceutical Sciences, Cheongju University, Cheongju 28160, Republic of Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea; Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
19
|
Leong MY, Kong YL, Harun MY, Looi CY, Wong WF. Current advances of nanocellulose application in biomedical field. Carbohydr Res 2023; 532:108899. [PMID: 37478689 DOI: 10.1016/j.carres.2023.108899] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Nanocellulose (NC) is a natural fiber that can be extracted in fibrils or crystals form from different natural sources, including plants, bacteria, and algae. In recent years, nanocellulose has emerged as a sustainable biomaterial for various medicinal applications including drug delivery systems, wound healing, tissue engineering, and antimicrobial treatment due to its biocompatibility, low cytotoxicity, and exceptional water holding capacity for cell immobilization. Many antimicrobial products can be produced due to the chemical functionality of nanocellulose, such disposable antibacterial smart masks for healthcare use. This article discusses comprehensively three types of nanocellulose: cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and bacterial nanocellulose (BNC) in view of their structural and functional properties, extraction methods, and the distinctive biomedical applications based on the recently published work. On top of that, the biosafety profile and the future perspectives of nanocellulose-based biomaterials have been further discussed in this review.
Collapse
Affiliation(s)
- M Y Leong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Y L Kong
- Department of Engineering and Applied Sciences, American Degree Program, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - M Y Harun
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - C Y Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - W F Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Vázquez M, Puertas G, Cazón P. Processing of Grape Bagasse and Potato Wastes for the Co-Production of Bacterial Cellulose and Gluconic Acid in an Airlift Bioreactor. Polymers (Basel) 2023; 15:3944. [PMID: 37835992 PMCID: PMC10575449 DOI: 10.3390/polym15193944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The feasibility of using Garnacha Tintorera bagasse and potato wastes as substrate for the co-production of bacterial cellulose (BC) and gluconic acid by Komagataibacter xylinus fermentation was studied. Firstly, the sulfuric acid hydrolysis of bagasse was evaluated depending on the sulfuric acid concentration (2-4%), temperature (105-125 °C), and time (60-180 min). The bagasse hydrolysates showed a low monosaccharide concentration profile: glucose 3.24-5.40 g/L; cellobiose 0.00-0.48 g/L; arabinose 0.66-1.64 g/L and xylose 3.24-5.40 g/L. However, the hydrolysis treatment enhanced the total phenolic content of the bagasse extract (from 4.39 up to 12.72 mg GAE/g dried bagasse). The monosaccharide profile of the culture medium was improved by the addition of potato residues. From a medium containing bagasse-potato powder (50:50 w/w) and optimal hydrolysate conditions (125 °C for 60 min and 2% H2SO4), the composition of glucose increased up to 30.14 g/L. After 8 days of fermentation in an airlift bioreactor by Komagataibacter xylinus, 4 g dried BC/L and 26.41 g gluconic acid/L were obtained with a BC productivity of 0.021 g/L·h, an efficiency of 0.37 g/g and yield of 0.47 g/g. The productivity of gluconic acid was 0.14 g/L·h with an efficiency of 0.93 g/g and yield of 0.72 g/g. This research demonstrates the promising potential of utilizing waste materials, specifically Garnacha Tintorera bagasse and potato residues, as sustainable substrates for the co-production of valuable bioproducts, such as bacterial cellulose and gluconic acid.
Collapse
Affiliation(s)
- Manuel Vázquez
- Department of Analytical Chemistry, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain
| | | | - Patricia Cazón
- Department of Analytical Chemistry, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
21
|
Revin VV, Liyaskina EV, Parchaykina MV, Kurgaeva IV, Efremova KV, Novokuptsev NV. Production of Bacterial Exopolysaccharides: Xanthan and Bacterial Cellulose. Int J Mol Sci 2023; 24:14608. [PMID: 37834056 PMCID: PMC10572569 DOI: 10.3390/ijms241914608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, degradable biopolymers have become increasingly important as potential environmentally friendly biomaterials, providing a wide range of applications in various fields. Bacterial exopolysaccharides (EPSs) are biomacromolecules, which due to their unique properties have found applications in biomedicine, foodstuff, textiles, cosmetics, petroleum, pharmaceuticals, nanoelectronics, and environmental remediation. One of the important commercial polysaccharides produced on an industrial scale is xanthan. In recent years, the range of its application has expanded significantly. Bacterial cellulose (BC) is another unique EPS with a rapidly increasing range of applications. Due to the great prospects for their practical application, the development of their highly efficient production remains an important task. The present review summarizes the strategies for the cost-effective production of such important biomacromolecules as xanthan and BC and demonstrates for the first time common approaches to their efficient production and to obtaining new functional materials for a wide range of applications, including wound healing, drug delivery, tissue engineering, environmental remediation, nanoelectronics, and 3D bioprinting. In the end, we discuss present limitations of xanthan and BC production and the line of future research.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (E.V.L.); (M.V.P.); (I.V.K.); (K.V.E.); (N.V.N.)
| | | | | | | | | | | |
Collapse
|
22
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|
23
|
Shahzad A, Ullah MW, Ali J, Aziz K, Javed MA, Shi Z, Manan S, Ul-Islam M, Nazar M, Yang G. The versatility of nanocellulose, modification strategies, and its current progress in wastewater treatment and environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159937. [PMID: 36343829 DOI: 10.1016/j.scitotenv.2022.159937] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Deterioration in the environmental ecosystems through the depletion of nonrenewable resources and the burden of deleterious contaminants is considered a global concern. To this end, great interest has been shown in the use of renewable and environmentally-friendly reactive materials dually to promote environmental sustainability and cope with harmful contaminants. Among the different available options, the use of nanocellulose (NC) as an environmentally benign and renewable natural nanomaterial is an attractive candidate for environmental remediation owing to its miraculous physicochemical characteristics. This review discusses the intrinsic properties and the structural aspects of different types of NC, including cellulose nanofibrils (CNFs), cellulose nanocrystals (CNCs), and bacterial cellulose (BC) or bacterial nanocellulose (BNC). Also, the different modification strategies involving the functionalization or hybridization of NC by using different functional and reactive materials aimed at wastewater remediation have been elaborated. The modified or hybridized NC has been explored for its applications in the removal or degradation of aquatic contaminants through adsorption, filtration, coagulation, catalysis, photocatalysis, and pollutant sensing. This review highlights the role of NC in the modified composites and describes the underlying mechanisms involved in the removal of contaminants. The life-cycle assessment (LCA) of NC is discussed to unveil the hidden risks associated with its production to the final disposal. Moreover, the contribution of NC in the promotion of waste management at different stages has been described in the form of the five-Rs strategy. In summary, this review provides rational insights to develop NC-based environmentally-friendly reactive materials for the removal and degradation of hazardous aquatic contaminants.
Collapse
Affiliation(s)
- Ajmal Shahzad
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Jawad Ali
- School of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065, PR China
| | - Kazim Aziz
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Asif Javed
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Sehrish Manan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 211, Oman
| | - Mudasir Nazar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|