1
|
Nehal, Awasthi S. Insights into the Versatile and Efficient Characteristics, Classifications, and Rational Design of Surface-Grafted Smart Hydrogels. Chem Asian J 2025:e202500441. [PMID: 40200846 DOI: 10.1002/asia.202500441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Hydrogels have emerged as flexible biomaterials with enormous potential in biomedical applications due to their outstanding biocompatibility and ability to hold a high water concentration. Hydrogels have low toxicity and are biodegradable. This review begins with a look at the various riveting characteristics and classifications of hydrogel nanocomposites reinforced with various metallic and ceramic components. A distinct focus is offered on thoroughly deliberating surface modification techniques with special attention on fabrication, patterning, and their applications in biomedical fields. The review describes the value of novel cross-linking techniques including physical, chemical, and physical-chemical dual cross-linking in adapting hydrogel characteristics to specific applications. This review also explains the major bioapplication of functionalized hydrogels. It emphasizes the importance of nanocomposite hydrogels and multifunctional self-assembled monolayers in solving contemporary biological difficulties such as infection control, medication delivery, and tissue regeneration. It explains the need for interdisciplinary collaboration and ongoing research efforts to realize the full potential of hydrogels and nanomaterials in biomedical applications. Overall, this review gives useful insights into current advances and future possibilities for hydrogels grafted with metals and ceramic additives in biomedical applications, highlighting the need for multidisciplinary cooperation and ongoing research in nano(bio)technology.
Collapse
Affiliation(s)
- Nehal
- Department of Chemistry, Manipal University Jaipur, Jaipur, 303007, India
| | - Shikha Awasthi
- Department of Basic Sciences, IES University, Bhopal, Madhya Pradesh, 462044, India
| |
Collapse
|
2
|
Lee SH, Yoo S, Kim SH, Kim YM, Han SI, Lee H. Nature-inspired surface modification strategies for implantable devices. Mater Today Bio 2025; 31:101615. [PMID: 40115053 PMCID: PMC11925587 DOI: 10.1016/j.mtbio.2025.101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Medical and implantable devices are essential instruments in contemporary healthcare, improving patient quality of life and meeting diverse clinical requirements. However, ongoing problems such as bacterial colonization, biofilm development, foreign body responses, and insufficient device-tissue adhesion hinder the long-term effectiveness and stability of these devices. Traditional methods to alleviate these issues frequently prove inadequate, necessitating the investigation of nature-inspired alternatives. Biomimetic surfaces, inspired by the chemical and physical principles found in biological systems, present potential opportunities to address these challenges. Recent breakthroughs in manufacturing techniques, including lithography, vapor deposition, self-assembly, and three-dimensional printing, now permit precise control of surface properties at the micro- and nanoscale. Biomimetic coatings can diminish inflammation, prevent bacterial adherence, and enhance stable tissue integration by replicating the antifouling, antibacterial, and adhesive properties observed in creatures such as geckos, mussels, and biological membranes. This review emphasizes the cutting-edge advancements in biomimetic surfaces for medical and implantable devices, outlining their design methodologies, functional results, and prospective clinical applications. Biomimetic coatings, by integrating biological inspiration with advanced surface engineering, have the potential to revolutionize implantable medical devices, providing safer, more lasting, and more effective interfaces for prolonged patient benefit.
Collapse
Affiliation(s)
- Soo-Hwan Lee
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sungjae Yoo
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sung Hoon Kim
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Young-Min Kim
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sang Ihn Han
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyojin Lee
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
- SKKU-KIST, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
3
|
Zhou YG, Li SK, Xue Y, Fan B, Gao QM, Zhan LW, Liu RT, Li YF, Sun RL, Tian YZ. Diels-Alder reaction in hydrogel synthesis: Mechanisms and functional aspects. J Biomater Appl 2025; 39:828-839. [PMID: 39668782 DOI: 10.1177/08853282241306245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The Diels-Alder reaction, a classical (4+2) cycloaddition process, holds significant standing within the realms of organic synthesis and polymer chemistry, frequently employed in areas such as pharmaceutical production and material science. Recently, hydrogels constructed via Diels-Alder reactions have garnered considerable attention from researchers. This review aims to summarize the advancements in utilizing the Diels-Alder reaction for hydrogel synthesis, exploring its impact on structural design, functionalization, and application domains. Initially, the fundamental principles of the Diels-Alder reaction are introduced alongside an examination of its benefits and characteristics in hydrogel fabrication. Subsequently, applications of Diels-Alder-generated hydrogels in biomedicine, smart responsive materials, drug delivery systems, among other fields, are comprehensively reviewed. Challenges and limitations encountered during hydrogel synthesis using this reaction are also discussed. Finally, prospective research directions and future prospects of Diels-Alder reactions in hydrogel synthesis are contemplated.
Collapse
Affiliation(s)
- Yi Gui Zhou
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Song Kai Li
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Yun Xue
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Bo Fan
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Qiu Ming Gao
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Long Wen Zhan
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Rui Tang Liu
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Yun Fei Li
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Rui Long Sun
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Yong Zheng Tian
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| |
Collapse
|
4
|
Chicea D, Nicolae-Maranciuc A. A Review of Chitosan-Based Materials for Biomedical, Food, and Water Treatment Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5770. [PMID: 39685206 DOI: 10.3390/ma17235770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Chitosan, a natural biopolymer with excellent biocompatibility, biodegradability, and modifiable structure, has broad applications in regenerative medicine, tissue engineering, food packaging, and environmental technology. Its abundance, solubility in acidic solutions, and capacity for chemical modification make it highly adaptable for creating specialized derivatives with enhanced properties. Recent advances have demonstrated chitosan's efficacy in composite systems for tissue regeneration, drug delivery, and antimicrobial applications. This review examines chitosan's unique properties, with a focus on its antibacterial activity as influenced by factors like pH, concentration, molecular weight, and deacetylation degree. Additionally, chitosan's potential as a sustainable, non-toxic material for eco-friendly packaging and water treatment is explored, highlighting the growing interest in chitosan composites with other polymers and metallic nanoparticles for enhanced biomedical and environmental applications.
Collapse
Affiliation(s)
- Dan Chicea
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Alexandra Nicolae-Maranciuc
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
- Institute for Interdisciplinary Studies and Research (ISCI), Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| |
Collapse
|
5
|
Musuc AM, Mititelu M, Chelu M. Hydrogel for Sustained Delivery of Therapeutic Agents. Gels 2024; 10:717. [PMID: 39590073 PMCID: PMC11593707 DOI: 10.3390/gels10110717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
In recent years, hydrogels have emerged as a highly promising platform for the sustained delivery of therapeutic agents, addressing critical challenges in drug delivery systems, from controlled release to biocompatibility [...].
Collapse
Affiliation(s)
- Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 060021 Bucharest, Romania;
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| | - Mariana Chelu
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 060021 Bucharest, Romania;
| |
Collapse
|
6
|
Li M, Fan Y, Ran M, Chen H, Han J, Zhai J, Wang Z, Ning C, Shi Z, Yu P. Hydrogel Coatings of Implants for Pathological Bone Repair. Adv Healthc Mater 2024; 13:e2401296. [PMID: 38794971 DOI: 10.1002/adhm.202401296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/14/2024] [Indexed: 05/27/2024]
Abstract
Hydrogels are well-suited for biomedical applications due to their numerous advantages, such as excellent bioactivity, versatile physical and chemical properties, and effective drug delivery capabilities. Recently, hydrogel coatings have developed to functionalize bone implants which are biologically inert and cannot withstand the complex bone tissue repair microenvironment. These coatings have shown promise in addressing unique and pressing medical needs. This review begins with the major functionalized performance and interfacial bonding strategy of hydrogel coatings, with a focus on the novel external field response properties of the hydrogel. Recent advances in the fabrication strategies of hydrogel coatings and their use in the treatment of pathologic bone regeneration are highlighted. Finally, challenges and emerging trends in the evolution and application of physiological environment-responsive and external electric field-responsive hydrogel coatings for bone implants are discussed.
Collapse
Affiliation(s)
- Mengqing Li
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Youzhun Fan
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Maofei Ran
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Haoyan Chen
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Jien Han
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Jinxia Zhai
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Zhengao Wang
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Chengyun Ning
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Zhifeng Shi
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Peng Yu
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| |
Collapse
|
7
|
Wu E, Huang L, Shen Y, Wei Z, Li Y, Wang J, Chen Z. Application of gelatin-based composites in bone tissue engineering. Heliyon 2024; 10:e36258. [PMID: 39224337 PMCID: PMC11367464 DOI: 10.1016/j.heliyon.2024.e36258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Natural bone tissue has the certain function of self-regeneration and repair, but it is difficult to repair large bone damage. Recently, although autologous bone grafting is the "gold standard" for improving bone repair, it has high cost, few donor sources. Besides, allogeneic bone grafting causes greater immune reactions, which hardly meet clinical needs. The bone tissue engineering (BTE) has been developed to promote bone repair. Gelatin, due to its biocompatibility, receives a great deal of attention in the BTE research field. However, the disadvantages of natural gelatin are poor mechanical properties and single structural property. With the development of BTE, gelatin is often used in combination with a range of natural, synthetic polymers, and inorganic materials to achieve synergistic effects for the complex physiological process of bone repair. The review delves into the fundamental structure and unique properties of gelatin, as well as the excellent properties necessary for bone scaffold materials. Then this review explores the application of modified gelatin three-dimensional (3D) scaffolds with various structures in bone repair, including 3D fiber scaffolds, hydrogels, and nanoparticles. In addition, the review focuses on the excellent efficacy of composite bone tissue scaffolds consisting of modified gelatin, various natural or synthetic polymeric materials, as well as bioactive ceramics and inorganic metallic/non-metallic materials in the repair of bone defects. The combination of these gelatin-based composite scaffolds provides new ideas for the design of scaffold materials for bone repair with good biosafety.
Collapse
Affiliation(s)
- Enguang Wu
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Lianghui Huang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yao Shen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zongyi Wei
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yangbiao Li
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Jin Wang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zhenhua Chen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
8
|
Liu Y, Shen Z, Xu Y, Zhu YW, Chen W, Qiu J. Layer-by-layer self-assembly of PLL/CPP-ACP multilayer on SLA titanium surface: Enhancing osseointegration and antibacterial activity in vitro and in vivo. Colloids Surf B Biointerfaces 2024; 240:113966. [PMID: 38781846 DOI: 10.1016/j.colsurfb.2024.113966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Dental Implants are expected to possess both excellent osteointegration and antibacterial activity because poor osseointegration and infection are two major causes of titanium implant failure. In this study, we constructed layer-by-layer self-assembly films consisting of anionic casein phosphopeptides-amorphous calcium phosphate (CPP-ACP) and cationic poly (L-lysine) (PLL) on sandblasted and acid etched (SLA) titanium surfaces and evaluated their osseointegration and antibacterial performance in vitro and in vivo. The surface properties were examined, including microstructure, elemental composition, wettability, and Ca2+ ion release. The impact the surfaces had on the adhesion, proliferation and differentiation abilities of MC3T3-E1 cells were investigated, as well as the material's antibacterial performance after exposure to the oral microorganisms such as Porphyromonas gingivalis (P. g) and Actinobacillus actinomycetemcomitans (A. a). For the in vivo studies, SLA and Ti (PLL/CA-3.0)10 implants were inserted into the extraction socket immediately after extracting the rabbit mandibular anterior teeth with or without exposure to mixed bacteria solution (P. g & A. a). Three rabbits in each group were sacrificed to collect samples at 2, 4, and 6 weeks of post-implantation, respectively. Radiographic and histomorphometry examinations were performed to evaluate the implant osseointegration. The modified titanium surfaces were successfully prepared and appeared as a compact nano-structure with high hydrophilicity. In particular, the Ti (PLL/CA-3.0)10 surface was able to continuously release Ca2+ ions. From the in vitro and in vivo studies, the modified titanium surfaces expressed enhanced osteogenic and antibacterial properties. Hence, the PLL/CPP-ACP multilayer coating on titanium surfaces was constructed via a layer-by-layer self-assembly technology, possibly improving the biofunctionalization of Ti-based dental implants.
Collapse
Affiliation(s)
- Yao Liu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Zhe Shen
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Yan Xu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Ya-Wen Zhu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Wei Chen
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
9
|
Tikhomirov E, Franconetti A, Johansson M, Sandström C, Carlsson E, Andersson B, Hailer NP, Ferraz N, Palo-Nieto C. A Simple and Cost-Effective FeCl 3-Catalyzed Functionalization of Cellulose Nanofibrils: Toward Adhesive Nanocomposite Materials for Medical Implants. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30385-30395. [PMID: 38816917 PMCID: PMC11181277 DOI: 10.1021/acsami.4c04351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
In the present work, we explored Lewis acid catalysis, via FeCl3, for the heterogeneous surface functionalization of cellulose nanofibrils (CNFs). This approach, characterized by its simplicity and efficiency, facilitates the amidation of nonactivated carboxylic acids in carboxymethylated cellulose nanofibrils (c-CNF). Following the optimization of reaction conditions, we successfully introduced amine-containing polymers, such as polyethylenimine and Jeffamine, onto nanofibers. This introduction significantly enhanced the physicochemical properties of the CNF-based materials, resulting in improved characteristics such as adhesiveness and thermal stability. Reaction mechanistic investigations suggested that endocyclic oxygen of cellulose finely stabilizes the transition state required for further functionalization. Notably, a nanocomposite, containing CNF and a branched low molecular weight polyethylenimine (CNF-PEI 800), was synthesized using the catalytic reaction. The composite CNF-PEI 800 was thoroughly characterized having in mind its potential application as coating biomaterial for medical implants. The resulting CNF-PEI 800 hydrogel exhibits adhesive properties, which complement the established antibacterial qualities of polyethylenimine. Furthermore, CNF-PEI 800 demonstrates its ability to support the proliferation and differentiation of primary human osteoblasts over a period of 7 days.
Collapse
Affiliation(s)
- Evgenii Tikhomirov
- Nanotechnology
and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Uppsala 751 03, Sweden
| | - Antonio Franconetti
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla 41012, Spain
| | - Mathias Johansson
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, Uppsala 756 51, Sweden
| | - Corine Sandström
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, Uppsala 756 51, Sweden
| | - Elin Carlsson
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Brittmarie Andersson
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Nils P Hailer
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Natalia Ferraz
- Nanotechnology
and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Uppsala 751 03, Sweden
| | - Carlos Palo-Nieto
- Nanotechnology
and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Uppsala 751 03, Sweden
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| |
Collapse
|
10
|
Zhu C, Jia Y, Tang Y, Guo C, Xi J, Sun C, Li H, Wang W, Zhai Y, Zhu Y, Liu Y. Functionalized chitosan hydrogel promotes osseointegration at the interface of3D printed titanium alloy scaffolds. Int J Biol Macromol 2024; 266:131169. [PMID: 38554899 DOI: 10.1016/j.ijbiomac.2024.131169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Autogenous bone transplantation is a prevalent clinical method for addressing bone defects. However, the limited availability of donor bone and the morbidity associated with bone harvesting have propelled the search for suitable bone substitutes. Bio-inspired scaffolds, particularly those fabricated using electron beam melting (EBM) deposition technology, have emerged as a significant advancement in this field. These 3D-printed titanium alloy scaffolds are celebrated for their outstanding biocompatibility and favorable elastic modulus. Thermosensitive chitosan hydrogel, which transitions from liquid to solid at body temperature, serves as a popular carrier in bone tissue engineering. Icariin (ICA), known for its efficacy in promoting osteoblast differentiation from bone marrow mesenchymal stem cells (BMSCs), plays a crucial role in this context. We developed a system combining a 3D-printed titanium alloy with a thermosensitive chitosan hydrogel, capable of local bone regeneration and integration through ICA delivery. Our in vitro findings reveal that this system can gradually release ICA, demonstrating excellent biocompatibility while fostering BMSC proliferation and osteogenic differentiation. Immunohistochemistry and Micro-CT analyses further confirm the effectiveness of the system in accelerating in vivo bone regeneration and enhancing osseointegration. This composite system lays a significant theoretical foundation for advancing local bone regeneration and integration.
Collapse
Affiliation(s)
- Chenyi Zhu
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Yudong Jia
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Yanfeng Tang
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Chaowei Guo
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Jianing Xi
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Chaojun Sun
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Hongjun Li
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Wenlong Wang
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Yuankun Zhai
- School of stomatology HENU, Kaifeng 475000, PR China
| | - Yingjie Zhu
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China.
| | - Youwen Liu
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China.
| |
Collapse
|
11
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
12
|
Braun J, Ortega-Liebana MC, Unciti-Broceta A, Sieber SA. A Pd-labile fluoroquinolone prodrug efficiently prevents biofilm formation on coated surfaces. Org Biomol Chem 2024; 22:1998-2002. [PMID: 38375536 DOI: 10.1039/d4ob00014e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Surface-adhered bacteria on implants represent a major challenge for antibiotic treatment. We introduce hydrogel-coated surfaces loaded with tailored Pd-nanosheets which catalyze the release of antibiotics from inactive prodrugs. Masked and antibiotically inactive fluoroquinolone analogs were efficiently activated at the surface and prevented the formation of Staphylococcus aureus biofilms.
Collapse
Affiliation(s)
- Josef Braun
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748 Garching bei München, Germany.
| | - M Carmen Ortega-Liebana
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XR Edinburgh, UK
- CRUK Scotland Centre, UK
- Department of Medicinal & Organic Chemistry and Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- GENYO, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XR Edinburgh, UK
- CRUK Scotland Centre, UK
| | - Stephan A Sieber
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Strasse 8, 85748 Garching bei München, Germany.
| |
Collapse
|
13
|
Akay S, Yaghmur A. Recent Advances in Antibacterial Coatings to Combat Orthopedic Implant-Associated Infections. Molecules 2024; 29:1172. [PMID: 38474684 DOI: 10.3390/molecules29051172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Implant-associated infections (IAIs) represent a major health burden due to the complex structural features of biofilms and their inherent tolerance to antimicrobial agents and the immune system. Thus, the viable options to eradicate biofilms embedded on medical implants are surgical operations and long-term and repeated antibiotic courses. Recent years have witnessed a growing interest in the development of robust and reliable strategies for prevention and treatment of IAIs. In particular, it seems promising to develop materials with anti-biofouling and antibacterial properties for combating IAIs on implants. In this contribution, we exclusively focus on recent advances in the development of modified and functionalized implant surfaces for inhibiting bacterial attachment and eventually biofilm formation on orthopedic implants. Further, we highlight recent progress in the development of antibacterial coatings (including self-assembled nanocoatings) for preventing biofilm formation on orthopedic implants. Among the recently introduced approaches for development of efficient and durable antibacterial coatings, we focus on the use of safe and biocompatible materials with excellent antibacterial activities for local delivery of combinatorial antimicrobial agents for preventing and treating IAIs and overcoming antimicrobial resistance.
Collapse
Affiliation(s)
- Seref Akay
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Chicea D, Nicolae-Maranciuc A, Chicea LM. Silver Nanoparticles-Chitosan Nanocomposites: A Comparative Study Regarding Different Chemical Syntheses Procedures and Their Antibacterial Effect. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1113. [PMID: 38473584 DOI: 10.3390/ma17051113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Nanocomposites based on silver nanoparticles and chitosan present important advantages for medical applications, showing over time their role in antibacterial evaluation. This work presents the comparative study of two chemical synthesis procedures of nanocomposites, based on trisodium citrate dihydrate and sodium hydroxide, using various chitosan concentrations for a complex investigation. The nanocomposites were characterized by AFM and DLS regarding their dimensions, while FT-IR and UV-VIS spectrometry were used for the optical properties and to reveal the binding of silver nanoparticles with chitosan. Their antibacterial effect was determined using a disk diffusion method on two bacteria strains, E. coli and S. aureus. The results indicate that, when using both methods, the nanocomposites obtained were below 100 nm, yet the antibacterial effect proved to be stronger for the nanocomposites obtained using sodium hydroxide. Furthermore, the antibacterial effect can be related to the nanocomposites' sizes, since the smallest dimension nanocomposites exhibited the best bacterial growth inhibition on both bacteria strains we tested and for both types of silver nanocomposites.
Collapse
Affiliation(s)
- Dan Chicea
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Alexandra Nicolae-Maranciuc
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
- Institute for Interdisciplinary Studies and Research (ISCI), Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Liana-Maria Chicea
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| |
Collapse
|
15
|
Li J, Zheng Y, Yu Z, Kankala RK, Lin Q, Shi J, Chen C, Luo K, Chen A, Zhong Q. Surface-modified titanium and titanium-based alloys for improved osteogenesis: A critical review. Heliyon 2024; 10:e23779. [PMID: 38223705 PMCID: PMC10784177 DOI: 10.1016/j.heliyon.2023.e23779] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
As implantable materials, titanium, and its alloys have garnered enormous interest from researchers for dental and orthopedic procedures. Despite their success in wide clinical applications, titanium, and its alloys fail to stimulate osteogenesis, resulting in poor bonding strength with surrounding bone tissue. Optimizing the surface topology and altered compositions of titanium and titanium-based alloys substantially promotes peri-implant bone regeneration. This review summarizes the utilization and importance of various osteogenesis components loaded onto titanium and its alloys. Further, different surface-modification methods and the release efficacy of loaded substances are emphasized. Finally, we summarize the article with prospects. We believe that further investigation studies must focus on identifying novel loading components, exploring various innovative, optimized surface-modification methods, and developing a sustained-release system on implant surfaces to improve peri-implant bone formation.
Collapse
Affiliation(s)
- Jingling Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yaxin Zheng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Zihe Yu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Qianying Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Jingbo Shi
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Chao Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Quan Zhong
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| |
Collapse
|
16
|
Morariu S, Avadanei M, Nita LE. Effect of pH on the Poly(acrylic acid)/Poly(vinyl alcohol)/Lysozyme Complexes Formation. Molecules 2023; 29:208. [PMID: 38202791 PMCID: PMC10780248 DOI: 10.3390/molecules29010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The interactions between poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), and lysozyme (Lys) in an aqueous environment at pHs of 2, 4, and 7.4 were discussed considering the experimental data obtained by turbidimetry, electrokinetic and rheological measurements, and FTIR analysis. It was found that the increase in PAA amount reduces the coacervation zone by shifting the critical pHcr1to higher values while the critical pHcr2 remains unchanged. The coacervation zone extended from 3.1-4.2 to 2.9-4.7 increasing the Lys concentration from 0.2% to 0.5%. The zeta potential measurements showed that the PAA-PVA-Lys mixture in water is the most stable in the pH range of 4.5-8. Zero shear viscosity exhibited deviations from additivity at both investigated pHs, and a maximum value corresponding to a maximum hydrodynamic volume was revealed at PAA weight fractions of 0.4 and 0.5 for pHs of 4 and 7.4, respectively. The binding affinity to Lys of PAA, established by molecular dynamics simulation, was slightly higher than that of PVA. The more stable complex was PAA-Lys formed in a very acidic environment; for that, a binding affinity of -7.1 kcal/mol was determined.
Collapse
Affiliation(s)
- Simona Morariu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.A.); (L.E.N.)
| | | | | |
Collapse
|
17
|
Wei L, Li Y, Qiu X, Zhang X, Song X, Zhao Y, Yu Q, Shao J, Ge S, Huang J. An underwater stable and durable gelatin composite hydrogel coating for biomedical applications. J Mater Chem B 2023; 11:11372-11383. [PMID: 38009934 DOI: 10.1039/d3tb01817b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Developing underwater stable and durable hydrogel coatings with drag-reducing, drug release, and antibacterial properties is essential for lots of biomedical applications. However, most hydrogel coatings cannot meet the requirement of underwater stability and versatility, which severely limits their widespread use. In this work, an underwater stable, durable and substrate-independent gelatin composite hydrogel (GMP) coating is developed through covalent crosslinks, where a silane coupling agent with an unsaturated double bond is grafted onto a substrate of co-deposited polydopamine and polyethylenimine. GMP coating can be easily coated onto various medical device surfaces, such as artificial joints, catheters, tracheal tubes and titanium alloys, showing excellent structural stability and mechanical tunability under extreme conditions of ultrasonic treatment for 1 h (400 W of ultrasonic power) or underwater shearing for 14 days (400 rpm). Besides, friction experiment reveals that GMP coating exhibits good lubrication properties (coefficient of friction < 0.003). The drug-loading and bacterial inhibition ring tests show that the GMP coating has a tunable drug release ability with the final releasing ratios of 70-95% by changing the content of poly (ethylene glycol) diacrylate. This work offers a scalable approach of fabricating bio-functional and stable hydrogel coatings, which can be potentially used in biomedical applications.
Collapse
Affiliation(s)
- Luxing Wei
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong, 25006, China
| | - Yuan Li
- Sinopec Research Institute of Petroleum Engineering, Fracturing & Acidizing and Natural Gas Production Research Institute, Dongying, Shandong, 257000, China
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Xiaolai Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Xiaoyu Song
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong, 25006, China
| | - Yunpeng Zhao
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qing Yu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Jinlong Shao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Jun Huang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong, 25006, China
| |
Collapse
|
18
|
Bordbar-Khiabani A, Kovrlija I, Locs J, Loca D, Gasik M. Octacalcium Phosphate-Laden Hydrogels on 3D-Printed Titanium Biomaterials Improve Corrosion Resistance in Simulated Biological Media. Int J Mol Sci 2023; 24:13135. [PMID: 37685942 PMCID: PMC10487990 DOI: 10.3390/ijms241713135] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The inflammatory-associated corrosion of metallic dental and orthopedic implants causes significant complications, which may result in the implant's failure. The corrosion resistance can be improved with coatings and surface treatments, but at the same time, it might affect the ability of metallic implants to undergo proper osteointegration. In this work, alginate hydrogels with and without octacalcium phosphate (OCP) were made on 3D-printed (patterned) titanium alloys (Ti Group 2 and Ti-Al-V Group 23) to enhance their anticorrosion properties in simulated normal, inflammatory, and severe inflammatory conditions in vitro. Alginate (Alg) and OCP-laden alginate (Alg/OCP) hydrogels were manufactured on the surface of 3D-printed Ti substrates and were characterized with wettability analysis, XRD, and FTIR. The electrochemical characterization of the samples was carried out with open circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). It was observed that the hydrophilicity of Alg/OCP coatings was higher than that of pure Alg and that OCP phase crystallinity was increased when samples were subjected to simulated biological media. The corrosion resistance of uncoated and coated samples was lower in inflammatory and severe inflammatory environments vs. normal media, but the hydrogel coatings on 3D-printed Ti layers moved the corrosion potential towards more nobler values, reducing the corrosion current density in all simulated solutions. These measurements revealed that OCP particles in the Alg hydrogel matrix noticeably increased the electrical charge transfer resistance at the substrate and coating interface more than with Alg hydrogel alone.
Collapse
Affiliation(s)
- Aydin Bordbar-Khiabani
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University Foundation, 02150 Espoo, Finland
| | - Ilijana Kovrlija
- Rudolfs Cimdins Riga Biomaterials Innovation and Development Centre, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovation and Development Centre, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Dagnija Loca
- Rudolfs Cimdins Riga Biomaterials Innovation and Development Centre, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Michael Gasik
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University Foundation, 02150 Espoo, Finland
| |
Collapse
|
19
|
Hajareh Haghighi F, Binaymotlagh R, Chronopoulou L, Cerra S, Marrani AG, Amato F, Palocci C, Fratoddi I. Self-Assembling Peptide-Based Magnetogels for the Removal of Heavy Metals from Water. Gels 2023; 9:621. [PMID: 37623076 PMCID: PMC10454050 DOI: 10.3390/gels9080621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
In this study, we present the synthesis of a novel peptide-based magnetogel obtained through the encapsulation of γ-Fe2O3-polyacrylic acid (PAA) nanoparticles (γ-Fe2O3NPs) into a hydrogel matrix, used for enhancing the ability of the hydrogel to remove Cr(III), Co(II), and Ni(II) pollutants from water. Fmoc-Phe (Fluorenylmethoxycarbonyl-Phenylalanine) and diphenylalanine (Phe2) were used as starting reagents for the hydrogelator (Fmoc-Phe3) synthesis via an enzymatic method. The PAA-coated magnetic nanoparticles were synthesized in a separate step, using the co-precipitation method, and encapsulated into the peptide-based hydrogel. The resulting organic/inorganic hybrid system (γ-Fe2O3NPs-peptide) was characterized with different techniques, including FT-IR, Raman, UV-Vis, DLS, ζ-potential, XPS, FESEM-EDS, swelling ability tests, and rheology. Regarding the application in heavy metals removal from aqueous solutions, the behavior of the obtained magnetogel was compared to its precursors and the effect of the magnetic field was assessed. Four different systems were studied for the separation of heavy metal ions from aqueous solutions, including (1) γ-Fe2O3NPs stabilized with PAA, (γ-Fe2O3NPs); (2) Fmoc-Phe3 hydrogel (HG); (3) γ-Fe2O3NPs embedded in peptide magnetogel (γ-Fe2O3NPs@HG); and (4) γ-Fe2O3NPs@HG in the presence of an external magnetic field. To quantify the removal efficiency of these four model systems, the UV-Vis technique was employed as a fast, cheap, and versatile method. The results demonstrate that both Fmoc-Phe3 hydrogel and γ-Fe2O3NPs peptide magnetogel can efficiently remove all the tested pollutants from water. Interestingly, due to the presence of magnetic γ-Fe2O3NPs inside the hydrogel, the removal efficiency can be enhanced by applying an external magnetic field. The proposed magnetogel represents a smart multifunctional nanosystem with improved absorption efficiency and synergic effect upon applying an external magnetic field. These results are promising for potential environmental applications of γ-Fe2O3NPs-peptide magnetogels to the removal of pollutants from aqueous media.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sara Cerra
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Andrea Giacomo Marrani
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Francesco Amato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| |
Collapse
|
20
|
Tariq M, Khokhar R, Javed A, Usman M, Anjum SMM, Rasheed H, Bukhari NI, Yan C, Nawaz HA. Novel Hydrophilic Oligomer-Crosslinked Gelatin-Based Hydrogels for Biomedical Applications. Gels 2023; 9:564. [PMID: 37504443 PMCID: PMC10379017 DOI: 10.3390/gels9070564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Gelatin-based hydrogels have shown good injectability and biocompatibility and have been broadly used for drug delivery and tissue regeneration. However, their low mechanical strengths and fast degradation rates must be modified for long-term implantation applications. With an aim to develop mechanically stable hydrogels, reactive anhydride-based oligomers were developed and used to fabricate gelatin-based crosslinked hydrogels in this study. A cascade of hydrophilic oligomers containing reactive anhydride groups was synthesized by free radical polymerization. These oligomers varied in degree of reactivity, comonomer composition, and showed low molecular weights (Mn < 5 kDa). The reactive oligomers were utilized to fabricate hydrogels that differed in their mechanical strengths and degradation profiles. These formulations exhibited good cytocompatibility with human adipose tissue-derived stem cells (hADCs). In conclusion, the reactive MA-containing oligomers were successfully synthesized and utilized for the development of oligomer-crosslinked hydrogels. Such oligomer-crosslinked gelatin-based hydrogels hold promise as drug or cell carriers in various biomedical applications.
Collapse
Affiliation(s)
- Mamoona Tariq
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai 200240, China
| | - Rabia Khokhar
- Punjab University College of Pharmacy (PUCP), University of the Punjab, Lahore 54000, Pakistan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Arslan Javed
- Punjab University College of Pharmacy (PUCP), University of the Punjab, Lahore 54000, Pakistan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Muhammad Usman
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Syed Muhammad Muneeb Anjum
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Huma Rasheed
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Nadeem Irfan Bukhari
- Punjab University College of Pharmacy (PUCP), University of the Punjab, Lahore 54000, Pakistan
| | - Chao Yan
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai 200240, China
| | - Hafiz Awais Nawaz
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| |
Collapse
|