1
|
Tunc CE, von Wirén N. Hidden aging: the secret role of root senescence. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00038-X. [PMID: 40074576 DOI: 10.1016/j.tplants.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025]
Abstract
Root age-dependent processes have remained poorly understood. Here, we define root age-related terms in their eco-/physiological context, provide a synthesis of read-outs and traits characterizing root senescence in different root types, and follow their modulation in the light of metabolic, hormonal, and genetic control. Evidence for an endogenously regulated senescence program in roots includes changes in root anatomy, metabolism, and color, decrease in root activity, increasing levels of stress-related hormones, and increasing expression of certain transcription factors (TFs) or genes involved in oxidative stress defense. Uncovering the genetic regulation of the developmental program steering root senescence is of great importance to establish a balanced view on whole-plant aging and improve resource efficiency in crops.
Collapse
Affiliation(s)
- Cevza Esin Tunc
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| |
Collapse
|
2
|
Chi C, Chen X, Zhu C, Cao J, Li H, Fu Y, Qin G, Zhao J, Yu J, Zhou J. Strigolactones positively regulate HY5-dependent autophagy and the degradation of ubiquitinated proteins in response to cold stress in tomato. THE NEW PHYTOLOGIST 2025; 245:1106-1123. [PMID: 39155750 DOI: 10.1111/nph.20058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
Autophagy, involved in protein degradation and amino acid recycling, plays a key role in plant development and stress responses. However, the relationship between autophagy and phytohormones remains unclear. We used diverse methods, including CRISPR/Cas9, ultra-performance liquid chromatography coupled with tandem mass spectrometry, chromatin immunoprecipitation, electrophoretic mobility shift assays, and dual-luciferase assays to explore the molecular mechanism of strigolactones in regulating autophagy and the degradation of ubiquitinated proteins under cold stress in tomato (Solanum lycopersicum). We show that cold stress induced the accumulation of ubiquitinated proteins. Mutants deficient in strigolactone biosynthesis were more sensitive to cold stress with increased accumulation of ubiquitinated proteins. Conversely, treatment with the synthetic strigolactone analog GR245DS enhanced cold tolerance in tomato, with elevated levels of accumulation of autophagosomes and transcripts of autophagy-related genes (ATGs), and reduced accumulation of ubiquitinated proteins. Meanwhile, cold stress induced the accumulation of ELONGATED HYPOCOTYL 5 (HY5), which was triggered by strigolactones. HY5 further trans-activated ATG18a transcription, resulting in autophagy formation. Mutation of ATG18a compromised strigolactone-induced cold tolerance, leading to decreased formation of autophagosomes and increased accumulation of ubiquitinated proteins. These findings reveal that strigolactones positively regulate autophagy in an HY5-dependent manner and facilitate the degradation of ubiquitinated proteins under cold conditions in tomato.
Collapse
Affiliation(s)
- Cheng Chi
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261200, China
| | - Xinlin Chen
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Changan Zhu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jiajian Cao
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hui Li
- Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261200, China
| | - Ying Fu
- Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261200, China
| | - Guochen Qin
- Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261200, China
| | - Jun Zhao
- Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261200, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572000, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572000, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
3
|
Kleuter M, Yu Y, Pancaldi F, van der Goot AJ, Trindade LM. Prone to loss: Senescence-regulated protein degradation leads to lower protein extractability in aging tomato leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112284. [PMID: 39414151 DOI: 10.1016/j.plantsci.2024.112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
The utilization of proteins extracted from tomato (Solanum lycopersicum) leaves as cost-effective resources for human consumption or animal feed has gained interest. Thus, increasing protein extractability from tomato leaves became a new breeding target. However, the genetic factors influencing this trait remains poorly understood. In this study, we analyzed changes in leaf protein content, protein composition, and extraction yield across developmental stages, which are vegetative growth, flowering, fruit-forming, and mature fruit. Moreover, tomato gene expression across developmental stages was also studied, to identify genes underlying variability in leaf protein extraction. Protein extraction yield decreased from 0.51 g/g to 0.01 g/g leaf protein from the vegetative to mature stage. However, total protein content inferred with Dumas combustion analysis did not change over the developmental stages tested, while the protein-to-peptide ratio decreased significantly. To further analyze potential causes underlying the decline of protein-to-peptide ratio, the enzymatic activity of proteases - i.e. the enzymes responsible for protein degradation - and the expression of genes encoding these enzymes was studied along plant development. The overall specific activity of proteases did not change significantly throughout plant development. On the contrary, the gene expression of distinct members of the aspartic, cysteine, and subtilase protease families increased. Overall, our findings suggest that extraplastidic protein degradation likely underlies the protein degradation observed during senescence. In the future, the reduction of the activity of extraplastidic proteases through biotechnology could represent an effective strategy to develop tomato varieties with improved protein extraction yields.
Collapse
Affiliation(s)
- Marietheres Kleuter
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, the Netherlands.
| | - Yafei Yu
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, Wageningen 6700 AA, the Netherlands.
| | - Francesco Pancaldi
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, the Netherlands.
| | - Atze Jan van der Goot
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, Wageningen 6700 AA, the Netherlands.
| | - Luisa M Trindade
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, the Netherlands.
| |
Collapse
|
4
|
Kumsab J, Yingchutrakul Y, Simanon N, Jankam C, Sonthirod C, Tangphatsornruang S, Butkinaree C. Comparative Proteomic Analysis of Ridge Gourd Seed ( Luffa acutangula (L.) Roxb.) during Artificial Aging. ACS OMEGA 2024; 9:24739-24750. [PMID: 38882140 PMCID: PMC11171090 DOI: 10.1021/acsomega.4c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
Seed aging is a complicated process influenced by environmental conditions, impacting biochemical processes in seeds and causing deterioration that results in reduced viability and vigor. In this study, we investigated the seed aging process of ridge gourd, which is one of the most exported commercial seeds in Thailand using sequential window acquisition of all theoretical fragment ion spectra mass spectrometry. A total of 855 proteins were identified among the two groups (0 d/15 d and 0 d/30 d). The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of differentially expressed proteins revealed that in ridge gourd seeds, the aging process altered the abundance of proteins related to the oxidative stress response, nutrient reservoir, and metabolism pathway. The most identified DEPs were mitochondrial proteins, ubiquitin-proteasome system proteins, ribosomal proteins, carbohydrate metabolism-related proteins, and stress response-related proteins. This study also presented the involvement of aconitase and glutathione pathway-associated enzymes in seed aging, with aconitase and total glutathione being determined as possible suggestive biomarkers for aged ridge gourd seeds. This acquired knowledge has the potential to considerably improve growing methods and seed preservation techniques, enhancing seed storage and maintenance.
Collapse
Affiliation(s)
- Jakkaphan Kumsab
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Nattapon Simanon
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Chonchawan Jankam
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Chutikarn Butkinaree
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| |
Collapse
|
5
|
Choi HS, Bjornson M, Liang J, Wang J, Ke H, Hur M, De Souza A, Kumar KS, Mortimer JC, Dehesh K. COG-imposed Golgi functional integrity determines the onset of dark-induced senescence. NATURE PLANTS 2023; 9:1890-1901. [PMID: 37884654 DOI: 10.1038/s41477-023-01545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Plant survival depends on dynamic stress-response pathways in changing environments. To uncover pathway components, we screened an ethyl methanesulfonate-mutagenized transgenic line containing a stress-inducible luciferase construct and isolated a constitutive expression mutant. The mutant is the result of an amino acid substitution in the seventh subunit of the hetero-octameric conserved oligomeric Golgi (COG) complex of Arabidopsis thaliana. Complementation studies verified the Golgi localization of cog7, and stress tests established accelerated dark-induced carbon deprivation/senescence of the mutant compared with wild-type plants. Multiomics and biochemical analyses revealed accelerated induction of protein ubiquitination and autophagy, and a counterintuitive increased protein N-glycosylation in senescencing cog7 relative to wild-type. A revertant screen using the overexpressor (FOX)-hunting system established partial, but notable rescue of cog7 phenotypes by COG5 overexpression, and conversely premature senescence in reduced COG5 expressing lines. These findings identify COG-imposed Golgi functional integrity as a main player in ensuring cellular survival under energy-limiting conditions.
Collapse
Affiliation(s)
- Hee-Seung Choi
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Marta Bjornson
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Jiubo Liang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Jinzheng Wang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Haiyan Ke
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Manhoi Hur
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Amancio De Souza
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | | | - Jenny C Mortimer
- Lawrence Berkeley National Lab, Joint BioEnergy Institute, Emeryville, CA, USA
- School of Agriculture Food and Wine & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
6
|
Wen C, Luo T, He Z, Li Y, Yan J, Xu W. Regulation of Tomato Fruit Autophagic Flux and Promotion of Fruit Ripening by the Autophagy-Related Gene SlATG8f. PLANTS (BASEL, SWITZERLAND) 2023; 12:3339. [PMID: 37765504 PMCID: PMC10536916 DOI: 10.3390/plants12183339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Autophagy is a highly conserved self-degradation process that involves the degradation and recycling of cellular components and organelles. Although the involvement of autophagy in metabolic changes during fruit ripening has been preliminarily demonstrated, the variations in autophagic flux and specific functional roles in tomato fruit ripening remain to be elucidated. In this study, we analyzed the variations in autophagic flux during tomato fruit ripening. The results revealed differential expression of the SlATG8 family members during tomato fruit ripening. Transmission electron microscopy observations and dansylcadaverine (MDC) staining confirmed the presence of autophagy at the cellular level in tomato fruits. Furthermore, the overexpression of SlATG8f induced the formation of autophagosomes, increased autophagic flux within tomato fruits, and effectively enhanced the expression of ATG8 proteins during the color-transition phase of fruit ripening, thus promoting tomato fruit maturation. SlATG8f overexpression also led to the accumulation of vitamin C (VC) and soluble solids while reducing acidity in the fruit. Collectively, our findings highlight the pivotal role of SlATG8f in enhancing tomato fruit ripening, providing insights into the mechanistic involvement of autophagy in this process. This research contributes to a better understanding of the key factors that regulate tomato fruit quality and offers a theoretical basis for tomato variety improvement.
Collapse
Affiliation(s)
- Cen Wen
- College of Agriculture, Guizhou University, Guizhou 550025, China; (C.W.); (T.L.); (Z.H.); (Y.L.)
| | - Taimin Luo
- College of Agriculture, Guizhou University, Guizhou 550025, China; (C.W.); (T.L.); (Z.H.); (Y.L.)
- Xingyi City Bureau of Agriculture and Rural Development, Guizhou 562400, China
| | - Zhuo He
- College of Agriculture, Guizhou University, Guizhou 550025, China; (C.W.); (T.L.); (Z.H.); (Y.L.)
| | - Yunzhou Li
- College of Agriculture, Guizhou University, Guizhou 550025, China; (C.W.); (T.L.); (Z.H.); (Y.L.)
| | - Jianmin Yan
- College of Agriculture, Guizhou University, Guizhou 550025, China; (C.W.); (T.L.); (Z.H.); (Y.L.)
- Guizhou Higher Education Facility Vegetable Engineering Research Center, Guizhou 550025, China
| | - Wen Xu
- College of Agriculture, Guizhou University, Guizhou 550025, China; (C.W.); (T.L.); (Z.H.); (Y.L.)
- Guizhou Higher Education Facility Vegetable Engineering Research Center, Guizhou 550025, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Sheng Y, Yao X, Liu L, Yu C, Wang K, Wang K, Chang J, Chen J, Cao Y. Transcriptomic Time-Course Sequencing: Insights into the Cell Wall Macromolecule-Mediated Fruit Dehiscence during Ripening in Camellia oleifera. PLANTS (BASEL, SWITZERLAND) 2023; 12:3314. [PMID: 37765478 PMCID: PMC10535178 DOI: 10.3390/plants12183314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Camellia oleifera (C. oleifera), one of the world's four major edible woody oil crops, has been widely planted in southern China's subtropical region for the extremely high nutritional and health benefits of its seed oil. Timing and synchronization of fruit dehiscence are critical factors influencing the oil output and quality, as well as the efficiency and cost of harvesting C. oleifera, yet they extremely lack attention. To gain an understanding of the molecular basis underlying the dehiscence of C. oleifera fruit, we sampled pericarp-replum tissues containing dehiscence zones from fruits at different developmental stages and performed time-series transcriptomic sequencing and analysis for the first time. Statistical and GO enrichment analysis of differentially expressed genes revealed that drastic transcriptional changes occurred over the last short sampling interval (4 days, 18th-22nd October), which directed functional classifications link to cell wall and cell wall macromolecule activity. WGCNA further showed that factors controlling cell wall modification, including endo-1,3;1,4-beta-D-glucanase, WAT1-like protein 37, LRR receptor-like serine/threonine-protein kinase, and cellulose synthase A catalytic subunit, were identified as core members of the co-expression network of the last stage highly related modules. Furthermore, in these modules, we also noted genes that were annotated as coding for polygalacturonase and pectinesterase, two pectinases that were expected to be major players in cell separation during dehiscence. qRT-PCR further confirmed the expression profiles of these cell wall modification relating factors, which possessed a special high transcriptional abundance at the final stage. These results suggested the cell wall associated cell separation, one of the essential processes downstream of fruit dehiscence, happened in dehiscing fruit of C. oleifera during ripening. Hydrolases acting on cell wall components are good candidates for signal mediating dehiscence of C. oleifera fruit. In conclusion, our analysis provided insights into the cell wall macromolecule-mediated fruit dehiscence during ripening in C. oleifera.
Collapse
Affiliation(s)
- Yu Sheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.S.); (L.L.)
- Quzhou Doctoral Innovation Workstation, Changshan Country Oil Tea Industry Development Center, Quzhou 323900, China; (C.Y.); (K.W.)
| | - Xiaohua Yao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.S.); (L.L.)
| | - Linxiu Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.S.); (L.L.)
- Faculty of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Chunlian Yu
- Quzhou Doctoral Innovation Workstation, Changshan Country Oil Tea Industry Development Center, Quzhou 323900, China; (C.Y.); (K.W.)
| | - Kunxi Wang
- Quzhou Doctoral Innovation Workstation, Changshan Country Oil Tea Industry Development Center, Quzhou 323900, China; (C.Y.); (K.W.)
| | - Kailiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.S.); (L.L.)
| | - Jun Chang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.S.); (L.L.)
| | - Juanjuan Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.S.); (L.L.)
- Faculty of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yongqing Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.S.); (L.L.)
| |
Collapse
|
8
|
Langin G, Üstün S. A Pipeline to Monitor Proteasome Homeostasis in Plants. Methods Mol Biol 2023; 2581:351-363. [PMID: 36413330 DOI: 10.1007/978-1-0716-2784-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The proteasome is a key component for regulation of protein turnover across kingdoms. The proteasome has been shown to be involved in or affected by various stress conditions in multiple model organisms in plants. As such, studying proteasome homeostasis is crucial to understand its participation in different cellular conditions. However, the involvement of the proteasome in many cellular processes and its interplay with other degradation pathways hamper the interpretation of experiments based on a single approach. Thus, it is crucial to formulate a framework to investigate proteasome dynamics in different model organisms including plants. Here, we describe a pipeline to monitor proteasome homeostasis using four different methods including (i) luminescent-based proteasome activity measurement, (ii) immunoblot analysis of ubiquitinated proteins, (iii) evaluation of proteasome subunit protein levels, and (iv) monitoring of the proteasome stress regulon on mRNA levels using quantitative real-time PCR (polymerase chain reaction).
Collapse
Affiliation(s)
- Gautier Langin
- University of Tübingen, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany.
| | - Suayib Üstün
- University of Tübingen, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany.
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum, Germany.
| |
Collapse
|
9
|
Soleimannejad Z, Sadeghipour HR, Abdolzadeh A, Golalipour M, Bakhtiarizadeh MR. Transcriptome alterations of radish shoots exposed to cadmium can be interpreted in the context of leaf senescence. PROTOPLASMA 2023; 260:35-62. [PMID: 35396977 DOI: 10.1007/s00709-022-01758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Till now few transcriptome studies have described shoot responses of heavy metal (HM)-sensitive plants to excess Cd and still a unifying model of Cd action is lacking. Using RNA-seq technique, the transcriptome responses of radish (Raphanus sativus L.) leaves to Cd stress were investigated in plants raised hydroponically under control and 5.0 mg L-1 Cd. The element was mainly accumulated in roots and led to declined biomass and photosynthetic pigments, increased H2O2 and lipid peroxidation, and the accumulation of sugars, protein thiols, and phytochelatins. Out of 524 differentially expressed genes (DEGs), 244 and 280 upregulated and downregulated ones were assigned to 82 and 115 GO terms, respectively. The upregulated DEGs were involved in osmotic regulation, protein metabolism, chelators, and carbohydrate metabolisms, whereas downregulated DEGs were related to photosynthesis, response to oxidative stress, glucosinolate, and secondary metabolite biosynthesis. Our transcriptome data suggest that Cd triggers ROS production and photosynthesis decline associated with increased proteolysis through ubiquitin-proteasome system (UPS)- and chloroplast-proteases and in this way brings about re-mobilization of N and C stores into amino acids and sugars. Meanwhile, declined glucosinolate metabolism in favor of chelator synthesis and upregulation of dehydrins as inferred from transcriptome analysis confers shoots some tolerance to the HM-derived ionic/osmotic imbalances. Thus, the induction of leaf senescence might be a major long-term response of HM-sensitive plants to Cd toxicity.
Collapse
Affiliation(s)
- Zahra Soleimannejad
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | | | - Ahmad Abdolzadeh
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Masoud Golalipour
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | |
Collapse
|
10
|
Transcriptome and Metabolome Analysis of a Late-Senescent Vegetable Soybean during Seed Development Provides New Insights into Degradation of Chlorophyll. Antioxidants (Basel) 2022; 11:antiox11122480. [PMID: 36552689 PMCID: PMC9774520 DOI: 10.3390/antiox11122480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Senescence represents the final stage of plant growth and development, which transfers nutrients to growing seeds and directly affects the yield and quality of crops. However, little is known about chlorophyll degradation in developing and maturing seeds, in contrast to leaf senescence; (2) Methods: RNA-Seq was used to analyze the differentially expressed genes of different late-senescent germplasms. A widely untargeted metabolic analysis was used to analyze differential metabolites. In addition, qRT-PCR was conducted to detect gene expression levels; (3) Results: Transcriptome analysis revealed that ZX12 seeds have a higher expression level of the chlorophyll synthesis genes in the early stage of maturity, compared with ZX4, and have a lower expression level of chlorophyll degradation genes in the late stage of maturity. Flavonoids were the primary differential metabolites, and ZX12 contains the unique and highest expression of three types of metabolites, including farrerol-7-O-glucoside, cyanidin-3-o-(6'-o-feruloyl) glucoside, and kaempferide-3-o-(6'-malonyl) glucoside. Among them, farrerol-7-O-glucoside and cyanidin-3-o-(6'-o-feruloyl) glucoside are flavonoid derivatives containing mono and dihydroxy-B-ring chemical structures, respectively; and (4) Conclusions: It is speculated that the two metabolites can slow down the degradation process of chlorophyll by scavenging oxygen-free radicals in the chloroplast.
Collapse
|
11
|
Mahmood K, Torres-Jerez I, Krom N, Liu W, Udvardi MK. Transcriptional Programs and Regulators Underlying Age-Dependent and Dark-Induced Senescence in Medicago truncatula. Cells 2022; 11:cells11091570. [PMID: 35563875 PMCID: PMC9103780 DOI: 10.3390/cells11091570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
In forage crops, age-dependent and stress-induced senescence reduces forage yield and quality. Therefore, delaying leaf senescence may be a way to improve forage yield and quality as well as plant resilience to stresses. Here, we used RNA-sequencing to determine the molecular bases of age-dependent and dark-induced leaf senescence in Medicago truncatula. We identified 6845 differentially expressed genes (DEGs) in M3 leaves associated with age-dependent leaf senescence. An even larger number (14219) of DEGs were associated with dark-induced senescence. Upregulated genes identified during age-dependent and dark-induced senescence were over-represented in oxidation–reduction processes and amino acid, carboxylic acid and chlorophyll catabolic processes. Dark-specific upregulated genes also over-represented autophagy, senescence and cell death. Mitochondrial functions were strongly inhibited by dark-treatment while these remained active during age-dependent senescence. Additionally, 391 DE transcription factors (TFs) belonging to various TF families were identified, including a core set of 74 TFs during age-dependent senescence while 759 DE TFs including a core set of 338 TFs were identified during dark-induced senescence. The heterologous expression of several senescence-induced TFs belonging to NAC, WKRY, bZIP, MYB and HD-zip TF families promoted senescence in tobacco leaves. This study revealed the dynamics of transcriptomic responses to age- and dark-induced senescence in M. truncatula and identified senescence-associated TFs that are attractive targets for future work to control senescence in forage legumes.
Collapse
Affiliation(s)
- Kashif Mahmood
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
| | - Ivone Torres-Jerez
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
| | - Nick Krom
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
| | - Wei Liu
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX 76201, USA
| | - Michael K. Udvardi
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
- Centre for Crop Science, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
12
|
Sella L, Govind R, Caracciolo R, Quarantin A, Vu VV, Tundo S, Nguyen HM, Favaron F, Musetti R, De Zotti M. Transcriptomic and Ultrastructural Analyses of Pyricularia Oryzae Treated With Fungicidal Peptaibol Analogs of Trichoderma Trichogin. Front Microbiol 2021; 12:753202. [PMID: 34721357 PMCID: PMC8551967 DOI: 10.3389/fmicb.2021.753202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Eco-friendly analogs of Trichogin GA IV, a short peptaibol produced by Trichoderma longibrachiatum, were assayed against Pyricularia oryzae, the causal agent of rice blast disease. In vitro and in vivo screenings allowed us to identify six peptides able to reduce by about 70% rice blast symptoms. One of the most active peptides was selected for further studies. Microscopy analyses highlighted that the treated fungal spores could not germinate and the fluorescein-labeled peptide localized on the spore cell wall and in the agglutinated cytoplasm. Transcriptomic analysis was carried out on P. oryzae mycelium 3 h after the peptide treatment. We identified 1,410 differentially expressed genes, two-thirds of which upregulated. Among these, we found genes involved in oxidative stress response, detoxification, autophagic cell death, cell wall biogenesis, degradation and remodeling, melanin and fatty acid biosynthesis, and ion efflux transporters. Molecular data suggest that the trichogin analogs cause cell wall and membrane damages and induce autophagic cell death. Ultrastructure observations on treated conidia and hyphae confirmed the molecular data. In conclusion, these selected peptides seem to be promising alternative molecules for developing effective bio-pesticides able to control rice blast disease.
Collapse
Affiliation(s)
- Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Rakshita Govind
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Rocco Caracciolo
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Alessandra Quarantin
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Silvio Tundo
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Hung Minh Nguyen
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Rita Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Marta De Zotti
- Department of Chemistry (DISC), University of Padova, Padua, Italy
| |
Collapse
|
13
|
Sánchez-Sevilla JF, Botella MA, Valpuesta V, Sanchez-Vera V. Autophagy Is Required for Strawberry Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2021; 12:688481. [PMID: 34512686 PMCID: PMC8429490 DOI: 10.3389/fpls.2021.688481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is a catabolic and recycling pathway that maintains cellular homeostasis under normal growth and stress conditions. Two major types of autophagy, microautophagy and macroautophagy, have been described in plants. During macroautophagy, cellular content is engulfed by a double-membrane vesicle called autophagosome. This vesicle fuses its outer membrane with the tonoplast and releases the content into the vacuole for degradation. During certain developmental processes, autophagy is enhanced by induction of several autophagy-related genes (ATG genes). Autophagy in crop development has been studied in relation to leaf senescence, seed and reproductive development, and vascular formation. However, its role in fruit ripening has only been partially addressed. Strawberry is an important berry crop, representative of non-climacteric fruit. We have analyzed the occurrence of autophagy in developing and ripening fruits of the cultivated strawberry. Our data show that most ATG genes are conserved in the genome of the cultivated strawberry Fragaria x ananassa and they are differentially expressed along the ripening of the fruit receptacle. ATG8-lipidation analysis proves the presence of two autophagic waves during ripening. In addition, we have confirmed the presence of autophagy at the cellular level by the identification of autophagy-related structures at different stages of the strawberry ripening. Finally, we show that blocking autophagy either biochemically or genetically dramatically affects strawberry growth and ripening. Our data support that autophagy is an active and essential process with different implications during strawberry fruit ripening.
Collapse
Affiliation(s)
- José F Sánchez-Sevilla
- Unidad Asociada al CSIC de I+D+i Biotecnología y Mejora en Fresa, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Centro IFAPA Málaga, Junta de Andalucía, Málaga, Spain
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Victoria Sanchez-Vera
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| |
Collapse
|
14
|
Wojciechowska N, Michalak KM, Bagniewska-Zadworna A. Autophagy-an underestimated coordinator of construction and destruction during plant root ontogeny. PLANTA 2021; 254:15. [PMID: 34184131 PMCID: PMC8238727 DOI: 10.1007/s00425-021-03668-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/20/2021] [Indexed: 05/13/2023]
Abstract
MAIN CONCLUSION Autophagy is a key but undervalued process in root ontogeny, ensuring both the proper development of root tissues as well as the senescence of the entire organ. Autophagy is a process which occurs during plant adaptation to changing environmental conditions as well as during plant ontogeny. Autophagy is also engaged in plant root development, however, the limitations of belowground studies make it challenging to understand the entirety of the developmental processes. We summarize and discuss the current data pertaining to autophagy in the roots of higher plants during their formation and degradation, from the beginning of root tissue differentiation and maturation; all the way to the aging of the entire organ. During root growth, autophagy participates in the processes of central vacuole formation in cortical tissue development, as well as vascular tissue differentiation and root senescence. At present, several key issues are still not entirely understood and remain to be addressed in future studies. The major challenge lies in the portrayal of the mechanisms of autophagy on subcellular events in belowground plant organs during the programmed control of cellular degradation pathways in roots. Given the wide range of technical areas of inquiry where root-related research can be applied, including cutting-edge cell biological methods to track, sort and screen cells from different root tissues and zones of growth, the identification of several lines of evidence pertaining to autophagy during root developmental processes is the most urgent challenge. Consequently, a substantial effort must be made to ensure whether the analyzed process is autophagy-dependent or not.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Kornel M Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
15
|
Guo Y, Ren G, Zhang K, Li Z, Miao Y, Guo H. Leaf senescence: progression, regulation, and application. MOLECULAR HORTICULTURE 2021; 1:5. [PMID: 37789484 PMCID: PMC10509828 DOI: 10.1186/s43897-021-00006-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 05/24/2023]
Abstract
Leaf senescence, the last stage of leaf development, is a type of postmitotic senescence and is characterized by the functional transition from nutrient assimilation to nutrient remobilization which is essential for plants' fitness. The initiation and progression of leaf senescence are regulated by a variety of internal and external factors such as age, phytohormones, and environmental stresses. Significant breakthroughs in dissecting the molecular mechanisms underpinning leaf senescence have benefited from the identification of senescence-altered mutants through forward genetic screening and functional assessment of hundreds of senescence-associated genes (SAGs) via reverse genetic research in model plant Arabidopsis thaliana as well as in crop plants. Leaf senescence involves highly complex genetic programs that are tightly tuned by multiple layers of regulation, including chromatin and transcription regulation, post-transcriptional, translational and post-translational regulation. Due to the significant impact of leaf senescence on photosynthesis, nutrient remobilization, stress responses, and productivity, much effort has been made in devising strategies based on known senescence regulatory mechanisms to manipulate the initiation and progression of leaf senescence, aiming for higher yield, better quality, or improved horticultural performance in crop plants. This review aims to provide an overview of leaf senescence and discuss recent advances in multi-dimensional regulation of leaf senescence from genetic and molecular network perspectives. We also put forward the key issues that need to be addressed, including the nature of leaf age, functional stay-green trait, coordination between different regulatory pathways, source-sink relationship and nutrient remobilization, as well as translational researches on leaf senescence.
Collapse
Affiliation(s)
- Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101 Shandong China
| | - Guodong Ren
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Kewei Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004 Zhejiang China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 Guangdong China
| |
Collapse
|
16
|
Feng X, Liu L, Li Z, Sun F, Wu X, Hao D, Hao H, Jing HC. Potential interaction between autophagy and auxin during maize leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3554-3568. [PMID: 33684202 PMCID: PMC8446287 DOI: 10.1093/jxb/erab094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 05/04/2023]
Abstract
Leaf senescence is important for crop yield as delaying it can increase the average yield. In this study, population genetics and transcriptomic profiling were combined to dissect its genetic basis in maize. To do this, the progenies of an elite maize hybrid Jidan27 and its parental lines Si-287 (early senescence) and Si-144 (stay-green), as well as 173 maize inbred lines were used. We identified two novel loci and their candidate genes, Stg3 (ZmATG18b) and Stg7 (ZmGH3.8), which are predicted to be members of autophagy and auxin pathways, respectively. Genomic variations in the promoter regions of these two genes were detected, and four allelic combinations existed in the examined maize inbred lines. The Stg3Si-144/Stg7Si-144 allelic combination with lower ZmATG18b expression and higher ZmGH3.8 expression could distinctively delay leaf senescence, increase ear weight and the improved hybrid of NIL-Stg3Si-144/Stg7Si-144 × Si-144 significantly reduced ear weight loss under drought stress, while opposite effects were observed in the Stg3Si-287/Stg7Si-287 combination with a higher ZmATG18b expression and lower ZmGH3.8 expression. Thus, we identify a potential interaction between autophagy and auxin which could modulate the timing of maize leaf senescence.
Collapse
Affiliation(s)
- Xue Feng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhigang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Sun
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Dongyun Hao
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130124, China
| | - Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Correspondence: or
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Correspondence: or
| |
Collapse
|
17
|
Hafeez A, Razzaq A, Ahmed A, Liu A, Qun G, Junwen L, Shi Y, Deng X, Zafar MM, Ali A, Gong W, Yuan Y. Identification of hub genes through co-expression network of major QTLs of fiber length and strength traits in multiple RIL populations of cotton. Genomics 2021; 113:1325-1337. [PMID: 33713821 DOI: 10.1016/j.ygeno.2021.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 11/30/2022]
Abstract
The present study demonstrated a de novo correlation among fiber quality genes in multiple RIL populations including sGK9708 × 0-153, LMY22 × LY343 and Lumianyan28 × Xinluzao24. The current study was conducted to identify the major common QTLs including fiber length and strength, and to identify the co-expression networks of fiber length and strength QTLs harbored genes to target the hub genes. The RNA-seq data of sGK9708 × 0-153 population highlighted 50 and 48 candidate genes of fiber length and fiber strength QTLs. A total of 29 and 21 hub genes were identified in fiber length and strength co-expression network modules. The absolute values of correlation coefficient close to 1 resulted highly positive correlation among hub genes. Results also suggested that the gene correlation significantly influence the gene expression at different fiber development stages. These results might provide useful reference for further experiments in multiple RIL populations and suggest potential candidate genes for functional studies in cotton.
Collapse
Affiliation(s)
- Abdul Hafeez
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China; Sindh Agriculture University Tandojam, 70060 Hyderabad, Sindh, Pakistan
| | - Abdul Razzaq
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Aijaz Ahmed
- Sindh Agriculture University Tandojam, 70060 Hyderabad, Sindh, Pakistan
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Ge Qun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Li Junwen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Muhammad Mubashar Zafar
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Arfan Ali
- FB Genetics Four Brothers Group, Lahore, Pakistan
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.
| |
Collapse
|
18
|
Zhang YM, Guo P, Xia X, Guo H, Li Z. Multiple Layers of Regulation on Leaf Senescence: New Advances and Perspectives. FRONTIERS IN PLANT SCIENCE 2021; 12:788996. [PMID: 34938309 PMCID: PMC8685244 DOI: 10.3389/fpls.2021.788996] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/03/2021] [Indexed: 05/22/2023]
Abstract
Leaf senescence is the last stage of leaf development and is an orderly biological process accompanied by degradation of macromolecules and nutrient recycling, which contributes to plant fitness. Forward genetic mutant screening and reverse genetic studies of senescence-associated genes (SAGs) have revealed that leaf senescence is a genetically regulated process, and the initiation and progression of leaf senescence are influenced by an array of internal and external factors. Recently, multi-omics techniques have revealed that leaf senescence is subjected to multiple layers of regulation, including chromatin, transcriptional and post-transcriptional, as well as translational and post-translational levels. Although impressive progress has been made in plant senescence research, especially the identification and functional analysis of a large number of SAGs in crop plants, we still have not unraveled the mystery of plant senescence, and there are some urgent scientific questions in this field, such as when plant senescence is initiated and how senescence signals are transmitted. This paper reviews recent advances in the multiple layers of regulation on leaf senescence, especially in post-transcriptional regulation such as alternative splicing.
Collapse
Affiliation(s)
- Yue-Mei Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Pengru Guo
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zhonghai Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Zhonghai Li,
| |
Collapse
|
19
|
Cao JJ, Liu CX, Shao SJ, Zhou J. Molecular Mechanisms of Autophagy Regulation in Plants and Their Applications in Agriculture. FRONTIERS IN PLANT SCIENCE 2020; 11:618944. [PMID: 33664753 PMCID: PMC7921839 DOI: 10.3389/fpls.2020.618944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/28/2020] [Indexed: 05/03/2023]
Abstract
Autophagy is a highly conserved cellular process for the degradation and recycling of unnecessary cytoplasmic components in eukaryotes. Various studies have shown that autophagy plays a crucial role in plant growth, productivity, and survival. The extensive functions of plant autophagy have been revealed in numerous frontier studies, particularly those regarding growth adjustment, stress tolerance, the identification of related genes, and the involvement of metabolic pathways. However, elucidation of the molecular regulation of plant autophagy, particularly the upstream signaling elements, is still lagging. In this review, we summarize recent progress in research on the molecular mechanisms of autophagy regulation, including the roles of protein kinases, phytohormones, second messengers, and transcriptional and epigenetic control, as well as the relationship between autophagy and the 26S proteasome in model plants and crop species. We also discuss future research directions for the potential application of autophagy in agriculture.
Collapse
Affiliation(s)
- Jia-Jian Cao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Chen-Xu Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Shu-Jun Shao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Jie Zhou
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
- *Correspondence: Jie Zhou,
| |
Collapse
|
20
|
Singh D, Yadav R, Kaushik S, Wadhwa N, Kapoor S, Kapoor M. Transcriptome Analysis of ppdnmt2 and Identification of Superoxide Dismutase as a Novel Interactor of DNMT2 in the Moss Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2020; 11:1185. [PMID: 32849734 PMCID: PMC7419982 DOI: 10.3389/fpls.2020.01185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/21/2020] [Indexed: 05/07/2023]
Abstract
DNMT2 is a DNA/tRNA cytosine methyltransferase that is highly conserved in structure and function in eukaryotes. In plants however, limited information is available on the function of this methyltransferase. We have previously reported that in the moss Physcomitrella patens, DNMT2 plays a crucial role in stress recovery and tRNAAsp transcription/stability under salt stress. To further investigate the role of PpDNMT2 at genome level, in this study we have performed RNA sequencing of ppdnmt2. Transcriptome analysis reveals a number of genes and pathways to function differentially and suggests a close link between PpDNMT2 function and osmotic and ionic stress tolerance. We propose PpDNMT2 to play a pivotal role in regulating salt tolerance by affecting molecular networks involved in stress perception and signal transduction that underlie maintenance of ion homeostasis in cells. We also examined interactome of PpDNMT2 using affinity purification (AP) coupled to mass spectrometry (AP-MS). Quantitative proteomic analysis reveals several chloroplast proteins involved in light reactions and carbon assimilation and proteins involved in stress response and some not implicated in stress to co-immunoprecipitate with PpDNMT2. Comparison between transcriptome and interactome datasets has revealed novel association between PpDNMT2 activity and the antioxidant enzyme Superoxide dismutase (SOD), protein turnover mediated by the Ubiquitin-proteasome system and epigenetic gene regulation. PpDNMT2 possibly exists in complex with CuZn-SODs in vivo and the two proteins also directly interact in the yeast nucleus as observed by yeast two-hybrid assay. Taken together, the work presented in this study sheds light on diverse roles of PpDNMT2 in maintaining molecular and physiological homeostasis in P. patens. This is a first report describing transcriptome and interactome of DNMT2 in any land plant.
Collapse
Affiliation(s)
- Darshika Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Radha Yadav
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Shubham Kaushik
- Vproteomics, Valerian Chem Private Limited Green Park Mains, New Delhi, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Meenu Kapoor
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
- *Correspondence: Meenu Kapoor,
| |
Collapse
|
21
|
Xu FQ, Xue HW. The ubiquitin-proteasome system in plant responses to environments. PLANT, CELL & ENVIRONMENT 2019; 42:2931-2944. [PMID: 31364170 DOI: 10.1111/pce.13633] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 05/12/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a rapid regulatory mechanism for selective protein degradation in plants and plays crucial roles in growth and development. There is increasing evidence that the UPS is also an integral part of plant adaptation to environmental stress, such as drought, salinity, cold, nutrient deprivation and pathogens. This review focuses on recent studies illustrating the important functions of the UPS components E2s, E3s and subunits of the proteasome and describes the regulation of proteasome activity during plant responses to environment stimuli. The future research hotspots and the potential for utilization of the UPS to improve plant tolerance to stress are discussed.
Collapse
Affiliation(s)
- Fa-Qing Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|