1
|
Borde C, Bruno L, Espéli O. Untangling bacterial DNA topoisomerases functions. Biochem Soc Trans 2024; 52:2321-2331. [PMID: 39508659 DOI: 10.1042/bst20240089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
Topoisomerases are the main enzymes capable of resolving the topological constraints imposed by DNA transactions such as transcription or replication. All bacteria possess topoisomerases of different types. Although bacteria with circular replicons should encounter similar DNA topology issues, the distribution of topoisomerases varies from one bacterium to another, suggesting polymorphic functioning. Recently, several proteins restricting, enhancing or modifying the activity of topoisomerases were discovered, opening the way to a new area of understanding DNA topology management during the bacterial cell cycle. In this review, we discuss the distribution of topoisomerases across the bacterial phylum and current knowledge on the interplay among the different topoisomerases to maintain topological homeostasis.
Collapse
Affiliation(s)
- Céline Borde
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Lisa Bruno
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Olivier Espéli
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
2
|
Kim S, Guo MS. Temporospatial control of topoisomerases by essential cellular processes. Curr Opin Microbiol 2024; 82:102559. [PMID: 39520813 DOI: 10.1016/j.mib.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Topoisomerases are essential, ubiquitous enzymes that break and rejoin the DNA strand to control supercoiling. Because topoisomerases are DNA scissors, these enzymes are highly regulated to avoid excessive DNA cleavage, a vulnerability exploited by many antibiotics. Topoisomerase activity must be co-ordinated in time and space with transcription, replication, and cell division or else these processes stall, leading to genome loss. Recent work in Escherichia coli has revealed that topoisomerases do not act alone. Most topoisomerases interact with the essential process that they promote, a coupling that may stimulate topoisomerase activity precisely when and where cleavage is required. Surprisingly, in E. coli and most other bacteria, gyrase is not apparently regulated in this manner. We review how each E. coli topoisomerase is regulated, propose possible solutions to 'the gyrase problem', and conclude by highlighting how this regulation may present opportunities for antimicrobial development.
Collapse
Affiliation(s)
- Sora Kim
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Monica S Guo
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
3
|
Tan K, Tse-Dinh YC. Variation of Structure and Cellular Functions of Type IA Topoisomerases across the Tree of Life. Cells 2024; 13:553. [PMID: 38534397 PMCID: PMC10969213 DOI: 10.3390/cells13060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Topoisomerases regulate the topological state of cellular genomes to prevent impediments to vital cellular processes, including replication and transcription from suboptimal supercoiling of double-stranded DNA, and to untangle topological barriers generated as replication or recombination intermediates. The subfamily of type IA topoisomerases are the only topoisomerases that can alter the interlinking of both DNA and RNA. In this article, we provide a review of the mechanisms by which four highly conserved N-terminal protein domains fold into a toroidal structure, enabling cleavage and religation of a single strand of DNA or RNA. We also explore how these conserved domains can be combined with numerous non-conserved protein sequences located in the C-terminal domains to form a diverse range of type IA topoisomerases in Archaea, Bacteria, and Eukarya. There is at least one type IA topoisomerase present in nearly every free-living organism. The variation in C-terminal domain sequences and interacting partners such as helicases enable type IA topoisomerases to conduct important cellular functions that require the passage of nucleic acids through the break of a single-strand DNA or RNA that is held by the conserved N-terminal toroidal domains. In addition, this review will exam a range of human genetic disorders that have been linked to the malfunction of type IA topoisomerase.
Collapse
Affiliation(s)
- Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
4
|
Teteneva N, Sanches-Medeiros A, Sourjik V. Genome-wide screen of genetic determinants that govern Escherichia coli growth and persistence in lake water. THE ISME JOURNAL 2024; 18:wrae096. [PMID: 38874171 PMCID: PMC11188689 DOI: 10.1093/ismejo/wrae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Although enteric bacteria normally reside within the animal intestine, the ability to persist extraintestinally is an essential part of their overall lifestyle, and it might contribute to transmission between hosts. Despite this potential importance, few genetic determinants of extraintestinal growth and survival have been identified, even for the best-studied model, Escherichia coli. In this work, we thus used a genome-wide library of barcoded transposon insertions to systematically identify functional clusters of genes that are crucial for E. coli fitness in lake water. Our results revealed that inactivation of pathways involved in maintaining outer membrane integrity, nucleotide biosynthesis, and chemotaxis negatively affected E. coli growth or survival in this extraintestinal environment. In contrast, inactivation of another group of genes apparently benefited E. coli growth or persistence in filtered lake water, resulting in higher abundance of these mutants. This group included rpoS, which encodes the general stress response sigma factor, as well as genes encoding several other global transcriptional regulators and RNA chaperones, along with several poorly annotated genes. Based on this co-enrichment, we identified these gene products as novel positive regulators of RpoS activity. We further observed that, despite their enhanced growth, E. coli mutants with inactive RpoS had reduced viability in lake water, and they were not enriched in the presence of the autochthonous microbiota. This highlights the duality of the general stress response pathway for E. coli growth outside the host.
Collapse
Affiliation(s)
- Nataliya Teteneva
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| | - Ananda Sanches-Medeiros
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| |
Collapse
|
5
|
Brochu J, Vlachos-Breton É, Irsenco D, Drolet M. Characterization of a pathway of genomic instability induced by R-loops and its regulation by topoisomerases in E. coli. PLoS Genet 2023; 19:e1010754. [PMID: 37141391 DOI: 10.1371/journal.pgen.1010754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/16/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
The prototype enzymes of the ubiquitous type IA topoisomerases (topos) family are Escherichia coli topo I (topA) and topo III (topB). Topo I shows preference for relaxation of negative supercoiling and topo III for decatenation. However, as they could act as backups for each other or even share functions, strains lacking both enzymes must be used to reveal the roles of type IA enzymes in genome maintenance. Recently, marker frequency analysis (MFA) of genomic DNA from topA topB null mutants revealed a major RNase HI-sensitive DNA peak bordered by Ter/Tus barriers, sites of replication fork fusion and termination in the chromosome terminus region (Ter). Here, flow cytometry for R-loop-dependent replication (RLDR), MFA, R-loop detection with S9.6 antibodies, and microscopy were used to further characterize the mechanism and consequences of over-replication in Ter. It is shown that the Ter peak is not due to the presence of a strong origin for RLDR in Ter region; instead RLDR, which is partly inhibited by the backtracking-resistant rpoB*35 mutation, appears to contribute indirectly to Ter over-replication. The data suggest that RLDR from multiple sites on the chromosome increases the number of replication forks trapped at Ter/Tus barriers which leads to RecA-dependent DNA amplification in Ter and to a chromosome segregation defect. Overproducing topo IV, the main cellular decatenase, does not inhibit RLDR or Ter over-replication but corrects the chromosome segregation defect. Furthermore, our data suggest that the inhibition of RLDR by topo I does not require its C-terminal-mediated interaction with RNA polymerase. Overall, our data reveal a pathway of genomic instability triggered by R-loops and its regulation by various topos activities at different steps.
Collapse
Affiliation(s)
- Julien Brochu
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Émilie Vlachos-Breton
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Dina Irsenco
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Marc Drolet
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| |
Collapse
|
6
|
García-López M, Megias D, Ferrándiz MJ, de la Campa AG. The balance between gyrase and topoisomerase I activities determines levels of supercoiling, nucleoid compaction, and viability in bacteria. Front Microbiol 2023; 13:1094692. [PMID: 36713152 PMCID: PMC9875019 DOI: 10.3389/fmicb.2022.1094692] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Two enzymes are responsible for maintaining supercoiling in the human pathogen Streptococcus pneumoniae, gyrase (GyrA2GyrB2) and topoisomerase I. To attain diverse levels of topoisomerase I (TopoI, encoded by topA), two isogenic strains derived from wild-type strain R6 were constructed: PZn topA, carrying an ectopic topA copy under the control of the ZnSO4-regulated PZn promoter and its derivative ΔtopAPZn topA, which carries a topA deletion at its native chromosomal location. We estimated the number of TopoI and GyrA molecules per cell by using Western-blot and CFUs counting, and correlated these values with supercoiling levels. Supercoiling was estimated in two ways. We used classical 2D-agarose gel electrophoresis of plasmid topoisomers to determine supercoiling density (σ) and we measured compaction of nucleoids using for the first time super-resolution confocal microscopy. Notably, we observed a good correlation between both supercoiling calculations. In R6, with σ = -0.057, the average number of GyrA molecules per cell (2,184) was higher than that of TopoI (1,432), being the GyrA:TopoI proportion of 1:0.65. In ΔtopAPZn topA, the number of TopoI molecules depended, as expected, on ZnSO4 concentration in the culture media, being the proportions of GyrA:TopoI molecules in 75, 150, and 300 μM ZnSO4 of 1:0.43, 1:0.47, and 1:0.63, respectively, which allowed normal supercoiling and growth. However, in the absence of ZnSO4, a higher GyrA:TopoI ratio (1:0.09) caused hyper-supercoiling (σ = -0.086) and lethality. Likewise, growth of ΔtopAPZn topA in the absence of ZnSO4 was restored when gyrase was inhibited with novobiocin, coincidentally with the resolution of hyper-supercoiling (σ change from -0.080 to -0.068). Given that TopoI is a monomer and two molecules of GyrA are present in the gyrase heterotetramer, the gyrase:TopoI enzymes proportion would be 1:1.30 (wild type R6) or of 1:1.26-0.86 (ΔtopAPZn topA under viable conditions). Higher proportions, such as 1:0.18 observed in ΔtopAPZn topA in the absence of ZnSO4 yielded to hyper-supercoiling and lethality. These results support a role of the equilibrium between gyrase and TopoI activities in supercoiling maintenance, nucleoid compaction, and viability. Our results shed new light on the mechanism of action of topoisomerase-targeting antibiotics, paving the way for the use of combination therapies.
Collapse
Affiliation(s)
- Míriam García-López
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Diego Megias
- Unidad de Microscopía Confocal, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María-José Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain,*Correspondence: María-José Ferrándiz, ✉
| | - Adela G. de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain,Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain,Adela G. de la Campa, ✉
| |
Collapse
|
7
|
Ferdous S, Dasgupta T, Annamalai T, Tan K, Tse-Dinh YC. The interaction between transport-segment DNA and topoisomerase IA-crystal structure of MtbTOP1 in complex with both G- and T-segments. Nucleic Acids Res 2022; 51:349-364. [PMID: 36583363 PMCID: PMC9841409 DOI: 10.1093/nar/gkac1205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Each catalytic cycle of type IA topoisomerases has been proposed to comprise multistep reactions. The capture of the transport-segment DNA (T-segment) into the central cavity of the N-terminal toroidal structure is an important action, which is preceded by transient gate-segment (G-segment) cleavage and succeeded by G-segment religation for the relaxation of negatively supercoiled DNA and decatenation of DNA. The T-segment passage in and out of the central cavity requires significant domain-domain rearrangements, including the movement of D3 relative to D1 and D4 for the opening and closing of the gate towards the central cavity. Here we report a direct observation of the interaction of a duplex DNA in the central cavity of a type IA topoisomerase and its associated domain-domain conformational changes in a crystal structure of a Mycobacterium tuberculosis topoisomerase I complex that also has a bound G-segment. The duplex DNA within the central cavity illustrates the non-sequence-specific interplay between the T-segment DNA and the enzyme. The rich structural information revealed from the novel topoisomerase-DNA complex, in combination with targeted mutagenesis studies, provides new insights into the mechanism of the topoisomerase IA catalytic cycle.
Collapse
Affiliation(s)
| | | | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA,Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Kemin Tan
- Correspondence may also be addressed to Kemin Tan. Tel: +1 630 252 3948;
| | | |
Collapse
|
8
|
Garcia PK, Martinez Borrero R, Annamalai T, Diaz E, Balarezo S, Tiwari PB, Tse-Dinh YC. Localization of Mycobacterium tuberculosis topoisomerase I C-terminal sequence motif required for inhibition by endogenous toxin MazF4. Front Microbiol 2022; 13:1032320. [PMID: 36545199 PMCID: PMC9760754 DOI: 10.3389/fmicb.2022.1032320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 12/08/2022] Open
Abstract
Only about half the multi-drug resistant tuberculosis (MDR-TB) cases are successfully cured. Thus, there is an urgent need of new TB treatment against a novel target. Mycobacterium tuberculosis (Mtb) topoisomerase I (TopA) is the only type IA topoisomerase in this organism and has been validated as an essential target for TB drug discovery. Toxin-antitoxin (TA) systems participate as gene regulators within bacteria. The TA systems contribute to the long-term dormancy of Mtb within the host-cell environment. Mtb's toxin MazF4 (Rv1495) that is part of the MazEF4 TA system has been shown to have dual activities as endoribonuclease and topoisomerase I inhibitor. We have developed a complementary assay using an Escherichia coli strain with temperature-sensitive topA mutation to provide new insights into the MazF4 action. The assay showed that E. coli is not sensitive to the endoribonuclease activity of Mtb MazF4 but became vulnerable to MazF4 growth inhibition when recombinant Mtb TopA relaxation activity is required for growth. Results from the complementation by Mtb TopA mutants with C-terminal deletions showed that the lysine-rich C-terminal tail is required for interaction with MazF4. Site-directed mutagenesis is utilized to identify two lysine residues within a conserved motif in this C-terminal tail that are critical for MazF4 inhibition. We performed molecular dynamics simulations to predict the Mtb TopA-MazF4 complex. Our simulation results show that the complex is stabilized by hydrogen bonds and electrostatic interactions established by residues in the TopA C-terminal tail including the two conserved lysines. The mechanism of Mtb TopA inhibition by MazF4 could be useful for the discovery of novel inhibitors against a new antibacterial target in pathogenic mycobacteria for treatment of both TB and diseases caused by the non-tuberculosis mycobacteria (NTM).
Collapse
Affiliation(s)
- Pamela K. Garcia
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | | | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Esnel Diaz
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Steve Balarezo
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | | | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States,*Correspondence: Yuk-Ching Tse-Dinh,
| |
Collapse
|
9
|
Diaz B, Mederos C, Tan K, Tse-Dinh YC. Microbial Type IA Topoisomerase C-Terminal Domain Sequence Motifs, Distribution and Combination. Int J Mol Sci 2022; 23:ijms23158709. [PMID: 35955842 PMCID: PMC9369019 DOI: 10.3390/ijms23158709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Type IA topoisomerases have highly conserved catalytic N-terminal domains for the cleaving and rejoining of a single DNA/RNA strand that have been extensively characterized. In contrast, the C-terminal region has been less covered. Two major types of small tandem C-terminal domains, Topo_C_ZnRpt (containing C4 zinc finger) and Topo_C_Rpt (without cysteines) were initially identified in Escherichia coli and Mycobacterium tuberculosis topoisomerase I, respectively. Their structures and interaction with DNA oligonucleotides have been revealed in structural studies. Here, we first present the diverse distribution and combinations of these two structural elements in various bacterial topoisomerase I (TopA). Previously, zinc fingers have not been seen in type IA topoisomerases from well-studied fungal species within the phylum Ascomycota. In our extended studies of C-terminal DNA-binding domains, the presence of zf-GRF and zf-CCHC types of zinc fingers in topoisomerase III (Top3) from fungi species in many phyla other than Ascomycota has drawn our attention. We secondly analyze the distribution and combination of these fungal zf-GRF- and zf-CCHC-containing domains. Their potential structures and DNA-binding mechanism are evaluated. The highly diverse arrangements and combinations of these DNA/RNA-binding domains in microbial type IA topoisomerase C-terminal regions have important implications for their interactions with nucleic acids and protein partners as part of their physiological functions.
Collapse
Affiliation(s)
- Brenda Diaz
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Christopher Mederos
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
- Correspondence: (K.T.); (Y.-C.T.-D.); Tel.: +1-630-252-3948 (K.T.); +1-305-348-4956 (Y.-C.T.-D.)
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence: (K.T.); (Y.-C.T.-D.); Tel.: +1-630-252-3948 (K.T.); +1-305-348-4956 (Y.-C.T.-D.)
| |
Collapse
|
10
|
Chmielewska-Jeznach M, Steczkiewicz K, Kobyłecki K, Bardowski JK, Szczepankowska AK. An Adenosine Triphosphate- Dependent 5'-3' DNA Helicase From sk1-Like Lactococcus lactis F13 Phage. Front Microbiol 2022; 13:840219. [PMID: 35369496 PMCID: PMC8965321 DOI: 10.3389/fmicb.2022.840219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Here, we describe functional characterization of an early gene (gp46) product of a virulent Lactococcus lactis sk1-like phage, vB_Llc_bIBBF13 (abbr. F13). The GP46F13 protein carries a catalytically active RecA-like domain belonging to the P-loop NTPase superfamily. It also retains features characteristic for ATPases forming oligomers. In order to elucidate its detailed molecular function, we cloned and overexpressed the gp46 gene in Escherichia coli. Purified GP46F13 protein binds to DNA and exhibits DNA unwinding activity on branched substrates in the presence of adenosine triphosphate (ATP). Size exclusion chromatography with multi-angle light scattering (SEC-MALS) experiments demonstrate that GP46F13 forms oligomers, and further pull-down assays show that GP46F13 interacts with host proteins involved in replication (i.e., DnaK, DnaJ, topoisomerase I, and single-strand binding protein). Taking together the localization of the gene and the obtained results, GP46F13 is the first protein encoded in the early-expressed gene region with helicase activity that has been identified among lytic L. lactis phages up to date.
Collapse
Affiliation(s)
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Kobyłecki
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Jacek K Bardowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
11
|
Duplex DNA and BLM regulate gate opening by the human TopoIIIα-RMI1-RMI2 complex. Nat Commun 2022; 13:584. [PMID: 35102151 PMCID: PMC8803869 DOI: 10.1038/s41467-022-28082-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
Topoisomerase IIIα is a type 1A topoisomerase that forms a complex with RMI1 and RMI2 called TRR in human cells. TRR plays an essential role in resolving DNA replication and recombination intermediates, often alongside the helicase BLM. While the TRR catalytic cycle is known to involve a protein-mediated single-stranded (ss)DNA gate, the detailed mechanism is not fully understood. Here, we probe the catalytic steps of TRR using optical tweezers and fluorescence microscopy. We demonstrate that TRR forms an open gate in ssDNA of 8.5 ± 3.8 nm, and directly visualize binding of a second ssDNA or double-stranded (ds)DNA molecule to the open TRR-ssDNA gate, followed by catenation in each case. Strikingly, dsDNA binding increases the gate size (by ~16%), while BLM alters the mechanical flexibility of the gate. These findings reveal an unexpected plasticity of the TRR-ssDNA gate size and suggest that TRR-mediated transfer of dsDNA may be more relevant in vivo than previously believed. Here the authors probe the cleavage and gate opening of single-stranded DNA by the human topoisomerase TRR using a unique single-molecule strategy to reveal structural plasticity in response to both double-stranded DNA and the helicase BLM.
Collapse
|
12
|
Cebrián J, Martínez V, Hernández P, Krimer DB, Fernández-Nestosa MJ, Schvartzman JB. Two-Dimensional Gel Electrophoresis to Study the Activity of Type IIA Topoisomerases on Plasmid Replication Intermediates. BIOLOGY 2021; 10:biology10111195. [PMID: 34827187 PMCID: PMC8615216 DOI: 10.3390/biology10111195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
Simple Summary During replication, DNA molecules undergo topological changes that affect supercoiling, catenation and knotting. To better understand this process and the role of topoisomerases, the enzymes that control DNA topology in in vivo, two-dimensional agarose gel electrophoresis were used to investigate the efficiency of three type II DNA topoisomerases, the prokaryotic DNA gyrase, topoisomerase IV and the human topoisomerase 2α, on partially replicated bacterial plasmids containing replication forks stalled at specific sites. The results obtained revealed that despite the fact these DNA topoisomerases may have evolved to accomplish specific tasks, they share abilities. To our knowledge, this is the first time two-dimensional agarose gel electrophoresis have been used to examine the ability of these topoisomerases to relax supercoiling in the un-replicated region and unlink pre-catenanes in the replicated one of partially replicated molecules in vitro. The methodology described here can be used to study the role of different topoisomerases in partially replicated molecules. Abstract DNA topoisomerases are the enzymes that regulate DNA topology in all living cells. Since the discovery and purification of ω (omega), when the first were topoisomerase identified, the function of many topoisomerases has been examined. However, their ability to relax supercoiling and unlink the pre-catenanes of partially replicated molecules has received little attention. Here, we used two-dimensional agarose gel electrophoresis to test the function of three type II DNA topoisomerases in vitro: the prokaryotic DNA gyrase, topoisomerase IV and the human topoisomerase 2α. We examined the proficiency of these topoisomerases on a partially replicated bacterial plasmid: pBR-TerE@AatII, with an unidirectional replicating fork, stalled when approximately half of the plasmid had been replicated in vivo. DNA was isolated from two strains of Escherichia coli: DH5αF’ and parE10. These experiments allowed us to assess, for the first time, the efficiency of the topoisomerases examined to resolve supercoiling and pre-catenanes in partially replicated molecules and fully replicated catenanes formed in vivo. The results obtained revealed the preferential functions and also some redundancy in the abilities of these DNA topoisomerases in vitro.
Collapse
Affiliation(s)
- Jorge Cebrián
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| | - Victor Martínez
- Bioinformatics Laboratory, Polytechnic School, National University of Asunción, San Lorenzo P.O. Box 2111, Paraguay;
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| | - Dora B. Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| | - María-José Fernández-Nestosa
- Bioinformatics Laboratory, Polytechnic School, National University of Asunción, San Lorenzo P.O. Box 2111, Paraguay;
- Correspondence:
| | - Jorge B. Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| |
Collapse
|
13
|
Topoisomerase I Essentiality, DnaA-Independent Chromosomal Replication, and Transcription-Replication Conflict in Escherichia coli. J Bacteriol 2021; 203:e0019521. [PMID: 34124945 DOI: 10.1128/jb.00195-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Topoisomerase I (Topo I) of Escherichia coli, encoded by topA, acts to relax negative supercoils in DNA. Topo I deficiency results in hypernegative supercoiling, formation of transcription-associated RNA-DNA hybrids (R-loops), and DnaA- and oriC-independent constitutive stable DNA replication (cSDR), but some uncertainty persists as to whether topA is essential for viability in E. coli and related enterobacteria. Here, we show that several topA alleles, including ΔtopA, confer lethality in derivatives of wild-type E. coli strain MG1655. Viability in the absence of Topo I was restored with two perturbations, neither of which reversed the hypernegative supercoiling phenotype: (i) in a reduced-genome strain (MDS42) or (ii) by an RNA polymerase (RNAP) mutation, rpoB*35, that has been reported to alleviate the deleterious consequences of RNAP backtracking and transcription-replication conflicts. Four phenotypes related to cSDR were identified for topA mutants: (i) one of the topA alleles rescued ΔdnaA lethality; (ii) in dnaA+ derivatives, Topo I deficiency generated a characteristic copy number peak in the terminus region of the chromosome; (iii) topA was synthetically lethal with rnhA (encoding RNase HI, whose deficiency also confers cSDR); and (iv) topA rnhA synthetic lethality was itself rescued by ΔdnaA. We propose that the terminal lethal consequence of hypernegative DNA supercoiling in E. coli topA mutants is RNAP backtracking during transcription elongation and associated R-loop formation, which in turn leads to transcription-replication conflicts and to cSDR. IMPORTANCE In all life forms, double-helical DNA exists in a topologically supercoiled state. The enzymes DNA gyrase and topoisomerase I act, respectively, to introduce and to relax negative DNA supercoils in Escherichia coli. That gyrase deficiency leads to bacterial death is well established, but the essentiality of topoisomerase I for viability has been less certain. This study confirms that topoisomerase I is essential for E. coli viability and suggests that in its absence, aberrant chromosomal DNA replication and excessive transcription-replication conflicts occur that are responsible for lethality.
Collapse
|
14
|
Spakman D, Bakx JAM, Biebricher AS, Peterman EJG, Wuite GJL, King GA. Unravelling the mechanisms of Type 1A topoisomerases using single-molecule approaches. Nucleic Acids Res 2021; 49:5470-5492. [PMID: 33963870 PMCID: PMC8191776 DOI: 10.1093/nar/gkab239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Topoisomerases are essential enzymes that regulate DNA topology. Type 1A family topoisomerases are found in nearly all living organisms and are unique in that they require single-stranded (ss)DNA for activity. These enzymes are vital for maintaining supercoiling homeostasis and resolving DNA entanglements generated during DNA replication and repair. While the catalytic cycle of Type 1A topoisomerases has been long-known to involve an enzyme-bridged ssDNA gate that allows strand passage, a deeper mechanistic understanding of these enzymes has only recently begun to emerge. This knowledge has been greatly enhanced through the combination of biochemical studies and increasingly sophisticated single-molecule assays based on magnetic tweezers, optical tweezers, atomic force microscopy and Förster resonance energy transfer. In this review, we discuss how single-molecule assays have advanced our understanding of the gate opening dynamics and strand-passage mechanisms of Type 1A topoisomerases, as well as the interplay of Type 1A topoisomerases with partner proteins, such as RecQ-family helicases. We also highlight how these assays have shed new light on the likely functional roles of Type 1A topoisomerases in vivo and discuss recent developments in single-molecule technologies that could be applied to further enhance our understanding of these essential enzymes.
Collapse
Affiliation(s)
- Dian Spakman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Julia A M Bakx
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Andreas S Biebricher
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Graeme A King
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
15
|
Szafran MJ, Jakimowicz D, Elliot MA. Compaction and control-the role of chromosome-organizing proteins in Streptomyces. FEMS Microbiol Rev 2021; 44:725-739. [PMID: 32658291 DOI: 10.1093/femsre/fuaa028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Chromosomes are dynamic entities, whose organization and structure depend on the concerted activity of DNA-binding proteins and DNA-processing enzymes. In bacteria, chromosome replication, segregation, compaction and transcription are all occurring simultaneously, and to ensure that these processes are appropriately coordinated, all bacteria employ a mix of well-conserved and species-specific proteins. Unusually, Streptomyces bacteria have large, linear chromosomes and life cycle stages that include multigenomic filamentous hyphae and unigenomic spores. Moreover, their prolific secondary metabolism yields a wealth of bioactive natural products. These different life cycle stages are associated with profound changes in nucleoid structure and chromosome compaction, and require distinct repertoires of architectural-and regulatory-proteins. To date, chromosome organization is best understood during Streptomyces sporulation, when chromosome segregation and condensation are most evident, and these processes are coordinated with synchronous rounds of cell division. Advances are, however, now being made in understanding how chromosome organization is achieved in multigenomic hyphal compartments, in defining the functional and regulatory interplay between different architectural elements, and in appreciating the transcriptional control exerted by these 'structural' proteins.
Collapse
Affiliation(s)
- Marcin J Szafran
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Dagmara Jakimowicz
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Marie A Elliot
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
16
|
Seddek A, Annamalai T, Tse-Dinh YC. Type IA Topoisomerases as Targets for Infectious Disease Treatments. Microorganisms 2021; 9:E86. [PMID: 33401386 PMCID: PMC7823277 DOI: 10.3390/microorganisms9010086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Infectious diseases are one of the main causes of death all over the world, with antimicrobial resistance presenting a great challenge. New antibiotics need to be developed to provide therapeutic treatment options, requiring novel drug targets to be identified and pursued. DNA topoisomerases control the topology of DNA via DNA cleavage-rejoining coupled to DNA strand passage. The change in DNA topological features must be controlled in vital processes including DNA replication, transcription, and DNA repair. Type IIA topoisomerases are well established targets for antibiotics. In this review, type IA topoisomerases in bacteria are discussed as potential targets for new antibiotics. In certain bacterial pathogens, topoisomerase I is the only type IA topoisomerase present, which makes it a valuable antibiotic target. This review will summarize recent attempts that have been made to identify inhibitors of bacterial topoisomerase I as potential leads for antibiotics and use of these inhibitors as molecular probes in cellular studies. Crystal structures of inhibitor-enzyme complexes and more in-depth knowledge of their mechanisms of actions will help to establish the structure-activity relationship of potential drug leads and develop potent and selective therapeutics that can aid in combating the drug resistant bacterial infections that threaten public health.
Collapse
Affiliation(s)
- Ahmed Seddek
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
17
|
Dasgupta T, Ferdous S, Tse-Dinh YC. Mechanism of Type IA Topoisomerases. Molecules 2020; 25:E4769. [PMID: 33080770 PMCID: PMC7587558 DOI: 10.3390/molecules25204769] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022] Open
Abstract
Topoisomerases in the type IA subfamily can catalyze change in topology for both DNA and RNA substrates. A type IA topoisomerase may have been present in a last universal common ancestor (LUCA) with an RNA genome. Type IA topoisomerases have since evolved to catalyze the resolution of topological barriers encountered by genomes that require the passing of nucleic acid strand(s) through a break on a single DNA or RNA strand. Here, based on available structural and biochemical data, we discuss how a type IA topoisomerase may recognize and bind single-stranded DNA or RNA to initiate its required catalytic function. Active site residues assist in the nucleophilic attack of a phosphodiester bond between two nucleotides to form a covalent intermediate with a 5'-phosphotyrosine linkage to the cleaved nucleic acid. A divalent ion interaction helps to position the 3'-hydroxyl group at the precise location required for the cleaved phosphodiester bond to be rejoined following the passage of another nucleic acid strand through the break. In addition to type IA topoisomerase structures observed by X-ray crystallography, we now have evidence from biophysical studies for the dynamic conformations that are required for type IA topoisomerases to catalyze the change in the topology of the nucleic acid substrates.
Collapse
Affiliation(s)
- Tumpa Dasgupta
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (T.D.); (S.F.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Biochemistry PhD Program, Florida International University, Miami, FL 33199, USA
| | - Shomita Ferdous
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (T.D.); (S.F.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Biochemistry PhD Program, Florida International University, Miami, FL 33199, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (T.D.); (S.F.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|