1
|
Phiwthong T, Limkul S, Aunkam P, Seabkongseng T, Teaumroong N, Tittabutr P, Boonchuen P. Quaking RNA-Binding protein (QKI) mediates circular RNA biogenesis in Litopenaeus vannamei during WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2025; 159:110178. [PMID: 39921020 DOI: 10.1016/j.fsi.2025.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
The Quaking RNA-binding protein (QKI), a member of the STAR family, is considered critical in the formation of circular RNAs (circRNAs), as it aids in catalyzing a back-splicing phenomenon by interacting with RNA precursors. CircRNAs have progressively been revealed to play central roles in the regulation of various biological processes, such as antiviral defense mechanisms. This study identifies a QKI in L. vannamei, referred to as LvQKI, comprised of conserved STAR and KH RNA-binding domains. Analysis through tissue-specific expression using qRT-PCR has revealed a high expression level of LvQKI in the gill - one of the primary regions heavily populated by the white spot syndrome virus (WSSV) - and its activation was triggered during WSSV infection. From an RNA interference-mediated suppression targeting LvQKI, a decrease and increase in survival rates and WSSV copy number were observed, respectively. Notably, circRNA levels were significantly lowered in LvQKI-silenced shrimp, whereas linear RNAs remained stable. Conversely, administration of recombinant LvQKI (rLvQKI) protein before a WSSV challenge not only enhanced survival rates but also reduced viral load, wherein both circRNAs and linear RNAs underwent up-regulation in rLvQKI-treated shrimp. Our results introduce LvQKI as a crucial factor in circRNA biogenesis and immune defense in shrimp, emphasizing the interplay between LvQKI's and circRNAs' roles in fighting viral invasion.
Collapse
Affiliation(s)
- Tannatorn Phiwthong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Sirawich Limkul
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Phirom Aunkam
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Tuangrak Seabkongseng
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
2
|
Kahkesh S, Hedayati N, Rahimzadeh P, Farahani N, Khoozani MF, Abedi M, Nabavi N, Naeimi B, Khoshnazar SM, Alimohammadi M, Alaei E, Mahmoodieh B. The function of circular RNAs in regulating Wnt/β-catenin signaling: An innovative therapeutic strategy for breast and gynecological cancers. Pathol Res Pract 2025; 270:155944. [PMID: 40228402 DOI: 10.1016/j.prp.2025.155944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/16/2025]
Abstract
Breast cancer (BC) and gynecological malignancies, including cervical, ovarian, and uterine cancers, are significant global health challenges due to their high prevalence, complex nature, and elevated mortality rates. Dysregulation of the Wnt/β-catenin signaling pathway is a common feature in gynecological malignancies, contributing to cancer cell growth, progression, migration, and metastasis. Recent studies have highlighted the pivotal role of non-coding RNAs (ncRNAs), particularly circular RNAs (circRNAs), in modulating the Wnt/β-catenin signaling pathway. Acting as sponges for microRNAs (miRNAs), circRNAs regulate key oncogenic and tumor-suppressive processes by influencing Wnt-related components. This research explores the role of circRNAs in breast and gynecological malignancies, focusing on their regulatory effects on the Wnt/β-catenin pathway. The findings reveal that circRNAs modulate critical cellular processes such as proliferation, apoptosis, autophagy, and metastasis, with potential implications for therapeutic interventions. Targeting circRNA-mediated dysregulation of Wnt signaling could offer novel strategies for improving diagnostic precision, treatment efficacy, and survival outcomes in breast and gynecological cancers.
Collapse
Affiliation(s)
- Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Farhadi Khoozani
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Maryam Abedi
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Bita Naeimi
- Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Xu K, Zhang C, WeiGao, Shi Y, Pu S, Huang N, Dou W. The involvement of circRNAs in molecular processes and their potential use in therapy and diagnostics for glioblastoma. Gene 2025; 940:149214. [PMID: 39756549 DOI: 10.1016/j.gene.2025.149214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Glioblastoma, a type of brain tumor, is well-known for its aggressive nature and can affect individuals of all ages. Glioblastoma continues to be a difficult cancer to manage because of various resistance mechanisms. The blood-brain barrier restricts the delivery of drugs, and the heterogeneity of tumors, along with overlapping signaling pathways, complicates its effective treatment. Patients diagnosed with glioblastoma typically survive for no more than 2 years. Innovative therapies and early diagnostic tools for glioblastoma are essential. Circular RNAs have emerged as significant contributors to glioblastoma, and influence cancer mechanisms such as cell growth, death, invasion, and resistance to treatment. The circRNAs presence makes them essential candidates for treatment and practical diagnostic tools for glioblastoma. This review highlights the therapeutic approaches and diagnostic potential of circRNAs and explores their role in the molecular mechanisms underlying glioblastoma.
Collapse
Affiliation(s)
- Kanghong Xu
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Chunlai Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China; The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - WeiGao
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Yushan Shi
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Shuangshuang Pu
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Ning Huang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China.
| | - Weitao Dou
- Department of Medical Intervention, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China.
| |
Collapse
|
4
|
Wang Z, Jiao P. Roles of non-coding RNAs and exosomal non-coding RNAs, particularly microRNAs, long non-coding RNAs, and circular RNAs, in pathogenic mechanisms behind chronic pain: A review. Int J Biol Macromol 2025; 307:141945. [PMID: 40074135 DOI: 10.1016/j.ijbiomac.2025.141945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Chronic pain is a significant public health concern that diminishes patients' quality of life and imposes considerable socioeconomic costs. Effective pharmacological treatments for ongoing pain are limited. Recent studies have indicated that various models of chronic pain-such as neuropathic pain, inflammatory pain, and pain associated with cancer-have abnormal levels of long noncoding RNAs (lncRNAs). Research has explored how these abnormal lncRNAs influence the activation of inflammatory cytokines, microRNAs, and other related molecules, which are crucial to the development of chronic pain. These findings suggest that these lncRNAs are vital in chronic pain mechanisms within the spinal cord and dorsal root ganglion following nerve injury. Additionally, exosomes, which can traverse the blood-brain barrier, are considered carriers of noncoding RNAs (ncRNAs) from neurons to systemic circulation. This study aims to summarize the existing knowledge on ncRNAs and exosomal ncRNAs in the context of chronic pain, highlighting potential biomarkers for diagnosis, regulatory roles in disease progression, therapeutic strategies, and clinical implications.
Collapse
Affiliation(s)
- Zhongkai Wang
- Department of Pain and Rehabilitation, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| | - Pengqing Jiao
- Department of Rheumatism and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
5
|
Zhao S, Wang Y, Zhou L, Li Z, Weng Q. Exploring the Potential of tsRNA as Biomarkers for Diagnosis and Treatment of Neurogenetic Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04760-5. [PMID: 40009263 DOI: 10.1007/s12035-025-04760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
tRNA-derived small RNA (tsRNA) is a recently discovered small non-coding RNA (ncRNA) molecule that widely exists in prokaryotic and eukaryotic transcriptomes and is produced by specific cleavage of mature tRNA or precursor tRNA. In recent years, with the development of high-throughput sequencing technology, tsRNA has been found to have a variety of biological functions, including gene expression regulation, stress signal activation, etc. In addition, it has been found that these molecules are abnormally expressed in various diseases and participate in various pathological processes, which play an important role. At present, more and more studies have shown that the expression level of tsRNA changes significantly during the development of neurogenetic diseases. This review provides an overview of the classification and biological functions of tsRNAs, with a particular emphasis on their roles in neurogenetic disorders and their potential as diagnostic biomarkers and therapeutic targets. Despite the nascent stage of tsRNA research, their relevance to the diagnosis and treatment of neurogenetic diseases warrants further investigation.
Collapse
Affiliation(s)
- Shiqi Zhao
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yujia Wang
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Liqun Zhou
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zhe Li
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| | - Qiuyan Weng
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
6
|
Kim YK, Jo D, Choi S, Song J. High-fat diet triggers transcriptomic changes in the olfactory bulb. Heliyon 2025; 11:e42196. [PMID: 39927144 PMCID: PMC11804815 DOI: 10.1016/j.heliyon.2025.e42196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Metabolic imbalance contributes to cognitive impairment, anxiety, depressive behavior, and impaired olfactory perception. Recent studies have focused on olfactory dysfunction in patients with obesity and diabetes accompanied by cognitive dysfunction, considering that the synaptic signal from the olfactory bulb is directly transmitted to memory consolidation-related brain regions. This study investigated transcriptomic changes in the olfactory bulb in high-fat diet (HFD)-fed mice compared to that in normal-diet-fed mice. We sampled olfactory bulbs from HFD-fed mice, performed RNA sequencing, and measured mRNA levels in olfactory bulb tissue. Additionally, we assessed plasma cytokine levels in HFD-fed mice. We found differences in the expression of protein-coding and non-coding RNAs involved in insulin, lipid metabolism, neurogenesis, serotonin, dopamine, and gamma-aminobutyric acid-related signaling in the olfactory bulb of HFD-fed mice compared to control mice. Thus, our findings suggest potential therapeutic targets for treating olfactory dysfunction and related neural disorders in individuals with metabolic syndrome.
Collapse
Affiliation(s)
- Young-Kook Kim
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Danbi Jo
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Seoyoon Choi
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Juhyun Song
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| |
Collapse
|
7
|
Gao T, Luo J, Fan J, Gong G, Yang H. Epigenetic modifications associated to diabetic peripheral neuropathic pain (Review). Mol Med Rep 2025; 31:28. [PMID: 39540354 PMCID: PMC11579833 DOI: 10.3892/mmr.2024.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The present review aimed to provide an update on the scientific progress of the role of epigenetic modifications on diabetic peripheral neuropathic pain (DPNP). DPNP is a devastating and troublesome complication of diabetes mellitus (DM), which affects one third of patients with DM and causes severe hyperalgesia and allodynia, leading to challenges in the treatment of these patients. The pathophysiology of DPNP is multifactorial and is not yet fully understood and treatment options for this disease are currently unsatisfactory. The underlying mechanisms and pathophysiology of DPNP have largely been explored in animal models and a mechanism‑derived approach might offer a potential therapeutic‑target for attenuating certain phenotypes of DPNP. Altered gene expression levels within the peripheral or central nervous systems (CNS) are a crucial mechanism of DPNP, however, the transcriptional mechanisms of these genes have not been fully elucidated. Epigenetic modifications, such as DNA methylation and histone modifications (methylation, acetylation, or phosphorylation), can alter gene expression levels via chromatin remodeling. Moreover, it has been reported that altering gene expression via epigenetic modifications within the peripheral or CNS, contributes to the changes in both pain sensitivity and pharmacological efficacy in DPNP. Therefore, the present review summarized the findings of relevant literature on the epigenetic alterations in DPNP and the therapeutic potential for targeting these alterations in the future treatment of this disease.
Collapse
Affiliation(s)
- Tangqing Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, Chengdu, Sichuan 610031, P.R. China
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Jingya Luo
- College of Medicine, Southwest Jiaotong University, Chengdu, Chengdu, Sichuan 610031, P.R. China
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Juanning Fan
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Gu Gong
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Haihong Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, Chengdu, Sichuan 610031, P.R. China
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
8
|
Alizadeh H, Muftuoğlu C, Omondi ZN, Mert U, Asadi M, Ozbilgin A, Caner A. Circular RNAs as a new perspective in the diagnosis and mechanism of Leishmania infections. Acta Trop 2025; 261:107509. [PMID: 39706505 DOI: 10.1016/j.actatropica.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Leishmaniasis is a neglected infectious disease that affects millions of people worldwide. Visceral leishmaniasis (VL) caused by Leishmania infantum and cutaneous leishmaniasis (CL) caused by L. major/ L. tropica are the main clinical forms of this disease, which are life-threatening if not diagnosed and treated properly. Considering the problems in sampling and laboratory diagnosis of leishmaniasis, new molecular markers such as circular RNAs (circRNAs) are needed. circRNAs, a novel class of RNAs, have been one of the most promising targets for the diagnosis and prognosis of diseases. Although the therapeutic and diagnostic role of circRNAs in many diseases and some parasitic diseases are known, not much research has been done in the field of leishmaniasis. We determined the gene expressions of circRNAs in human leukemia monocytic (THP-1) cells after infection with Leishmania. For this, the human cell line THP-1 was differentiated into macrophages by Phorbol 12-myristate 13-acetate (PMA) treatment. Differentiated THP-1 cells were infected with L. infantum and L. tropica promastigotes. After 24 hours, expression levels of circRNAs were determined by RT-qPCR technique. Also, the microRNAs associated with differentially expressed circRNAs were investigated. Then, the molecular pathways associated with expressed circRNAs were obtained by GO and Reactome. The results showed that five circRNAs were differentially expressed in THP1 macrophages infected with L. infantum and L. tropica. These findings suggest that some circRNAs may be potential biomarkers for diagnosis in Leishmania-infected patients. The enrichment analysis revealed that differentially expressed circRNAs are mainly involved in the regulation of protein stability, RNA catabolic process, and P53/PTK6 signaling mechanism. This is the first study to report an overview of Leishmania-induced circRNAs, which can be potential biomarker candidate for diagnosis especially at species level. Notably, expression of some circRNAs in supernatant of Leishmania infected macrophages suggests that these genes are available in body fluids, therefore, can easily be accessed from the patient without invasive methods especially during treatment monitoring.
Collapse
Affiliation(s)
- Hamid Alizadeh
- Department of Parasitology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Can Muftuoğlu
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Izmir, Turkey
| | | | - Ufuk Mert
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Izmir, Turkey; Ataturk Vocational School of Health Services, Ege University, Izmir, Turkey; Translational Pulmonary Research Center (EGESAM), Ege University, Izmir, Turkey
| | - Milad Asadi
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Izmir, Turkey
| | - Ahmet Ozbilgin
- Department of Parasitology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Ayse Caner
- Department of Parasitology, Faculty of Medicine, Ege University, Izmir, Turkey; Department of Basic Oncology, Institute of Health Sciences, Ege University, Izmir, Turkey; Translational Pulmonary Research Center (EGESAM), Ege University, Izmir, Turkey.
| |
Collapse
|
9
|
Masoomabadi N, Gorji A, Ghadiri T, Ebrahimi S. Regulatory role of circular RNAs in the development of therapeutic resistance in the glioma: A double-edged sword. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:3-15. [PMID: 39877636 PMCID: PMC11771335 DOI: 10.22038/ijbms.2024.81644.17669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/07/2024] [Indexed: 01/31/2025]
Abstract
Gliomas are the most common lethal tumors of the brain associated with a poor prognosis and increased resistance to chemo-radiotherapy. Circular RNAs (circRNAs), newly identified noncoding RNAs, have appeared as critical regulators of therapeutic resistance among multiple cancers and gliomas. Since circRNAs are aberrantly expressed in glioma and may act as promoters or inhibitors of therapeutic resistance, we categorized alterations of these specific RNAs expression in therapy resistant-glioma in three different classes, including chemoresistance, radioresistance, and glioma stem cell (GSC)-regulation. circRNAs act as competing endogenous RNA, sponging target microRNA and consequently affecting the expression of genes related to glioma tumorigenesis and resistance. By doing so, circRNAs can modulate the critical cellular pathways and processes regulating glioma resistance, including DNA repair pathways, GSC, epithelial-mesenchymal transition, apoptosis, and autophagy. Considering the poor survival and increased resistance to currently approved treatments for glioma, it is crucial to increase the knowledge of the resistance regulatory effects of circRNAs and their underlying molecular mechanisms. Herein, we conducted a comprehensive search and discussed the existing knowledge regarding the important role eof circRNAs in the emergence of resistance to therapeutic interventions in glioma. This knowledge may serve as a basis for enhancing the effectiveness of glioma therapeutic strategies.
Collapse
Affiliation(s)
- Negin Masoomabadi
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Epilepsy Research Center, Münster University, Münster, Germany
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safieh Ebrahimi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Wei HY, Fan XJ, Mao MW. A Review on Circular RNA Translation and Its Implications in Disease. Methods Mol Biol 2025; 2883:109-137. [PMID: 39702706 DOI: 10.1007/978-1-0716-4290-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The mRNA vaccine has emerged as a powerful tool against viral infection during the coronavirus disease 2019 (COVID-19) pandemic. In the post-COVID-19 era, the applications of mRNA-based therapy continue to expand and evolve. Circular RNA (circRNA), long assumed to be a noncoding RNA, has been proven to be translatable and subsequently developed as a next-generation mRNA modality due to its higher stability and wider therapeutic window. Nonetheless, the studies of circRNA translation and its application in diseases still present numerous technical features and challenges. In this chapter, we provide a summary and discussion on the mechanisms of circRNA translation and its applications in medicine development, aiming to serve as a reference and inspiration for readers interested in circRNA-based therapy.
Collapse
Affiliation(s)
- Huanhuan Y Wei
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| | - Xiao-Juan Fan
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Miao-Wei Mao
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Fan Z, Yuan X, Yuan Y. Circular RNAs in coronary heart disease: From molecular mechanism to promising clinical application (Review). Int J Mol Med 2025; 55:11. [PMID: 39513584 PMCID: PMC11573316 DOI: 10.3892/ijmm.2024.5452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Coronary heart disease (CHD) remains a leading cause of morbidity and mortality worldwide, posing a substantial public health burden. Despite advancements in treatment, the complex etiology of CHD necessitates ongoing exploration of novel diagnostic markers and therapeutic targets. Circular RNAs (circRNAs), a distinct class of non‑coding RNAs with a covalently closed loop structure, have emerged as significant regulators in various diseases, including CHD. Their high stability, tissue‑specific expression and evolutionary conservation underscore their potential as biomarkers and therapeutic agents in CHD. This review discusses the current knowledge on circRNAs in the context of CHD and explores the molecular mechanisms by which circRNAs influence the pathophysiology of CHD, including cardiomyocyte death, endothelial injury, vascular dysfunction and inflammation. It also summarizes the emerging evidence highlighting the differential expression of circRNAs in patients with CHD and their potential utilities as non‑invasive diagnostic and prognostic biomarkers and therapeutic targets for this disease.
Collapse
Affiliation(s)
- Zengguang Fan
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| | - Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150006, P.R. China
| | - Ye Yuan
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
12
|
El-Gamal R, Zalata A, Mazroa SA, Comhaire F, Gamal A, Shaker OG, Hazem NM. Evaluation of circANKLE2 & circL3MBTL4 -RNAs Expression in Fertile and Infertile Men. Biochem Genet 2024:10.1007/s10528-024-10963-7. [PMID: 39580773 DOI: 10.1007/s10528-024-10963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024]
Abstract
There are many factors that affect male fertility such as chronic health problems, psychological factors, and illnesses. Male infertility can be caused abnormal sperm function, low sperm production or even blockages that prevent the delivery of sperm. The aim of the work is to determine the expression pattern of the circularANKLE2 and circularL3MBTL4 RNA in spermatozoa from fertile and infertile males, as well as the relationship between these circRNA transcripts and sperm quality. The study involved two groups: a control group comprising 40 healthy, fertile men and an experimental group of 90 infertile males. Semen samples were collected and processed for analysis using computer-assisted semen analysis. Following RNA extraction from sperm samples, reverse transcription and real-time PCR were performed to assess the levels of circular ANKLE2 and circular L3MBTL4 RNA. There was a significant up-regulation of circularANKLE2 RNA expression (p < 0.05), and a significant down-regulation of circularL3MBTL4 RNA expression (p < 0.05) in asthenozoospermia, astheno-teratozoospermia, and oligo-astheno-teratozoospermia groups, as well as, in immature spermatozoa separated from normozoospermic samples. Moreover, the altered expression of both circular L3MBTL4 and circular ANKLE2 RNA showed significant correlations with the associated sperm parameters. In conclusion, the expression of circular ANKLE2 RNA and circular L3MBTL4 RNA may play a significant role in male fertility and could serve as potential biomarkers of sperm quality, warranting further investigation for their application in infertility diagnostics.
Collapse
Affiliation(s)
- Randa El-Gamal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Faculty of Medicine, Medical Experimental Research Center, Mansoura University, Mansoura, 35516, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, Horus University, New Damietta, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, New Mansoura University, Mansoura, Egypt
| | - Adel Zalata
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Delta University for Science and Technology, New Mansoura, Egypt
| | - Shireen A Mazroa
- Histology and Cell Biology Department, Mansoura University, Mansoura, 35516, Egypt
- Histology Department, Faculty of Medicine, Delta University for Science and Technology, New Mansoura, Egypt
| | - Frank Comhaire
- Emeritus Professor of Andrology, Ghent University Hospital, Ghent, Belgium
| | - Ahmed Gamal
- Andrology, Sexology and STIs, Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Noha M Hazem
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Faculty of Medicine, Medical Experimental Research Center, Mansoura University, Mansoura, 35516, Egypt
- Pathological Sciences Department- MBBS Program, Fakeeh College for Medical Sciences, 21461, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Wang Y, Liu Y, Wang Y, Ren P, Tian H, Wang L. Hsa_circ_0007718 facilitates the progression of colorectal cancer by regulating the miR-1299/PSMC2 axis. Int J Biol Macromol 2024; 281:136537. [PMID: 39396594 DOI: 10.1016/j.ijbiomac.2024.136537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) represents one of the most prevalent forms of malignant tumors, characterized by a notably high rate of mortality among affected individuals. The primary objective of this investigation is to delve into the functional role of Hsa_circ_0007718 in the context of colorectal cancer and to elucidate its impact on the progression of CRC by modulating the interaction between the miR-1299 microRNA and its target gene, PSMC2. To assess the expression levels of Hsa_circ_0007718, along with miR-1299 and PSMC2, real-time quantitative fluorescent PCR (qRT-PCR) assays were meticulously performed using both CRC cell lines and clinical samples derived from patients. A cellular model was established to investigate the interactions occurring between miR-1299 and Hsa_circ_0007718, as well as the connections to PSMC2, thereby providing a comprehensive understanding of these molecular interactions. The findings of this research revealed a significant upregulation of Hsa_circ_0007718 in both colorectal cancer cell lines and tissue samples. Importantly, the data indicated that the suppression of Hsa_circ_0007718 led to a marked decrease in the proliferation rates, migratory potential, and invasive capabilities of CRC cells. Furthermore, the study confirmed that Hsa_circ_0007718 acts as a downstream target of miR-1299, exerting its regulatory effects by inhibiting miR-1299 and thereby promoting the expression of PSMC2.
Collapse
Affiliation(s)
- Yi Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Jinan, China
| | - Yanxia Liu
- Department of Oncology, Shengli Oil Central Hospital, Dongying, China
| | - Yong Wang
- Department of Gastrointestinal Surgery, Feixian People's Hospital, Linyi, China
| | - Peng Ren
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Jinan, China
| | - Hui Tian
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Jinan, China
| | - Lin Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Jinan, China.
| |
Collapse
|
14
|
He Z, Ji H, Xia B, Cao X, Huang Y, Zhu Q. Invention of circRNA promoting RNA to specifically promote circRNA production. Nucleic Acids Res 2024; 52:e83. [PMID: 39119897 PMCID: PMC11417354 DOI: 10.1093/nar/gkae693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
CircRNA, an essential RNA molecule involved in various biological functions and diseases, often exhibits decreased expression in tumor tissues, playing a role as a tumor suppressor, and suggesting therapeutic potential for cancer. However, current methods for promoting circRNA production are limited. This study introduces a novel approach for enhancing circRNA biogenesis, termed circRNA promoting RNA (cpRNA). CpRNA is designed to complement the flanking sequences of reverse complementary matches (RCMs) within pre-mRNA, thereby facilitating circRNA formation through improved exon circularization. Using a split-GFP reporter system, we demonstrated that cpRNA significantly enhance circGFP production. Optimization identified the best conditions for cpRNA to promote circRNA biogenesis, and these cpRNAs were then used to augment the production of endogenous circRNAs. These results indicate that cpRNAs can specifically increase the production of endogenous circRNAs with RCMs, such as circZKSCAN1 and circSMARCA5 in cancer cells, thereby inhibiting cell proliferation and migration by modulating circRNA-related pathways, showcasing the therapeutic potential of cpRNAs. Mechanistic studies have also shown that cpRNA promotes circRNA biogenesis, in part, by antagonizing the unwinding function of DHX9. Overall, these findings suggest that cpRNA represents a promising strategy for circRNA overexpression, offering a potential treatment for diseases marked by low circRNA levels.
Collapse
Affiliation(s)
- Zhilin He
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan 410013, China
| | - Haofei Ji
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan 410013, China
| | - Bei Xia
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan 410013, China
| | - Xiuen Cao
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan 410013, China
| | - Ying Huang
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan 410013, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
15
|
Xu GE, Zhao X, Li G, Gokulnath P, Wang L, Xiao J. The landscape of epigenetic regulation and therapeutic application of N 6-methyladenosine modifications in non-coding RNAs. Genes Dis 2024; 11:101045. [PMID: 38988321 PMCID: PMC11233902 DOI: 10.1016/j.gendis.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/18/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2024] Open
Abstract
RNA N6-methyladenosine (m6A) methylation is the most abundant and conserved RNA modification in eukaryotes. It participates in the regulation of RNA metabolism and various pathophysiological processes. Non-coding RNAs (ncRNAs) are defined as small or long transcripts which do not encode proteins and display numerous biological regulatory functions. Similar to mRNAs, m6A deposition is observed in ncRNAs. Studying RNA m6A modifications on ncRNAs is of great importance specifically to deepen our understanding of their biological roles and clinical implications. In this review, we summarized the recent research findings regarding the mutual regulation between RNA m6A modification and ncRNAs (with a specific focus on microRNAs, long non-coding RNAs, and circular RNAs) and their functions. We also discussed the challenges of m6A-containing ncRNAs and RNA m6A as therapeutic targets in human diseases and their future perspective in translational roles.
Collapse
Affiliation(s)
- Gui-E Xu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xuan Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lijun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
16
|
Liu J, Zhang Y, Liu C, Jiang Y, Wang Z, Guo Z, Li X. A single dose of VEGF-A circular RNA sustains in situ long-term expression of protein to accelerate diabetic wound healing. J Control Release 2024; 373:319-335. [PMID: 38986911 DOI: 10.1016/j.jconrel.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Diabetic foot ulcer (DFU), which is characterised by damage to minute blood vessels or capillaries around wounds, is one of the most serious and dreaded complications of diabetes. It is challenging to repair chronic non-healing DFU wounds. Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis and promotes wound healing in DFU. However, it is difficult to sustainably deliver VEGF to the wound site owing to its poor stability and easy degradation. To overcome this challenge, lipid nanoparticles (LNP) encapsulating circular RNA (circRNA) encoding VEGF-A have been developed to continuously generate and release VEGF-A and accelerate diabetic wound healing. First, VEGF-A circRNA was synthesized using group I intron autocatalysis strategy and confirmed by enzyme digestion, polymerase chain reaction, and sequencing assay. VEGF-A circRNA was encapsulated in ionizable lipid U-105-derived LNP (U-LNP) using microfluidic technology to fabricate U-LNP/VEGF-A circRNA. For comparison, a commercially ionizable lipid ALC-0315-derived LNP (A-LNP) encapsulating circRNA (A-LNP/circRNA) was used. Dynamic light scattering and transmission electron microscopy characterization indicated that U-LNP/circRNA had spherical structure with an average diameter of 108.5 nm, a polydispersity index of 0.22, and a zeta potential of -3.31 mV. The messenger RNA (mRNA) encapsulation efficiency (EE%) of U-LNP was 87.12%. In vitro transfection data confirmed better stability and long-term VEGF-A expression of circRNA compared with linear mRNA. Assessment of cytotoxicity and innate immunity further revealed that U-LNP/circRNA was biocompatible and induced a weak congenital immune response. Cell scratch and angiogenesis tests demonstrated the bioactivity of U-LNP/VEGF-A circRNA owing to its VEGF-A expression. In situ bioluminescence imaging of firefly luciferase (F-Luc) probe and ELISA demonstrated that circRNA had long-term and strong expression of VEGF-A in the first week, and a gradual decrease in the next week at the wound site and surrounding areas. Finally, a diabetic mouse model was used to validate the healing effect of U-LNP/VEGF-A circRNA formulation. The results showed that a single dose of U-LNP/VEGF-A circRNA administered by dripping resulted in almost complete wound recovery on day 12, which was significantly superior to that of U-LNP/VEGF-A linear mRNA, and it also outperformed recombinant human vascular endothelial growth factor (rhVEGF) injection and A-LNP/circRNA dripping. Histological analysis confirmed the healing efficiency and low toxicity of U-LNP/VEGF-A circRNA formulation. Together, VEGF-A circRNA delivered by U-105-derived LNP showed good performance in wound healing, which was ascribed to the long-term expression and continuous release of VEGF-A, and has potential applications for the treatment of diabetic foot ulcer wounds.
Collapse
Affiliation(s)
- Jinyu Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yanhao Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chao Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuhao Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zihao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zongke Guo
- Zhongda Hospital, Southeast University, Nanjing 210009, PR China.
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
17
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R, Karampoor S. Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res 2024; 9:970-994. [PMID: 38770106 PMCID: PMC11103225 DOI: 10.1016/j.ncrna.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Sally Salih Jumaa
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nataliya Sergeevna Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia, Moscow
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Farhadi E, Khomeijani-Farahani M, Nikbakhsh R, Azizan A, Soltani S, Barekati H, Mahmoudi M. The potential role of circular RNAs in regulating p53 in different types of cancers. Pathol Res Pract 2024; 261:155488. [PMID: 39088876 DOI: 10.1016/j.prp.2024.155488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
P53 tumor suppressor is a major regulator of various cellular processes and functions. It has been reported that mutation or inactivation of p53 plays a crucial role in tumorigenesis in different types of cancers. Circular RNAs (circRNAs) are single-stranded non-coding RNAs that have significant post-transcriptional effects on the regulation of gene expression in various ways. These molecules can alter the expression and function of multiple genes and proteins. In the present study, we aimed to review circRNAs that regulate the expression, function, and stability of p53 and the possible interactions between these molecules and p53. Considering the importance of p53 in cancer and the network between p53 and circRNAs, future clinical trials targeting these circRNAs as therapeutic agents deserve worthy of attention.
Collapse
Affiliation(s)
- Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammadreza Khomeijani-Farahani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rambod Nikbakhsh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amin Azizan
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Barekati
- School of Nursing & Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Lan W, Li C, Chen Q, Yu N, Pan Y, Zheng Y, Chen YPP. LGCDA: Predicting CircRNA-Disease Association Based on Fusion of Local and Global Features. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1413-1422. [PMID: 38607720 DOI: 10.1109/tcbb.2024.3387913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
CircRNA has been shown to be involved in the occurrence of many diseases. Several computational frameworks have been proposed to identify circRNA-disease associations. Despite the existing computational methods have obtained considerable successes, these methods still require to be improved as their performance may degrade due to the sparsity of the data and the problem of memory overflow. We develop a novel computational framework called LGCDA to predict circRNA-disease associations by fusing local and global features to solve the above mentioned problems. First, we construct closed local subgraphs by using k-hop closed subgraph and label the subgraphs to obtain rich graph pattern information. Then, the local features are extracted by using graph neural network (GNN). In addition, we fuse Gaussian interaction profile (GIP) kernel and cosine similarity to obtain global features. Finally, the score of circRNA-disease associations is predicted by using the multilayer perceptron (MLP) based on local and global features. We perform five-fold cross validation on five datasets for model evaluation and our model surpasses other advanced methods.
Collapse
|
20
|
Son CJ, Carnino JM, Lee H, Jin Y. Emerging Roles of Circular RNA in Macrophage Activation and Inflammatory Lung Responses. Cells 2024; 13:1407. [PMID: 39272979 PMCID: PMC11394395 DOI: 10.3390/cells13171407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Circular RNA (circRNA) is a type of single-stranded RNA that forms a covalently closed continuous loop, unlike linear RNA. The expression of circRNAs in mammals is often conserved across species and shows tissue and cell specificity. Some circRNA serve as gene regulators. However, the biological function of most circRNAs is unclear. CircRNA does not have 5' or 3' ends. The unique structure of circRNAs provides them with a much longer half-life and more resistance to RNase R than linear RNAs. Inflammatory lung responses occur in the pathogenesis and recovery of many lung diseases. Macrophages form the first line of host defense/innate immune responses and initiate/mediate lung inflammation. For example, in bacterial pneumonia, upon pro-inflammatory activation, they release early response cytokines/chemokines that recruit neutrophils, macrophages, and lymphocytes to sites of infection and clear pathogens. The functional effects and mechanisms by which circRNAs exert physiological or pathological roles in macrophage activation and lung inflammation remain poorly understood. In this article, we will review the current understanding and progress of circRNA biogenesis, regulation, secretion, and degradation. Furthermore, we will review the current reports on the role of circRNAs in macrophage activation and polarization, as well as in the process of inflammatory lung responses.
Collapse
Affiliation(s)
- Chang Jun Son
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| | - Jonathan M. Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| |
Collapse
|
21
|
He RR, Yue GL, Dong ML, Wang JQ, Cheng C. Sepsis Biomarkers: Advancements and Clinical Applications-A Narrative Review. Int J Mol Sci 2024; 25:9010. [PMID: 39201697 PMCID: PMC11354379 DOI: 10.3390/ijms25169010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Sepsis is now defined as a life-threatening syndrome of organ dysfunction triggered by a dysregulated host response to infection, posing significant challenges in critical care. The main objective of this review is to evaluate the potential of emerging biomarkers for early diagnosis and accurate prognosis in sepsis management, which are pivotal for enhancing patient outcomes. Despite advances in supportive care, traditional biomarkers like C-reactive protein and procalcitonin have limitations, and recent studies have identified novel biomarkers with increased sensitivity and specificity, including circular RNAs, HOXA distal transcript antisense RNA, microRNA-486-5p, protein C, triiodothyronine, and prokineticin 2. These emerging biomarkers hold promising potential for the early detection and prognostication of sepsis. They play a crucial role not only in diagnosis but also in guiding antibiotic therapy and evaluating treatment effectiveness. The introduction of point-of-care testing technologies has brought about a paradigm shift in biomarker application, enabling swift and real-time patient evaluation. Despite these advancements, challenges persist, notably concerning biomarker variability and the lack of standardized thresholds. This review summarizes the latest advancements in sepsis biomarker research, spotlighting the progress and clinical implications. It emphasizes the significance of multi-biomarker strategies and the feasibility of personalized medicine in sepsis management. Further verification of biomarkers on a large scale and their integration into clinical practice are advocated to maximize their efficacy in future sepsis treatment.
Collapse
Affiliation(s)
- Rong-Rong He
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (R.-R.H.); (G.-L.Y.)
| | - Guo-Li Yue
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (R.-R.H.); (G.-L.Y.)
| | - Mei-Ling Dong
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China;
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Jia-Qi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Chen Cheng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China;
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| |
Collapse
|
22
|
Dłuski DF, Cieśla M, Darmochwał-Kolarz D. Circular RNA hsa_circ_0002268 ( PHACTR1) Is Specific to Gestational Diabetes Mellitus in a Polish Pregnant Population. Int J Mol Sci 2024; 25:7040. [PMID: 39000149 PMCID: PMC11241481 DOI: 10.3390/ijms25137040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is an intolerance of carbohydrate of any degree, which appears for the first time or is diagnosed during pregnancy. The objective of this study is to assess the differences in circular RNA (circRNA) in a Polish pregnant population with and without GDM. A total of 62 pregnant women, 34 with GDM and 28 controls, were enrolled in the study. Total RNAs were extracted from plasma and reverse transcription to complementary DNA (cDNA) was performed. A panel covering 271 amplicons, targeting both linear and circular as well as negative control gene transcripts, was used. Next-generation sequencing was used to evaluate the circRNA quantity. Data analysis was performed using the Coverage Analysis plugin in the Torrent Suite Software (Torrent Suite 5.12.3). A two-step normalization was performed by dividing each transcript read count by the total number of reads generated for the sample, followed by dividing the quantity of each transcript by β-actin gene expression. Both circular and linear forms of RNAs were independently evaluated. A total of 57 transcripts were dysregulated between pregnant women with GDM and controls. Most of the targets (n = 25) were downregulated (cut-off ratio below 0.5), and one target showed a trend toward strong upregulation (ratio 1.45). A total of 39 targets were positively correlated with fasting plasma glucose (FPG), but none of the tested targets were correlated with insulin, CRP or HOMA-IR levels. Among the pregnant women with gestational diabetes, the relative quantity of hsa_circ_0002268 (PHACTR1) was approximately 120% higher than among healthy pregnant women: 0.046 [0.022-0.096] vs. 0.021 [0.007-0.047], respectively, (p = 0.0029). Elevated levels of hsa_circ_0002268 (PHACTR1) might be specific to the Polish population of pregnant women with GDM, making it useful as a potential molecular biomarker in the management of GDM in Poland.
Collapse
Affiliation(s)
| | - Marek Cieśla
- Institute of Medical Science, College of Medical Science, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Dorota Darmochwał-Kolarz
- Department of Obstetrics and Gynecology, College of Medical Science, University of Rzeszow, 35-301 Rzeszow, Poland
| |
Collapse
|
23
|
Valenti MT, Zerlotin R, Cominacini M, Bolognin S, Grano M, Dalle Carbonare L. Exploring the Role of Circular RNA in Bone Biology: A Comprehensive Review. Cells 2024; 13:999. [PMID: 38920630 PMCID: PMC11201515 DOI: 10.3390/cells13120999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Circular RNAs (circRNAs) have emerged as pivotal regulators of gene expression with diverse roles in various biological processes. In recent years, research into circRNAs' involvement in bone biology has gained significant attention, unveiling their potential as novel regulators and biomarkers in bone-related disorders and diseases. CircRNAs, characterized by their closed-loop structure, exhibit stability and resistance to degradation, underscoring their functional significance. In bone tissue, circRNAs are involved in critical processes such as osteogenic differentiation, osteoclastogenesis, and bone remodeling through intricate molecular mechanisms including microRNA regulation. Dysregulated circRNAs are associated with various bone disorders, suggesting their potential as diagnostic and prognostic biomarkers. The therapeutic targeting of these circRNAs holds promise for addressing bone-related conditions, offering new perspectives for precision medicine. Thus, circRNAs constitute integral components of bone regulatory networks, impacting both physiological bone homeostasis and pathological conditions. This review provides a comprehensive overview of circRNAs in bone biology, emphasizing their regulatory mechanisms, functional implications, and therapeutic potential.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy
| | - Roberta Zerlotin
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (R.Z.); (M.G.)
| | - Mattia Cominacini
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (M.C.); (L.D.C.)
| | - Silvia Bolognin
- MERLN Institute, Maastricht University, Universiteitssingel 40, 6229 ET Maastricht, The Netherlands;
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (R.Z.); (M.G.)
| | - Luca Dalle Carbonare
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (M.C.); (L.D.C.)
| |
Collapse
|
24
|
Apaydin B, Mert U, Asadi M, Muftuoglu C, Caner A. Identification of Circular RNAs as Biomarker Candidates in Lung Cancer Treatment. Asian Pac J Cancer Prev 2024; 25:2147-2157. [PMID: 38918678 PMCID: PMC11382869 DOI: 10.31557/apjcp.2024.25.6.2147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVE Lung cancer is the most common malignancy and among the leading cause of cancer death worldwide. Therefore, there is an important need for biomarkers that can be used in the early diagnosis of the disease and in the follow-up of treatment. Circular RNAs (circRNAs) have a covalently closed circular structure that lacks 3' and 5' polar ends and is resistant to RNAase enzymes. Due to these properties, they can be stably found in body fluids. Therefore, they can serve as potential biomarkers in the diagnosis, monitoring of therapeutic response and prognosis of cancer. In our study, we aimed to investigate the expression levels of circRNA molecules in the treatment of lung cancer and to determine those that have the potential to be biomarkers. METHODS In this in vitro study, expression levels of 163 circRNAs were investigated in A549 cells, a non-small cell lung cancer cell line, before and after treatment with carboplatin and pemetrexed. Total RNA isolation and cDNA synthesis were performed after treatments. Expression levels of circRNA genes were determined by RT-qPCR method with the designed divergent primer sequences. RESULTS The study revealed the characterisation of differentially expressed circRNAs by treatment in lung cancer cells. Of them, hsa_circ_0001320 is not expressed in cancer cells, is expressed only after treatment, and increased the level of its expression in response to combination therapy. CONCLUSION As a result, while carboplatin, pemetrexed, and combined drug applications changed the expression levels of some circRNAs in lung cancer cells, some circRNAs were expressed only after treatment. In treatment follow-up and management, hsa_circ_0001320 has been identified as potential biomarker candidate.
Collapse
Affiliation(s)
- Busra Apaydin
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir, Turkey
| | - Ufuk Mert
- Atatürk Health Care Vocational School, Ege University, Izmir, Turkey Turkey
- Translational Pulmonary Research Center (EGESAM), Ege University, Izmir, Turkey
| | - Milad Asadi
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir, Turkey
| | - Can Muftuoglu
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir, Turkey
| | - Ayse Caner
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir, Turkey
- Translational Pulmonary Research Center (EGESAM), Ege University, Izmir, Turkey
- Department of Parasitology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
25
|
Liu J, Liu R, Wang H, Zhang Z, Wang J, Wei F. CircPRKD3/miR-6783-3p responds to mechanical force to facilitate the osteogenesis of stretched periodontal ligament stem cells. J Orthop Surg Res 2024; 19:257. [PMID: 38649946 PMCID: PMC11036753 DOI: 10.1186/s13018-024-04727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The mechanotransduction mechanisms by which cells regulate tissue remodeling are not fully deciphered. Circular RNAs (circRNAs) are crucial to various physiological processes, including cell cycle, differentiation, and polarization. However, the effects of mechanical force on circRNAs and the role of circRNAs in the mechanobiology of differentiation and remodeling in stretched periodontal ligament stem cells (PDLSCs) remain unclear. This article aims to explore the osteogenic function of mechanically sensitive circular RNA protein kinase D3 (circPRKD3) and elucidate its underlying mechanotransduction mechanism. MATERIALS AND METHODS PDLSCs were elongated with 8% stretch at 0.5 Hz for 24 h using the Flexcell® FX-6000™ Tension System. CircPRKD3 was knockdown or overexpressed with lentiviral constructs or plasmids. The downstream molecules of circPRKD3 were predicted by bioinformatics analysis. The osteogenic effect of related molecules was evaluated by quantitative real-time PCR (qRT-PCR) and western blot. RESULTS Mechanical force enhanced the osteogenesis of PDLSCs and increased the expression of circPRKD3. Knockdown of circPRKD3 hindered PDLSCs from osteogenesis under mechanical force, while overexpression of circPRKD3 promoted the early osteogenesis process of PDLSCs. With bioinformatics analysis and multiple software predictions, we identified hsa-miR-6783-3p could act as the sponge of circPRKD3 to indirectly regulate osteogenic differentiation of mechanically stimulated PDLSCs. CONCLUSIONS Our results first suggested that both circPRKD3 and hsa-miR-6783-3p could enhance osteogenesis of stretched PDLSCs. Furthermore, hsa-miR-6783-3p could sponge circPRKD3 to indirectly regulate RUNX2 during the periodontal tissue remodeling process in orthodontic treatment.
Collapse
Affiliation(s)
- Jiani Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Rui Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Hong Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Zijie Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Jixiao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong, 250012, China.
| |
Collapse
|
26
|
Huang C, Aghaei-Zarch SM. From molecular pathogenesis to therapy: Unraveling non-coding RNAs/DNMT3A axis in human cancers. Biochem Pharmacol 2024; 222:116107. [PMID: 38438051 DOI: 10.1016/j.bcp.2024.116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Cancer is a comprehensive classification encompassing more than 100 forms of malignancies that manifest in diverse tissues within the human body. Recent studies have provided evidence that aberrant epigenetic modifications are pivotal indicators of cancer. Epigenetics encapsulates DNA methyltransferases as a crucial class of modifiers. DNMTs, including DNMT3A, assume central roles in DNA methylation processes that orchestrate normal biological functions, such as gene transcription, predominantly in mammals. Typically, deviations in DNMT3A function engender distortions in factors that drive tumor growth and progression, thereby exacerbating the malignant phenotype of tumors. Consequently, such abnormalities pose significant challenges in cancer therapy because they impede treatment efficacy. Non-coding RNAs (ncRNAs) represent a group of RNA molecules that cannot encode functional proteins. Recent investigation attests to the crucial significance of regulatory ncRNAs in epigenetic regulation. Notably, recent reports have illuminated the complex interplay between ncRNA expression and epigenetic regulatory machinery, including DNMT3A, particularly in cancer. Recent findings have demonstrated that miRNAs, namely miR-770-5p, miR-101, and miR-145 exhibit the capability to target DNMT3A directly, and their aberration is implicated in diverse cellular abnormalities that predispose to cancer development. This review aims to articulate the interplay between DNMT3A and the ncRNAs, focusing on its impact on the development and progression of cancer, cancer therapy resistance, cancer stem cells, and prognosis. Importantly, the emergence of such reports that suggest a connection between DNMT3A and ncRNAs in several cancers indicates that this connecting axis offers a valuable target with significant therapeutic potential that might be exploited for cancer management.
Collapse
Affiliation(s)
- Chunjie Huang
- School of Medicine, Nantong University, Nantong 226001, China
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Wu H, Liu X, Fang Y, Yang Y, Huang Y, Pan X, Shen HB. Decoding protein binding landscape on circular RNAs with base-resolution transformer models. Comput Biol Med 2024; 171:108175. [PMID: 38402841 DOI: 10.1016/j.compbiomed.2024.108175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/16/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Circular RNAs (circRNAs), a class of endogenous RNA with a covalent loop structure, can regulate gene expression by serving as sponges for microRNAs and RNA-binding proteins (RBPs). To date, most computational methods for predicting RBP binding sites on circRNAs focus on circRNA fragments instead of circRNAs. These methods detect whether a circRNA fragment contains binding sites, but cannot determine where are the binding sites and how many binding sites are on the circRNA transcript. We report a hybrid deep learning-based tool, CircSite, to predict RBP binding sites at single-nucleotide resolution and detect key contributed nucleotides on circRNA transcripts. CircSite takes advantage of convolutional neural networks (CNNs) and Transformer for learning local and global representations of circRNAs binding to RBPs, respectively. We construct 37 datasets of circRNAs interacting with proteins for benchmarking and the experimental results show that CircSite offers accurate predictions of RBP binding nucleotides and detects key subsequences aligning well with known binding motifs. CircSite is an easy-to-use online webserver for predicting RBP binding sites on circRNA transcripts and freely available at http://www.csbio.sjtu.edu.cn/bioinf/CircSite/.
Collapse
Affiliation(s)
- Hehe Wu
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, And Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Xiaojian Liu
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, And Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Yi Fang
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, And Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Yang Yang
- Center for Brain-Like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Huang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai, 200083, China
| | - Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, And Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, And Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.
| |
Collapse
|
28
|
Xie HS, Huang JF, Lin QX, Chen YW, Chen GP, Lin QC. The role of exosomal circular RNA ZNF292 in intermittent hypoxia-induced AC16 cardiomyocytes injury. Sleep Breath 2024; 28:319-329. [PMID: 37726500 DOI: 10.1007/s11325-023-02920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Exosomes are involved in cell-to-cell communication in numerous diseases including cardiovascular diseases, neurological diseases. Little attention has been dedicated to exosomal circular RNAs in obstructive sleep apnea (OSA)-related cardiovascular diseases. The aim of this study was to explore the role of exosomal circular RNA ZNF292 (circZNF292) on AC16 cells exposure to intermittent hypoxia (IH). METHODS Exosome release inhibitor GW4869 was used to examine the effect of exosomes on IH-induced AC16 cells apoptosis. The expression of exosomal circZNF292 was detected by qRT-PCR in AC16 cells exposure to IH, and a luciferase reporter assay was conducted to confirm the connection between circZNF292 and miR-146a-5p. Exosomal circZNF292 was stably transfected with short hairpin RNAs (shRNAs) against circZNF292 and co-cultured with AC16 cells. The expression of miR-146a-5p and apoptosis-related protein was then measured to evaluate the effect of exosomal circZNF292. RESULTS We found that IH contributed to the AC16 cells apoptosis, and the administration of GW4869 increased the apoptosis of cardiomyocytes when exposed to IH. The expression of exosomal circZNF292 decreased and miR-146a-5p increased significantly in AC16 cells exposed to IH compared to normoxic conditions. Bioinformatics analysis predicted a circZNF292/miR-146a-5p axis in IH-induced cardiomyocytes apoptosis. The dual-luciferase reporter system validated the direct interaction of circZNF292 and miR-146a-5p. Knockdown of circZNF292 increased the expressions of miR-146a-5p and accelerated the AC16 cardiomyocytes apoptosis. CONCLUSIONS The findings of this study suggested a novel mechanism by which exosomes transmit intrinsic regulatory signals to the myocardium through the exosomal circZNF292/miR-146a-5p axis. This finding highlights the potential of targeting this pathway as a therapeutic approach for treating cardiovascular diseases associated with OSA.
Collapse
Affiliation(s)
- Han-Sheng Xie
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Research Institute, The First Affiliated Hospital, Fujian Medical University, NO 20, Chazhong road, Taijiang district, Fuzhou, Fujian Province, 350005, People's Republic of China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jie-Feng Huang
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Research Institute, The First Affiliated Hospital, Fujian Medical University, NO 20, Chazhong road, Taijiang district, Fuzhou, Fujian Province, 350005, People's Republic of China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qiao-Xian Lin
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yue-Wen Chen
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Gong-Ping Chen
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Research Institute, The First Affiliated Hospital, Fujian Medical University, NO 20, Chazhong road, Taijiang district, Fuzhou, Fujian Province, 350005, People's Republic of China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qi-Chang Lin
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Research Institute, The First Affiliated Hospital, Fujian Medical University, NO 20, Chazhong road, Taijiang district, Fuzhou, Fujian Province, 350005, People's Republic of China.
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
29
|
Shao C, Niu G, Su P, Zhang J, Zhu X, Han G, Xu P, Bai J, Sun K, Sun Y. circFOXK2 promotes the progression of osteoarthritis by regulating the miR-4640-5p/NOTCH2 axis. Mod Rheumatol 2024; 34:422-432. [PMID: 36537124 DOI: 10.1093/mr/roac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 02/17/2024]
Abstract
OBJECTIVES Osteoarthritis (OA) is the most common age-related chronic and disabling joint disease, frequently causing pain and disability in the adult population. Given that there are no proven disease-modifying drugs for OA, it is urgent to gain a deeper understanding of OA pathogenesis. This study intended to uncover the circFOXK2 regulation in OA. METHODS First, an in vitro OA cell model was constructed by treating murine chondrocytes with interleukin (IL)-1β. Then, a series of functional assays were conducted to evaluate the effect of circFOXK2 on OA progression in murine chondrocytes. Bioinformatics analysis and mechanism investigations were performed to investigate the competitive endogenous ribonucleic acid (RNA) network of circFOXK2 in OA. RESULTS circFOXK2 is overexpressed in IL-1β-treated chondrocyte. We confirmed the cyclic structure and cytoplasmic distribution of circFOXK2. Functionally, circFOXK2 promotes chondrocyte apoptosis and extracellular matrix degradation but inhibits chondrocyte proliferation. Mechanically, circFOXK2 competitively binds to microRNA-4640-5p (miR-4640-5p) to enhance NOTCH2 expression in OA, affecting OA progression. Besides, circFOXK2 could motivate the NOTCH pathway to accelerate OA progression. CONCLUSIONS The circFOXK2/miR-4640-5p/NOTCH2 axis stimulates the NOTCH pathway to promote the transcription of inflammatory cytokines (IL33, IL17F, and IL6), consequently facilitating OA progression in murine chondrocytes.
Collapse
Affiliation(s)
- Chen Shao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Orthopedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Digital Orthopedics, Bengbu Medical College, Bengbu, Anhui, China
| | - Guoqi Niu
- Department of Orthopedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Digital Orthopedics, Bengbu Medical College, Bengbu, Anhui, China
| | - Peng Su
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jingquan Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Digital Orthopedics, Bengbu Medical College, Bengbu, Anhui, China
| | - Xunbing Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Digital Orthopedics, Bengbu Medical College, Bengbu, Anhui, China
| | - Guansheng Han
- Department of Orthopedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Digital Orthopedics, Bengbu Medical College, Bengbu, Anhui, China
| | - Panpan Xu
- Department of Orthopedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Digital Orthopedics, Bengbu Medical College, Bengbu, Anhui, China
| | - Jianzhong Bai
- Department of Orthopedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Digital Orthopedics, Bengbu Medical College, Bengbu, Anhui, China
| | - Kui Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yongming Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
30
|
Caponnetto A, Ferrara C, Fazzio A, Agosta N, Scribano M, Vento ME, Borzì P, Barbagallo C, Stella M, Ragusa M, Scollo P, Barbagallo D, Purrello M, Di Pietro C, Battaglia R. A Circular RNA Derived from the Pumilio 1 Gene Could Regulate PTEN in Human Cumulus Cells. Genes (Basel) 2024; 15:124. [PMID: 38275605 PMCID: PMC10815046 DOI: 10.3390/genes15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
CircRNAs are a class of non-coding RNAs able to regulate gene expression at multiple levels. Their involvement in physiological processes, as well as their altered regulation in different human diseases, both tumoral and non-tumoral, is well documented. However, little is known about their involvement in female reproduction. This study aims to identify circRNAs potentially involved in reproductive women's health. Candidate circRNAs expressed in ovary and sponging miRNAs, already known to be expressed in the ovary, were selected by a computational approach. Using real time PCR, we verified their expression and identified circPUM1 as the most interesting candidate circRNA for further analyses. We assessed the expression of circPUM1 and its linear counterpart in all the follicle compartments and, using a computational and experimental approach, identified circPUM1 direct and indirect targets, miRNAs and mRNAs, respectively, in cumulus cells. We found that both circPUM1 and its mRNA host gene are co-expressed in all the follicle compartments and proposed circPUM1 as a potential regulator of PTEN, finding a strong positive correlation between circPUM1 and PTEN mRNA. These results suggest a possible regulation of PTEN by circPUM1 in cumulus cells and point out the important role of circRNA inside the pathways related to follicle growth and oocyte maturation.
Collapse
Affiliation(s)
- Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Carmen Ferrara
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Anna Fazzio
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Noemi Agosta
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (N.A.); (M.S.)
| | - Marianna Scribano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (N.A.); (M.S.)
| | - Maria Elena Vento
- IVF Unit, Cannizzaro Hospital, 95123 Catania, Italy; (M.E.V.); (P.B.)
| | - Placido Borzì
- IVF Unit, Cannizzaro Hospital, 95123 Catania, Italy; (M.E.V.); (P.B.)
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Michele Stella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Paolo Scollo
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy;
- Maternal and Child Department, Obstetrics and Gynecology Unit, Cannizzaro Hospital, 95123 Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (C.F.); (A.F.); (C.B.); (M.S.); (M.R.); (D.B.); (M.P.); (C.D.P.); (R.B.)
| |
Collapse
|
31
|
Asemi R, Ebrahimi A, Hamblin MR, Mirzaei H, Asemi Z. CircRNAs as a Novel Class of Potential Diagnostic Biomarkers in Bipolar Disorders. Curr Med Chem 2024; 31:5567-5575. [PMID: 37448362 DOI: 10.2174/0929867331666230713143322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023]
Abstract
Bipolar disorder (BD) is a severe mood disorder with uncertain causes and debilitating signs and symptoms. Gene expression is crucial to the pathophysiology of BD and could be influenced by genetic or epigenetic factors, by either direct modification of mRNA templates or by regulation of post-transcriptional translation. Recent evidence has shown that several critical processes in psychiatric diseases, such as neuronal activity or plasticity, synaptic transmission, and neuronal depolarization, have all been linked to circular RNAs (circRNAs). The circRNA profile of neuronal cells, which may be easily ascertained by a liquid biopsy, may shed light on the molecular pathophysiology of psychiatric disorders, including BD. This approach could aid in future development in diagnosis and treatment. In this review, we provide an in-depth understanding of the roles of circRNAs in the pathophysiology of BD and offer new insight into their potential as emerging diagnostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amrollah Ebrahimi
- Department of Health Psychology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
32
|
Chen S, Song P, Wang Y, Wang Z, Xue J, Jiang Y, Zhou Y, Zhao J, Tang L. CircMAPK9 promotes adipogenesis through modulating hsa-miR-1322/FTO axis in obesity. iScience 2023; 26:107756. [PMID: 37692283 PMCID: PMC10492215 DOI: 10.1016/j.isci.2023.107756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
Circular RNA (circRNA) is a special category of non-coding RNA that has garnered increasing attention in the exploration of lipid metabolism. However, the functional regulation mechanisms of circRNAs in obesity diseases remain unclear. By whole transcriptome sequencing, a total of 164 circular RNAs were found to exhibit differential expression between lean and obese individuals. RT-qPCR was used to detect significant expression of circMAPK9 in obese individuals, and it was closely related to BMI. Western blot, triglyceride detection, and Oil Red O staining were employed to investigate the role of circMAPK9/hsa-miR-1322/FTO in adipogenesis. In adipocytes, the connection between hsa-miR-1322 and circMAPK9 was verified using fluorescence in situ hybridization, luciferase reporter assay, and RNA immunoprecipitation. It was found that circMAPK9 competed for binding hsa-miR-1322 in the cytoplasm, weakening the inhibitory effect on FTO and promoting adipogenesis. Our study revealed the regulatory mechanism and important role of circMAPK9 in the process of adipogenesis.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Peng Song
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Yu Wang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Zeng Wang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Jiaming Xue
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Yicheng Jiang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Yan Zhou
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Jie Zhao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| |
Collapse
|
33
|
Ivanišević V, Žilić L, Čunko M, Fadiga H, Munitić I, Jurak I. RNA Editing-Dependent and -Independent Roles of Adenosine Deaminases Acting on RNA Proteins in Herpesvirus Infection-Hints on Another Layer of Complexity. Viruses 2023; 15:2007. [PMID: 37896783 PMCID: PMC10611208 DOI: 10.3390/v15102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The Adenosine Deaminases Acting on RNA (ADAR) catalyze the posttranscriptional deamination of adenosine residues to inosine in double-stranded RNAs (dsRNAs, A-to-I editing), preventing the overactivation of dsRNA sensor molecules and interferons. RNA editing is the cornerstone of innate immunity that distinguishes between self and non-self (virus), and it is essential for normal regulation of cellular homeostasis. Although much is already known about the role of ADAR proteins in RNA virus infection, the role of ADAR proteins in herpesvirus infection remains largely unexplored. In this review, we provide several lines of evidence from studies of different herpesviruses for another level of complexity in regulating the already intricate biphasic life cycle of herpesviruses.
Collapse
Affiliation(s)
| | | | | | | | | | - Igor Jurak
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia (L.Ž.)
| |
Collapse
|
34
|
Tuerdimaimaiti D, Abuduaini B, Kang S, Jiao J, Li M, Madeniyati W, Tuerdi B, Aili G, Tuerhong R, Kulaxi A. Genome-wide identification and functional analysis of dysregulated alternative splicing profiles in sepsis. J Inflamm (Lond) 2023; 20:31. [PMID: 37749550 PMCID: PMC10521395 DOI: 10.1186/s12950-023-00355-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/10/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND An increasing body of evidence now shows that the long-term mortality of patients with sepsis are associated with various sepsis-related immune cell defects. Alternative splicing (AS), as a sepsis-related immune cell defect, is considered as a potential immunomodulatory therapy target to improve patient outcomes. However, our understanding of the role AS plays in sepsis is currently insufficient. AIM This study investigated possible associations between AS and the gene regulatory networks affecting immune cells. We also investigated apoptosis and AS functionality in sepsis pathophysiology. METHODS In this study, we assessed publicly available mRNA-seq data that was obtained from the NCBI GEO dataset (GSE154918), which included a healthy group (HLTY), a mild infection group (INF1), asepsis group (Seps), and a septic shock group (Shock). A total of 79 samples (excluding significant outliers) were identified by a poly-A capture method to generate RNA-seq data. The variable splicing events and highly correlated RNA binding protein (RBP) genes in each group were then systematically analyzed. RESULTS For the first time, we used systematic RNA-seq analysis of sepsis-related AS and identified 1505 variable AS events that differed significantly (p <= 0.01) across the four groups. In the sepsis group, the genes related to significant AS events, such as, SHISA5 and IFI27, were mostly enriched in the cell apoptosis pathway. Furthermore, we identified differential splicing patterns within each of the four groups. Significant differences in the expression of RNA Binding Protein(RBP) genes were observed between the control group and the sepsis group. RBP gene expression was highly correlated with variant splicing events in sepsis, as determined by co-expression analysis; The expression of DDX24, CBFA2T2, NOP, ILF3, DNMT1, FTO, PPRC1, NOLC1 RBPs were significant reduced in sepsis compared to the healthy group. Finally, we constructed an RBP-AS functional network. CONCLUSION Analysis indicated that the RBP-AS functional network serves as a critical post-transcriptional mechanism that regulates the development of sepsis. AS dysregulation is associated with alterations in the regulatory gene expression network that is involved in sepsis. Therefore, the RBP-AS expression network could be useful in refining biomarker predictions in the development of new therapeutic targets for the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Dilixiati Tuerdimaimaiti
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China
| | - Buzukela Abuduaini
- The Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University, Wulumuqi, Xinjiang, 830054, China
| | - Shaotao Kang
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China
| | - Jinliang Jiao
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China
| | - Mengchen Li
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China
| | - Wolazihan Madeniyati
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China
| | - Baihetinisha Tuerdi
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China.
| | - Gulisitan Aili
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China
| | - Reyila Tuerhong
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China
| | - Ajiguli Kulaxi
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China
| |
Collapse
|
35
|
He Z, Zhu Q. Circular RNAs: Emerging roles and new insights in human cancers. Biomed Pharmacother 2023; 165:115217. [PMID: 37506578 DOI: 10.1016/j.biopha.2023.115217] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules formed by mRNA exon back-splicing. Although the circRNA functions remain largely unknown, their currently known biological activities include: acting as competing endogenous RNA (ceRNA) to adsorb microRNA (miRNA), binding proteins, regulating transcription or splicing, and ability to be translated into proteins or peptides. A growing number of studies have found that many circRNAs are abnormally expressed in various cancers, and their dysregulation is highly correlated with tumor progression. Therefore, diagnosis and treatment using circRNAs as biomarkers and therapeutic targets, respectively, has gradually become an attractive research topic. In this review, we introduced the canonical biogenesis pathways and degradation mechanisms of circRNAs. In addition, we examined the biological functions of circRNAs in vivo. Finally, we discussed the current clinical applications and challenges faced by circRNA, and proposed future directions for this promising research field.
Collapse
Affiliation(s)
- Zhilin He
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
36
|
Wang XF, Yu CQ, You ZH, Qiao Y, Li ZW, Huang WZ, Zhou JR, Jin HY. KS-CMI: A circRNA-miRNA interaction prediction method based on the signed graph neural network and denoising autoencoder. iScience 2023; 26:107478. [PMID: 37583550 PMCID: PMC10424127 DOI: 10.1016/j.isci.2023.107478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
Circular RNA (circRNA) plays an important role in the diagnosis, treatment, and prognosis of human diseases. The discovery of potential circRNA-miRNA interactions (CMI) is of guiding significance for subsequent biological experiments. Limited by the small amount of experimentally supported data and high randomness, existing models are difficult to accomplish the CMI prediction task based on real cases. In this paper, we propose KS-CMI, a novel method for effectively accomplishing CMI prediction in real cases. KS-CMI enriches the 'behavior relationships' of molecules by constructing circRNA-miRNA-cancer (CMCI) networks and extracts the behavior relationship attribute of molecules based on balance theory. Next, the denoising autoencoder (DAE) is used to enhance the feature representation of molecules. Finally, the CatBoost classifier was used for prediction. KS-CMI achieved the most reliable prediction results in real cases and achieved competitive performance in all datasets in the CMI prediction.
Collapse
Affiliation(s)
- Xin-Fei Wang
- School of Information Engineering, Xijing University, Xi’an, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi’an, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Yan Qiao
- College of Agriculture and Forestry, Longdong University, Qingyang, China
| | - Zheng-Wei Li
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Wen-Zhun Huang
- School of Information Engineering, Xijing University, Xi’an, China
| | - Ji-Ren Zhou
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Hai-Yan Jin
- School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, China
| |
Collapse
|
37
|
Macvanin MT, Gluvic Z, Bajic V, Isenovic ER. Novel insights regarding the role of noncoding RNAs in diabetes. World J Diabetes 2023; 14:958-976. [PMID: 37547582 PMCID: PMC10401459 DOI: 10.4239/wjd.v14.i7.958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders defined by hyperglycemia induced by insulin resistance, inadequate insulin secretion, or excessive glucagon secretion. In 2021, the global prevalence of diabetes is anticipated to be 10.7% (537 million people). Noncoding RNAs (ncRNAs) appear to have an important role in the initiation and progression of DM, according to a growing body of research. The two major groups of ncRNAs implicated in diabetic disorders are miRNAs and long noncoding RNAs. miRNAs are single-stranded, short (17-25 nucleotides), ncRNAs that influence gene expression at the post-transcriptional level. Because DM has reached epidemic proportions worldwide, it appears that novel diagnostic and therapeutic strategies are required to identify and treat complications associated with these diseases efficiently. miRNAs are gaining attention as biomarkers for DM diagnosis and potential treatment due to their function in maintaining physiological homeostasis via gene expression regulation. In this review, we address the issue of the gradually expanding global prevalence of DM by presenting a complete and up-to-date synopsis of various regulatory miRNAs involved in these disorders. We hope this review will spark discussion about ncRNAs as prognostic biomarkers and therapeutic tools for DM. We examine and synthesize recent research that used novel, high-throughput technologies to uncover ncRNAs involved in DM, necessitating a systematic approach to examining and summarizing their roles and possible diagnostic and therapeutic uses.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladan Bajic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
38
|
Noor S, Pritha AN, Pasmay AA, Sanchez JE, Sanchez JJ, Fernandez-Oropeza AK, Sun MS, Dell’Orco M, Davies S, Savage DD, Mellios N, Milligan ED. Prenatal alcohol exposure dysregulates spinal and circulating immune cell circular RNA expression in adult female rats with chronic sciatic neuropathy. Front Neurosci 2023; 17:1180308. [PMID: 37360167 PMCID: PMC10288115 DOI: 10.3389/fnins.2023.1180308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Alcohol consumption during pregnancy is associated with Fetal Alcohol Spectrum Disorders (FASD) that results in a continuum of central nervous system (CNS) deficits. Emerging evidence from both preclinical and clinical studies indicate that the biological vulnerability to chronic CNS disease in FASD populations is driven by aberrant neuroimmune actions. Our prior studies suggest that, following minor nerve injury, prenatal alcohol exposure (PAE) is a risk factor for developing adult-onset chronic pathological touch sensitivity or allodynia. Allodynia in PAE rats occurs concurrently with heightened proinflammatory peripheral and spinal glial-immune activation. However, minor nerve-injured control rats remain non-allodynic, and corresponding proinflammatory factors are unaltered. A comprehensive molecular understanding of the mechanism(s) that underlie PAE-induced proinflammatory bias during adulthood remains elusive. Non-coding circular RNAs (circRNAs) are emerging as novel modulators of gene expression. Here, we hypothesized that PAE induces dysregulation of circRNAs that are linked to immune function under basal and nerve-injured conditions during adulthood. Utilizing a microarray platform, we carried out the first systematic profiling of circRNAs in adult PAE rats, prior to and after minor nerve injury. The results demonstrate a unique circRNA profile in adult PAE rats without injury; 18 circRNAs in blood and 32 spinal circRNAs were differentially regulated. Following minor nerve injury, more than 100 differentially regulated spinal circRNAs were observed in allodynic PAE rats. Bioinformatic analysis identified that the parental genes of these circRNAs are linked to the NF-κB complex, a central transcription factor for pain-relevant proinflammatory cytokines. Quantitative real-time PCR was employed to measure levels of selected circRNAs and linear mRNA isoforms. We have validated that circVopp1 was significantly downregulated in blood leukocytes in PAE rats, concurrent with downregulation of Vopp1 mRNA levels. Spinal circVopp1 levels were upregulated in PAE rats, regardless of nerve injury. Additionally, PAE downregulated levels of circItch and circRps6ka3, which are linked to immune regulation. These results demonstrate that PAE exerts long-lasting dysregulation of circRNA expression in blood leukocytes and the spinal cord. Moreover, the spinal circRNA expression profile following peripheral nerve injury is differentially modulated by PAE, potentially contributing to PAE-induced neuroimmune dysregulation.
Collapse
|
39
|
Hao Z, Yang Y, Xu D, Feng H, Li K, Ji C, Li M, Zhang H. Over-expression of hsa_circ_0088214 suppresses tumor progression by inhibiting Akt signaling pathway in osteosarcoma. J Orthop Surg Res 2023; 18:385. [PMID: 37237370 DOI: 10.1186/s13018-023-03873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND To explore the effect of has_circ_0088214 in osteosarcoma cells and corresponding mechanisms. METHODS Osteosarcoma cell line MG63 and U2OS were selected in this study. Wound-healing and matrigel transwell assays were performed to detect migration and invasion capacities. CCK-8 assay was used to measure cell growth and cisplatin resistance. Cell apoptosis was observed by Hoechst 33342 staining after H2O2 induce. Western Blot was used to detect protein expression level. The rescue experiments were also performed using an Akt activator SC79. RESULTS Hsa_circ_0088214 was down-regulated in osteosarcoma cells compared to normal osteoblast cells. Over-expression of has_circ_0088214 significantly reduced osteosarcoma cells invasion, migration and resistance to cisplatin, but the apoptotic ratio was increased. The phosphorylation level of Akt could be regulated by hsa_circ_0088214, and rescue experiments proved Akt signaling pathway took part in above biological processes. CONCLUSION Up-regulation of hsa_circ_0088214 suppresses invasion, migration, cisplatin resistance but promoting apoptosis induced by H2O2 by inhibiting Akt signaling pathway in osteosarcoma.
Collapse
Affiliation(s)
- Zhiwei Hao
- Department of Orthopaedics, Liaocheng People's Hospital, No 67 Dongchang West Road, Liaocheng City, 252000, Shandong Province, People's Republic of China
| | - Yiqun Yang
- Department of Orthopaedics, Liaocheng People's Hospital, No 67 Dongchang West Road, Liaocheng City, 252000, Shandong Province, People's Republic of China
| | - Daxia Xu
- Department of Orthopaedics, Liaocheng People's Hospital, No 67 Dongchang West Road, Liaocheng City, 252000, Shandong Province, People's Republic of China
| | - Hongyong Feng
- Department of Orthopaedics, Liaocheng People's Hospital, No 67 Dongchang West Road, Liaocheng City, 252000, Shandong Province, People's Republic of China
| | - Kunpeng Li
- Department of Orthopaedics, Liaocheng People's Hospital, No 67 Dongchang West Road, Liaocheng City, 252000, Shandong Province, People's Republic of China
| | - Changbin Ji
- Department of Orthopaedics, Liaocheng People's Hospital, No 67 Dongchang West Road, Liaocheng City, 252000, Shandong Province, People's Republic of China
| | - Man Li
- Department of Cardiology, Liaocheng People's Hospital, No 67 Dongchang West Road, Liaocheng City, 252000, Shandong Province, People's Republic of China
| | - Honglei Zhang
- Department of Orthopaedics, Liaocheng People's Hospital, No 67 Dongchang West Road, Liaocheng City, 252000, Shandong Province, People's Republic of China.
| |
Collapse
|
40
|
Sun K, Yao H, Zhang P, Sun Y, Ma J, Xia Q. Emerging landscape of circFNDC3B and its role in human malignancies. Front Oncol 2023; 13:1097956. [PMID: 36793611 PMCID: PMC9924128 DOI: 10.3389/fonc.2023.1097956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, more attention has been paid to expanding the abundance of Circular RNAs (circRNAs), while the circRNAs that have been found to have significant functions have not been studied in different diseases. CircFNDC3B is one of the most researched circRNAs generated from fibronectin type III domain-containing protein 3B (FNDC3B) gene. Accumulating researches have reported the multiple functions of circFNDC3B in different cancer types and other non-neoplastic diseases, and predicted that circFNDC3B might be a potential biomarker. Notably, circFNDC3B can play roles in different diseases by binding to various microRNAs (miRNAs), binding to RNA-binding proteins (RBPs), or encoding functional peptides. This paper systematically summarizes the biogenesis and function of circRNAs, reviews and discusses the roles and molecular mechanisms of circFNDC3B and its target genes in different cancers and non-neoplastic diseases, which will do favor to broaden our comprehension of the function of circRNAs and facilitate subsequent research on circFNDC3B.
Collapse
Affiliation(s)
- Kai Sun
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| | - Huibao Yao
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Peizhi Zhang
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| | - Yanning Sun
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| | - Jian Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Qinghua Xia
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| |
Collapse
|
41
|
Circ_0136474 promotes the progression of osteoarthritis by sponging mir-140-3p and upregulating MECP2. J Mol Histol 2023; 54:1-12. [PMID: 36435914 DOI: 10.1007/s10735-022-10100-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) have pivotal roles in the progression of many diseases, including osteoarthritis (OA). The detained function and regulatory mechanism of circ_0136474 in OA are still largely unknown. METHODS The chondrocytes (CHON-001 cells) were exposed to interleukin-1 beta (IL-1β) to mimic the injury in OA. The expression levels of circ_0136474, microRNA-140-3p (miR-140-3p), methyl-CpG-binding protein 2 (MECP2) mRNA were measured by qRT-PCR. Cell proliferation was assessed using CCK-8 assay. Flow cytometry was employed for measuring cell apoptosis. All protein levels were evaluated via western blot analysis. ELISA was used for detecting the concentrations of the inflammatory cytokines. Dual-luciferase reporter analysis and RNA Immunoprecipitation analysis were conducted for confirming the association between miR-140-3p and circ_0136474 or MECP2. RESULTS Circ_0136474 was upregulated in IL-1β-induced CHON-001 cells and OA cartilage tissues. Circ_0136474 deficiency alleviated IL-1β-stimulated CHON-001 cell damage via enhancing cell proliferation and reducing extracellular matrix (ECM) degradation, apoptosis, and inflammation. Circ_0136474 was a sponge of miR-140-3p, and miR-140-3p inhibition reversed the roles of circ_0136474 knockdown in IL-1β-treated CHON-001 cells. Moreover, miR-140-3p directly targeted MECP2, and upregulation of miR-140-3p attenuated L-1β-triggered CHON-001 cell injury via targeting MECP2. Additionally, circ_0136474 regulated MECP2 level via sponging miR-140-3p. CONCLUSION Circ_0136474 knockdown alleviated IL-1β-triggered CHON-001 cell damage through modulation of miR-140-3p/MECP2 axis, indicating a new target for treatment of OA.
Collapse
|
42
|
Koffler-Brill T, Noy Y, Avraham KB. The long and short: Non-coding RNAs in the mammalian inner ear. Hear Res 2023; 428:108666. [PMID: 36566643 PMCID: PMC9883734 DOI: 10.1016/j.heares.2022.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Non-coding RNAs (ncRNAs) play a critical role in the entire body, and their mis-regulation is often associated with disease. In parallel with the advances in high-throughput sequencing technologies, there is a great deal of focus on this broad class of RNAs. Although these molecules are not translated into proteins, they are now well established as significant regulatory components in many biological pathways and pathological conditions. ncRNAs can be roughly divided into two main sub-groups based on the length of the transcript, with both the small and long non-coding RNAs having diverse regulatory functions. The smaller length group includes ribosomal RNAs (rRNA), transfer RNAs (tRNA), small nuclear RNAs (snRNA), small nucleolar RNAs (snoRNA), microRNAs (miRNA), small interfering RNAs (siRNA), and PIWI-associated RNAs (piRNA). The longer length group includes linear long non-coding RNAs (lncRNA) and circular RNAs (circRNA). This review is designed to present the different classes of small and long ncRNA molecules and describe some of their known roles in physiological and pathological conditions, as well as methods used to assess the validity and function of miRNAs and lncRNAs, with a focus on their role and functions in the inner ear, hearing and deafness.
Collapse
Affiliation(s)
- Tal Koffler-Brill
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yael Noy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
43
|
Lan W, Dong Y, Zhang H, Li C, Chen Q, Liu J, Wang J, Chen YPP. Benchmarking of computational methods for predicting circRNA-disease associations. Brief Bioinform 2023; 24:6972300. [PMID: 36611256 DOI: 10.1093/bib/bbac613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/29/2022] [Accepted: 12/11/2022] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidences demonstrate that circular RNA (circRNA) plays an important role in human diseases. Identification of circRNA-disease associations can help for the diagnosis of human diseases, while the traditional method based on biological experiments is time-consuming. In order to address the limitation, a series of computational methods have been proposed in recent years. However, few works have summarized these methods or compared the performance of them. In this paper, we divided the existing methods into three categories: information propagation, traditional machine learning and deep learning. Then, the baseline methods in each category are introduced in detail. Further, 5 different datasets are collected, and 14 representative methods of each category are selected and compared in the 5-fold, 10-fold cross-validation and the de novo experiment. In order to further evaluate the effectiveness of these methods, six common cancers are selected to compare the number of correctly identified circRNA-disease associations in the top-10, top-20, top-50, top-100 and top-200. In addition, according to the results, the observation about the robustness and the character of these methods are concluded. Finally, the future directions and challenges are discussed.
Collapse
Affiliation(s)
- Wei Lan
- School of Computer, Electronic and Information and Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yi Dong
- School of Computer, Electronic and Information and Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Hongyu Zhang
- School of Computer, Electronic and Information and Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Chunling Li
- School of Computer, Electronic and Information and Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qingfeng Chen
- School of Computer, Electronic and Information and State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Jin Liu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
44
|
Recent insights into the roles of circular RNAs in human brain development and neurologic diseases. Int J Biol Macromol 2023; 225:1038-1048. [PMID: 36410538 DOI: 10.1016/j.ijbiomac.2022.11.166] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs. They are single-stranded RNA transcripts characterized with a closed loop structure making them resistant to degrading enzymes. Recently, circRNAs have been suggested with regulatory roles in gene expression involved in controlling various biological processes. Notably, they have demonstrated abundance, dynamic expression, back-splicing events, and spatiotemporally regulation in the human brain. Accordingly, they are expected to be involved in brain functions and related diseases. Studies in animals and human brain have revealed differential expression of circRNAs in brain compartments. Interestingly, contributing roles of circRNAs in the regulation of central nervous system (CNS) development have been demonstrated in a number of studies. It has been proposed that circRNAs play role in substantial neurological functions like neurotransmitter-associated tasks, neural cells maturation, and functions of synapses. Furthermore, 3 main pathways have been identified in association with circRNAs's host genes including axon guidance, Wnt signaling, and transforming growth factor beta (TGF-β) signaling pathways, which are known to be involved in substantial functions like migration and differentiation of neurons and specification of axons, and thus play role in brain development. In this review, we have an overview to the biogenesis, biological functions of circRNAs, and particularly their roles in human brain development and the pathogenesis of neurodegenerative diseases including Alzheimer's diseases, multiple sclerosis, Parkinson's disease and brain tumors.
Collapse
|
45
|
Ai K, Yi L, Wang Y, Li Y. CircRNA_33702 Promotes Renal Fibrosis by Targeting the miR-29b-3p/WNT1-Inducible Signaling Pathway Protein 1 Pathway. J Pharmacol Exp Ther 2023; 384:61-71. [PMID: 36153002 DOI: 10.1124/jpet.122.001280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 12/27/2022] Open
Abstract
Growing evidence suggest that circular RNAs (circRNAs) are critical mediators in renal diseases. However, there have been very few reports about the role of circRNAs in renal fibrosis. In this study, circRNA_33702 was found to be upregulated, both in unilateral ureteral obstruction (UUO) mice and in TGF-β1-treated Boston University mouse proximal tubule cells. Furthermore, hsa_circ_0026331, homologous with mmu_circ_33702, was found to be upregulated in TGF-β1-treated HK-2 cells. Although knockdown of circRNA_33702 or hsa_circ_0026331 was shown to relieve the TGF-β1-induced expression of collagen I, collagen III, and fibronectin, overexpression of circRNA_33702 was found to exert an inhibitory effect on the expression of the same genes. Mechanistically, circRNA_33702 was demonstrated to bind directly with miR-29b-3p and inhibit its expression. MiR-29b-3p mimic was shown to inhibit the TGF-β1-induced expression of collagen I, collagen III, and fibronectin. Moreover, WNT1-inducible signaling pathway protein 1 (WISP1) was identified as a target of miR-29b-3p, and the expression of WISP1 was observed to be repressed by miR-29b-3p. Notably, knockdown of circRNA_33702 was found to attenuate the expression of collagen I, collagen III, and fibronectin by inhibiting the expression of WISP1, and the observed inhibitory effect can be reversed by miR-29b-3p inhibitor. Finally, inhibition of circRNA_33702 was shown to attenuate interstitial fibrosis in UUO mice via the miR-29b-3p/WISP1 axis. In general, our data show that circRNA_33702 may promote renal fibrosis via the miR-29b-3p/WISP1 axis, which may potentially be developed as a new therapeutic target. SIGNIFICANCE STATEMENT: This study's findings suggested that circRNA_33702 plays a profibrosis role and that circRNA_33702 with the homologous human hsa_circ_0026331 may be a novel therapeutic target of renal fibrosis.
Collapse
Affiliation(s)
- Kai Ai
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Lei Yi
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yinhuai Wang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yuan Li
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
46
|
Shi X, Li P, Wu X, Shu J. Whole-transcriptome sequencing identifies key differentially expressed circRNAs/lncRNAs/miRNAs/mRNAs and linked ceRNA networks in adult degenerative scoliosis. Front Mol Neurosci 2023; 16:1038816. [PMID: 37063366 PMCID: PMC10098162 DOI: 10.3389/fnmol.2023.1038816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/10/2023] [Indexed: 04/18/2023] Open
Abstract
Background Adult degenerative scoliosis (ADS) is forecast to be a prevalent disabling condition in an aging society. Universally, its pathogenesis is perceived as intervertebral disc degeneration (IDD), however, a thought-provoking issue is why precisely a subset of patients with disc degeneration develop ADS. Exploring the diversities between common IDD and ADS would contribute to unraveling the etiological mechanisms of ADS. Therefore, we aimed to integrate the circRNA, lncRNA, miRNA, and mRNA expression profiles from normal adults (Normal), patients with lumbar disc herniation (LDH), and ADS by whole transcriptome sequencing, which identifies critical functional ncRNA and ceRNA networks and crosstalk between the various transcripts. Methods The fresh whole blood samples (n = 3/group) were collected from ADS patients, LDH patients, and healthy volunteers (Normal group), which were examined for mRNA, miRNA, lncRNA, and circRNA expression and screened for differentially expressed (DE) ncRNAs. Then, Gene Ontology (GO) and KEGG analyses were performed for gene annotation and enrichment pathways on the DE RNAs, which were constructed as a lncRNA-miRNA-mRNA network. Eventually, DE RNAs were validated by qRT-PCR targeting disc nucleus pulposus (NP) tissue in ADS and LDH group (n = 10/group). Results Compared to the LDH group, we identified 3322 DE mRNAs, 221 DE lncRNAs, 20 DE miRNAs, and 15 DE circRNAs in the ADS. In contrast to Normal, 21 miRNAs and 19 circRNAs were differentially expressed in the ADS. The expression of multiple differentially expressed ncRNAs was confirmed by qRT-PCR analysis to be consistent with the sequencing results. In addition, GO, and KEGG analysis demonstrated that most DE mRNAs and ncRNAs target genes are involved in various biological processes, including Endocytosis, Apoptosis, Rap1 signaling pathway, Notch signaling pathway, and others. The constructed lncRNA-miRNA-mRNA co-expression network was primarily related to angiogenesis and regulation. Conclusion By focusing on comparing asymmetric and symmetric disc degeneration, whole-transcriptome sequencing and bioinformatics analysis systematically screened for key ncRNAs in the development of ADS, which provided an abundance of valuable candidates for the elucidation of regulatory mechanisms. The DE ncRNAs and the lncRNA-miRNA-mRNA network are intrinsically involved in the regulation of mediator and angiogenesis, which may contribute to the insight into the pathogenesis of ADS.
Collapse
Affiliation(s)
- Xin Shi
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Panpan Li
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- *Correspondence: Panpan Li,
| | - Xiang Wu
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Jun Shu
- The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| |
Collapse
|
47
|
Kannampuzha S, Ravichandran M, Mukherjee AG, Wanjari UR, Renu K, Vellingiri B, Iyer M, Dey A, George A, Gopalakrishnan AV. The mechanism of action of non-coding RNAs in placental disorders. Biomed Pharmacother 2022; 156:113964. [DOI: 10.1016/j.biopha.2022.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
48
|
Almuhayawi MS, Al Jaouni SK, Selim S, Alkhalifah DHM, Marc RA, Aslam S, Poczai P. Integrated Pangenome Analysis and Pharmacophore Modeling Revealed Potential Novel Inhibitors against Enterobacter xiangfangensis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214812. [PMID: 36429532 PMCID: PMC9691136 DOI: 10.3390/ijerph192214812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/02/2023]
Abstract
Enterobacter xiangfangensis is a novel, multidrug-resistant pathogen belonging to the Enterobacter genus and has the ability to acquire resistance to multiple antibiotic classes. However, there is currently no registered E. xiangfangensis drug on the market that has been shown to be effective. Hence, there is an urgent need to identify novel therapeutic targets and effective treatments for E. xiangfangensis. In the current study, a bacterial pan genome analysis and subtractive proteomics approach was employed to the core proteomes of six strains of E. xiangfangensis using several bioinformatic tools, software, and servers. However, 2611 nonredundant proteins were predicted from the 21,720 core proteins of core proteome. Out of 2611 nonredundant proteins, 372 were obtained from Geptop2.0 as essential proteins. After the subtractive proteomics and subcellular localization analysis, only 133 proteins were found in cytoplasm. All cytoplasmic proteins were examined using BLASTp against the virulence factor database, which classifies 20 therapeutic targets as virulent. Out of these 20, 3 cytoplasmic proteins: ferric iron uptake transcriptional regulator (FUR), UDP-2,3diacylglucosamine diphosphatase (UDP), and lipid-A-disaccharide synthase (lpxB) were chosen as potential drug targets. These drug targets are important for bacterial survival, virulence, and growth and could be used as therapeutic targets. More than 2500 plant chemicals were used to molecularly dock these proteins. Furthermore, the lowest-binding energetic docked compounds were found. The top five hit compounds, Adenine, Mollugin, Xanthohumol C, Sakuranetin, and Toosendanin demonstrated optimum binding against all three target proteins. Furthermore, molecular dynamics simulations and MM/GBSA analyses validated the stability of ligand-protein complexes and revealed that these compounds could serve as potential E. xiangfangensis replication inhibitors. Consequently, this study marks a significant step forward in the creation of new and powerful drugs against E. xiangfangensis. Future studies should validate these targets experimentally to prove their function in E. xiangfangensis survival and virulence.
Collapse
Affiliation(s)
- Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănă ¸stur Street, 400372 Cluj-Napoca, Romania
| | - Sidra Aslam
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Punjab 38000, Pakistan
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Peter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland
| |
Collapse
|
49
|
Zhang S, Jiang E, Kang Z, Bi Y, Liu H, Xu H, Wang Z, Lei C, Chen H, Lan X. CircRNA Profiling Reveals an Abundant circBDP1 that Regulates Bovine Fat Development by Sponging miR-181b/miR-204 Targeting Sirt1/TRARG1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14312-14328. [PMID: 36269615 DOI: 10.1021/acs.jafc.2c05939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The proliferation and differentiation of preadipocytes is an important factor determining bovine fat development, which is closely related to the feed conversion ratio, carcass traits, and beef quality. The purpose of this study was to identify the effects of candidate circRNA and miRNA on the proliferation and differentiation of bovine preadipocytes in order to provide basic materials for molecular breeding in cattle. circRNA sequencing was performed on bovine adipocyte samples at different differentiation time points, and a total of 1830 differentially expressed circRNAs were identified. Among them, circBDP1, derived from the bovine BDP1 gene, has potential binding sites for miR-204 (known as a regulator of bovine fat development) and miR-181b, which gives us a hint that circBDP1 may regulate bovine fat development by adsorbing miR-204 and miR-181b. Here, our results revealed that circBDP1 overexpression promoted the proliferation and differentiation of bovine preadipocytes. The miRNA profile of bovine adipocytes at different differentiation time points was also analyzed using the small RNA sequencing method, and a total of 89 differentially expressed miRNAs were identified, including miR-204 and miR-181b. As expected, dual-luciferase reporter results showed that circBDP1 competitively adsorbed miR-181b and miR-204. Overexpression and interference of miR-181b in bovine preadipocytes and 3T3-L1 showed that miR-181b promoted the proliferation and differentiation of preadipocytes. Further results displayed that miR-181b and miR-204 simultaneously targeted the SIRT1 gene, and miR-204 also targeted the 3' UTR region of the TRARG1 gene. In summary, this study found that miR-181b and miR-204 were involved in fat development by targeting SIRT1 and TRARG1. The results of this study will lay a foundation for the research of fat development and beef cattle industry.
Collapse
Affiliation(s)
- Sihuan Zhang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei230036, P.R. China
| | - Enhui Jiang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Zihong Kang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100193, China
| | - Yi Bi
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Hongfei Liu
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Han Xu
- School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong510006, China
| | - Zhen Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Chuzhao Lei
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Xianyong Lan
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| |
Collapse
|
50
|
Zhang C, Gao R, Zhou R, Chen H, Liu C, Zhu T, Chen C. The emerging power and promise of non-coding RNAs in chronic pain. Front Mol Neurosci 2022; 15:1037929. [PMID: 36407760 PMCID: PMC9668864 DOI: 10.3389/fnmol.2022.1037929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 08/26/2023] Open
Abstract
Chronic pain (CP) is an unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage lasting longer than 3 months. CP is the main reason why people seek medical care and exerts an enormous economic burden. Genome-wide expression analysis has revealed that diverse essential genetic elements are altered in CP patients. Although many possible mechanisms of CP have been revealed, we are still unable to meet all the analgesic needs of patients. In recent years, non-coding RNAs (ncRNAs) have been shown to play essential roles in peripheral neuropathy and axon regeneration, which is associated with CP occurrence and development. Multiple key ncRNAs have been identified in animal models of CP, such as microRNA-30c-5p, ciRS-7, and lncRNA MRAK009713. This review highlights different kinds of ncRNAs in the regulation of CP, which provides a more comprehensive understanding of the pathogenesis of the disease. It mainly focuses on the contributions of miRNAs, circRNAs, and lncRNAs to CP, specifically peripheral neuropathic pain (NP), diabetic NP, central NP associated with spinal cord injury, complex regional pain syndrome, inflammatory pain, and cancer-induced pain. In addition, we summarize some potential ncRNAs as novel biomarkers for CP and its complications. With an in-depth understanding of the mechanism of CP, ncRNAs may provide novel insight into CP and could become new therapeutic targets in the future.
Collapse
Affiliation(s)
- Changteng Zhang
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruihao Zhou
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changliang Liu
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chan Chen
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|