1
|
Nan L, Li Y, Ma C, Meng X, Han Y, Li H, Huang M, Qin Y, Ren X. Identification and Expression Analysis of the WOX Transcription Factor Family in Foxtail Millet ( Setaria italica L.). Genes (Basel) 2024; 15:476. [PMID: 38674410 PMCID: PMC11050393 DOI: 10.3390/genes15040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
WUSCHEL-related homeobox (WOX) transcription factors are unique to plants and play pivotal roles in plant development and stress responses. In this investigation, we acquired protein sequences of foxtail millet WOX gene family members through homologous sequence alignment and a hidden Markov model (HMM) search. Utilizing conserved domain prediction, we identified 13 foxtail millet WOX genes, which were classified into ancient, intermediate, and modern clades. Multiple sequence alignment results revealed that all WOX proteins possess a homeodomain (HD). The SiWOX genes, clustered together in the phylogenetic tree, exhibited analogous protein spatial structures, gene structures, and conserved motifs. The foxtail millet WOX genes are distributed across 7 chromosomes, featuring 3 pairs of tandem repeats: SiWOX1 and SiWOX13, SiWOX4 and SiWOX5, and SiWOX11 and SiWOX12. Collinearity analysis demonstrated that WOX genes in foxtail millet exhibit the highest collinearity with green foxtail, followed by maize. The SiWOX genes primarily harbor two categories of cis-acting regulatory elements: Stress response and plant hormone response. Notably, prominent hormones triggering responses include methyl jasmonate, abscisic acid, gibberellin, auxin, and salicylic acid. Analysis of SiWOX expression patterns and hormone responses unveiled potential functional diversity among different SiWOX genes in foxtail millet. These findings lay a solid foundation for further elucidating the functions and evolution of SiWOX genes.
Collapse
Affiliation(s)
- Lizhang Nan
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yajun Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Cui Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Xiaowei Meng
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Hongying Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Mingjing Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yingying Qin
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Xuemei Ren
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| |
Collapse
|
2
|
Chen X, Hou Y, Cao Y, Wei B, Gu L. A Comprehensive Identification and Expression Analysis of the WUSCHEL Homeobox-Containing Protein Family Reveals Their Special Role in Development and Abiotic Stress Response in Zea mays L. Int J Mol Sci 2023; 25:441. [PMID: 38203611 PMCID: PMC10779079 DOI: 10.3390/ijms25010441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Maize is an important food and cash crop worldwide. The WUSCHEL (WUS)-related homeobox (WOX) transcription factor (TF) family plays a significant role in the development process and the response to abiotic stress of plants. However, few studies have been reported on the function of WOX genes in maize. This work, utilizing the latest maize B73 reference genome, results in the identification of 22 putative ZmWOX gene family members. Except for chromosome 5, the 22 ZmWOX genes were homogeneously distributed on the other nine chromosomes and showed three tandem duplication and 10 segmental duplication events. Based on phylogenetic characteristics, ZmWOXs are divided into three clades (e.g., WUS, intermediate, and ancient groups), and the majority of ZmWOXs in same group display similar gene and protein structures. Cross-species collinearity results indicated that some WOX genes might be evolutionarily conservative. The promoter region of ZmWOX family members is enriched in light, plant growth/hormone, and abiotic stress-responsive elements. Tissue-specific expression evaluation showed that ZmWOX genes might play a significant role in the occurrence of maize reproductive organs. Transcriptome data and RT-qPCR analysis further showed that six ZmWOX genes (e.g., ZmWOX1, 4, 6, 13, 16, and 18) were positively or negatively modulated by temperature, salt, and waterlogging stresses. Moreover, two ZmWOXs, ZmWOX1 and ZmWOX18, both were upregulated by abiotic stress. ZmWOX18 was localized in the nucleus and had transactivation activities, while ZmWOX1 was localized in both the cytoplasm and nucleus, without transactivation activity. Overall, this work offers new perspectives on the evolutionary relationships of ZmWOX genes and might provide a resource for further detecting the biological functions of ZmWOXs.
Collapse
Affiliation(s)
| | | | | | | | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (X.C.); (Y.H.); (Y.C.); (B.W.)
| |
Collapse
|
3
|
Zheng R, Peng Y, Chen J, Zhu X, Xie K, Ahmad S, Zhao K, Peng D, Liu ZJ, Zhou Y. The Genome-Level Survey of the WOX Gene Family in Melastoma dodecandrum Lour. Int J Mol Sci 2023; 24:17349. [PMID: 38139178 PMCID: PMC10743900 DOI: 10.3390/ijms242417349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Though conserved in higher plants, the WOX transcription factors play crucial roles in plant growth and development of Melastoma dodecandrum Lour., which shows pioneer position in land ecosystem formation and produces nutritional fruits. Identifying the WOX family genes in M. dodecandrum is imperative for elucidating its growth and development mechanisms. However, the WOX genes in M. dodecandrum have not yet been characterized. In this study, by identification 22 WOX genes in M. dodecandrum based on current genome data, we classified family genes into three clades and nine types with homeodomains. We highlighted gene duplications of MedWOX4, which offered evidences of whole-genome duplication events. Promoter analysis illustrated that cis-regulatory elements related to light and stress responses and plant growth were enriched. Expression pattern and RT-qPCR results demonstrated that the majority of WOX genes exhibited expression in the stem. MedWOX13s displayed highest expression across various tissues. MedWOX4s displayed a specific expression in the stem. Collectively, our study provided foundations for elucidating WOX gene functions and further molecular design breeding in M. dodecandrum.
Collapse
Affiliation(s)
- Ruiyue Zheng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Yukun Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Jiemin Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Xuanyi Zhu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Kai Xie
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Sagheer Ahmad
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China;
| | - Donghui Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Yuzhen Zhou
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| |
Collapse
|
4
|
Quan L, Shiting L, Chen Z, Yuyan H, Minrong Z, Shuyan L, Libao C. NnWOX1-1, NnWOX4-3, and NnWOX5-1 of lotus (Nelumbo nucifera Gaertn)promote root formation and enhance stress tolerance in transgenic Arabidopsis thaliana. BMC Genomics 2023; 24:719. [PMID: 38017402 PMCID: PMC10683310 DOI: 10.1186/s12864-023-09772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/28/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Adventitious roots (ARs) represent an important organ system for water and nutrient uptake in lotus plants because of degeneration of the principal root. The WUSCHEL-related homeobox (WOX) gene regulates plant development and growth by affecting the expression of several other genes. In this study, three WOX genes, NnWOX1-1, NnWOX4-3, and NnWOX5-1, were isolated and their functions were assessed in Arabidopsis plants. RESULTS The full lengths of NnWOX1-1, NnWOX4-3, and NnWOX5-1 were 1038, 645, and 558 bp, encoding 362, 214, and 185 amino acid residues, respectively. Phylogenetic analysis classified NnWOX1-1 and NnWOX4-3 encoding proteins into one group, and NnWOX5-1 and MnWOX5 encoding proteins exhibited strong genetic relationships. The three genes were induced by sucrose and indoleacetic acid (IAA) and exhibited organ-specific expression characteristics. In addition to improving root growth and salt tolerance, NnWOX1-1 and NnWOX4-3 promoted stem development in transgenic Arabidopsis plants. A total of 751, 594, and 541 genes, including 19, 19, and 13 respective genes related to ethylene and IAA metabolism and responses, were enhanced in NnWOX1-1, NnWOX4-3, and NnWOX5-1 transgenic plants, respectively. Further analysis showed that ethylene production rates in transgenic plants increased, whereas IAA, peroxidase, and lignin content did not significantly change. Exogenous application of ethephon on lotus seedlings promoted AR formation and dramatically increased the fresh and dry weights of the plants. CONCLUSIONS NnWOX1-1, NnWOX4-3, and NnWOX5-1 influence root formation, stem development, and stress adaptation in transgenic Arabidopsis plants by affecting the transcription of multiple genes. Among these, changes in gene expression involving ethylene metabolism and responses likely critically affect the development of Arabidopsis plants. In addition, ethylene may represent an important factor affecting AR formation in lotus seedlings.
Collapse
Affiliation(s)
- Liu Quan
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Liang Shiting
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Zhao Chen
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Han Yuyan
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Zhao Minrong
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Li Shuyan
- College of Guangling, Yangzhou University, Jiangsu, People's Republic of China.
| | - Cheng Libao
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Tang L, He Y, Liu B, Xu Y, Zhao G. Genome-Wide Identification and Characterization Analysis of WUSCHEL-Related Homeobox Family in Melon ( Cucumis melo L.). Int J Mol Sci 2023; 24:12326. [PMID: 37569702 PMCID: PMC10419029 DOI: 10.3390/ijms241512326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
WUSCHEL-related homeobox (WOX) proteins are very important in controlling plant development and stress responses. However, the WOX family members and their role in response to abiotic stresses are largely unknown in melon (Cucumis melo L.). In this study, 11 WOX (CmWOX) transcript factors with conserved WUS and homeobox motif were identified and characterized, and subdivided into modern clade, ancient clade and intermediate clade based on bioinformatic and phylogenetic analysis. Evolutionary analysis revealed that the CmWOX family showed protein variations in Arabidopsis, tomato, cucumber, melon and rice. Alignment of protein sequences uncovered that all CmWOXs had the typical homeodomain, which consisted of conserved amino acids. Cis-element analysis showed that CmWOX genes may response to abiotic stress. RNA-seq and qRT-PCR results further revealed that the expression of partially CmWOX genes are associated with cold and drought. CmWOX13a and CmWOX13b were constitutively expressed under abiotic stresses, CmWOX4 may play a role in abiotic processes during plant development. Taken together, this study offers new perspectives on the CmWOX family's interaction and provides the framework for research on the molecular functions of CmWOX genes.
Collapse
Affiliation(s)
- Lingli Tang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (L.T.); (Y.H.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572000, China
| | - Yuhua He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (L.T.); (Y.H.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572000, China
| | - Bin Liu
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Yongyang Xu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (L.T.); (Y.H.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572000, China
| | - Guangwei Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (L.T.); (Y.H.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572000, China
| |
Collapse
|
6
|
Sun R, Zhang X, Ma D, Liu C. Identification and Evolutionary Analysis of Cotton ( Gossypium hirsutum) WOX Family Genes and Their Potential Function in Somatic Embryogenesis. Int J Mol Sci 2023; 24:11077. [PMID: 37446257 DOI: 10.3390/ijms241311077] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
WUSCHEL-related homeobox (WOX) proteins participate profoundly in plant development and stress responses. As the difficulty of somatic embryogenesis severely constrains cotton genetic modification, in this study, we identified and comprehensively analyzed WOX genes in cotton. As a result, 40 WOX genes were identified in the upland cotton genome. All these cotton WOX genes were classified into three clades, ancient, intermediate, and modern clades, based on the phylogenetic analysis of previous studies. The majority (24) of the cotton WOX genes belonged to the modern clade, in which all gene members contain the vital functional domain WUS-box, which is necessary for plant stem cell regulation and maintenance. Collinearity analysis indicated that the WOX gene family in cotton expanded to some degree compared to Arabidopsis, especially in the modern clade. Genome duplication and segmental duplication may greatly contribute to expansion. Hormone-response- and abiotic-stress-response-related cis-acting regulatory elements were widely distributed in the promoter regions of cotton WOX genes, suggesting that the corresponding functions of stress responses and the participation of development processes were involved in hormone responses. By RNA sequencing, we profiled the expression patterns of cotton WOX genes in somatic embryogenesis. Only about half of cotton WOX genes were actively expressed during somatic embryogenesis; different cotton WOX genes may function in different development stages. The most representative, GhWOX4 and GhWOX13, may function in almost all stages of somatic embryogenesis; GhWOX2 and GhWOX9 function in the late stages of embryo patterning and embryo development during cotton somatic embryogenesis. Co-expression analysis showed that the cotton WOXs co-expressed with genes involved in extensive genetic information processing, including DNA replication, DNA repair, homologous recombination, RNA transport, protein processing, and several signaling and metabolism pathways, in which plant hormones signal transduction, MAPK signaling pathways, phosphatidylinositol signaling systems, and ABC transporters, as well as the metabolism of fatty acid; valine, leucine, and isoleucine biosynthesis; and cutin, suberine, and wax biosynthesis, were most significantly enriched. Taken together, the present study provides useful information and new insights into the functions of cotton WOX genes during somatic embryogenesis. The specific regulatory roles of some WOX genes in somatic embryogenesis are worthy of further functional research.
Collapse
Affiliation(s)
- Ruibin Sun
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xue Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Dan Ma
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Chuanliang Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Guo S, Gao W, Zeng M, Liu F, Yang Q, Chen L, Wang Z, Jin Y, Xiang P, Chen H, Wen Z, Shi Q, Song Z. Characterization of TLR1 and expression profiling of TLR signaling pathway related genes in response to Aeromonas hydrophila challenge in hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × P. vachelli ♂). Front Immunol 2023; 14:1163781. [PMID: 37056759 PMCID: PMC10086376 DOI: 10.3389/fimmu.2023.1163781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Toll‐like receptor 1 (TLR1) mediates the innate immune response to a variety of microbes through recognizing cell wall components (such as bacterial lipoproteins) in mammals. However, the detailed molecular mechanism of TLR1 involved in pathogen immunity in the representative hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × P. vachelli ♂) has not been well studied. In the present study, we identified the TLR1 gene from the hybrid yellow catfish, and further comparative synteny data from multiple species confirmed that the TLR1 gene is highly conserved in teleosts. Phylogenetic analysis revealed distinguishable TLR1s in diverse taxa, suggesting consistence in evolution of the TLR1 proteins with various species. Structural prediction indicated that the three-dimensional structures of TLR1 proteins are relatively conserved among different taxa. Positive selection analysis showed that purifying selection dominated the evolutionary process of TLR1s and TLR1-TIR domain in both vertebrates and invertebrates. Expression pattern analysis based on the tissue distribution showed that TLR1 mainly transcribed in the gonad, gallbladder and kidney, and the mRNA levels of TLR1 in kidney were remarkably up-regulated after Aeromonas hydrophila stimulation, indicating that TLR1 participates in the inflammatory responses to exogenous pathogen infection in hybrid yellow catfish. Homologous sequence alignment and chromosomal location indicated that the TLR signaling pathway is very conserved in the hybrid yellow catfish. The expression patterns of TLR signaling pathway related genes (TLR1- TLR2 - MyD88 - FADD - Caspase 8) were consistent after pathogen stimulation, revealing that the TLR signaling pathway is triggered and activated after A. hydrophila infection. Our findings will lay a solid foundation for better understanding the immune roles of TLR1 in teleosts, as well as provide basic data for developing strategies to control disease outbreak in hybrid yellow catfish.
Collapse
Affiliation(s)
- Shengtao Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenxue Gao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengsha Zeng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fenglin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qingzhuoma Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lei Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zesong Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yanjun Jin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Peng Xiang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hanxi Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhengyong Wen
- Key Laboratory of Sichuan for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- *Correspondence: Zhengyong Wen, ; Qiong Shi, ; Zhaobin Song,
| | - Qiong Shi
- Key Laboratory of Sichuan for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- *Correspondence: Zhengyong Wen, ; Qiong Shi, ; Zhaobin Song,
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Zhengyong Wen, ; Qiong Shi, ; Zhaobin Song,
| |
Collapse
|
8
|
Riccucci E, Vanni C, Vangelisti A, Fambrini M, Giordani T, Cavallini A, Mascagni F, Pugliesi C. Genome-Wide Analysis of WOX Multigene Family in Sunflower ( Helianthus annuus L.). Int J Mol Sci 2023; 24:3352. [PMID: 36834765 PMCID: PMC9968055 DOI: 10.3390/ijms24043352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
The WUSCHEL-related homeobox (WOX) is a family of specific transcription factors involved in plant development and response to stress, characterized by the presence of a homeodomain. This study represents the first comprehensive characterization of the WOX family in a member of the Asteraceae family, the sunflower (H. annuus L.). Overall, we identified 18 putative HaWOX genes divided by phylogenetic analysis in three major clades (i.e., ancient, intermediate, and WUS). These genes showed conserved structural and functional motifs. Moreover, HaWOX has homogeneously distributed on H. annuus chromosomes. In particular, 10 genes originated after whole segment duplication events, underpinning a possible evolution of this family along with the sunflower genome. In addition, gene expression analysis evidenced a specific pattern of regulation of the putative 18 HaWOX during embryo growth and in ovule and inflorescence meristem differentiation, suggesting a pivotal role for this multigenic family in sunflower development. The results obtained in this work improved the understanding of the WOX multigenic family, providing a resource for future study on functional analysis in an economically valuable species such as sunflower.
Collapse
Affiliation(s)
- Ettore Riccucci
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Cosimo Vanni
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
9
|
Guo S, Zeng M, Gao W, Li F, Wei X, Shi Q, Wen Z, Song Z. Toll-like Receptor 3 in the Hybrid Yellow Catfish ( Pelteobagrus fulvidraco ♀ × P. vachelli ♂): Protein Structure, Evolution and Immune Response to Exogenous Aeromonas hydrophila and Poly (I:C) Stimuli. Animals (Basel) 2023; 13:288. [PMID: 36670828 PMCID: PMC9854889 DOI: 10.3390/ani13020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
As a major mediator of cellular response to viral infection in mammals, Toll-like receptor 3 (TLR3) was proved to respond to double-stranded RNA (dsRNA). However, the molecular mechanism by which TLR3 functions in the viral infection response in teleosts remains to be investigated. In this study, the Toll-like receptor 3 gene of the hybrid yellow catfish was identified and characterized by comparative genomics. Furthermore, multiple sequence alignment, genomic synteny and phylogenetic analysis suggested that the homologous TLR3 genes were unique to teleosts. Gene structure analysis showed that five exons and four introns were common components of TLR3s in the 12 examined species, and interestingly the third exon in teleosts was the same length of 194 bp. Genomic synteny analysis indicated that TLR3s were highly conserved in various teleosts, with similar organizations of gene arrangement. De novo predictions showed that TLR3s were horseshoe-shaped in multiple taxa except for avian (with a round-shaped structure). Phylogenetic topology showed that the evolution of TLR3 was consistent with the evolution of the studied species. Selection analysis showed that the evolution rates of TLR3 proteins were usually higher than those of TLR3-TIR domains, indicating that the latter were more conserved. Tissue distribution analysis showed that TLR3s were widely distributed in the 12 tested tissues, with the highest transcriptions in liver and intestine. In addition, the transcription levels of TLR3 were significantly increased in immune-related tissues after infection of exogenous Aeromonas hydrophila and poly (I:C). Molecular docking showed that TLR3 in teleosts forms a complex with poly (I:C). In summary, our present results suggest that TLR3 is a pattern recognition receptor (PRR) gene in the immune response to pathogen infections in hybrid yellow catfish.
Collapse
Affiliation(s)
- Shengtao Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Mengsha Zeng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wenxue Gao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Fan Li
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiuying Wei
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Zhengyong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Fambrini M, Usai G, Pugliesi C. Induction of Somatic Embryogenesis in Plants: Different Players and Focus on WUSCHEL and WUS-RELATED HOMEOBOX (WOX) Transcription Factors. Int J Mol Sci 2022; 23:15950. [PMID: 36555594 PMCID: PMC9781121 DOI: 10.3390/ijms232415950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
In plants, other cells can express totipotency in addition to the zygote, thus resulting in embryo differentiation; this appears evident in apomictic and epiphyllous plants. According to Haberlandt's theory, all plant cells can regenerate a complete plant if the nucleus and the membrane system are intact. In fact, under in vitro conditions, ectopic embryos and adventitious shoots can develop from many organs of the mature plant body. We are beginning to understand how determination processes are regulated and how cell specialization occurs. However, we still need to unravel the mechanisms whereby a cell interprets its position, decides its fate, and communicates it to others. The induction of somatic embryogenesis might be based on a plant growth regulator signal (auxin) to determine an appropriate cellular environment and other factors, including stress and ectopic expression of embryo or meristem identity transcription factors (TFs). Still, we are far from having a complete view of the regulatory genes, their target genes, and their action hierarchy. As in animals, epigenetic reprogramming also plays an essential role in re-establishing the competence of differentiated cells to undergo somatic embryogenesis. Herein, we describe the functions of WUSCHEL-RELATED HOMEOBOX (WOX) transcription factors in regulating the differentiation-dedifferentiation cell process and in the developmental phase of in vitro regenerated adventitious structures.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
11
|
Yu Y, Yang M, Liu X, Xia Y, Hu R, Xia Q, Jing D, Guo Q. Genome-wide analysis of the WOX gene family and the role of EjWUSa in regulating flowering in loquat ( Eriobotrya japonica). FRONTIERS IN PLANT SCIENCE 2022; 13:1024515. [PMID: 36407616 PMCID: PMC9669421 DOI: 10.3389/fpls.2022.1024515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The WUSCHEL (WUS)-related homeobox (WOX) gene family plays a crucial role in stem cell maintenance, apical meristem formation, embryonic development, and various other developmental processes. However, the identification and function of WOX genes have not been reported in perennial loquat. In this study, 18 EjWOX genes were identified in the loquat genome. Chromosomal localization analysis showed that 18 EjWOX genes were located on 12 of 17 chromosomes. Gene structure analysis showed that all EjWOX genes contain introns, of which 11 EjWOX genes contain untranslated regions. There are 8 pairs of segmental duplication genes and 0 pairs of tandem duplication genes in the loquat WOX family, suggesting that segmental duplications might be the main reason for the expansion of the loquat WOX family. A WOX transcription factor gene named EjWUSa was isolated from loquat. The EjWUSa protein was localized in the nucleus. Protein interactions between EjWUSa with EjWUSa and EjSTM were verified. Compared with wild-type Arabidopsis thaliana, the 35S::EjWUSa transgenic Arabidopsis showed early flowering. Our study provides an important basis for further research on the function of EjWOX genes and facilitates the molecular breeding of loquat early-flowering varieties.
Collapse
Affiliation(s)
- Yuanhui Yu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Miaomiao Yang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xinya Liu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ruoqian Hu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qingqing Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Danlong Jing
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Sun J, Tian Z, Li X, Li S, Li Z, Wang J, Hu Z, Chen H, Guo C, Xie M, Xu R. Systematic analysis of the pectin methylesterase gene family in Nicotiana tabacum and reveal their multiple roles in plant development and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:998841. [PMID: 36247564 PMCID: PMC9554592 DOI: 10.3389/fpls.2022.998841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The pectin methylesterases (PMEs) play multiple roles in regulating plant development and responses to various stresses. In our study, a total of 121 PME genes were identified in the tobacco genome, which were clustered into two groups based on phylogenetic analysis together with Arabidopsis members. The investigations of gene structure and conserved motif indicated that exon/intron and motif organizations were relatively conserved in each group. Additionally, several stress-related elements were identified in the promoter region of these genes. The survey of duplication events revealed that segmental duplications were critical to the expansion of the PME gene family in tobacco. The expression profiles analysis revealed that these genes were expressed in various tissues and could be induced by diverse abiotic stresses. Notably, NtPME029 and NtPME043, were identified as homologues with AtPME3 and AtPME31, respectively. Furthermore, NtPME029 was highly expressed in roots and the over-expression of the NtPME029 gene could promote the development of roots. While NtPME043 could be induced by salt and ABA treatments, and the over-expression of the NtPME043 gene could significantly enhance the salt-stress tolerance in tobacco. Overall, these findings may shed light on the biological and functional characterization of NtPME genes in tobacco.
Collapse
Affiliation(s)
- Jinhao Sun
- Technology Center, China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, China
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhen Tian
- Technology Center, China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, China
| | - Xiaoxu Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Shaopeng Li
- Technology Center, China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, China
| | - Zhiyuan Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jinling Wang
- Technology Center, China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, China
| | - Zongyu Hu
- Technology Center, China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, China
| | - Haiqing Chen
- Technology Center, China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, China
| | - Cun Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming, China
| | - Minmin Xie
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ruyan Xu
- Technology Center, China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, China
| |
Collapse
|
13
|
Wang Z, Cai Q, Xia H, Han B, Li M, Wang Y, Zhu M, Jiao C, Wang D, Zhu J, Yuan W, Zhu D, Xu C, Wang H, Zhou M, Zhang X, Shi J, Chen J. Genome-Wide Identification and Comparative Analysis of WOX Genes in Four Euphorbiaceae Species and Their Expression Patterns in Jatropha curcas. Front Genet 2022; 13:878554. [PMID: 35846114 PMCID: PMC9280045 DOI: 10.3389/fgene.2022.878554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
The WUSCHEL-related homeobox (WOX) proteins are widely distributed in plants and play important regulatory roles in growth and development processes such as embryonic development and organ development. Here, series of bioinformatics methods were utilized to unravel the structural basis and genetic hierarchy of WOX genes, followed by regulation of the WOX genes in four Euphorbiaceae species. A genome-wide survey identified 59 WOX genes in Hevea brasiliensis (H. brasiliensis: 20 genes), Jatropha curcas (J. curcas: 10 genes), Manihot esculenta (M. esculenta: 18 genes), and Ricinus communis (R. communis: 11 genes). The phylogenetic analysis revealed that these WOX members could be clustered into three close proximal clades, such as namely ancient, intermediate and modern/WUS clades. In addition, gene structures and conserved motif analyses further validated that the WOX genes were conserved within each phylogenetic clade. These results suggested the relationships among WOX members in the four Euphorbiaceae species. We found that WOX genes in H. brasiliensis and M. esculenta exhibit close genetic relationship with J. curcas and R. communis. Additionally, the presence of various cis-acting regulatory elements in the promoter of J. curcas WOX genes (JcWOXs) reflected distinct functions. These speculations were further validated with the differential expression profiles of various JcWOXs in seeds, reflecting the importance of two JcWOX genes (JcWOX6 and JcWOX13) during plant growth and development. Our quantitative real-time PCR (qRT-PCR) analysis demonstrated that the JcWOX11 gene plays an indispensable role in regulating plant callus. Taken together, the present study reports the comprehensive characteristics and relationships of WOX genes in four Euphorbiaceae species, providing new insights into their characterization.
Collapse
Affiliation(s)
- Zhanjun Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Qianwen Cai
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Haimeng Xia
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Bingqing Han
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Minhui Li
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Yue Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Minhui Zhu
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Chunyan Jiao
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Dandan Wang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Junjie Zhu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wenya Yuan
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Di Zhu
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Congcong Xu
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Hongyan Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Minghui Zhou
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Xie Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Jinhui Chen,
| |
Collapse
|
14
|
Ren H, Chen S, Hou J, Li H. Genome-wide identification, expression analyses of Wuschel-related homeobox (WOX) genes in Brachypodium distachyon and functional characterization of BdWOX12. Gene X 2022; 836:146691. [PMID: 35738446 DOI: 10.1016/j.gene.2022.146691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022] Open
Abstract
As one kind of plant-specific transcription factors (TFs), WOX (Wuschel-related homeobox) plays an essential role in plant growth and development. In this study, 21 WOX TFs were identified in Brachypodium distachyon. They were divided into ancient, intermediate, and WUS clades based on phylogenetic analysis. These 21 BdWOX genes are mapped on 5 chromosomes unevenly. In the promoters, the most abundant cis-elements are ABRE, TGACG-motif, and G-box. qRT-PCR results showed that most BdWOX genes are expressed in vegetative and reproductive organs. Meanwhile, the expression of 14, 12, and 15 BdWOX genes are up-regulated by exogenous 6-BA, NAA, and GA, respectively. These results indicated that BdWOX genes participate in hormone signaling and regulate plant growth and development. Overexpression of BdWOX12 in Arabidopsis improved the root system, further indicating the functions of BdWOX genes in growth and development. This study provided a basis for the functional elucidation of BdWOX genes.
Collapse
Affiliation(s)
- Hongyu Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Shoukun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Jiayuan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China.
| |
Collapse
|
15
|
Zhang Z, Liu C, Li K, Li X, Xu M, Guo Y. CLE14 functions as a "brake signal" to suppress age-dependent and stress-induced leaf senescence by promoting JUB1-mediated ROS scavenging in Arabidopsis. MOLECULAR PLANT 2022; 15:179-188. [PMID: 34530165 DOI: 10.1016/j.molp.2021.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Leaf senescence is an important developmental process in the plant life cycle and has a significant impact on agriculture. When facing harsh environmental conditions, monocarpic plants often initiate early leaf senescence as an adaptive mechanism to ensure a complete life cycle. Upon initiation, the senescence process is fine-tuned through the coordination of both positive and negative regulators. Here, we report that the small secreted peptide CLAVATA3/ESR-RELATED 14 (CLE14) functions in the suppression of leaf senescence by regulating ROS homeostasis in Arabidopsis. Expression of the CLE14-encoding gene in leaves was significantly induced by age, high salinity, abscisic acid (ABA), salicylic acid, and jasmonic acid. CLE14 knockout plants displayed accelerated progression of both natural and salinity-induced leaf senescence, whereas increased CLE14 expression or treatments with synthetic CLE14 peptides delayed senescence. CLE14 peptide treatments also delayed ABA-induced senescence in detached leaves. Further analysis showed that overexpression of CLE14 led to reduced ROS levels in leaves, where higher expression of ROS scavenging genes was detected. Moreover, CLE14 signaling resulted in transcriptional activation of JUB1, a NAC family transcription factor previously identified as a negative regulator of senescence. Notably, the delay of leaf senescence, reduction in H2O2 level, and activation of ROS scavenging genes by CLE14 peptides were dependent on JUB1. Collectively, these results suggest that the small peptide CLE14 serves as a novel "brake signal" to regulate age-dependent and stress-induced leaf senescence through JUB1-mediated ROS scavenging.
Collapse
Affiliation(s)
- Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Cheng Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Kui Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Mengmeng Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China.
| |
Collapse
|
16
|
Feng C, Zou S, Gao P, Wang Z. In silico identification, characterization expression profile of WUSCHEL-Related Homeobox (WOX) gene family in two species of kiwifruit. PeerJ 2021; 9:e12348. [PMID: 34760371 PMCID: PMC8557698 DOI: 10.7717/peerj.12348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/29/2021] [Indexed: 11/23/2022] Open
Abstract
The WUSCHEL (WUS)-related homeobox (WOX) gene family is a class of plant-specific transcriptional factors and plays a crucial role in forming the shoot apical meristem and embryonic development, stem cell maintenance, and various other developmental processes. However, systematic identification and characterization of the kiwifruit WOX gene family have not been studied. This study identified 17 and 10 WOX genes in A. chinensis (Ac) and A. eriantha (Ae) genomes, respectively. Phylogenetic analysis classified kiwifruit WOX genes from two species into three clades. Analysis of phylogenetics, synteny patterns, and selection pressure inferred that WOX gene families in Ac and Ae had undergone different evolutionary patterns after whole-genome duplication (WGD) events, causing differences in WOX gene number and distribution. Ten conserved motifs were identified in the kiwifruit WOX genes, and motif architectures of WOXs belonging to different clades highly diverged. The cis-element analysis and expression profiles investigation indicated the functional differentiation of WOX genes and identified the potential WOXs in response to stresses. Our results provided insight into general characters, evolutionary patterns, and functional diversity of kiwifruit WOXs.
Collapse
Affiliation(s)
- Chen Feng
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Shuaiyu Zou
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Puxin Gao
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Zupeng Wang
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan, China.,Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
17
|
Xu N, Meng L, Song L, Li X, Du S, Hu F, Lv Y, Song W. Identification and Characterization of Secondary Wall-Associated NAC Genes and Their Involvement in Hormonal Responses in Tobacco ( Nicotiana tabacum). FRONTIERS IN PLANT SCIENCE 2021; 12:712254. [PMID: 34594349 PMCID: PMC8476963 DOI: 10.3389/fpls.2021.712254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/12/2021] [Indexed: 05/02/2023]
Abstract
Secondary wall-associated NAC (SWN) genes are a subgroup of NAC (NAM, ATAF, and CUC) transcription factors (TF) that play a key role in regulating secondary cell wall biosynthesis in plants. However, this gene family has not been systematically characterized, and their potential roles in response to hormones are unknown in Nicotiana tabacum. In this study, a total of 40 SWN genes, of which 12 from Nicotiana tomentosiformis, 13 from Nicotiana sylvestris, and 15 from Nicotiana tabacum, were successfully identified. The 15 SWNs from Nicotiana tabacum were further classified into three groups, namely, vascular-related NAC domain genes (NtVNDs), NAC secondary wall thickening promoting factor genes (NtNSTs), and secondary wall-associated NAC domain genes (NtSNDs). The protein characteristic, gene structure, and chromosomal location of 15 NtSWNs (also named Nt1 to Nt15) were also analyzed. The NtVND and NtNST group genes had five conserved subdomains in their N-terminal regions and a motif (LP[Q/x] L[E/x] S[P/A]) in their diverged C- terminal regions. Some hormones, dark and low-temperature related cis-acting elements, were significantly enriched in the promoters of NtSWN genes. A comprehensive expression profile analysis revealed that Nt4 and Nt12 might play a role in vein development. Others might be important for stem development. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that in the NtNST group, genes such as Nt7, Nt8, and Nt13 were more sensitive than the genes in NtVND and NtSND groups under abiotic stress conditions. A transactivation assay further suggested that Nt7, Nt8, and Nt13 showed a significant transactivation activity. Overall, SWN genes were finally identified and characterized in diploid and tetraploid tobacco, revealing new insights into their evolution, variation, and homology relationships. Transcriptome, cis-acting element, qRT-PCR, and transactivation assay analysis indicated the roles in hormonal and stress responses, which provided further resources in molecular mechanism and genetic improvement.
Collapse
Affiliation(s)
- Na Xu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lin Meng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lin Song
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiaoxu Li
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Shasha Du
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Fengqin Hu
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuanda Lv
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wenjing Song
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
18
|
Wang Q, Guo C, Li Z, Sun J, Wang D, Xu L, Li X, Guo Y. Identification and Analysis of bZIP Family Genes in Potato and Their Potential Roles in Stress Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:637343. [PMID: 34122468 PMCID: PMC8193719 DOI: 10.3389/fpls.2021.637343] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/19/2021] [Indexed: 05/27/2023]
Abstract
The bZIP proteins comprise one of the largest transcription factor families and play important roles in plant growth and development, senescence, metabolic reactions, and stress responses. In this study, 49 bZIP transcription factor-encoding genes (StbZIP genes) on the potato genome were identified and analyzed. The 49 StbZIP genes, which are located on 12 chromosomes of the potato genome, were divided into 11 subgroups together with their Arabidopsis homologs based on the results of phylogenetic analysis. Gene structure and protein motif analysis revealed that members from the same subgroup often possessed similar exon/intron structures and motif organizations, further supporting the results of the phylogenetic analysis. Syntenic analysis indicated the existence of gene duplication events, which might play an important role in the expansion of the bZIP gene family in potato. Expressions of the StbZIP genes were analyzed in a variety of tissues via RNA-Seq data, suggesting functional diversity. Several StbZIP genes were found to be induced by different stress conditions. For example, the expression of StbZIP25, the close homolog of AtbZIP36/ABF2, was significantly upregulated by salt stress treatments. The StbZIP25 protein was found to be located in the nucleus and function as a transcriptional activator. Overexpression of StbZIP25 enhanced salt tolerance in Arabidopsis. The results from this study imply potential roles of the bZIP family genes in the stress response of potato.
Collapse
Affiliation(s)
- Qi Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cun Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinhao Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Wang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Liangtao Xu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
19
|
Shafique Khan F, Zeng RF, Gan ZM, Zhang JZ, Hu CG. Genome-Wide Identification and Expression Profiling of the WOX Gene Family in Citrus sinensis and Functional Analysis of a CsWUS Member. Int J Mol Sci 2021; 22:4919. [PMID: 34066408 PMCID: PMC8124563 DOI: 10.3390/ijms22094919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/23/2023] Open
Abstract
WUSCHEL-related homeobox (WOX) transcription factors (TFs) are well known for their role in plant development but are rarely studied in citrus. In this study, we identified 11 putative genes from the sweet orange genome and divided the citrus WOX genes into three clades (modern/WUSCHEL(WUS), intermediate, and ancient). Subsequently, we performed syntenic relationship, intron-exon organization, motif composition, and cis-element analysis. Co-expression analysis based on RNA-seq and tissue-specific expression patterns revealed that CsWOX gene expression has multiple intrinsic functions. CsWUS homolog of AtWUS functions as a transcriptional activator and binds to specific DNA. Overexpression of CsWUS in tobacco revealed dramatic phenotypic changes, including malformed leaves and reduced gynoecia with no seed development. Silencing of CsWUS in lemon using the virus-induced gene silencing (VIGS) system implied the involvement of CsWUS in cells of the plant stem. In addition, CsWUS was found to interact with CsCYCD3, an ortholog in Arabidopsis (AtCYCD3,1). Yeast one-hybrid screening and dual luciferase activity revealed that two TFs (CsRAP2.12 and CsHB22) bind to the promoter of CsWUS and regulate its expression. Altogether, these results extend our knowledge of the WOX gene family along with CsWUS function and provide valuable findings for future study on development regulation and comprehensive data of WOX members in citrus.
Collapse
Affiliation(s)
| | | | | | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (F.S.K.); (R.-F.Z.); (Z.-M.G.)
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (F.S.K.); (R.-F.Z.); (Z.-M.G.)
| |
Collapse
|
20
|
Cruz JO, San Martin JAB, Lubini G, Strini EJ, Sobral R, Pinoti VF, Ferreira PB, Thomé V, Quiapim AC, Dornelas MC, Pranchevicius MCS, Madueño F, Costa MMR, Goldman MHS. SCI1 Is a Direct Target of AGAMOUS and WUSCHEL and Is Specifically Expressed in the Floral Meristematic Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:642879. [PMID: 33815449 PMCID: PMC8012853 DOI: 10.3389/fpls.2021.642879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The specified floral meristem will develop a pre-established number of floral organs and, thus, terminate the floral meristematic cells. The floral meristematic pool of cells is controlled, among some others, by WUSCHEL (WUS) and AGAMOUS (AG) transcription factors (TFs). Here, we demonstrate that the SCI1 (Stigma/style cell-cycle inhibitor 1) gene, a cell proliferation regulator, starts to be expressed since the floral meristem specification of Nicotiana tabacum and is expressed in all floral meristematic cells. Its expression is higher in the floral meristem and the organs being specified, and then it decreases from outside to inside whorls when the organs are differentiating. SCI1 is co-expressed with N. tabacum WUSCHEL (NtWUS) in the floral meristem and the whorl primordia at very early developmental stages. Later in development, SCI1 is co-expressed with NAG1 (N. tabacum AG) in the floral meristem and specialized tissues of the pistil. In silico analyses identified cis-regulatory elements for these TFs in the SCI1 genomic sequence. Yeast one-hybrid and electrophoresis mobility shift assay demonstrated that both TFs interact with the SCI1 promoter sequence. Additionally, the luciferase activity assay showed that NAG1 clearly activates SCI1 expression, while NtWUS could not do so. Taken together, our results suggest that during floral development, the spatiotemporal regulation of SCI1 by NtWUS and NAG1 may result in the maintenance or termination of proliferative cells in the floral meristem, respectively.
Collapse
Affiliation(s)
- Joelma O. Cruz
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Juca A. B. San Martin
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Greice Lubini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Edward J. Strini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rómulo Sobral
- Biosystems and Integrative Sciences Institute, Plant Functional Biology Center, University of Minho, Braga, Portugal
| | - Vitor F. Pinoti
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Pedro B. Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Thomé
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Andréa C. Quiapim
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marcelo C. Dornelas
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade de Campinas, Campinas, Brazil
| | | | - Francisco Madueño
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - M. Manuela R. Costa
- Biosystems and Integrative Sciences Institute, Plant Functional Biology Center, University of Minho, Braga, Portugal
| | - Maria Helena S. Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Han N, Tang R, Chen X, Xu Z, Ren Z, Wang L. Genome-wide identification and characterization of WOX genes in Cucumis sativus. Genome 2021; 64:761-776. [PMID: 33493082 DOI: 10.1139/gen-2020-0029] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
WUSCHEL-related homeobox (WOX) proteins are plant-specific transcription factors that are profoundly involved in regulation of plant development and stress responses. In this study, we totally identified 11 WOX transcription factor family members in cucumber (Cucumis sativus, CsWOX) genome and classified them into three clades with nine subclades based on phylogenetic analysis results. Alignment of amino acid sequences revealed that all WOX members in cucumber contained the typical homeodomain, which consists of 60-66 amino acids and is folded into a helix-turn-helix structure. Gene duplication event analysis indicated that CsWOX1a and CsWOX1b were a segment duplication pair, which might affect the number of WOX members in cucumber genome. The expression profiles of CsWOX genes in different tissues demonstrated that the members sorted into the ancient clade (CsWOX13a and CsWOX13b) were constitutively expressed at higher levels in comparison to the others. Cis-element analysis in promoter regions suggested that the expression of CsWOX genes was associated with phytohormone pathways and stress responses, which was further supported by RNA-seq data. Taken together, our results provide new insights into the evolution of cucumber WOX genes and improve our understanding about the biological functions of the CsWOX gene family.
Collapse
Affiliation(s)
- Ni Han
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Rui Tang
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xueqian Chen
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhixuan Xu
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Lina Wang
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
22
|
Rathour M, Sharma A, Kaur A, Upadhyay SK. Genome-wide characterization and expression and co-expression analysis suggested diverse functions of WOX genes in bread wheat. Heliyon 2020; 6:e05762. [PMID: 33937537 PMCID: PMC8079172 DOI: 10.1016/j.heliyon.2020.e05762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
WUSCHEL-related homeobox (WOX) genes belong to the homeobox superfamily, are plant-specific and play vital functions in the growth and development. Herein, we identified a total of 43 TaWOX genes in the allohexaploid (AABBDD) genome of Triticum aestivum L. These genes were distributed on the various chromosomes of each subgenome (A, B and D). The phylogenetic analysis showed the clustering of TaWOXs into three clades: ancient, intermediate and modern or WUS. The gene and protein structures including exon/intron organization, intron phases, and domain and motif distribution were found to be conserved in each phylogenetic clade. The subcellular localization was predicted as nuclear. The Ka/Ks analyses suggested the purifying selection of paralogous genes. The differential expression profiling of various TaWOXs in numerous tissue developmental stages and different layers of grains suggested their role in growth and development. Moreover, a few genes exhibited modulated expression during abiotic and biotic stress conditions, which revealed their roles in stress response. The occurrence of various cis-acting regulatory elements further confirmed their role in plant development and stress tolerance. The co-expression analyses suggested the interactions of these genes with other genes, involved in various processes including plant development, signalling and stress responses. The present study reported several characteristic features of TaWOXs genes that can be useful for further characterization in future studies.
Collapse
Affiliation(s)
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Amandeep Kaur
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | | |
Collapse
|
23
|
|
24
|
Li X, Li J, Cai M, Zheng H, Cheng Z, Gao J. Identification and Evolution of the WUSCHEL-Related Homeobox Protein Family in Bambusoideae. Biomolecules 2020; 10:biom10050739. [PMID: 32397500 PMCID: PMC7278010 DOI: 10.3390/biom10050739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Bamboos (Bambusoideae) are fast-growing species due to their rapid growth rate and ability to reproduce annually via cloned buds produced on the rhizome. WUSCHEL-related homeobox (WOX) genes have been reported to regulate shoot apical meristem organization, lateral organ formation, cambium and vascular proliferation, and so on, but have rarely been studied in bamboos. In this study, the WOXs of both herbaceous bamboo species (12 OlaWOXs and nine RguWOXs) and woody bamboo species (18 GanWOXs, 27 PheWOXs, and 26 BamWOXs) were identified and categorized into three clades based on their phylogenetic relationship-ancient, intermediate, or WUS clade. Polyploidy is the major driver of the expansion of the bamboo WOX family. Eight conserved domains, besides the homeodomain, were identified by comparatively analyzing the WOXs of dicot and monocot species. Intensive purifying selection pressure in the coding region of specific domains explained the functional similarity of WOXs between different species. For Bambusoideae WOXs, polyploidy is the major driver of the expansion of the WOX family. Stronger purifying selection was found in orthologous WOXs of Bambusoideae, especially for WOX4s and WOX5s, which are conserved not only at the translational levels, but also at the genome level. Several conserved cis-acting elements were discovered at similar position in the promoters of the orthologous WOXs. For example, AP2/ERF protein-binding elements and B3 protein-binding elements were found in the promoters of the bamboo WOX4, while MYB protein-binding elements and Dof protein-binding elements were found in the promoters of bamboo WOX5, and MADS protein-binding sites was found in the promoters of bamboo WUS, WOX3, and WOX9. These conserved positions may play an important role in regulating the expression of bamboo WOXs. Our work provides insight into the origin and evolution of bamboo WOXs, and will facilitate functional investigations of the clonal propagation of bamboos.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Gao
- Correspondence: or ; Tel.: +86-010-8478-9801
| |
Collapse
|
25
|
Jha P, Ochatt SJ, Kumar V. WUSCHEL: a master regulator in plant growth signaling. PLANT CELL REPORTS 2020; 39:431-444. [PMID: 31984435 DOI: 10.1007/s00299-020-02511-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/13/2020] [Indexed: 05/24/2023]
Abstract
This review summarizes recent knowledge on functions of WUS and WUS-related homeobox (WOX) transcription factors in diverse signaling pathways governing shoot meristem biology and several other aspects of plant dynamics. Transcription factors (TFs) are master regulators involved in controlling different cellular and biological functions as well as diverse signaling pathways in plant growth and development. WUSCHEL (WUS) is a homeodomain transcription factor necessary for the maintenance of the stem cell niche in the shoot apical meristem, the differentiation of lateral primordia, plant cell totipotency and other diverse cellular processes. Recent research about WUS has uncovered several unique features including the complex signaling pathways that further improve the understanding of vital network for meristem biology and crop productivity. In addition, several reports bridge the gap between WUS expression and plant signaling pathway by identifying different WUS and WUS-related homeobox (WOX) genes during the formation of shoot (apical and axillary) meristems, vegetative-to-embryo transition, genetic transformation, and other aspects of plant growth and development. In this respect, the WOX family of TFs comprises multiple members involved in diverse signaling pathways, but how these pathways are regulated remains to be elucidated. Here, we review the current status and recent discoveries on the functions of WUS and newly identified WOX family members in the regulatory network of various aspects of plant dynamics.
Collapse
Affiliation(s)
- Priyanka Jha
- Amity Institute of Biotechnology, Amity University, Major Arterial Road, Action Area II, Kolkata, West Bengal, India
| | - Sergio J Ochatt
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Vijay Kumar
- Plant Biotechnology Lab, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India.
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
26
|
Ren A, Ahmed RI, Chen H, Han L, Sun J, Ding A, Guo Y, Kong Y. Genome-Wide Identification, Characterization and Expression Patterns of the Pectin Methylesterase Inhibitor Genes in Sorghum bicolor. Genes (Basel) 2019; 10:E755. [PMID: 31561536 PMCID: PMC6826626 DOI: 10.3390/genes10100755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Cell walls are basically complex with dynamic structures that are being involved in several growth and developmental processes, as well as responses to environmental stresses and the defense mechanism. Pectin is secreted into the cell wall in a highly methylesterified form. It is able to perform function after the de-methylesterification by pectin methylesterase (PME). Whereas, the pectin methylesterase inhibitor (PMEI) plays a key role in plant cell wall modification through inhibiting the PME activity. It provides pectin with different levels of degree of methylesterification to affect the cell wall structures and properties. The PME activity was analyzed in six tissues of Sorghum bicolor, and found a high level in the leaf and leaf sheath. PMEI families have been identified in many plant species. Here, a total of 55 pectin methylesterase inhibitor genes (PMEIs) were identified from S. bicolor whole genome, a more detailed annotation of this crop plant as compared to the previous study. Chromosomal localization, gene structures and sequence characterization of the PMEI family were analyzed. Moreover, cis-acting elements analysis revealed that each PMEI gene was regulated by both internal and environmental factors. The expression patterns of each PMEI gene were also clustered according to expression pattern analyzed in 47 tissues under different developmental stages. Furthermore, some SbPMEIs were induced when treated with hormonal and abiotic stress. Taken together, these results laid a strong foundation for further study of the functions of SbPMEIs and pectin modification during plant growth and stress responses of cereal.
Collapse
Affiliation(s)
- Angyan Ren
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Rana Imtiaz Ahmed
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Ayub Agricultural Research Institute, Faisalabad 38850, Pakistan.
| | - Huanyu Chen
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Shijiazhuang 050021, China.
| | - Linhe Han
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jinhao Sun
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Anming Ding
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongfeng Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yingzhen Kong
- College of Agronomy of Qing Dao Agricultural University, Qingdao 266108, China.
| |
Collapse
|
27
|
Systematic Analysis of MYB Family Genes in Potato and Their Multiple Roles in Development and Stress Responses. Biomolecules 2019; 9:biom9080317. [PMID: 31366107 PMCID: PMC6723670 DOI: 10.3390/biom9080317] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022] Open
Abstract
The MYB proteins represent a large family of transcription factors and play important roles in development, senescence, and stress responses in plants. In the current study, 233 MYB transcription factor-encoding genes were identified and analyzed in the potato genome, including 119 R1-MYB, 112 R2R3-MYB, and two R1R2R3-MYB members. R2R3-MYB is the most abundant MYB subclass and potato R2R3-MYB members together with their Arabidopsis homologs were divided into 35 well-supported subgroups as the result of phylogenetic analyses. Analyses on gene structure and protein motif revealed that members from the same subgroup shared similar exon/intron and motif organization, further supporting the results of phylogenetic analyses. Evolution of the potato MYB family was studied via syntenic analysis. Forty-one pairs of StMYB genes were predicted to have arisen from tandem or segmental duplication events, which played important roles in the expansion of the StMYB family. Expression profiling revealed that the StMYB genes were expressed in various tissues and several StMYB genes were identified to be induced by different stress conditions. Notably, StMYB030 was found to act as the homolog of AtMYB44 and was significantly up-regulated by salt and drought stress treatments. Furthermore, overexpression of StMYB030 in Arabidopsis enhanced salt stress tolerance of transgenic plants. The results from this study provided information for further functional analysis and for crop improvements through genetic manipulation of these StMYB genes.
Collapse
|
28
|
Li X, Ahmad S, Ali A, Guo C, Li H, Yu J, Zhang Y, Gao X, Guo Y. Characterization of Somatic Embryogenesis Receptor-Like Kinase 4 as a Negative Regulator of Leaf Senescence in Arabidopsis. Cells 2019; 8:cells8010050. [PMID: 30646631 PMCID: PMC6356292 DOI: 10.3390/cells8010050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 11/16/2022] Open
Abstract
Leaf senescence is a genetically controlled process that involves the perception of extracellular signals and signal transduction. The receptor-like protein kinases (RLKs) are known to act as an important class of cell surface receptors and are involved in multiple biological processes such as development and stress responses. The functions of a number of RLK members have been characterized in Arabidopsis and other plant species, but only a limited number of RLK proteins have been reported to be associated with leaf senescence. In the present study, we have characterized the role of the somatic embryogenesis receptor kinase 4 (SERK4) gene in leaf senescence. The expression of SERK4 was up-regulated during leaf senescence and by several abiotic stress treatments in Arabidopsis. The serk4-1 knockout mutant was found to display a significant early leaf senescence phenotype. Furthermore, the results of overexpression analysis and complementary analysis supported the idea that SERK4 acts as a negative regulator in the process of leaf senescence.
Collapse
Affiliation(s)
- Xiaoxu Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Salman Ahmad
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Akhtar Ali
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Cun Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hong Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jing Yu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yan Zhang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaoming Gao
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yongfeng Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
29
|
Global Analysis of WOX Transcription Factor Gene Family in Brassica napus Reveals Their Stress- and Hormone-Responsive Patterns. Int J Mol Sci 2018; 19:ijms19113470. [PMID: 30400610 PMCID: PMC6274733 DOI: 10.3390/ijms19113470] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023] Open
Abstract
The plant-specific WUSCHEL-related homeobox (WOX) transcription factor gene family is important for plant growth and development but little studied in oil crops. We identified and characterized 58 putative WOX genes in Brassica napus (BnWOXs), which were divided into three major clades and nine subclades based on the gene structure and conserved motifs. Collinearity analysis revealed that most BnWOXs were the products of allopolyploidization and segmental duplication events. Gene structure analysis indicated that introns/exons and protein motifs were conserved in each subclade and RNA sequencing revealed that BnWOXs had narrow expression profiles in major tissues and/or organs across different developmental stages. The expression pattern of each clade was highly conserved and similar to that of the sister and orthologous pairs from Brassica rapa and Brassica oleracea. Quantitative real-time polymerase chain reaction showed that members of the WOX4 subclade were induced in seedling roots by abiotic and hormone stresses, indicating their contribution to root development and abiotic stress responses. 463 proteins were predicted to interact with BnWOXs, including peptides regulating stem cell homeostasis in meristems. This study provides insights into the evolution and expression of the WOX gene family in B. napus and will be useful in future gene function research.
Collapse
|
30
|
Correction: Li, X.; et al. Identification and Characterization of the WOX Family Genes in Five Solanaceae Species Reveal Their Conserved Roles in Peptide Signaling. Genes 2018, 9, 260. Genes (Basel) 2018; 9:genes9090457. [PMID: 30217084 PMCID: PMC6162392 DOI: 10.3390/genes9090457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 11/16/2022] Open
|
31
|
Li X, Salman A, Guo C, Yu J, Cao S, Gao X, Li W, Li H, Guo Y. Identification and Characterization of LRR-RLK Family Genes in Potato Reveal Their Involvement in Peptide Signaling of Cell Fate Decisions and Biotic/Abiotic Stress Responses. Cells 2018; 7:cells7090120. [PMID: 30150583 PMCID: PMC6162732 DOI: 10.3390/cells7090120] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/25/2018] [Accepted: 08/25/2018] [Indexed: 12/22/2022] Open
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent the largest subfamily of receptor-like kinases (RLKs) and play important roles in regulating growth, development, and stress responses in plants. In this study, 246 LRR-RLK genes were identified in the potato (Solanum tuberosum) genome, which were further classified into 14 subfamilies. Gene structure analysis revealed that genes within the same subgroup shared similar exon/intron structures. A signature small peptide recognition motif (RxR) was found to be largely conserved within members of subfamily IX, suggesting that these members may recognize peptide signals as ligands. 26 of the 246 StLRR-RLK genes were found to have arisen from tandem or segmental duplication events. Expression profiling revealed that StLRR-RLK genes were differentially expressed in various organs/tissues, and several genes were found to be responsive to different stress treatments. Furthermore, StLRR-RLK117 was found to be able to form homodimers and heterodimers with StLRR-RLK042 and StLRR-RLK052. Notably, the overlapping expression region of StLRR-RLK117 with Solanum tuberosumWUSCHEL (StWUS) suggested that the CLV3–CLV1/BAM–WUS feedback loop may be conserved in potato to maintain stem cell homeostasis within the shoot apical meristem.
Collapse
Affiliation(s)
- Xiaoxu Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Ahmad Salman
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Cun Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jing Yu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Songxiao Cao
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xiaoming Gao
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Wei Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Hong Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongfeng Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|