1
|
Schaffner SL, Tosefsky KN, Inskter AM, Appel-Cresswell S, Schulze-Hentrich JM. Sex and gender differences in the molecular etiology of Parkinson's disease: considerations for study design and data analysis. Biol Sex Differ 2025; 16:7. [PMID: 39901234 PMCID: PMC11789417 DOI: 10.1186/s13293-025-00692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/25/2025] [Indexed: 02/05/2025] Open
Abstract
Parkinson's disease (PD) is more prevalent in men than women, and presents with different clinical features in each sex. Despite widespread recognition of these differences, females are under-represented in clinical and experimental studies of PD, and much remains to be elucidated regarding the biological underpinnings of sex differences in PD. In this review, we summarize known contributors to sex differences in PD etiology across the life course, with a focus on neurological development and gene regulation. Sex differences that are established at conception and heightened during adolescence and midlife may partially embed future PD risk, due to the complex interactions between gonadal hormones, gene regulation, lifestyle factors, and aging. While the neuroprotective properties of estrogen are strongly implicated in reduced prevalence of PD in women, interactions with genotype and gender-biased lifestyle factors are incompletely understood. Consideration of sex and gender-related factors in study design, data analysis, and interpretation have the power to expedite our knowledge of the etiology of PD in men and in women, and to inform prevention and therapeutic strategies tailored to each sex.
Collapse
Affiliation(s)
- Samantha L Schaffner
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kira N Tosefsky
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- MD Undergraduate Program, University of British Columbia, Vancouver, BC, Canada
| | - Amy M Inskter
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Silke Appel-Cresswell
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julia M Schulze-Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, Campus, Building A2.4, 66123, 66041, Saarbrücken, Germany.
| |
Collapse
|
2
|
Lauritsen J, Romero-Ramos M. The systemic immune response in Parkinson's disease: focus on the peripheral immune component. Trends Neurosci 2023; 46:863-878. [PMID: 37598092 DOI: 10.1016/j.tins.2023.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
During Parkinson's disease (PD), both the central nervous system (CNS) and peripheral nervous system (PNS) are affected. In parallel, innate immune cells respond early to neuronal changes and alpha-synuclein (α-syn) pathology. Moreover, some of the affected neuronal groups innervate organs with a relevant role in immunity. Consequently, not only microglia, but also peripheral immune cells are altered, resulting in a systemic immune response. Innate and adaptive immune cells may participate in the neurodegenerative process by acting peripherally, infiltrating the brain, or releasing mediators that can protect or harm neurons. However, the sequence of the changes and the significance of each immune compartment in the disease remain to be clarified. In this review, we describe current understanding of the peripheral immune response in PD and discuss the road ahead.
Collapse
Affiliation(s)
- Johanne Lauritsen
- Department of Biomedicine, Health Faculty & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine, Health Faculty & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
López-Cerdán A, Andreu Z, Hidalgo MR, Grillo-Risco R, Català-Senent JF, Soler-Sáez I, Neva-Alejo A, Gordillo F, de la Iglesia-Vayá M, García-García F. Unveiling sex-based differences in Parkinson's disease: a comprehensive meta-analysis of transcriptomic studies. Biol Sex Differ 2022; 13:68. [PMID: 36414996 PMCID: PMC9682715 DOI: 10.1186/s13293-022-00477-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In recent decades, increasing longevity (among other factors) has fostered a rise in Parkinson's disease incidence. Although not exhaustively studied in this devastating disease, the impact of sex represents a critical variable in Parkinson's disease as epidemiological and clinical features differ between males and females. METHODS To study sex bias in Parkinson's disease, we conducted a systematic review to select sex-labeled transcriptomic data from three relevant brain tissues: the frontal cortex, the striatum, and the substantia nigra. We performed differential expression analysis on each study chosen. Then we summarized the individual differential expression results with three tissue-specific meta-analyses and a global all-tissues meta-analysis. Finally, results from the meta-analysis were functionally characterized using different functional profiling approaches. RESULTS The tissue-specific meta-analyses linked Parkinson's disease to the enhanced expression of MED31 in the female frontal cortex and the dysregulation of 237 genes in the substantia nigra. The global meta-analysis detected 15 genes with sex-differential patterns in Parkinson's disease, which participate in mitochondrial function, oxidative stress, neuronal degeneration, and cell death. Furthermore, functional analyses identified pathways, protein-protein interaction networks, and transcription factors that differed by sex. While male patients exhibited changes in oxidative stress based on metal ions, inflammation, and angiogenesis, female patients exhibited dysfunctions in mitochondrial and lysosomal activity, antigen processing and presentation functions, and glutamic and purine metabolism. All results generated during this study are readily available by accessing an open web resource ( http://bioinfo.cipf.es/metafun-pd/ ) for consultation and reuse in further studies. CONCLUSIONS Our in silico approach has highlighted sex-based differential mechanisms in typical Parkinson Disease hallmarks (inflammation, mitochondrial dysfunction, and oxidative stress). Additionally, we have identified specific genes and transcription factors for male and female Parkinson Disease patients that represent potential candidates as biomarkers to diagnosis.
Collapse
Affiliation(s)
- Adolfo López-Cerdán
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
- Biomedical Imaging Unit FISABIO-CIPF, Fundación Para El Fomento de La Investigación Sanitaria Y Biomédica de La Comunidad Valenciana, 46012, Valencia, Spain
| | - Zoraida Andreu
- Foundation Valencian Institute of Oncology (FIVO), 46009, Valencia, Spain
| | - Marta R Hidalgo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Rubén Grillo-Risco
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | | | - Irene Soler-Sáez
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Almudena Neva-Alejo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Fernando Gordillo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - María de la Iglesia-Vayá
- Biomedical Imaging Unit FISABIO-CIPF, Fundación Para El Fomento de La Investigación Sanitaria Y Biomédica de La Comunidad Valenciana, 46012, Valencia, Spain
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain.
| |
Collapse
|
4
|
Ortega RA, Bressman SB, Raymond D, Ozelius LJ, Katsnelson V, Leaver K, Swan MC, Shanker V, Miravite J, Wang C, Bennett SAL, Saunders-Pullman R. Differences in Sex-Specific Frequency of Glucocerebrosidase Variant Carriers and Familial Parkinsonism. Mov Disord 2022; 37:2217-2225. [PMID: 36054306 PMCID: PMC9669136 DOI: 10.1002/mds.29197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Although men and women with the LRRK2 G2019S variant appear to be equally likely to have Parkinson's disease (PD), the sex-distribution among glucocerebrosidase (GBA) variant carriers with PD, including limited to specific variant severities of GBA, is not well understood. Further, the sex-specific genetic contribution to PD without a known genetic variant is controversial. OBJECTIVES To better understand sex differences in genetic contribution to PD, especially sex-specific frequencies among GBA variant carriers with PD (GBA PD) and LRRK2-G2019S variant carriers with PD (LRRK2 PD). METHODS We assess differences in the sex-specific frequency in GBA PD, including in subsets of GBA variant severity, LRRK2 PD, and idiopathic PD in an Ashkenazi Jewish cohort with PD. Further, we expand prior work evaluating differences in family history of parkinsonism. RESULTS Both idiopathic PD (267/420 men, 63.6%) (P < 0.001) and GBA PD overall (64/107, 59.8%) (P = 0.042) were more likely to be men, whereas no difference was seen in LRRK2 PD (50/99, 50.5%) and LRRK2/GBA PD (5/10, 50%). However, among GBA PD probands, severe variant carriers were more likely to be women (15/19 women, 79.0%) (P = 0.005), whereas mild variant carriers (44/70 men, 62.9%) (P = 0.039) and risk-variant carriers (15/17 men, 88.2%) (P = 0.001) were more likely to be men. CONCLUSIONS Our study demonstrates that the male-sex predominance present in GBA PD overall was not consistent across GBA variant severities, and a female-sex predominance was present among severe GBA variant carriers. Therefore, research and trial designs for PD should consider sex-specific differences, including across GBA variant severities. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roberto A Ortega
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Susan B Bressman
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Deborah Raymond
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Viktoriya Katsnelson
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Katherine Leaver
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Matthew C Swan
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Vicki Shanker
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Joan Miravite
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Cuiling Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Steffany A L Bennett
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| |
Collapse
|
5
|
Shobeiri P, Kalantari A, Teixeira AL, Rezaei N. Shedding light on biological sex differences and microbiota-gut-brain axis: a comprehensive review of its roles in neuropsychiatric disorders. Biol Sex Differ 2022; 13:12. [PMID: 35337376 PMCID: PMC8949832 DOI: 10.1186/s13293-022-00422-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Women and men are suggested to have differences in vulnerability to neuropsychiatric disorders, including major depressive disorder (MDD), generalized anxiety disorder (GAD), schizophrenia, eating disorders, including anorexia nervosa, and bulimia nervosa, neurodevelopmental disorders, such as autism spectrum disorder (ASD), and neurodegenerative disorders including Alzheimer's disease, Parkinson's disease. Genetic factors and sex hormones are apparently the main mediators of these differences. Recent evidence uncovers that reciprocal interactions between sex-related features (e.g., sex hormones and sex differences in the brain) and gut microbiota could play a role in the development of neuropsychiatric disorders via influencing the gut-brain axis. It is increasingly evident that sex-microbiota-brain interactions take part in the occurrence of neurologic and psychiatric disorders. Accordingly, integrating the existing evidence might help to enlighten the fundamental roles of these interactions in the pathogenesis of neuropsychiatric disorders. In addition, an increased understanding of the biological sex differences on the microbiota-brain may lead to advances in the treatment of neuropsychiatric disorders and increase the potential for precision medicine. This review discusses the effects of sex differences on the brain and gut microbiota and the putative underlying mechanisms of action. Additionally, we discuss the consequences of interactions between sex differences and gut microbiota on the emergence of particular neuropsychiatric disorders.
Collapse
Affiliation(s)
- Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Antônio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Bayram E, Coughlin DG, Banks SJ, Litvan I. Sex differences for phenotype in pathologically defined dementia with Lewy bodies. J Neurol Neurosurg Psychiatry 2021; 92:745-750. [PMID: 33563809 PMCID: PMC8530264 DOI: 10.1136/jnnp-2020-325668] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Sex differences in dementia with Lewy bodies (DLB) have been reported in clinically defined cohorts; however, clinical diagnostic accuracy in DLB is suboptimal and phenotypic differences have not been assessed in pathologically confirmed participants. METHODS Core DLB features were compared across 55 women and 156 men with pathologically defined DLB in the National Alzheimer's Coordinating Center. These analyses were repeated for 55 women and 55 men matched for age, education and tau burden. RESULTS In the total sample, women died older, had fewer years of education, had higher tau burden but were less likely to be diagnosed with dementia and clinical DLB. In the matched sample, visual hallucinations continued to be less common in women, and fewer women met clinical DLB criteria. DISCUSSION Sex impacts clinical manifestations of underlying pathologies in DLB. Despite similar underlying Lewy body pathology, women are less likely to manifest core DLB features and may be clinically underdiagnosed.
Collapse
Affiliation(s)
- Ece Bayram
- Neurosciences, University of California San Diego, La Jolla, California, USA
| | - David G Coughlin
- Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Sarah J Banks
- Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Irene Litvan
- Neurosciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Liu M, Luo YJ, Gu HY, Wang YM, Liu MH, Li K, Li J, Zhuang S, Shen Y, Jin H, Chen J, Mao CJ, Liu CF. Sex and onset-age-related features of excessive daytime sleepiness and night-time sleep in patients with Parkinson's disease. BMC Neurol 2021; 21:165. [PMID: 33874914 PMCID: PMC8054359 DOI: 10.1186/s12883-021-02192-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
Background The clinical characteristics of Parkinson’s disease (PD) differ between men and women, and late- and early-onset patients, including motor symptoms and some nonmotor symptoms, such as cognition, anxiety, and depression. Objective To explore the features of excessive daytime sleepiness (EDS) and night-time sleep quality in PD patients of different sexes and age at onset (AAO). Methods Demographic data and clinical characteristics of 586 PD patients were collected. Epworth Sleepiness Scale (ESS) and Pittsburgh Sleep Quality Index (PSQI) were used to investigate the daytime drowsiness and nocturnal sleep. Multivariate logistic regression analysis was used to explore the risk factors of EDS and poor night-time sleep quality. Results Sleep disorders were common in PD patients. EDS was more prominent in men than in women. There was no significant difference in ESS scores between late-onset PD (LOPD) and early-onset PD. LOPD patients had a higher probability of poor night-time sleep quality. Male sex, disease duration, and depression were risk factors for EDS. In all patients of both sexes and all AAO, depression was a risk factor for poor night-time sleep. Conclusion More attention should be paid to sleep disorders of PD patients, especially male LOPD patients. Depression is a common risk factor for EDS and poor sleep quality in PD patients.
Collapse
Affiliation(s)
- Ming Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseases, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China
| | - Ya-Jun Luo
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseases, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China
| | - Han-Ying Gu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseases, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China
| | - Yi-Ming Wang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseases, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China
| | - Man-Hua Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseases, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China
| | - Kai Li
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseases, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China
| | - Jiao Li
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseases, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China
| | - Sheng Zhuang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseases, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China
| | - Yun Shen
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseases, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China
| | - Hong Jin
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseases, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China
| | - Jing Chen
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseases, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China
| | - Cheng-Jie Mao
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseases, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China.
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Diseases, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China.,Department of Neurology, Suqian First Hospital, Suqian, China
| |
Collapse
|
8
|
Monaco A, Pantaleo E, Amoroso N, Bellantuono L, Lombardi A, Tateo A, Tangaro S, Bellotti R. Identifying potential gene biomarkers for Parkinson's disease through an information entropy based approach. Phys Biol 2020; 18:016003. [PMID: 33049726 DOI: 10.1088/1478-3975/abc09a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a chronic, progressive neurodegenerative disease and represents the most common disease of this type, after Alzheimer's dementia. It is characterized by motor and nonmotor features and by a long prodromal stage that lasts many years. Genetic research has shown that PD is a complex and multisystem disorder. To capture the molecular complexity of this disease we used a complex network approach. We maximized the information entropy of the gene co-expression matrix betweenness to obtain a gene adjacency matrix; then we used a fast greedy algorithm to detect communities. Finally we applied principal component analysis on the detected gene communities, with the ultimate purpose of discriminating between PD patients and healthy controls by means of a random forests classifier. We used a publicly available substantia nigra microarray dataset, GSE20163, from NCBI GEO database, containing gene expression profiles for 10 PD patients and 18 normal controls. With this methodology we identified two gene communities that discriminated between the two groups with mean accuracy of 0.88 ± 0.03 and 0.84 ± 0.03, respectively, and validated our results on an independent microarray experiment. The two gene communities presented a considerable reduction in size, over 100 times, compared to the initial network and were stable within a range of tested parameters. Further research focusing on the restricted number of genes belonging to the selected communities may reveal essential mechanisms responsible for PD at a network level and could contribute to the discovery of new biomarkers for PD.
Collapse
Affiliation(s)
- A Monaco
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Holingue C, Budavari AC, Rodriguez KM, Zisman CR, Windheim G, Fallin MD. Sex Differences in the Gut-Brain Axis: Implications for Mental Health. Curr Psychiatry Rep 2020; 22:83. [PMID: 33216233 PMCID: PMC7717677 DOI: 10.1007/s11920-020-01202-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The purpose of this article is to highlight how sex differences in the gut-brain axis may contribute to the discrepancies in incidence of neurodevelopmental, psychiatric, and neurodegenerative disorders between females and males. We focus on autism spectrum disorder, psychotic disorders, stress and anxiety disorders, depression, Alzheimer's disease, and Parkinson's disease and additionally discuss the comorbidity between inflammatory bowel disorder and mental health disorders. RECENT FINDINGS Human and animal studies show that sex may modify the relationship between the gut or immune system and brain and behavior. Sex also appears to modify the effect of microbial treatments such as probiotics and antibiotics on brain and behavior. There is emerging evidence that assessing the role of sex in the gut-brain axis may help elucidate the etiology of and identify effective treatments for neurodevelopmental, psychiatric, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Calliope Holingue
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, USA.
- , Baltimore, USA.
| | - Alexa Curhan Budavari
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Katrina M Rodriguez
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Corina R Zisman
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA
| | - Grace Windheim
- Public Health Studies, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| |
Collapse
|
10
|
Bianconi E, Casadei R, Frabetti F, Ventura C, Facchin F, Canaider S. Sex-Specific Transcriptome Differences in Human Adipose Mesenchymal Stem Cells. Genes (Basel) 2020; 11:909. [PMID: 32784482 PMCID: PMC7464371 DOI: 10.3390/genes11080909] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
In humans, sexual dimorphism can manifest in many ways and it is widely studied in several knowledge fields. It is increasing the evidence that also cells differ according to sex, a correlation still little studied and poorly considered when cells are used in scientific research. Specifically, our interest is on the sex-related dimorphism on the human mesenchymal stem cells (hMSCs) transcriptome. A systematic meta-analysis of hMSC microarrays was performed by using the Transcriptome Mapper (TRAM) software. This bioinformatic tool was used to integrate and normalize datasets from multiple sources and allowed us to highlight chromosomal segments and genes differently expressed in hMSCs derived from adipose tissue (hADSCs) of male and female donors. Chromosomal segments and differentially expressed genes in male and female hADSCs resulted to be related to several processes as inflammation, adipogenic and neurogenic differentiation and cell communication. Obtained results lead us to hypothesize that the donor sex of hADSCs is a variable influencing a wide range of stem cell biologic processes. We believe that it should be considered in biologic research and stem cell therapy.
Collapse
Affiliation(s)
- Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy;
| | - Flavia Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Federica Facchin
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Silvia Canaider
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| |
Collapse
|
11
|
Microglia, inflammation and gut microbiota responses in a progressive monkey model of Parkinson's disease: A case series. Neurobiol Dis 2020; 144:105027. [PMID: 32712266 DOI: 10.1016/j.nbd.2020.105027] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
Inflammation has been linked to the development of nonmotor symptoms in Parkinson's disease (PD), which greatly impact patients' quality of life and can often precede motor symptoms. Suitable animal models are critical for our understanding of the mechanisms underlying disease and the associated prodromal disturbances. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkey model is commonly seen as a "gold standard" model that closely mimics the clinical motor symptoms and the nigrostriatal dopaminergic loss of PD, however MPTP toxicity extends to other nondopaminergic regions. Yet, there are limited reports monitoring the MPTP-induced progressive central and peripheral inflammation as well as other nonmotor symptoms such as gastrointestinal function and microbiota. We report 5 cases of progressive parkinsonism in non-human primates to gain a broader understanding of MPTP-induced central and peripheral inflammatory dysfunction to understand the potential role of inflammation in prodromal/pre-motor features of PD-like degeneration. We measured inflammatory proteins in plasma and CSF and performed [18F]FEPPA PET scans to evaluate translocator proteins (TSPO) or microglial activation. Monkeys were also evaluated for working memory and executive function using various behavior tasks and for gastrointestinal hyperpermeability and microbiota composition. Additionally, monkeys were treated with a novel TNF inhibitor XPro1595 (10 mg/kg, n = 3) or vehicle (n = 2) every three days starting 11 weeks after the initiation of MPTP to determine whether XPro1595 would alter inflammation and microglial behavior in a progressive model of PD. The case studies revealed that earlier and robust [18F]FEPPA PET signals resulted in earlier and more severe parkinsonism, which was seen in male cases compared to female cases. Potential other sex differences were observed in circulating inflammation, microbiota diversity and their metabolites. Additional studies with larger group sizes of both sexes would enable confirmation and extension of these findings. If these findings reflect potential differences in humans, these sex differences have significant implications for therapeutic development of inflammatory targets in the clinic.
Collapse
|
12
|
Sigurdardottir HL, Lanzenberger R, Kranz GS. Genetics of sex differences in neuroanatomy and function. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:179-193. [PMID: 33008524 DOI: 10.1016/b978-0-444-64123-6.00013-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Sex differences are observed at many distinct biologic levels, such as in the anatomy and functioning of the brain, behavior, and susceptibility to neuropsychiatric disorders. Previously, these differences were believed to entirely result from the secretion of gonadal hormones; however, recent research has demonstrated that differences are also the consequence of direct or nonhormonal effects of genes located on the sex chromosomes. This chapter reviews the four core genotype model that separates the effects of hormones and sex chromosomes and highlights a few genes that are believed to be partly responsible for sex dimorphism of the brain, in particular, the Sry gene. Genetics of the brain's neurochemistry is discussed and the susceptibility to certain neurologic and psychiatric disorders is reviewed. Lastly, we discuss the sex-specific genetic contribution in disorders of sexual development. The precise molecular mechanisms underlying these differences are currently not entirely known. An increased knowledge and understanding of the role of candidate genes will undeniably be of great aid in elucidating the molecular basis of sex-biased disorders and potentially allow for more sex-specific therapies.
Collapse
Affiliation(s)
- Helen L Sigurdardottir
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
13
|
Cox LM, Abou-El-Hassan H, Maghzi AH, Vincentini J, Weiner HL. The sex-specific interaction of the microbiome in neurodegenerative diseases. Brain Res 2019; 1724:146385. [PMID: 31419428 PMCID: PMC6886714 DOI: 10.1016/j.brainres.2019.146385] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Several neurologic diseases exhibit different prevalence and severity in males and females, highlighting the importance of understanding the influence of biologic sex and gender. Beyond host-intrinsic differences in neurologic development and homeostasis, evidence is now emerging that the microbiota is an important environmental factor that may account for differences between men and women in neurologic disease. The gut microbiota is composed of trillions of bacteria, archaea, viruses, and fungi, that can confer benefits to the host or promote disease. There is bidirectional communication between the intestinal microbiota and the brain that is mediated via immunologic, endocrine, and neural signaling pathways. While there is substantial interindividual variation within the microbiota, differences between males and females can be detected. In animal models, sex-specific microbiota differences can affect susceptibility to chronic diseases. In this review, we discuss the ways in which neurologic diseases may be regulated by the microbiota in a sex-specific manner.
Collapse
Affiliation(s)
- Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Amir Hadi Maghzi
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Julia Vincentini
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States; Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
14
|
Kelly J, Moyeed R, Carroll C, Albani D, Li X. Gene expression meta-analysis of Parkinson's disease and its relationship with Alzheimer's disease. Mol Brain 2019; 12:16. [PMID: 30819229 PMCID: PMC6396547 DOI: 10.1186/s13041-019-0436-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) and Alzheimer’s disease (AD) are the most common neurodegenerative diseases and have been suggested to share common pathological and physiological links. Understanding the cross-talk between them could reveal potentials for the development of new strategies for early diagnosis and therapeutic intervention thus improving the quality of life of those affected. Here we have conducted a novel meta-analysis to identify differentially expressed genes (DEGs) in PD microarray datasets comprising 69 PD and 57 control brain samples which is the biggest cohort for such studies to date. Using identified DEGs, we performed pathway, upstream and protein-protein interaction analysis. We identified 1046 DEGs, of which a majority (739/1046) were downregulated in PD. YWHAZ and other genes coding 14–3-3 proteins are identified as important DEGs in signaling pathways and in protein-protein interaction networks (PPIN). Perturbed pathways also include mitochondrial dysfunction and oxidative stress. There was a significant overlap in DEGs between PD and AD, and over 99% of these were differentially expressed in the same up or down direction across the diseases. REST was identified as an upstream regulator in both diseases. Our study demonstrates that PD and AD share significant common DEGs and pathways, and identifies novel genes, pathways and upstream regulators which may be important targets for therapy in both diseases.
Collapse
Affiliation(s)
- Jack Kelly
- Faculty of Medicine and Dentistry, Plymouth University, Plymouth, PL6 8BU, UK
| | - Rana Moyeed
- Faculty of Science and Engineering, Plymouth University, Plymouth, PL6 8BU, UK
| | - Camille Carroll
- Faculty of Medicine and Dentistry, Plymouth University, Plymouth, PL6 8BU, UK
| | - Diego Albani
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri" Via La Masa 19, 20156, Milan, Italy
| | - Xinzhong Li
- Faculty of Medicine and Dentistry, Plymouth University, Plymouth, PL6 8BU, UK. .,School of Science, Engineering & Design, Teesside University, Middlesbrough, TS1 3BX, UK.
| |
Collapse
|