1
|
Joshi RL, Sharma H, Mehta VN, Patel SK, Bambharoliya K. Azadirachta indica derived copper oxide nanoparticles: A sustainable approach for reducing post-harvest losses and enhancing mango quality. Food Chem 2025; 480:143625. [PMID: 40121879 DOI: 10.1016/j.foodchem.2025.143625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/08/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025]
Abstract
In this study, the green synthesis of copper oxide nanoparticles (CuO NPs) mediated by Azadirachta indica is reported, along with an evaluation of their antifungal activity against post-harvest anthracnose and their effects on the storage behaviour (shelf life) and physico-chemical properties of 'Kesar' mangoes, particularly those associated with the ripening process. The CuO NPs were initially synthesized using neem leaf extract and characterized through UV- Visible spectroscopy, SEM, EDX, HR-TEM, FT-IR, XRD, XPS, DLS and zeta potential. Characterization confirmed their monoclinic crystalline structure, spherical morphology, high purity, and stability, with a mean size of 50.93 nm and a zeta potential of -32.50 mV. The antifungal activities of synthesized CuO NPs against the fungus Colletotrichum gloeosporioides were assessed using poisoned food technique in which 1000 ppm CuO NPs showed lowest colony diameter (20.70 mm) and highest per cent growth inhibition (77.00 %). Subsequently in a dipping treatment lowest per cent disease incidence (00.00 %) were recorded in fruit treated with CuO NPs @ 200 ppm and 250 ppm, respectively. While, highest shelf life (18.23 days) were recorded in fruit treated with CuO NPs @ 250 ppm. Untreated control fruit exhibited increased per cent weight loss, total sugar, reducing sugar, non-reducing sugar and total soluble solids (TSS) over the storage period which responsible for early and rapid ripening. Post-harvest treatments of CuO NPs improved mango quality by reducing weight loss, retaining firmness, and delaying ripening through maintaining peel thickness, lower sugar levels, and higher titratable acidity and ascorbic acid. The 250 ppm concentration was most effective, ensuring safety with copper levels below toxicity thresholds. Therefore, A. indica-CuO NPs treatment is an eco-friendly and safe alternative to preserve fruit quality, reducing post-harvest disease/losses and extending the storage period (shelf life) of mango by delayed the ripening process.
Collapse
Affiliation(s)
- Rahul L Joshi
- Department of Plant Pathology, N. M. College of Agriculture, Navsari Agricultural University, Navsari 396450, Gujarat, India
| | - Hemant Sharma
- Director of Extension Education, Navsari Agricultural University, Navsari 396450, Gujarat, India
| | - Vaibhavkumar N Mehta
- Division of Plant Biotechnology, ASPEE SHAKILAM Biotechnology Institute, Navsari Agricultural University, Surat 395007, Gujarat, India; Center of Excellence on Agri-nanobiotechnology, ASPEE SHAKILAM Biotechnology Institute, Navsari Agricultural University, Surat 395007. Gujarat, India.
| | - Sunil K Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari 396450, Gujarat, India
| | - Krinal Bambharoliya
- Department of Biotechnology, Shree Ramkrishna Institute of Computer Education and Applied Sciences, Sarvajanik University,Surat 39500, Gujarat, India
| |
Collapse
|
2
|
Yiblet Y, Abdu I, Belew B. Comprehensive Literature Review on Metal Nanoparticle for Enhanced Shelf Life of Mango Fruit. ScientificWorldJournal 2024; 2024:4782328. [PMID: 38957455 PMCID: PMC11217571 DOI: 10.1155/2024/4782328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
The purpose of this review was to investigate the application of metal nanoparticles in fruit shelf life extension. Despite growing interest in nanoparticles and their potential applications, there are currently few effective methods for prolonging the shelf life of fruits. The study concentrated on the principles underlying the shelf life extension of metallic nanoparticles, including copper oxide, zinc oxide, silver, and titanium oxide. The biological properties of nanoparticles, especially those with antibacterial qualities, have drawn interest as possible fruit preservation solutions. Many conventional preservation methods have drawbacks, including expensive production costs, short shelf lives, undesirable residues, and the incapacity to properly keep perishable fruits in their natural environments. Techniques for extending shelf life based on nanotechnology have the potential to get around these problems. The review focused on the effective use of environmentally benign, green synthesis-produced nanoparticles to extend the fruit shelf life. The ability of these nanoparticles to successfully preserve fresh fruits was established. The results imply that fruit preservation by the use of nanoparticle synthesis techniques may be a viable strategy, offering a more effective and sustainable substitute for traditional procedures.
Collapse
Affiliation(s)
- Yalew Yiblet
- Department of BiologyMekdela Amba University, P.O. Box 32, Tulu Awlia, Ethiopia
| | - Indiris Abdu
- Department of BiologyMekdela Amba University, P.O. Box 32, Tulu Awlia, Ethiopia
| | - Basaznew Belew
- Department of MathematicsMekdela Amba University, P.O. Box 32, Tulu Awlia, Ethiopia
| |
Collapse
|
3
|
Hamouda RA, Almaghrabi FQ, Alharbi OM, Al-Harbi ADM, Alsulami RM, Alhumairi AM. Antifungal Activities of Biogenic Silver Nanoparticles Mediated by Marine Algae: In Vitro and In Vivo Insights of Coating Tomato Fruit to Protect against Penicillium italicum Blue Mold. Mar Drugs 2024; 22:225. [PMID: 38786616 PMCID: PMC11122932 DOI: 10.3390/md22050225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
In an attempt to reduce such decay induced by pathogenic causes, several studies investigated the effectiveness of nanoparticles (NPs) that play a vital role in saving food products, especially fruits. Current research delves into biogenic silver nanoparticles (using marine alga Turbinaria turbinata (Tt/Ag-NPs) and their characterization using FT-IR, TEM, EDS, and zeta potential. Some pathogenic fungi, which cause fruit spoilage, were isolated. We studied the impact of using Tt/Ag-NPs to protect against isolated fungi in vitro, and the influence of Tt/Ag-NPs as a coating of tomato fruit to protect against blue mold caused by Penicillium italicum (OR770486) over 17 days of storage time. Five treatments were examined: T1, healthy fruits were used as the positive control; T2, healthy fruits sprayed with Tt/Ag-NPs; T3, fruits infected with P. italicum followed by coating with Tt/Ag-NPs (pre-coating); T4, fruits coated with Tt/Ag-NPs followed by infection by P. italicum (post-coating); and T5, the negative control, fruits infected by P. italicum. The results displayed that Tt/Ag-NPs are crystalline, spherical in shape, with size ranges between 14.5 and 39.85 nm, and negative charges. Different concentrations of Tt/Ag-NPs possessed antifungal activities against Botrytis cinerea, Rhodotorula mucilaginosa, Penicillium expansum, Alternaria alternate, and Stemphylium vesicarium. After two days of tomatoes being infected with P. italicum, 55% of the fruits were spoilage. The tomato fruit coated with Tt/Ag-NPs delayed weight loss, increased titratable acidity (TA%), antioxidant%, and polyphenol contents, and decreased pH and total soluble solids (TSSs). There were no significant results between pre-coating and post-coating except in phenol contents increased in pre-coating. A particular focus is placed on the novel and promising approach of utilizing nanoparticles to combat foodborne pathogens and preserve commodities, with a spotlight on the application of nanoparticles in safeguarding tomatoes from decay.
Collapse
Affiliation(s)
- Ragaa A. Hamouda
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia; (F.Q.A.); (O.M.A.); (A.D.M.A.-H.); (R.M.A.); (A.M.A.)
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt
| | - Fatimah Q. Almaghrabi
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia; (F.Q.A.); (O.M.A.); (A.D.M.A.-H.); (R.M.A.); (A.M.A.)
| | - Ohoud M. Alharbi
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia; (F.Q.A.); (O.M.A.); (A.D.M.A.-H.); (R.M.A.); (A.M.A.)
| | - Abla D. M. Al-Harbi
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia; (F.Q.A.); (O.M.A.); (A.D.M.A.-H.); (R.M.A.); (A.M.A.)
| | - Rahaf M. Alsulami
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia; (F.Q.A.); (O.M.A.); (A.D.M.A.-H.); (R.M.A.); (A.M.A.)
| | - Abrar M. Alhumairi
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia; (F.Q.A.); (O.M.A.); (A.D.M.A.-H.); (R.M.A.); (A.M.A.)
| |
Collapse
|
4
|
Hasanin MS, Hassan SAM, AbdAllatif AM, Darwesh OM. Unveiling the silver lining: examining the effects of biogenic silver nanoparticles on the growth dynamics of in vitro olive shoots. Microb Cell Fact 2024; 23:79. [PMID: 38481199 PMCID: PMC10935793 DOI: 10.1186/s12934-024-02346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
The current study aimed to evaluate the effects of biogenic silver nanoparticles (AgNPs) on growth behavior and leaf anatomy of in vitro growing shoots of 'Picual' and 'Dolce' olive cultivars. Biosynthesis of AgNPs was carried out using the cell-free filtrate of Fusarium oxysporum. The dimension and shape of the synthesized AgNPs have been analyzed using spectroscopy and topography analysis tools, confirming that the biosynthesis of AgNPs is a crystalline nanostructure with an average particle size of 37 nm. The shoots of the selected olive cultivars were cultured on Rugini olive medium-supplemented AgNPs at 0, 10, 20, and 30mg L- 1. The effect of genotypes on shoot multiplication was significant, 'Picual' recorded higher values of shoot growth parameters compared with 'Dolce' cultivar. Adding AgNPs to the culture medium significantly affected the growth of in vitro olive shoots. AgNPs at 20 and 30mg L- 1 produced higher values of the number of shoots, shoot length, and leaf number of Picual cv. compared with the control treatments, but the higher AgNPs concentration harmed the growth parameters of Dolce cv. and recorded lower growth values compared with the lower concentration (10mg L- 1). AgNPs had a significant effect on leaf morphology and their anatomical structure. The current results showed that the stimulatory effect of AgNPs on shoot growth of in vitro olive shoots is highly dependent on plant genotype and nanoparticle concentration.
Collapse
Affiliation(s)
- Mohamed S Hasanin
- Cellulose & Paper Department, National Research Centre, 33 El Bohouth St, P.O. 12622, Dokki, Giza, Egypt.
| | - Sayed A M Hassan
- Tissue Culture Technique Lab, Central Laboratories Network and Pomology Dept, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - A M AbdAllatif
- Pomology Dept, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Osama M Darwesh
- Agricultural Microbiology Dept, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
5
|
Al Zahrani NA, Gad MM, Fikry AM, Ezzat Ahmed A, El-Tarabily KA, Elakkad HA, Eid Elesawi I. Efficacy of chitosan nanoparticles and wax coatings on maintaining post-harvest quality of " Murcott" mandarins. Saudi J Biol Sci 2024; 31:103894. [PMID: 38205263 PMCID: PMC10776418 DOI: 10.1016/j.sjbs.2023.103894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024] Open
Abstract
Because of its high degree of biodegradability, chitosan is widely used as a component in food packaging. However, its poor physical properties, such as permeability, limit its applicability. Consequently, applying nano chitosan is regarded as the most effective solution to this issue. In the current study, we studied the effect of using different materials in the coating process on the quality of "Murcott" mandarin during cold storage. We used different concentrations of nano chitosan (50 and 100 ppm) without wax and 100 ppm nano chitosan with wax. We investigated the impact of these compounds on the chemical composition and quality of fruits. The most successful treatment for preventing weight loss from discarded fresh fruit was a combination of wax and 100 ppm nano chitosan. This combination also prevented the deterioration of vitamin C, maintained the fruit pulp, and preserved the fruit's superior taste during cold storage and shelf life. It also maintains a better total soluble solids and total acidity level than other treatments. In addition, the activity of antioxidant enzymes and the total number of antioxidants indicates no degradation of plant tissues compared to those not coated with nano chitosan. It also reduces the microbial load on the coated fruits. Consequently, this coating combination could suggest prolonging post-harvest life and increasing the marketing period of mandarin fruits.
Collapse
Affiliation(s)
- Nourah A. Al Zahrani
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Mohamed M. Gad
- Horticulture Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed M. Fikry
- Horticulture Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Hend A. Elakkad
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ibrahim Eid Elesawi
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
6
|
Dey P, Bhattacharjee S, Yadav DK, Hmar BZ, Gayen K, Bhowmick TK. Valorization of waste biomass for synthesis of carboxy-methyl-cellulose as a sustainable edible coating on fruits: A review. Int J Biol Macromol 2023; 253:127412. [PMID: 37844815 DOI: 10.1016/j.ijbiomac.2023.127412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/16/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
The coating on fruits and vegetables increases the shelf-life by providing protection against their spoilage. The existing petroleum-based coating materials have considerable health threats. Edible coating materials prepared with the cellulose derivative extracted from the waste biomass could be a sustainable alternative and environment friendly process to increase the shelf-life periods of the post-harvest crops. Selection of suitable waste biomass and extraction of cellulose are the critical steps for the synthesis of cellulose-based edible film. Conversion of extracted cellulose into cellulosic macromolecular derivatives such as carboxy-methyl-cellulose (CMC) is vital for synthesizing edible coating formulation. Applications of sophisticated tools and methods for the characterization of the coated fruits would be helpful to determine the efficiency of the coating material. In this review, we focused on: i) criteria for the selection of suitable waste biomass for extraction of cellulose, ii) pretreatment and extraction process of cellulose from the different waste biomasses, iii) synthesis processes of CMC by using extracted cellulose, iv) characterizations of CMC as food coating materials, v) various formulation techniques for the synthesis of the CMC based food coating materials and vi) the parameters which are used to evaluate the shelf-life performance of different coated fruits.
Collapse
Affiliation(s)
- Puspita Dey
- Department of Chemical Engineering, National Institute of Technology, Agartala, West Tripura, Tripura 799046, India
| | - Satyajit Bhattacharjee
- Department of Chemical Engineering, National Institute of Technology, Agartala, West Tripura, Tripura 799046, India
| | - Dev Kumar Yadav
- DRDO-Defence Food Research Laboratory, Mysore 570 011, India
| | | | - Kalyan Gayen
- Department of Chemical Engineering, National Institute of Technology, Agartala, West Tripura, Tripura 799046, India.
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology, Agartala, West Tripura, Tripura 799046, India.
| |
Collapse
|
7
|
Machková A, Vaňková E, Obrová K, Fürhacker P, Košutová T, Lion T, Hanuš J, Scholtz V. Silver nanoparticles with plasma-polymerized hexamethyldisiloxane coating on 3D printed substrates are non-cytotoxic and effective against respiratory pathogens. Front Microbiol 2023; 14:1217617. [PMID: 37637122 PMCID: PMC10450633 DOI: 10.3389/fmicb.2023.1217617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Due to the emerging resistance of microorganisms and viruses to conventional treatments, the importance of self-disinfecting materials is highly increasing. Such materials could be silver or its nanoparticles (AgNPs), both of which have been studied for their antimicrobial effect. In this study, we compared the biological effects of AgNP coatings with and without a plasma-polymerized hexamethyldisiloxane (ppHMDSO) protective film to smooth silver or copper coatings under three ambient conditions that mimic their potential medical use (dry or wet environments and an environment simulating the human body). The coatings were deposited on 3D printed polylactic acid substrates by DC magnetron sputtering, and their surface morphology was visualized using scanning electron microscopy. Cytotoxicity of the samples was evaluated using human lung epithelial cells A549. Furthermore, antibacterial activity was determined against the Gram-negative pathogenic bacterium Pseudomonas aeruginosa PAO1 and antiviral activity was assessed using human rhinovirus species A/type 2. The obtained results showed that overcoating of AgNPs with ppHMDSO creates the material with antibacterial and antiviral activity and at the same time without a cytotoxic effect for the surrounding tissue cells. These findings suggest that the production of 3D printed substrates coated with a layer of AgNPs-ppHMDSO could have potential applications in the medical field as functional materials.
Collapse
Affiliation(s)
- Anna Machková
- Department of Physics and Measurements, Faculty of Chemical Engineering, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Eva Vaňková
- Department of Physics and Measurements, Faculty of Chemical Engineering, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Klára Obrová
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Paola Fürhacker
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Tereza Košutová
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Thomas Lion
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Jan Hanuš
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Vladimír Scholtz
- Department of Physics and Measurements, Faculty of Chemical Engineering, University of Chemistry and Technology in Prague, Prague, Czechia
| |
Collapse
|
8
|
Li J, Azam M, Noreen A, Umer MA, Ilahy R, Akram MT, Qadri R, Khan MA, Rehman SU, Hussain I, Lin Q, Liu H. Application of Methyl Jasmonate to Papaya Fruit Stored at Lower Temperature Attenuates Chilling Injury and Enhances the Antioxidant System to Maintain Quality. Foods 2023; 12:2743. [PMID: 37509835 PMCID: PMC10380080 DOI: 10.3390/foods12142743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Papaya fruit has a limited shelf life due to its sensitivity to decay and chilling damage during cold storage. The application of methyl jasmonate (MeJA) is known to reduce the incidence of disease and chilling injury, and to maintain the overall quality of the papaya fruit when stored at low temperature. Consequently, the effects of postharvest MeJA (1 mM) immersion on papaya fruits during low-temperature storage (10 °C ± 2 °C) for 28 days were studied. The experiment revealed that MeJA treatment significantly decreased the papaya fruit's weight loss, disease incidence, and chilling injury index. Furthermore, the accumulation of malondialdehyde and hydrogen peroxide was markedly lower after the application of MeJA. In addition, MeJA treatment exhibited significantly higher total phenols, ascorbic acid, antioxidant activity, and titratable acidity in contrast to the control. Similarly, MeJA-treated papaya fruits showed higher antioxidant enzymatic activity (superoxide dismutase, catalase, and peroxidase enzymes) with respect to the control fruits. In addition, MeJA reduced the soluble solids content, ripening index, pH, and sugar contents compared to the control fruits. Furthermore, MeJA-treated papaya fruit exhibited higher sensory and organoleptic quality attributes with respect to untreated papaya fruits. These findings suggested that postharvest MeJA application might be a useful approach for attenuating disease incidence and preventing chilling injury by enhancing antioxidant activities along with enhanced overall quality of papaya fruits during low-temperature storage.
Collapse
Affiliation(s)
- Jianhui Li
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, China
| | - Muhammad Azam
- Pomology Laboratory, Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan
| | - Amtal Noreen
- Pomology Laboratory, Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Ali Umer
- Pomology Laboratory, Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan
| | - Riadh Ilahy
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Ariana 1054, Tunisia
| | - Muhammad Tahir Akram
- Department of Horticulture, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Rashad Qadri
- Pomology Laboratory, Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Arslan Khan
- Pomology Laboratory, Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan
| | - Shoaib Ur Rehman
- Department of Horticulture, University of Agriculture, Faisalabad, Sub Campus Depalpur, Okara 53600, Pakistan
| | | | - Qiong Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Hongru Liu
- Institute of Crop Breeding & Cultivation Research, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
9
|
Nayab DE, Akhtar S. Green synthesized silver nanoparticles from eucalyptus leaves can enhance shelf life of banana without penetrating in pulp. PLoS One 2023; 18:e0281675. [PMID: 36888584 PMCID: PMC9994744 DOI: 10.1371/journal.pone.0281675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Bananas are exposed to serious post-harvest problems resulting in agricultural and economic losses across the world. The severity of problem is linked with the process of rapid ripening and pathogens attack. Such problems have led to economic losses as well as a lower yield of nutritionally rich bananas. The global demand to increase the life span of bananas and their protection from pathogens-borne diseases urged the use of antimicrobial edible coatings of nanoparticles. The present experiment has explored the innovative development of green synthesized nanoparticles from Eucalyptus leaf extract (ELE) to increase the shelf life of bananas up to 32 days from the day of collection. Statistically significant results were recorded (P = 0.05) by applying five different concentrations of silver nanoparticles (AgNPs) in ranges of 0.01-0.05%. Various morphological and physiological parameters such as color, decay, firmness, weight loss, pulp to peel ratio, pH, titrable acidity (TA), phenolic contents, protein estimation, ethylene production, starch content and total soluble sugars were measured in Cavendish banana (Basrai). Bananas treated with 0.01% AgNPs showed maximum control on its ripeness over morphological and physiological changes. The increase in shelf life was in order 0.01%>0.02%>0.03%>0.04%>0.05%> control. Further, AgNPs reduced the process of ripening by controlling ethylene production. The result has also proved the safety of banana consumption by simple removal of banana peel as penetration of AgNPs from the peel to the pulp was not detected. It is recommended to use 0.01% AgNPs to enhance the shelf life of banana without effecting its nutritive value.
Collapse
Affiliation(s)
- Durr-e- Nayab
- Department of Botany, University of Gujrat, Gujrat, Pakistan
| | - Shamim Akhtar
- Department of Botany, University of Gujrat, Gujrat, Pakistan
- * E-mail:
| |
Collapse
|
10
|
Jiang H, Zhang W, Chen L, Liu J, Cao J, Jiang W. Recent advances in guar gum-based films or coatings: Diverse property enhancement strategies and applications in foods. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Synergistic Effect of Methyl Cellulose and Carvacrol Coating on Physicochemical and Microbial Attributes of Mango (Mangifera indica) Fruit in Postharvest Storage. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Decay on mango (Mangifera indica) fruit mostly derived from a fungal disease which was caused by anthracnose invasion and infestation. The falling quality of mango fruit during postharvest preservation was commonly associated with weight loss, softening, vitamin C degradation and decay. This research evaluated the synergistic effect of methyl cellulose (MC) and carvacrol (Car) in the preparation of the edible coating on the physicochemical and microbial characteristics of mango fruit during 28 days of storage at 18°C. Five groups of coating treatments were prepared as follows: A (4% MC), B (4% MC + 0.5% Car), C (4% MC + 0.75% Car), D (4% MC + 1.0% Car), E (4% MC + 1.25% Car). These coating solutions were set 40°C for mango dipping. Mango fruits were individually dipped in the respected MC-Car solutions for 15 s and left out to air-condition for 30 min to create the coating film. These mango fruits were then kept at 18°C for 28 days. In 7 day-interval, experimental fruits were sampled to estimate weight loss, firmness, ascorbic acid content, decay index. Mango fruit pre-coated by 4% MC + 1.0% Car showed the least weight loss (1.61±0.03 %) and decay index (2.19±0.03 mark) while the highest retention of firmness (47.13±0.23 N) and ascorbic acid (25.60±0.13 mg/100 g) at the end of 28 days of storage. Results showed that incorporation of 1.0% carvacrol into 4% methyl cellulose-based edible coating would extend the shelf-life of mango fruit for 28 days of preservation. The edible coating would be a promising and green alternative with minimal environmental pollution.
Collapse
|
12
|
Kumar S, Baswal AK, Ramezanian A, Gill KS, Mirza AA. Impact of carboxymethyl cellulose based edible coating on storage life and quality of guava fruit cv. ‘Allahabad Safeda’ under ambient storage conditions. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01057-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|