1
|
Alam MS, Maowa Z, Hasan MN. Phthalates toxicity in vivo to rats, mice, birds, and fish: A thematic scoping review. Heliyon 2025; 11:e41277. [PMID: 39811286 PMCID: PMC11731458 DOI: 10.1016/j.heliyon.2024.e41277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background Phthalates, a large group of endocrine disruptors, are ubiquitous in the environment and detrimental to human health. This scoping review aimed to summarize the effects of phthalates on laboratory animals relevant to humans, assess toxicity, and analyze mechanisms of toxicity for public health concerns. Methods Articles were retrieved from Google Scholar, PubMed, ScienceDirect, and Web of Science search engines. The search used the term "toxicity of phthalates in vivo, animals or birds or fish." Original research articles published between 2010 and 2024 describing in vivo toxicity in rat, mouse, bird, and fish models, were included. Conversely, articles that did not meet the above criteria were excluded from this scoping review. Two authors independently extracted data using data extraction tools based on themes, while a third arbitrated if consensus was not met. A senior researcher developed the themes, which were further refined through discussions. Data analysis involved quantitative (percentage of studies) and qualitative (content analysis) methods. Results Of the 8180 articles screened, 153 met the inclusion criteria. Most of them were published after 2015 (74.50 %). The scoping review showed that DEHP (56.20 %) and DBP (21.57 %) were the most studied phthalates followed by BBP, DiBP, DMP, DEP, BBOP, and DiNP. Scarce data were available on DnOP, DPHP, DPeP, DUDP, DTDP, DMiP, and DiOP. Interestingly, studies of combinations of two or more phthalates were also present. The main laboratory animals employed were rats (48.37 %) and mice (39.87 %), while the least studied were birds (5.22 %) and fish (6.53 %). Most studies related to testicular toxicity (37.60 %), hepatotoxicity (23.53 %), and ovarian toxicity (18.30 %) investigations, while the rest consisted of neurotoxicity (6.88 %), renal toxicity (6.53 %), and thyroid toxicity studies (4.57 %). Studies focused on oxidative stress (34.64 %), apoptosis (22.22 %), steroid hormone deprivation (20.26 %), lipid metabolism disorder (11.76 %), and immunotoxicity (5.88 %) as mechanisms of toxicity. The most commonly used techniques were H&E, RT-qPCR, ROS assay, WB, IHC, ELISA, RIA, TUNEL, TEM, IFM, FCM, and RNA-seq. Conclusions DEHP and DBP are the most toxic and studied phthalates, while BBP, DiNP, DiBP, DiDP, BBOP, DMP, and DiOP and their combinations require more accurate studies to confirm their toxic effects on human health and mechanisms of action. These will assist policymakers in adopting strategies to minimize public exposure and adverse effects.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Zannatul Maowa
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Nazmol Hasan
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
2
|
Rodríguez-Carrillo A, Remy S, Koppen G, Wauters N, Mustieles V, Desalegn A, Iszatt N, den Hond E, Verheyen VJ, Fábelová L, Murinova LP, Pedraza-Díaz S, Esteban M, Poyatos RM, Govarts E, van Nuijs ALN, Covaci A, Schoeters G, Olea N, Fernández MF. Urinary phthalate/DINCH metabolites associations with kisspeptin and reproductive hormones in teenagers: A cross-sectional study from the HBM4EU aligned studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172426. [PMID: 38631641 DOI: 10.1016/j.scitotenv.2024.172426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Exposure to phthalate/DINCH metabolites can induce human reproductive toxicity, however, their endocrine-disrupting mechanisms are not fully elucidated. OBJECTIVE To investigate the association between concentrations of phthalate/DINCH metabolites, serum kisspeptin, and reproductive hormones among European teenagers from three of the HBM4EU Aligned Studies. METHODS In 733 Belgian (FLEHS IV study), Slovak (PCB cohort follow-up), and Spanish (BEA study) teenagers, ten phthalate and two DINCH metabolites were measured in urine by high-performance liquid chromatography-tandem mass spectrometry. Serum kisspeptin (kiss54) protein, follicle-stimulating hormone (FSH), total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG) levels were measured by immunosorbent assays. Free Androgen Index (FAI) was calculated as a proxy of free testosterone. Adjusted sex-stratified linear regression models for individual studies, mixed effect models (LME) accounting for random effects for pooled studies, and g-computation and Bayesian kernel machine regression (BKMR) models for the phthalate/DINCH mixture were performed. RESULTS The LME suggested that each IQR increase in ln-transformed levels of several phthalates was associated with lower kisspeptin [MnBP: %change (95%CI): -2.8 (-4.2;-0.4); MEHP: -1.4 (-3.4,0.2)] and higher FSH [∑DINP: 11.8 (-0.6;25.1)] levels in females from pooled studies. G-computation showed that the phthalates/DINCH mixture was associated with lower kisspeptin [-4.28 (-8.07;-0.34)] and higher FSH [22.13 (0.5;48.4)] also in females; BKMR showed similar although non-significant pattern. In males, higher phthalates metabolites [MEHP: -12.22 (-21.09;-1.18); oxo-MEHP: -12.73 (-22.34;-1.93)] were associated with lower TT and FAI, although higher DINCH [OH-MINCH: 16.31 (6.23;27.35), cx-MINCH: 16.80 (7.03;27.46), ∑DINCH: 17.37 (7.26;29.74)] were associated with higher TT levels. No mixture associations were found in males. CONCLUSION We observed sex-specific associations between urinary concentrations of phthalate/DINCH metabolites and the panel of selected effect biomarkers (kisspeptin and reproductive hormones). This suggests that exposure to phthalates would be associated with changes in kisspeptin levels, which would affect the HPG axis and thus influence reproductive health. However, further research is needed, particularly for phthalate replacements such as DINCH.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610 Wilrijk, Belgium
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Natasha Wauters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Vicente Mustieles
- Biomedical Research Center & School of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Anteneh Desalegn
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Veerle J Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Esteban
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael M Poyatos
- Unidad de Gestión Clínica de Laboratorios, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610 Wilrijk, Belgium
| | - Greet Schoeters
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Nicolás Olea
- Biomedical Research Center & School of Medicine, University of Granada, 18016 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- Biomedical Research Center & School of Medicine, University of Granada, 18016 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain.
| |
Collapse
|
3
|
Singh J, Jangra A, Kumar D. Recent advances in toxicological research of di-(2-ethylhexyl)-phthalate: Focus on endoplasmic reticulum stress pathway. CHEMOSPHERE 2024; 356:141922. [PMID: 38593956 DOI: 10.1016/j.chemosphere.2024.141922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/01/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
The plasticizer di-(2-ethylhexyl)-phthalate (DEHP) is the most significant phthalate in production, usage, and environmental occurrence. DEHP is found in products such as personal care products, furniture materials, cosmetics, and medical devices. DEHP is noncovalently bind with plastic therefore, repeated uses lead to leaching out of it. Exposure to DEHP plasticizers leads to toxicity in essential organs of the body through various mechanisms. The main objective of this review article is to focus on the DEHP-induced endoplasmic reticulum (ER) stress pathway implicated in the testis, brain, lungs, kidney, heart, liver, and other organs. Not only ER stress, PPAR-related pathways, oxidative stress and inflammation, Ca2+ homeostasis disturbances in mitochondria are also identified as the relative mechanisms. ER is involved in various critical functions of the cell such as Protein synthesis, protein folding, calcium homeostasis, and lipid peroxidation but, DEHP exposure leads to augmentation of misfolded/unfolded protein. This review complies with various recently reported DEHP-induced toxicity studies and some pharmacological interventions that have been shown to be effective through ER stress pathway. DEHP exposure does assess health risks and vulnerability to populations across the globe. This study offers possible targets and approaches for addressing various DEHP-induced toxicity.
Collapse
Affiliation(s)
- Jiten Singh
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| |
Collapse
|
4
|
Martínez-Ibarra A, Cerbón M, Martínez-Razo LD, Morales-Pacheco M, Torre-Villalvazo I, Kawa S, Rodríguez-Dorantes M. Impact of DEHP exposure on female reproductive health: Insights into uterine effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104391. [PMID: 38367918 DOI: 10.1016/j.etap.2024.104391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Several endocrine disrupting compounds released from plastics, including polyfluoroalkyl substances, bisphenols, flame retardants, phthalates and others, are of great concern to human health due to their high toxicity. This review discusses the effects of di-(2-ethylhexyl) phthalate (DEHP), the most common member of the phthalate family, on female reproduction. In vitro and in vivo studies link DEHP exposure to impaired hypothalamic-pituitary-ovarian s (HPO) axis function, alteration of steroid-hormone levels and dysregulation of their receptors, and changes in uterine morphophysiology. In addition, high urinary DEPH levels have been associated with several reproductive disorders in women, including endometriosis, fibromyoma, fetal growth restriction and pregnancy loss. These data suggest that DEHP may be involved in the pathophysiology of various female reproductive diseases. Therefore, exposure to these compounds should be considered a concern in clinician surveillance practices for women at reproductive age and should be regulated to protect their health and that of their progeny.
Collapse
Affiliation(s)
| | - Marco Cerbón
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | | | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Iván Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Simón Kawa
- Dirección General del Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico.
| | | |
Collapse
|
5
|
Haleem N, Kumar P, Zhang C, Jamal Y, Hua G, Yao B, Yang X. Microplastics and associated chemicals in drinking water: A review of their occurrence and human health implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169594. [PMID: 38154642 DOI: 10.1016/j.scitotenv.2023.169594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Microplastics (MPs) have entered drinking water (DW) via various pathways, raising concerns about their potential health impacts. This study provides a comprehensive review of MP-associated chemicals, such as oligomers, plasticizers, stabilizers, and ultraviolet (UV) filters that can be leached out during DW treatment and distribution. The leaching of these chemicals is influenced by various environmental and operating factors, with three major ones identified: MP concentration and polymer type, pH, and contact time. The leaching process is substantially enhanced during the disinfection step of DW treatment, due to ultraviolet light and/or disinfectant-triggered reactions. The study also reviewed human exposure to MPs and associated chemicals in DW, as well as their health impacts on the human nervous, digestive, reproductive, and hepatic systems, especially the neuroendocrine toxicity of endocrine-disrupting chemicals. An overview of MPs in DW, including tap water and bottled water, was also presented to enable a background understanding of MPs-associated chemicals. In short, certain chemicals leached from MPs in DW can have significant implications for human health and demand further research on their long-term health impacts, mitigation strategies, and interactions with other pollutants such as disinfection byproducts (DBPs) and per- and polyfluoroalkyl substances (PFASs). This study is anticipated to facilitate the research and management of MPs in DW and beverages.
Collapse
Affiliation(s)
- Noor Haleem
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA; Institute of Environmental Sciences and Engineering National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Pradeep Kumar
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Cheng Zhang
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| | - Yousuf Jamal
- Institute of Chemical Engineering & Technology, University of the Punjab, Lahore 54590, Pakistan
| | - Guanghui Hua
- Department of Civil and Environmental Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Bin Yao
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Xufei Yang
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
6
|
Li J, Deng T, Rao W, Liao H, Wang Y, Guo N, Du Y, Guo Q, Zeng Q, Liu C, Li Y. Phthalate metabolites in urine and follicular fluid in relation to menstrual cycle characteristics in women seeking fertility assistance. ENVIRONMENT INTERNATIONAL 2024; 183:108362. [PMID: 38064925 DOI: 10.1016/j.envint.2023.108362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Phthalates have been shown to disrupt the estrous cycle in animal studies. However, epidemiological research investigating their associations with menstrual cycle characteristics is limited. OBJECTIVE To explore the relationships between phthalate exposure and menstrual cycle characteristics among women seeking fertility assistance. METHODS We determined the levels of eight phthalate metabolites in both follicular fluid (FF) and urine specimens collected from 441 women in the Tongji Reproductive and Environmental (TREE) cohort, using high-performance liquid chromatography and tandem mass spectrometry. Information about menstrual cycle parameters was obtained through a questionnaire. The impacts of individual and joint exposure to phthalates on menstrual cycle characteristics were assessed using multivariable linear regression, Poisson regression, and quantile g-computation approaches. RESULTS After adjusting for relevant covariates, we found that per log10-unit increase in mono(2-ethylhexyl) phthalate (MEHP) level in urine specimens was associated with a decrease of 0.20 days (95 % CI: -0.37, -0.03) in bleeding duration. We also observed that mono(2-ethyl-5-carboxypentyl) phthalate (MECPP) and the sum of di(2-ethylhexyl) phthalate (DEHP) metabolites (∑DEHP) concentrations in FF samples were inversely related to cycle length [β = -1.92 (95 % CI: -3.10, -0.75) and -1.87 (95 % CI: -3.56, -0.19), respectively]. However, we generally observed null associations between phthalate metabolites and irregular cycle, dysmenorrhea, hypomenorrhea, or cycle length variation. Furthermore, we also found that phthalate metabolite mixtures in FF and urine were generally unrelated to menstrual cycle characteristics. CONCLUSION Our findings suggest that some DEHP metabolites in FF and urine are inversely associated with menstrual cycle length and menstrual bleeding duration in women attending a fertility center.
Collapse
Affiliation(s)
- Juan Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei 430030, PR China
| | - Taoran Deng
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei 430030, PR China
| | - Wentao Rao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei 430030, PR China
| | - Hongmei Liao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei 430030, PR China
| | - Yi Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei 430030, PR China
| | - Na Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei 430030, PR China
| | - Yaoyao Du
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei 430030, PR China
| | - Qingchun Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei 430030, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| | - Yufeng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
7
|
Yi H, Wu H, Zhu W, Lin Q, Zhao X, Lin R, Luo Y, Wu L, Lin D. Phthalate exposure and risk of ovarian dysfunction in endometriosis: human and animal data. Front Cell Dev Biol 2023; 11:1154923. [PMID: 37560165 PMCID: PMC10407402 DOI: 10.3389/fcell.2023.1154923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
Objective: We aimed to explore the correlations between and possible mechanisms of common environmental endocrine disruptors, phthalates, and ovarian dysfunction in endometriosis. Methods: Subjects were included in the case group (n = 107) who were diagnosed with endometriosis by postoperative pathology in Fujian Maternal and Child Hospital from February 2018 to February 2021, and the women who were excluded from endometriosis by surgery were as the control group (n = 70). The demographic information of the subjects were evaluated by questionnaire, and the clinical characteristics were evaluated by medical records and 3-year follow-up results. Gas chromatography‒mass spectrometry was used to quantify 10 metabolites of phthalates, including dimethyl ortho-phthalate (DMP), mono-n-methyl phthalate (MMP), dioctyl ortho-phthalate (DEP), mono-ethyl phthalate (MEP), di-n-butyl ortho-phthalate (DBP), mono-butyl phthalate (MBP), benzylbutyl phthalate (BBzP), mono-benzyl; phthalate (MBzP), diethylhexyl phthalate (DEHP) and mono-ethylhexyl phthalate (MEHP), in the urine samples of the subjects. Furthermore, a total of 54 SD rats were exposed to DEHP 0, 5, 50, 100, 250, 500, 1,000, 2000, and 3,000 mg/kg/day for 2 weeks. The SD rats' body weight, oestrus cycle changes, and serum anti-mullerian hormone (AMH) levels were evaluated. After sacrifice, the mass index of the rat uterus and bilateral ovaries were calculated. Finally, bioinformatics analysis of rat ovarian tissues was performed to explore the possible mechanism. SPSS 24.0 (IBM, United States) was used for data analysis. p-value <0.05 was considered statistically significant. Results: The human urinary levels of DMP (p < 0.001), MMP (p = 0.001), DEP (p = 0.003), MEP (p = 0.002), DBP (p = 0.041), MBP (p < 0.001), BBzP (p = 0.009), DEHP (p < 0.001), and MEHP (p < 0.001) were significantly higher in women with endometriosis than in controls. Notably, DEHP was a significant risk factor for endometriosis (OR: 11.0, 95% CI: 5.4-22.6). The area under the ROC curve increased when multiple phthalates were diagnosed jointly, reaching 0.974 as the highest value, which was helpful for the diagnosis of endometriosis. In vivo experiments showed that after DEHP exposure in rats, the mass index of the ovary and uterus decreased in a dose-dependent manner; the oestrus cycle of SD rats was irregularly prolonged and disordered; and the serum AMH level was negatively correlated with the DEHP exposure dose (Rho = -0.8, p < 0.001). Bioinformatics analysis of rat ovarian tissues showed that seven genes involved in the steroid biosynthesis pathway were upregulated and may play a negative role in ovarian function. Conclusion: Exposure to phthalates, especially DEHP, is associated with the occurrence of endometriosis and affects women's reproductive prognosis and ovarian function. The steroid biosynthesis pathway may be related to ovarian dysfunction. The detection of phthalate in urine may become a new biological target for the diagnosis of endometriosis.
Collapse
Affiliation(s)
- Huan Yi
- National Key Gynecology Clinical Specialty Construction Unit of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Provincial Maternity and Children’s Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Huamin Wu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Fuzhou, Fuzhou, Fujian, China
| | - Wenbin Zhu
- National Key Gynecology Clinical Specialty Construction Unit of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Provincial Maternity and Children’s Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qi Lin
- Fujian Health College, Health Management Department, Fuzhou, Fujian, China
| | - Xiaoyan Zhao
- National Key Gynecology Clinical Specialty Construction Unit of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Provincial Maternity and Children’s Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Rong Lin
- National Key Gynecology Clinical Specialty Construction Unit of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Provincial Maternity and Children’s Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Luo
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Fuzhou, Fuzhou, Fujian, China
| | - Lixiang Wu
- National Key Gynecology Clinical Specialty Construction Unit of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Provincial Maternity and Children’s Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Danmei Lin
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Fuzhou, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Milanović M, Milošević N, Milić N, Stojanoska MM, Petri E, Filipović JM. Food contaminants and potential risk of diabetes development: A narrative review. World J Diabetes 2023; 14:705-723. [PMID: 37383596 PMCID: PMC10294057 DOI: 10.4239/wjd.v14.i6.705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 06/14/2023] Open
Abstract
The number of people diagnosed with diabetes continues to increase, especially among younger populations. Apart from genetic predisposition and lifestyle, there is increasing scientific and public concern that environmental agents may also contribute to diabetes. Food contamination by chemical substances that originate from packaging materials, or are the result of chemical reactions during food processing, is generally recognized as a worldwide problem with potential health hazards. Phthalates, bisphenol A (BPA) and acrylamide (AA) have been the focus of attention in recent years, due to the numerous adverse health effects associated with their exposure. This paper summarizes the available data about the association between phthalates, BPA and AA exposure and diabetes. Although their mechanism of action has not been fully clarified, in vitro, in vivo and epidemiological studies have made significant progress toward identifying the potential roles of phthalates, BPA and AA in diabetes development and progression. These chemicals interfere with multiple signaling pathways involved in glucose and lipid homeostasis and can aggravate the symptoms of diabetes. Especially concerning are the effects of exposure during early stages and the gestational period. Well-designed prospective studies are needed in order to better establish prevention strategies against the harmful effects of these food contaminants.
Collapse
Affiliation(s)
- Maja Milanović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Nataša Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Milica Medić Stojanoska
- Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Vojvodina, University of Novi Sad, Novi Sad 21000, Serbia
| | - Edward Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad 21000, Serbia
| | - Jelena Marković Filipović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad 21000, Serbia
| |
Collapse
|
9
|
Pogrmic-Majkic K, Samardzija Nenadov D, Tesic B, Fa Nedeljkovic S, Kokai D, Stanic B, Andric N. Mapping DEHP to the adverse outcome pathway network for human female reproductive toxicity. Arch Toxicol 2022; 96:2799-2813. [PMID: 35790550 PMCID: PMC9352620 DOI: 10.1007/s00204-022-03333-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/15/2022] [Indexed: 01/09/2023]
Abstract
Adverse outcome pathways (AOPs) and AOP networks are tools for mechanistic presentation of toxicological effects across different levels of biological organization. These tools are used to better understand how chemicals impact human health. In this study, a four-step workflow was used to derive the AOP network of human female reproductive toxicity (HFRT-AOP) from five AOPs available in the AOP-Wiki and ten AOPs obtained from the literature. Standard network analysis identified key events (KEs) that are point of convergence and divergence, upstream and downstream KEs, and bottlenecks across the network. To map di-(2-ethylhexyl) phthalate (DEHP) to the HFRT-AOP network, we extracted DEHP target genes and proteins from the Comparative Toxicogenomic and the CompTox Chemicals Dashboard databases. Enriched GO terms analysis was used to identify relevant biological processes in the ovary that are DEHP targets, whereas screening of scientific literature was performed manually and automatically using AOP-helpFinder. We combined this information to map DEHP to HFRT-AOP network to provide insight on the KEs and system-level perturbations caused by this endocrine disruptor and the emergent paths. This approach can enable better understanding of the toxic mechanism of DEHP-induced human female reproductive toxicity and reveal potential novel DEHP female reproductive targets for experimental studies.
Collapse
Affiliation(s)
- Kristina Pogrmic-Majkic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000, Novi Sad, Serbia.
| | - Dragana Samardzija Nenadov
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000, Novi Sad, Serbia
| | - Biljana Tesic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000, Novi Sad, Serbia
| | - Svetlana Fa Nedeljkovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000, Novi Sad, Serbia
| | - Dunja Kokai
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000, Novi Sad, Serbia
| | - Bojana Stanic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000, Novi Sad, Serbia
| | - Nebojsa Andric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000, Novi Sad, Serbia
| |
Collapse
|
10
|
Adam N, Mhaouty-Kodja S. Behavioral Effects of Exposure to Phthalates in Female Rodents: Evidence for Endocrine Disruption? Int J Mol Sci 2022; 23:2559. [PMID: 35269705 PMCID: PMC8910129 DOI: 10.3390/ijms23052559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/18/2022] Open
Abstract
Phthalates have been widely studied for their reprotoxic effects in male rodents and in particular on testosterone production, for which reference doses were established. The female rodent brain can also represent a target for exposure to these environmental endocrine disruptors. Indeed, a large range of behaviors including reproductive behaviors, mood-related behaviors, and learning and memory are regulated by sex steroid hormones. Here we review the experimental studies addressing the effects and mechanisms of phthalate exposure on these behaviors in female rodents, paying particular attention to the experimental conditions (period of exposure, doses, estrous stage of analyses etc.). The objective of this review is to provide a clear picture of the consistent effects that can occur in female rodents and the gaps that still need to be filled in terms of effects and mode(s) of action for a better risk assessment for human health.
Collapse
Affiliation(s)
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine—Institut de Biologie Paris Seine, 7 quai Saint Bernard, 75005 Paris, France;
| |
Collapse
|
11
|
Emojevwe V, Nwangwa EK, Naiho AO, Oyovwi MO, Ben-Azu B. Toxicological outcome of phthalate exposure on male fertility: Ameliorative impacts of the co-administration of N-acetylcysteine and zinc sulfate in rats. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Reports have shown that humans are consistently exposed to environmental toxicants such as phthalate (PHT) during their daily activities. This results in reproductive dysfunction and infertility-related issues as already noted in human and experimental animals. We therefore designed this study to investigate fertility outcome in phthalate-exposed male rats treated with N-acetylcysteine (NAC) and zinc sulfate (ZnSO4) with the view of providing a therapeutic alternative to reproductive toxicity caused by phthalate. The research was done in two phases. In phase 1, thirty-five male Wistar rats were randomly assigned to one of five (n = 7) groups given the following treatments for 21 days: group A was given distilled water as a control, while groups B, C, D, and E were given phthalate (750 mg/kg/day). Animals in groups C to E were also given ZnSO4 (0.5 mg/kg/day), N-acetylcysteine (100 mg/kg/day), and ZnSO4 (0.5 mg/kg/day) + N-acetylcysteine (100 mg/kg/day) in addition to phthalate. In phase 2, animals from groups in phase 1 were mated with females for fecundity testing.
Results
The result shows alteration in testicular and epididymis weight and testis/epididymis ratio, semen parameters, sperm capacitation and acrosome reaction, sperm DNA, serum Zn and Mg, testicular mitochondria apoptosis mechanisms (TNF-α and BCL-2), and testicular Ca2+-ATPase as well as fecundity outcome in the phthalate-treated group. However, ZnSO4 and NAC successfully ameliorated the deleterious effects of phthalate on semen parameters, sperm capacitation and acrosome reaction, serum electrolyte and mitochondria apoptosis mechanisms, and testicular electrogenic Ca2+-ATPase in phthalate-induced male rats with a better outcome in the combined therapy. Pregnancy outcome and litter sizes were also higher in the combined therapy when also compared with the phthalate-treated groups.
Conclusion
According to the result, ZnSO4 and NAC increased fertility outcome in phthalate-treated male rats through enhancement of testicular BCL-2, serum electrolyte, testicular Ca2+ATPase pumps, and cytoprotection.
Collapse
|
12
|
Segovia-Mendoza M, Palacios-Arreola MI, Pavón L, Becerril LE, Nava-Castro KE, Amador-Muñoz O, Morales-Montor J. Environmental Pollution to Blame for Depressive Disorder? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1737. [PMID: 35162759 PMCID: PMC8835056 DOI: 10.3390/ijerph19031737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
Public concern has emerged about the effects of endocrine-disrupting compounds (EDCs) on neuropsychiatric disorders. Preclinical evidence suggests that exposure to EDCs is associated with the development of major depressive disorder (MDD) and could result in neural degeneration. The interaction of EDCs with hormonal receptors is the best-described mechanism of their biological activity. However, the dysregulation of the hypothalamic-pituitary-gonadal adrenal axis has been reported and linked to neurological disorders. At a worldwide level and in Mexico, the incidence of MDD has recently been increasing. Of note, in Mexico, there are no clinical associations on blood levels of EDCs and the incidence of the MDD. Methodology: Thus, we quantified for the first time the serum levels of parent compounds of two bisphenols and four phthalates in patients with MDD. The levels of di-ethyl-hexyl-phthalate (DEHP), butyl-benzyl-phthalate (BBP), di-n-butyl phthalate (DBP), and di-ethyl-phthalate (DEP), bisphenol A (BPA), and bisphenol S (BPS) in men and women with or without MDD were determined with a gas chromatograph-mass spectrometer. Results/conclusion: We found significant differences between concentrations of BBP between controls and patients with MDD. Interestingly, the serum levels of this compound have a dysmorphic behavior, being much higher in women (~500 ng/mL) than in men (≤10 ng/mL). We did not observe significant changes in the serum concentrations of the other phthalates or bisphenols tested, neither when comparing healthy and sick subjects nor when they were compared by gender. The results point out that BBP has a critical impact on the etiology of MDD disorder in Mexican patients, specifically in women.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Margarita Isabel Palacios-Arreola
- Grupo de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (M.I.P.-A.); (O.A.-M.)
| | - Lenin Pavón
- Laboratory of Psychoimmunology, National Institute of Psychiatry Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de Mexico 14370, Mexico; (L.P.); (L.E.B.)
| | - Luis Enrique Becerril
- Laboratory of Psychoimmunology, National Institute of Psychiatry Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de Mexico 14370, Mexico; (L.P.); (L.E.B.)
| | - Karen Elizabeth Nava-Castro
- Grupo de Biología y Química Atmosférica, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Omar Amador-Muñoz
- Grupo de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (M.I.P.-A.); (O.A.-M.)
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| |
Collapse
|
13
|
You HH, Song G. Review of endocrine disruptors on male and female reproductive systems. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109002. [PMID: 33610819 DOI: 10.1016/j.cbpc.2021.109002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022]
Abstract
Endocrine disruptors (EDs) interfere with different hormonal and metabolic processes and disrupt the development of organs and tissues, as well as the reproductive system. In toxicology research, various animal models have been utilized to compare and characterize the effects of EDs. We reviewed studies assessing the effect of ED exposure in humans, zebrafish, and mouse models and the adverse effects of EDs on male and female reproductive systems. This review outlines the distinctive morphological characteristics, as well as gene expression, factors, and mechanisms that are known to occur in response to EDs. In each animal model, disturbances in the reproductive system were associated with certain factors of apoptosis, the hypothalamic-pituitary-gonadal axis, estrogen receptor pathway-induced meiotic disruption, and steroidogenesis. The effects of bisphenol A, phthalate, and 17α-ethinylestradiol have been investigated in animal models, each providing supporting outcomes and elaborating the key regulators of male and female reproductive systems.
Collapse
Affiliation(s)
- Hyekyoung Hannah You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
14
|
Saedi S, Shirazi MRJ, Zamiri MJ, Totonchi M, Dadpasand M, Sedaghati F. Impaired follicular development and endocrine disorders in female rats by prepubertal exposure to toxic doses of cadmium. Toxicol Ind Health 2021; 36:63-75. [PMID: 32279652 DOI: 10.1177/0748233720912060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) has been associated with several physiological problems including reproductive and endocrine system dysfunction resulting in temporary infertility. The principal objective of this project was to investigate the effects of prepubertal exposure to toxic doses of Cd on puberty onset, the endocrine system, and follicular development. For this purpose, 16 female Sprague-Dawley rats weaned on postnatal day (PND) 21 were randomly divided into 4 groups (n = 4 per group). The treatments were as follows: 0, 25, 50, and 75 mg/kg/day of cadmium chloride (CdCl2) by oral gavage from PND 21 to observation of first vaginal opening (VO). The results demonstrated that prepubertal exposure to different doses of CdCl2 delays the age of VO, first diestrus, and first proestrus via altering the concentrations of estradiol and progesterone. The low level of these steroid hormones contributed to lower differentiation and maturation of follicles and it finally led to reduced ovarian reservoir of follicles and impaired follicular development. The number of atretic follicles and secondary follicles with premature cavity increased in rats that received a high dose of CdCl2, whereas the number of secondary follicles and corpora luteum decreased in the same circumstances. Taken together, these data suggest that prepubertal exposure to toxic doses of Cd delays the onset of puberty via disorderliness in the concentration of steroid hormones and reduces the ovarian reservoir of follicles, as well as folliculogenesis.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Mohammad Javad Zamiri
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Totonchi
- Department of Genetics, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Dadpasand
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Fatemeh Sedaghati
- Department of Chemistry, Estahban Higher Education Center, Estahban, Iran
| |
Collapse
|
15
|
Hlisníková H, Petrovičová I, Kolena B, Šidlovská M, Sirotkin A. Effects and mechanisms of phthalates’ action on neurological processes and neural health: a literature review. Pharmacol Rep 2021; 73:386-404. [DOI: 10.1007/s43440-021-00215-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
|
16
|
Hlisníková H, Petrovičová I, Kolena B, Šidlovská M, Sirotkin A. Effects and Mechanisms of Phthalates' Action on Reproductive Processes and Reproductive Health: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6811. [PMID: 32961939 PMCID: PMC7559247 DOI: 10.3390/ijerph17186811] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
The production of plastic products, which requires phthalate plasticizers, has resulted in the problems for human health, especially that of reproductive health. Phthalate exposure can induce reproductive disorders at various regulatory levels. The aim of this review was to compile the evidence concerning the association between phthalates and reproductive diseases, phthalates-induced reproductive disorders, and their possible endocrine and intracellular mechanisms. Phthalates may induce alterations in puberty, the development of testicular dysgenesis syndrome, cancer, and fertility disorders in both males and females. At the hormonal level, phthalates can modify the release of hypothalamic, pituitary, and peripheral hormones. At the intracellular level, phthalates can interfere with nuclear receptors, membrane receptors, intracellular signaling pathways, and modulate gene expression associated with reproduction. To understand and to treat the adverse effects of phthalates on human health, it is essential to expand the current knowledge concerning their mechanism of action in the organism.
Collapse
Affiliation(s)
- Henrieta Hlisníková
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (I.P.); (B.K.); (M.Š.); (A.S.)
| | | | | | | | | |
Collapse
|
17
|
Cheon YP. Di-(2-ethylhexyl) Phthalate (DEHP) and Uterine Histological Characteristics. Dev Reprod 2020; 24:1-17. [PMID: 32411914 PMCID: PMC7201063 DOI: 10.12717/dr.2020.24.1.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
Abstract
Phthalates have a long industrial history. It is suspected that phthalates and their metabolites have detrimental effects on reproduction and development. They are well-known for their anti-androgenic effects. Several studies have indicated that phthalates and their metabolites are reprotoxic in males and endocrine disruptors. Reproduction and embryogenesis occur in the uterus of female eutherian mammals. A horizontal analytical method is preferred to elucidate the toxic effects of phthalates on human reproduction. Nevertheless, there are vast numbers of known phthalates and not all of their modes of action have been clarified. Di-(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer and has been the subject of numerous toxicological studies. However, few of these have reported on the toxic effects of DEHP, its metabolites, other phthalates, or mixtures on female reproduction. Acute and high doses of DEHP adversely affect uterine histology. Recently, it was disclosed that chronic exposures to low doses of DEHP have endocrine disruption efficacy. DEHP induces various cellular responses including modulation of the expression and regulation of steroid hormone receptors and transcription and paracrine factors. Uteri do not respond uniformly to DEHP exposure. The phenotypic manifestations and effects on fertility in response to DEHP and its metabolites may vary with species, developmental stage, and generation. Hence, DEHP exposure may histological alter the uterus and induce endometriosis, endometriosis, hyperplasia, myoma, and developmental and reproductive toxicity.
Collapse
Affiliation(s)
- Yong-Pil Cheon
- Division of Developmental Biology and Physiology, Dept. of
Biotechnology, Sungshin University, Seoul 02844,
Korea
| |
Collapse
|
18
|
Zhang Y, Zhou L, Zhang Z, Xu Q, Han X, Zhao Y, Song X, Zhao T, Ye L. Effects of di (2-ethylhexyl) phthalate and high-fat diet on lipid metabolism in rats by JAK2/STAT5. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3837-3848. [PMID: 31732953 DOI: 10.1007/s11356-019-06599-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Exposure to di (2-ethylhexyl) phthalate (DEHP) induces lipid metabolism disorder and high-fat diet (HD) may have joint effects with DEHP. We aim to clarify the role of JAK2/STAT5 pathway in the process and reveal the effects of HD on the toxicity of DEHP. Wistar rats (160 animals) were fed with HD or normal diet (ND) respectively and exposed to DEHP 0, 5, 50, and 500 mg/kg/day for 8 weeks. Lipid levels, as well as the morphology of liver and adipose, mRNA levels, and protein levels of JAK2, STAT5A, STAT5B, FAS, ap2, and PDK4 were detected. The results showed that DEHP exposure leads to increased weight gain. The JAK2/STAT5 pathway was activated in adipose after DEHP exposure and promoted the expression of FAS, ap2, and PDK4 in ND rats. While in the liver, JAK2 was inhibited, and lipid synthesis and accumulation were increased. However, rats exposed to DEHP in combination with HD showed a complete disorder of lipid metabolism. Therefore, we conclude that DEHP affects lipid metabolism through regulating the JAK2/STAT5 pathway and promotes adipogenesis and lipid accumulation. High-fat diet may have a joint effect with DEHP on lipid metabolism disorder.
Collapse
Affiliation(s)
- Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Zhaoming Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xu Han
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Yaming Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xinyue Song
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| |
Collapse
|
19
|
Shao P, Wang Y, Zhang M, Wen X, Zhang J, Xu Z, Hu M, Jiang J, Liu T. The interference of DEHP in precocious puberty of females mediated by the hypothalamic IGF-1/PI3K/Akt/mTOR signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:362-369. [PMID: 31212184 DOI: 10.1016/j.ecoenv.2019.06.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/29/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
DEHP is reported to cause precocious puberty of females in both humans and rodents, but the underlying mechanisms were largely unknown. This study was designed to clarify the effects and the mechanisms of DEHP on the pathogenesis of sexual precocity. Prepubertal female rats were treated with DEHP for 4 weeks. Key organs were analyzed in control conditions and after exposure to 0.2, 1, and 5 mg/kg/day DEHP in pubertal female rats. To determine the role of the IGF-1/PI3K/Akt/mTOR signaling pathway in DEHP-induced female precocious puberty, 36 rats were treated with 5 mg/kg/day DEHP to establish a model of female precocious puberty. And we investigated the expression of genes and proteins related to IGF-1 pathway in rat hypothalamus after treatment with inhibitors. In the present study, we observed that DEHP treatment resulted in earlier vaginal opening time, higher number of Nissl bodies in the hypothalamus neurons, lower apoptosis of hypothalamic cells, higher IGF-1 and GnRH levels in the serum and hypothalamus. DEHP could also upregulated the expression of IGF-1/PI3K/Akt/mTOR pathway and GnRH in the hypothalamus of adolescent female rats, and inhibition of IGF-1R and mTOR in hypothalamus could block the activation of Kiss-1, GPR54, and GnRH by DEHP. In summary, our study suggested that DEHP might activate the hypothalamic GnRH neurons prematurely through the IGF-1 signaling pathway and promote GnRH release, leading to the initiation of female sexual development. Our results provide a new molecular mechanism underlying reproductive and developmental toxicity in pubertal female rats induced by DEHP.
Collapse
Affiliation(s)
- Pu Shao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuzhuo Wang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China; Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Meng Zhang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xinggui Wen
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jun Zhang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhonghang Xu
- Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
20
|
Qi W, Zhou L, Zhao T, Ding S, Xu Q, Han X, Zhao Y, Song X, Zhao T, Zhang X, Ye L. Effect of the TYK-2/STAT-3 pathway on lipid accumulation induced by mono-2-ethylhexyl phthalate. Mol Cell Endocrinol 2019; 484:52-58. [PMID: 30660700 DOI: 10.1016/j.mce.2019.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Mono-2-ethylhexyl phthalate (MEHP), an important metabolite of di (2-ethylhexyl) phthalate (DEHP), can induce lipid metabolic disorder. Previous studies have shown that MEHP promotes 3T3-L1 cell differentiation; however, the underlying mechanism is unclear. The present study was performed to investigate the effect of the TYK-2/STAT-3 pathway on lipid accumulation induced by MEHP. METHODS A 3T3-L1 precursor adipocyte differentiation model was exposed to MEHP. 3-Isobutyl-1-methylxanthine (IBMX), dexamethasone (DEX), and insulin were used to establish the 3T3-L1 precursor adipocyte differentiation model. Then the model cells were exposed to MEHP for 8 d. The lipid droplet formation in 3T3-L1 cells was determined with Oil-Red-O staining, and isopropyl alcohol was used to extract the lipid droplets for quantification. Flow cytometry was used to detect the intracellular reactive oxygen species (ROS) and mitochondrial membrane potential. Quantitative real-time polymerase chain reaction (qPCR) was used to detect mRNA expression, and western blotting was used to detect the expression of proteins encoded by TYK-2/STAT-3 pathway genes and adipogenesis-related genes. RESULTS MEHP treatment, compared with the control treatment, significantly promoted the differentiation of 3T3-L1 cells and increased the expression of STAT-3 mRNA and protein and P-STAT3 protein in the cells. In addition, MEHP down-regulated the phosphorylation of STAT-3 in mitochondria. MEHP was found to influence the mitochondrial membrane potential and intracellular ROS levels. CONCLUSION MEHP may affect adipocyte differentiation and lead to lipid accumulation through the TYK-2/STAT-3 pathway.
Collapse
Affiliation(s)
- Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Tianye Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuang Ding
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xu Han
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yaming Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xinyue Song
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xiaohan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
21
|
Zhao Y, Du ZH, Talukder M, Lin J, Li XN, Zhang C, Li JL. Crosstalk between unfolded protein response and Nrf2-mediated antioxidant defense in Di-(2-ethylhexyl) phthalate-induced renal injury in quail (Coturnix japonica). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1871-1879. [PMID: 30077409 DOI: 10.1016/j.envpol.2018.07.080] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/29/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
The widely used Di-(2-ethylhexyl) phthalate (DEHP) has been reported to exhibit ubiquitous environmental and global health hazards. The bioaccumulation and environmental persistence of DEHP can cause serious health hazards in wildlife animals and human. However, DEHP-induced nephrotoxicity in bird is remained unknown. Thus, this study explored the related mechanism of DEHP nephrotoxicity in quail. For this purpose, quail were exposed with DEHP at doses of 0, 250, 500, and 1000 mg/kg body weight daily by gavage administration for 45 days. The results showed that DEHP exposure induced renal injury, oxidative stress, and endoplasmic reticulum (ER) degeneration. Low level DEHP (250 mg/kg) exposure inhibited Nrf2 signaling pathway and induced renal injury via oxidative stress and suppressed the unfolded protein response (UPR) signaling pathway and induced ER stress in the kidney. But surprisingly, high level DEHP (500 mg/kg and 1000 mg/kg) exposure activated Nrf2 and UPR signaling pathways and protected kidney, but they still couldn't resist the toxicity of DEHP. Our study demonstrated that DEHP-induced nephrotoxicity in quail was associated with activating Nrf2-mediated antioxidant defense response and UPR signaling pathway.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zheng-Hai Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jia Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
22
|
Liu T, Wang Y, Yang M, Shao P, Duan L, Li M, Zhu M, Yang J, Jiang J. Di-(2-ethylhexyl) phthalate induces precocious puberty in adolescent female rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:848-855. [PMID: 30186573 PMCID: PMC6118085 DOI: 10.22038/ijbms.2018.28489.6905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/08/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Nowadays, Di-(2-ethylhexyl) phthalate (DEHP) is widely used in different kinds of commercial products as a plasticizer. Previous studies have revealed that exposures to DEHP could be associated with precocious puberty in teenagers, but the exact mechanism is yet to be known. MATERIALS AND METHODS In this study, 48 prepubertal Wistar female rats were randomly apportioned into 4 groups and orally treated with 0, 250, 500, and 1000 mg/kg/d DEHP from postnatal day 21 up to 4 weeks. Subsequently, we examined the indicators related to the initiation of sexual development. RESULTS DEHP was able to shorten the vaginal opening time and prolong the estrous cycles of female rats. IGF-1 expression was significantly upregulated by 1000 mg/kg/d DEHP in the hypothalamus, and the hypothalamic, as well as serum levels of GH, were also upregulated by DEHP. It also caused decrements in serum levels of FSH, LH, and T and the increment in level of progesterone. Meanwhile, DEHP was able to exert its effect on the mRNA and protein expression levels of Kiss-1, GPR54, and GnRH in the hypothalamus in pubertal female rats. CONCLUSION These findings are revealing that DEHP exposure more likely causes imbalances of hypothalamus functioning in pubertal female rats and thus induces precautious puberty in these animals.
Collapse
Affiliation(s)
- Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yuzhuo Wang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Pu Shao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Lian Duan
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Meng Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Mingji Zhu
- Department of Dermatological, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jie Yang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| |
Collapse
|
23
|
Patiño-García D, Cruz-Fernandes L, Buñay J, Palomino J, Moreno RD. Reproductive Alterations in Chronically Exposed Female Mice to Environmentally Relevant Doses of a Mixture of Phthalates and Alkylphenols. Endocrinology 2018; 159:1050-1061. [PMID: 29300862 DOI: 10.1210/en.2017-00614] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/21/2017] [Indexed: 01/27/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that modify hormone biosynthesis, causing adverse effects to human health. Among them, phthalates and alkylphenols are important due to their wide use in plastics, detergents, personal care products, cosmetics, and food packaging. However, their conjoint effects over reproductive female health have not been addressed. The aim of this work was to test the effect of chronically exposed female mice to a mixture of three phthalates [bis (2-ethylhexyl), dibutyl, and benzyl butyl] and two alkylphenols (4-nonylphenol and 4-tert-octylphenol) from conception to adulthood at environmentally relevant doses. These EDCs were administered in two doses: one below the minimal risk dose to cause adverse effects on human development and reproduction [1 mg/kg body weight (BW)/d of the total mixture] and the other one based on the reference value close to occupational exposure in humans (10 mg/kg BW/d of the total mixture). Our results show that both doses had similar effects regarding the uterus and ovary relative weight, estrous cyclicity, serum levels of progesterone and 17β-estradiol, and expression of key elements in the steroidogenesis pathway (acute steroidogenic regulatory protein and CYP19A1). However, only the 1-mg/kg BW/d dose delayed the onset of puberty and the transition from preantral to antral follicles, whereas the 10-mg/kg BW/d dose decreased the number of antral follicles and gonadotropin receptor expression. In addition, we observed changes in several fertility parameters in exposed females and in their progeny (F2 generation). In conclusion, our results indicate that chronic exposure to a complex EDC mixture, at environmentally relevant doses, modifies reproductive parameters in female mice.
Collapse
Affiliation(s)
- Daniel Patiño-García
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leonor Cruz-Fernandes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio Buñay
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Palomino
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo D Moreno
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
24
|
Borman ED, Vecchi N, Pollock T, deCatanzaro D. Diethylhexyl phthalate magnifies deposition of 14 C-bisphenol A in reproductive tissues of mice. J Appl Toxicol 2017; 37:1225-1231. [PMID: 28555957 DOI: 10.1002/jat.3484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 01/06/2023]
Abstract
Endocrine disrupting chemicals are found in diverse common products, including cosmetics, food packaging, thermal receipt paper and plastic containers. This exposes most people in developed countries through ingestion, skin absorption and inhalation. Two ubiquitous endocrine disrupting chemicals, bisphenol A (BPA) and diethylhexyl phthalate (DEHP) can interact in disrupting blastocyst implantation in inseminated females. We hypothesized that DEHP might increase the bioavailability of BPA in tissues by competing for metabolic enzymes. We injected 0, 3, 9 or 18 mg DEHP into female and male mice and allowed 30 min for the chemical to circulate before giving them a food supplement containing 50 μg kg-1 14 C-BPA. Animals were dissected 1 h following 14 C-BPA administration and various tissue samples were acquired. Samples were solubilized and radioactivity was measured via liquid scintillation counting. In cycling females, DEHP increased BPA deposition in the muscle, uterus, ovaries and blood serum relative to controls. In peri-implantation females, DEHP increased deposition of BPA in the uterus, ovaries and serum relative to controls. In males, DEHP doses increased BPA deposition in serum and epididymis relative to controls. These results are consistent with the hypothesis that DEHP competes with BPA for conjugating enzymes such as UDP-glucuronosyltransferase, thereby magnifying the presence of BPA in estrogen-binding reproductive tissues. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Evan D Borman
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Nicholas Vecchi
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Tyler Pollock
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Denys deCatanzaro
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|