1
|
Yu Z, Zhao Z, Pan Y, Zhao L, Xiao Y, Yue D, Yu Y, Jiang J, Zhou Z. Abnormal gill color of Manila clam Ruditapes philippinarum due to the unhealthy gut mcirobiota and the role of gut-gill axis. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110404. [PMID: 40350106 DOI: 10.1016/j.fsi.2025.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
The Manila clam (Ruditapes philippinarum) is an ecologically and economically important species. Recently, a novel disease of Manila clam with abnormal gill colour has emerged, leading to growth inhibition and death in severe cases. In this study, a multi-omics approach was used to investigate the underlying mechanisms of abnormal gill colour in Manila clam and its association with gut microbiota. High-throughput sequencing revealed a reduction in the uniformity of gut microbiota in diseased clams, with increased abundance of Pseudomonas and Pseudoaltermonas. Network and null model analyses revealed a decline in microbiota stability and a shift toward deterministic assembly in diseased clams. Transcriptomic analysis revealed different gene expression profiles in the gills of healthy and diseased Manila clams, including down-regulation of several immune-related genes such as genes encoding heat shock proteins and involved in Toll and Imd signalling pathways. A total of 38 specialists were identified in the gut microbiota of diseased Manila clams based on their specificity and occupancy. Four of them (two Psychrobacter, one Pseudoaltermonas and one Halomonas) were closely correlated with the expression of gill genes associated with abnormal gill colour. In addition, a gene encoding a major vault protein was identified as the keystone of abnormal gill colour through the network of host genes and their gut microbiota. This study revealed the substantial variation in gut microbiota and gill gene expression in Manila clam with abnormal gill colour and provided insights into the complex host-microbiota interactions involved in disease development.
Collapse
Affiliation(s)
- Zuoan Yu
- Ministry of Agriculture and Rural Affairs Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zelong Zhao
- Ministry of Agriculture and Rural Affairs Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yongjia Pan
- Ministry of Agriculture and Rural Affairs Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Liang Zhao
- Ministry of Agriculture and Rural Affairs Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yao Xiao
- Ministry of Agriculture and Rural Affairs Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Dongmei Yue
- Ministry of Agriculture and Rural Affairs Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yuanfu Yu
- Dalian Baijuxin Marine Ranch Co., Ltd, Dalian, Liaoning 116500, RP China
| | - Jingwei Jiang
- Ministry of Agriculture and Rural Affairs Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| | - Zunchun Zhou
- Ministry of Agriculture and Rural Affairs Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
2
|
D’Urso F, Paladini F, Miraglia A, D’Amuri A, Chieppa M, Pollini M, Broccolo F. Translating Patent Innovation into Clinical Practice: Two Decades of Therapeutic Advancements in Dysbiosis Management. Microorganisms 2025; 13:1064. [PMID: 40431238 PMCID: PMC12114573 DOI: 10.3390/microorganisms13051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/26/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Dysbiosis, characterized by a microbial imbalance, particularly within the gut microbiota, has emerged as a significant health concern linked to various diseases. This study analyzed 8097 patent documents from The Lens database (2005-2024) to examine global innovation trends in dysbiosis management. The patent filings showed exponential growth, peaking at 1222 documents in 2022, with the United States leading in publications (4361 documents). The analysis revealed three primary innovation clusters: bacterial-based therapeutics (44.8% of patents), specific therapeutic applications (27.6%), and diagnostic methods (15.9%). The disease associations predominantly included inflammatory conditions, infections, and cancer. The patent classifications highlighted a significant focus on probiotic development and microbiota modulation. The surge in patent activity since 2014 correlates with advances in DNA sequencing technology and the growing recognition of dysbiosis's role in human health. This analysis provides valuable insights into the evolving landscape of microbiome therapeutics and future directions for dysbiosis management.
Collapse
Affiliation(s)
- Fabiana D’Urso
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy; (F.P.); (A.M.); (A.D.); (M.C.); (M.P.)
| | | | | | | | | | | | - Francesco Broccolo
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy; (F.P.); (A.M.); (A.D.); (M.C.); (M.P.)
| |
Collapse
|
3
|
Budny A, Janczy A, Mika A. New Approaches to the Treatment of Severe Obesity-Prehabilitation as the Key to Success. Curr Nutr Rep 2025; 14:64. [PMID: 40299104 DOI: 10.1007/s13668-025-00652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE OF REVIEW Bariatric surgery (BS) has emerged as a crucial and effective treatment for severe obesity (SO), providing significant and sustained weight loss and improving comorbidities. Optimizing perioperative careparticularly through structured prehabilitation is crucial for improving surgical outcomes and long-term weight management. This review examines the role of prehabilitation, nutrition, psychological support, physical activity, and pharmacologic treatment in improving the effectiveness of BS. RECENT FINDINGS Despite the benefits of prehabilitation, there are significant differences in the way it is implemented in different healthcare centers. Protocols vary widely in terms of duration, components and intensity, leading to inconsistencies in patient preparation and postoperative recovery. Many patients still do not receive multidisciplinary support from dietitians, psychologists or physiotherapists prior to surgery, which can affect long-term outcomes. Barriers to effective prehabilitation include a lack of standardized guidelines, insufficient healthcare resources and limited patient adherence due to lack of awareness, low motivation or logistical constraints. Despite its proven benefits, structured prehabilitation lasting at least 3-6 months is not available to all patients, as access remains unequal and suboptimal in many healthcare settings. Prehabilitation is an important but underutilized component of BS preparation. Standardizing protocols and ensuring multidisciplinary, patient-centered support are essential to maximizing surgical benefit. Overcoming barriers such as healthcare system limitations, patient motivation and knowledge gaps is critical to integrating prehabilitation into routine bariatric care. This review emphasizes the need for evidence-based, multimodal prehabilitation strategies to improve perioperative care and long-term outcomes for BS patients.
Collapse
Affiliation(s)
- Aleksandra Budny
- Division of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| | - Agata Janczy
- Division of Food Commodity Science, Faculty of Health Sciences With the Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Adriana Mika
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland.
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
4
|
John HT, Thomas TC, Chukwuebuka EC, Ali AB, Anass R, Tefera YY, Babu B, Negrut N, Ferician A, Marian P. The Microbiota-Human Health Axis. Microorganisms 2025; 13:948. [PMID: 40284784 PMCID: PMC12029893 DOI: 10.3390/microorganisms13040948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Trillions of microorganisms play a pivotal role in maintaining health and preventing disease in humans. Their presence influences daily life, habits, energy levels, and pathologies. The present narrative review synthesized recent studies of microbial diversity across organ systems. The composition of the microbiota regulates the intestinal barrier, modulates the immune response, influences metabolism, and produces essential compounds such as short-chain fatty acids and neurotransmitters. Dysbiosis is associated with numerous pathologies, including metabolic, autoimmune, neurodegenerative, and cardiovascular diseases. The microbiota is key to maintaining physiological balance and reducing disease risk. Therapeutic interventions, such as probiotics, prebiotics, postbiotics, and microbiome transplantation, offer promising perspectives in restoring microbial homeostasis and preventing chronic diseases.
Collapse
Affiliation(s)
- Harrie Toms John
- Department of Intensive Care, Epsom and St. Helier University Hospitals NHS Trust, Wrythe Ln, Sutton SM5 1AA, UK
| | - Treesa Clare Thomas
- Faculty of Medicine and Pharmacy, University of Oradea, Piaţa 1 Decembrie 10, 410068 Oradea, Romania; (T.C.T.); (E.C.C.); (A.B.A.); (R.A.)
| | - Ezenwa Collins Chukwuebuka
- Faculty of Medicine and Pharmacy, University of Oradea, Piaţa 1 Decembrie 10, 410068 Oradea, Romania; (T.C.T.); (E.C.C.); (A.B.A.); (R.A.)
| | - Ali Bacar Ali
- Faculty of Medicine and Pharmacy, University of Oradea, Piaţa 1 Decembrie 10, 410068 Oradea, Romania; (T.C.T.); (E.C.C.); (A.B.A.); (R.A.)
| | - Reggani Anass
- Faculty of Medicine and Pharmacy, University of Oradea, Piaţa 1 Decembrie 10, 410068 Oradea, Romania; (T.C.T.); (E.C.C.); (A.B.A.); (R.A.)
| | | | - Bency Babu
- Department of General Internal Medicine, Northampton General Hospital, NHS Trust, Northampton NN1 5BD, UK;
| | - Nicoleta Negrut
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Anca Ferician
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.F.); (P.M.)
| | - Paula Marian
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.F.); (P.M.)
| |
Collapse
|
5
|
El Boukhari R, Matin M, Bouissane L, Ławiński M, Lushchak O, Singla RK, Mickael M, Mayneris‐Perxachs J, Grafakou ME, Xu S, Liu B, Guan J, Półtorak A, Szpicer A, Wierzbicka A, Tzvetkov NT, Banach M, Horbańczuk JO, Jóźwik A, Cascella M, Shen B, Pirgozliev VR, Wang D, Litvinova O, Adamska O, Kamińska A, Łapiński M, Stolarczyk A, Berindan‐Neagoe I, Milella L, Yeung AWK, Suravajhala P, Bishayee A, Lordan R, Iantovics LB, Lagoa R, Michalczuk M, Stoyanov J, Kinghorn AD, Jalil B, Weckwerth W, Goh BH, Li M, Chaubey G, Russo GL, Frazzini S, Rossi L, Battino M, Jia W, Su Q, Ma X, Rollinger JM, Rittmann SKR, Sheridan H, Walsh JJ, Lizard G, Karpiński TM, Silva AS, Piwowarski J, Xie L, Fan T, Giampieri F, El Midaoui A, Wong K, Gan R, Fatimi A, Atanasov AG. Enhancing human gut health: Global innovations in dysbiosis management. IMETA 2025. [DOI: 10.1002/imt2.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/26/2025] [Indexed: 05/03/2025]
Affiliation(s)
- Reda El Boukhari
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM) Sultan Moulay Slimane University (USMS) Beni Mellal Morocco
| | - Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences Jastrzębiec Poland
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies Sultan Moulay Slimane University Beni Mellal Morocco
| | - Michał Ławiński
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences Jastrzębiec Poland
- Department of General, Gastroenterologic and Oncologic Surgery Medical University of Warsaw Warsaw Poland
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology Vasyl Stefanyk Precarpathian National University Ivano‐Frankivsk Ukraine
- Research and Development University Ivano‐Frankivsk Ukraine
| | - Rajeev K. Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease‐related Molecular Network, West China Hospital Sichuan University Chengdu Sichuan China
- School of Pharmaceutical Sciences Lovely Professional University Phagwara Punjab India
| | - Michel‐Edwar Mickael
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences Jastrzębiec Poland
| | - Jordi Mayneris‐Perxachs
- Department of Diabetes, Endocrinology and Nutrition Dr. Josep Trueta University Hospital Girona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) Madrid Spain
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI‐CERCA) Parc Hospitalari Martí i Julià Salt Spain
| | - Maria Eleni Grafakou
- Chair of Pharmaceutical Biology, Faculty of Pharmacy and Chemistry University of Regensburg Germany
| | - Shuhua Xu
- Center for Evolutionary Biology, School of Life Sciences Fudan University Shanghai China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center Fudan University Shanghai China
| | - Bowen Liu
- School of Agriculture Yunnan University Kunming China
| | - Jiayi Guan
- Henan Institute of Medical and Pharmaceutical Sciences Zhengzhou University Zhengzhou China
| | - Andrzej Półtorak
- Department of Technique and Food Development, Institute of Human Nutrition Sciences Warsaw University of Life Sciences Warsaw Poland
| | - Arkadiusz Szpicer
- Department of Technique and Food Development, Institute of Human Nutrition Sciences Warsaw University of Life Sciences Warsaw Poland
| | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences Jastrzębiec Poland
- Department of Technique and Food Development, Institute of Human Nutrition Sciences Warsaw University of Life Sciences Warsaw Poland
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology “Roumen Tsanev” Bulgarian Academy of Sciences Sofia Bulgaria
| | - Maciej Banach
- Faculty of Medicine The John Paul II Catholic University of Lublin (KUL) Lublin Poland
- Department of Cardiology and Adult Congenital Heart Diseases Polish Mother's Memorial Hospital Research Institute (PMMHRI) Lodz Poland
- Department of Preventive Cardiology and Lipidology Medical University of Lodz (MUL) Lodz Poland
- Ciccarone Center for the Prevention of Cardiovascular Disease Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences Jastrzębiec Poland
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences Jastrzębiec Poland
| | - Marco Cascella
- Anesthesia and Pain Medicine, Department of Medicine, Surgery and Dentistry “Scuola MedicaSalernitana” University of Salerno Baronissi Italy
| | - Bairong Shen
- Department of Critical Care Medicine and Institutes for Systems Genetics Frontiers Science Center for Disease‐Related Molecular Network, West China Hospital,Sichuan University Chengdu Sichuan China
- Center for High Altitude Medicine, West China Hospital Sichuan University Chengdu Sichuan China
| | | | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research McMaster University Hamilton Ontario Canada
- Division of Endocrinology and Metabolism, Department of Medicine McMaster University Hamilton Ontario Canada
| | - Olena Litvinova
- National University of Pharmacy of the Ministry of Health of Ukraine Kharkiv Ukraine
- Ludwig Boltzmann Institute Digital Health and Patient Safety Medical University of Vienna Vienna Austria
| | - Olga Adamska
- Faculty of Medicine Collegium Medicum Cardinal Stefan Wyszyński University in Warsaw Warsaw Poland
| | - Agnieszka Kamińska
- Faculty of Medicine Collegium Medicum Cardinal Stefan Wyszyński University in Warsaw Warsaw Poland
| | - Marcin Łapiński
- Orthopaedic and Rehabilitation Department Medical University of Warsaw Warsaw Poland
| | - Artur Stolarczyk
- Orthopaedic and Rehabilitation Department Medical University of Warsaw Warsaw Poland
| | - Ioana Berindan‐Neagoe
- Department of Genomics MEDFUTURE ‐ Institute for Biomedical Research“Iuliu Hațieganu” University of Medicine and Pharmacy No. 23 Cluj‐Napoca Romania
| | - Luigi Milella
- Department of Health Sciences University of Basilicata Potenza Italy
| | - Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry The University of Hong Kong Pokfulam Hong Kong SAR
| | - Prashanth Suravajhala
- Amrita School of Biotechnology Amrita Viswa Vidyapeetham Clappana Kerala India
- Department of Biosciences Manipal University Jaipur, Dehmi Kala Jaipur Rajasthan India
| | - Anupam Bishayee
- Department of Pharmacology College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine Bradenton Florida USA
| | - Ronan Lordan
- The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| | - Laszlo Barna Iantovics
- Department of Electrical Engineering and Information Technology George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures Targu Mures Romania
| | - Ricardo Lagoa
- ESTG‐Polytechnic Institute of Leiria Morro do Lena‐Alto do Vieiro Leiria Portugal
- LSRE‐LCM‐Associate Laboratory in Chemical Engineering University of Porto Porto Portugal
| | - Monika Michalczuk
- Department of Animal Breeding, Institute of Animal Sciences Warsaw University of Life Sciences ‐ SGGW Warsaw Poland
| | - Jivko Stoyanov
- Swiss Paraplegic Research Nottwil Switzerland
- Institute of Social and Preventive Medicine (ISPM) University of Bern Bern Switzerland
| | | | - Banaz Jalil
- Pharmacognosy and Phytotherapy UCL School of Pharmacy London UK
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology University of Vienna Vienna Austria
- Vienna Metabolomics Center (VIME) University of Vienna Vienna Austria
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC) School of Medical and Life Sciences Subang Jaya Malaysia
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy Monash University Malaysia Subang Jaya Malaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine University of Technology Sydney Ultimo New South Wales Australia
| | - Meng‐Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Department of Biliary‐Pancreatic Surgery, Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology Banaras Hindu University Varanasi Uttar Pradesh India
| | - Gian Luigi Russo
- National Research Council Institute of Food Sciences Avellino Italy
| | - Sara Frazzini
- Department of Veterinary Medicine and Animal Science (DIVAS) University of Milan Lodi Italy
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Science (DIVAS) University of Milan Lodi Italy
| | - Maurizio Battino
- Department of Clinical Sciences Polytechnic University of Marche Ancona Italy
- Joint Laboratory on Food Science, Nutrition, and Intelligent Processing of Foods Polytechnic University of Marche (Italy), Universidad Europea del Atlántico (Spain), and Jiangsu University (China) Ancona Italy
- International Joint Research, Laboratory of Intelligent Agriculture and Agri‐Products Processing Jiangsu University Zhenjiang China
| | - Wei Jia
- Department of Pharmacology and Pharmacy The University of Hong Kong Pokfulam Hong Kong SAR
| | - Qi Su
- Microbiota I‐Center Shatin Hong Kong SAR
- Department of Medicine and Therapeutics The Chinese University of Hong Kong Shatin Hong Kong SAR
| | - Xiaoqiang Ma
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Judith M. Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences University of Vienna Vienna Austria
| | - Simon K.‐M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology University of Vienna Vienna Austria
| | - Helen Sheridan
- The NatPro Centre & School of Pharmacy and Pharmaceutical Sciences Trinity College Dublin Dublin Ireland
- Université Bourgogne Europe/INSERM, 21000 Dijon and PHYNOHA Consulting Fontaine‐lès‐Dijon France
| | - John J. Walsh
- The NatPro Centre & School of Pharmacy and Pharmaceutical Sciences Trinity College Dublin Dublin Ireland
| | - Gérard Lizard
- Université Bourgogne Europe/INSERM, 21000 Dijon and PHYNOHA Consulting Fontaine‐lès‐Dijon France
| | - Tomasz M. Karpiński
- Department of Medical Microbiology Poznań University of Medical Sciences Poznań Poland
| | - Ana Sanches Silva
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de Santa Comba Coimbra Portugal
- Centre for Animal Science Studies (CECA), ICETA University of Porto Porto Portugal
| | - Jakub Piwowarski
- Microbiota Lab, Department of Pharmaceutical Microbiology and Bioanalysis Medical University of Warsaw Warsaw Poland
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology Institute of Microbiology, Guangdong Academy of Sciences Guangzhou China
- School of Life & Health Sciences Fuyao University of Science & Technology Fuzhou Fujian China
| | - Tai‐Ping Fan
- School of Life & Health Sciences Fuyao University of Science & Technology Fuzhou Fujian China
| | - Francesca Giampieri
- Department of Clinical Sciences Polytechnic University of Marche Ancona Italy
- Joint Laboratory on Food Science, Nutrition, and Intelligent Processing of Foods Polytechnic University of Marche (Italy), Universidad Europea del Atlántico (Spain), and Jiangsu University (China) Ancona Italy
- Research Group on Food, Nutritional Biochemistry and Health Universidad Europea del Atlántico Santander Spain
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | - Adil El Midaoui
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes Meknes Morocco
- Department of Pharmacology and Physiology, Faculty of Medicine University of Montreal Montreal Quebec Canada
| | - Ka‐Hing Wong
- Research Institute for Future Food The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
- Department of Food Science and Nutrition The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Ren‐You Gan
- Research Institute for Future Food The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
- Department of Food Science and Nutrition The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM) Sultan Moulay Slimane University (USMS) Beni Mellal Morocco
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences Jastrzębiec Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety Medical University of Vienna Vienna Austria
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital Saveetha Institute of Medical and Technical Sciences (SIMATS) Thandalam Chennai India
| |
Collapse
|
6
|
Esmail GA, Uriot O, Mottawea W, Denis S, Sultan S, Njoku EN, Chiba M, Tosh S, Blanquet-Diot S, Hammami R. Western diet-based NutriCol medium: A high-pectin, low-inulin culture medium promoted gut microbiota stability and diversity in PolyFermS and M-ARCOL continuous in vitro models. Food Res Int 2025; 206:115993. [PMID: 40058892 DOI: 10.1016/j.foodres.2025.115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 05/13/2025]
Abstract
Optimizing fermentation media to accurately reflect the colonic environment remains a challenge in developing in vitro models that simulate the human colon. This study aimed to develop a fermentation medium, Nutritive Colonic (NutriCol), which mimics colonic chyme with fiber content reflective of a typical Western diet and compared to the widely used MacFarlane medium. MacFarlane/NutriCol media contained the following fiber (g/L): potato starch (5/0.1), pectin (2/5.6), xylan (2/4.4), arabinogalactan (2/1.8), guar gum (1/0.4), glucomannan (0/0.8), and inulin (1/0.2). The performance of NutriCol was evaluated using two in vitro models: PolyFermS, which simulates the human proximal colon, and M-ARCOL, which mimics both the lumen and mucosa of the human colon. In the PolyFermS model, findings revealed that NutriCol maintained microbiota α-diversity closer to the donor fecal samples and significantly higher than MacFarlane (Shannon's p ≤ 0.01; Simpson's p ≤ 0.001). In contrast, no significant differences in α-diversity were observed between NutriCol and MacFarlane in the M-ARCOL model, likely due to differences in model design and donor microbiome composition. Microbial community structure, assessed by Bray-Curtis distance and A Permutational multivariate analysis of variance (PERMANOVA), revealed significant variations between the two media in both models (PolyFermS: p = 0.02; M-ARCOL: p = 0.01). Additionally, NutriCol demonstrated a higher capacity to cultivate gut microbes, with increased ASV numbers compared to MacFarlane across PolyFermS and M-ARCOL. SCFAs production was influenced by media composition, individual microbiome structure, and the colonic model used. In the M-ARCOL, NutriCol significantly increased acetate (p = 0.0006) and butyrate (p = 0.02) levels compared to MacFarlane. While a similar trend was observed with the PolyFermS, the differences were not statistically significant (p > 0.05). This increase is attributed to the enrichment of SCFA-producing bacteria, such as Butyricicoccus, Lachnospira, Oscillospiraceae UCG-003, Clostridium butyricum, and Lachnospiraceae NK4A136-group. Additionally, NutriCol generated lower levels of intestinal gases (H2, O2, CO2, and CH4) than MacFarlane in the M-ARCOL model. In conclusion, our study demonstrates that NutriCol, a growth medium specifically designed to replicate the typical fiber content of a Western diet, supports gut microbiota diversity and structure better than the established MacFarlane medium. NutriCol's impact was model- and donor-dependent, enhancing microbiota diversity in PolyFermS, while promoting SCFA production and reducing gas levels in M-ARCOL.
Collapse
Affiliation(s)
- Galal Ali Esmail
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ophélie Uriot
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne - INRAE, Clermont-Ferrand, France; Digest-IV Platform, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Walid Mottawea
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sylvain Denis
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne - INRAE, Clermont-Ferrand, France; Digest-IV Platform, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Salma Sultan
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Emmanuel N Njoku
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Mariem Chiba
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Susan Tosh
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Stéphanie Blanquet-Diot
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne - INRAE, Clermont-Ferrand, France; Digest-IV Platform, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
7
|
Abdi R, Datta S, Zawar A, Kafle P. Evaluation of extended-spectrum β-lactamase producing bacteria in feces of shelter dogs as a biomarker for altered gut microbial taxa and functional profiles. Front Microbiol 2025; 16:1556442. [PMID: 40196031 PMCID: PMC11975251 DOI: 10.3389/fmicb.2025.1556442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/19/2025] [Indexed: 04/09/2025] Open
Abstract
Background The USA is home to 83-88 million dogs, with 3-7 million living in shelters. Shelter dogs move through the supply chain from their geographical origin to adoptive homes, with possible exposure to pathogens and shift in their gut microbiota. However, research in this area is limited. This study examined the effects of intestinal colonization by ESBL bacteria on gut taxa abundance, diversity, and functions in 52 shelter dogs of various ages, sexes, and fertility statuses. Methodology We isolated fecal DNA, sequenced their 16S, processed the sequences using DADA2, identified taxa profiles in each dog by Phyloseq, and analyzed Chao1, Shannon, and Simpson alpha diversity by ggplot2 and Wilcoxon test. We analyzed beta diversity using Bray-Curtis dissimilarity matrix from the vegan package. Differential abundance of taxa, gut microbiome functions, and differential abundance of microbiome functions were analyzed using DESeq2, PICRUSt2, and ALDEx2, respectively, with Wilcoxon rank and Kruskal-Wallis tests for comparisons between dog groups. Results Firmicutes (69.3%), Bacteroidota (13.5%), Actinobacteriota (6.77%), Proteobacteria (5.54%), and Fusobacteriota (4.75%) were the major phyla in the gut of shelter dogs. ESBL bacteria colonized dogs had reduced gut microbiota alpha diversity than non-colonized dogs. The abundance levels of the following phyla (Proteobacteria, Deferribacterota, Bacteroidota, Fusobacteriota, and Spirochaetota), class (Gammaproteobacteria, Bacteroidia, Deferribacteres, Brachyspirae, and Fusobacteria), and families (Enterobacteriaceae, Peptostreptococcaceae, Lactobacillaceae, Lachnospiraceae, Prevotellaceae, and Peptostreptococcaceae) were significantly (p < 0.05) varied between the two dog groups. Further stratified analysis by age, sex, and spaying/neutering status influenced the abundance of taxa in ESBL bacteria colonized dogs, indicating these covariates act as effect modifiers. Most gut metabolic and biosynthetic pathways were downregulated in ESBL bacteria colonized dogs compared to non-colonized dogs. However, alpha-linolenic acid metabolism and shigellosis, fluorobenzoate degradation, allantoin degradation, toluene degradation, glycol degradation, fatty acid and beta-oxidation, and glyoxylate metabolism bypass pathways were increased in dogs colonized by ESBL bacteria. Conclusion Colonization by ESBL bacteria marks altered gut microbiota. Dog's demography and fertility status modify the alterations, indicating host factors and ESBL bacteria interplay to shape gut microbiota. ESBL bacteria or other factors reprogram gut microbiome functions through down and upregulating multiple metabolic and biosynthesis pathways to promote ESBL bacteria colonization.
Collapse
Affiliation(s)
- Reta Abdi
- Biomedical Sciences College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Srinka Datta
- GeneSpectrum Life Sciences LLP, Pune, Maharashtra, India
| | | | - Pratap Kafle
- Shreiber School of Veterinary Medicine, Rowan University, Mullica Hill, NJ, United States
| |
Collapse
|
8
|
Chen G, Li Y, Wei S, Wang X, Kuang Z, Guo W, Qin J, Huang T, Li Y, Zhu C. Role of gut microbiota in thalassemia: a review of therapeutic prospects. Front Physiol 2025; 16:1523448. [PMID: 40177354 PMCID: PMC11962020 DOI: 10.3389/fphys.2025.1523448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
In recent years, the study of gut microbiota has gradually become a research hotspot in the field of medicine, as gut microbiota dysbiosis is closely related to various diseases. Thalassemia, as a hereditary hemoglobinopathy, has a complex pathophysiological mechanism, and traditional treatment methods show limited efficacy. With a deeper understanding of the gut microbiome, researchers have begun to focus on its role in the pathogenesis of thalassemia and its therapeutic effects. This article aims to review the role of gut microbiota in thalassemia and its potential therapeutic prospects, analyze the latest research findings, and explore the impact and mechanisms of gut microbiota on patients with thalassemia, with the goal of providing new ideas and directions for future research and clinical treatment of thalassemia.
Collapse
Affiliation(s)
- Guanjun Chen
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yulan Li
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Shirui Wei
- Shandong Second Medical University, Weifang, Shandong, China
| | - Xinyu Wang
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Zheshu Kuang
- Chenzhou Third People’s Hospital (Group), Chenzhou, Hunan, China
| | - Weiming Guo
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Jianbin Qin
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Tianjun Huang
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Youlin Li
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Chunjiang Zhu
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
9
|
Kenneth MJ, Wu CC, Fang CY, Hsu TK, Lin IC, Huang SW, Chiu YC, Hsu BM. Exploring the Impact of Chemotherapy on the Emergence of Antibiotic Resistance in the Gut Microbiota of Colorectal Cancer Patients. Antibiotics (Basel) 2025; 14:264. [PMID: 40149075 PMCID: PMC11939702 DOI: 10.3390/antibiotics14030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
With nearly half of colorectal cancer (CRC) patients diagnosed at advanced stages where surgery alone is insufficient, chemotherapy remains a cornerstone for this cancer treatment. To prevent infections and improve outcomes, antibiotics are often co-administered. However, chemotherapeutic interactions with the gut microbiota cause significant non-selective toxicity, affecting not only tumor and normal epithelial cells but also the gut microbiota. This toxicity triggers the bacterial SOS response and loss of microbial diversity, leading to bacterial mutations and dysbiosis. Consequently, pathogenic overgrowth and systemic infections increase, necessitating broad-spectrum antibiotics intervention. This review underscores how prolonged antibiotic use during chemotherapy, combined with chemotherapy-induced bacterial mutations, creates selective pressures that drive de novo antimicrobial resistance (AMR), allowing resistant bacteria to dominate the gut. This compromises the treatment efficacy and elevates the mortality risk. Restoring gut microbial diversity may mitigate chemotherapy-induced toxicity and improve therapeutic outcomes, and emerging strategies, such as fecal microbiota transplantation (FMT), probiotics, and prebiotics, show considerable promise. Given the global threat posed by antibiotic resistance to cancer treatment, prioritizing antimicrobial stewardship is essential for optimizing antibiotic use and preventing resistance in CRC patients undergoing chemotherapy. Future research should aim to minimize chemotherapy's impact on the gut microbiota and develop targeted interventions to restore microbial diversity affected during chemotherapy.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
- Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi 621, Taiwan
| | - Chin-Chia Wu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
- College of Medicine, Tzu Chi University, Hualien 970, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chuan-Yin Fang
- Division of Colon and Rectal Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Tsui-Kang Hsu
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - I-Ching Lin
- Department of Family Medicine, Asia University Hospital, Taichung 413, Taiwan
- Department of Kinesiology, Health and Leisure, Chienkuo Technology University, Changhua 500, Taiwan
| | - Shih-Wei Huang
- Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Yi-Chou Chiu
- General Surgery, Surgical Department, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| |
Collapse
|
10
|
Sadeghloo Z, Nabavi-Rad A, Zali MR, Klionsky DJ, Yadegar A. The interplay between probiotics and host autophagy: mechanisms of action and emerging insights. Autophagy 2025; 21:260-282. [PMID: 39291740 PMCID: PMC11759520 DOI: 10.1080/15548627.2024.2403277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/19/2024] Open
Abstract
Autophagy, a lysosome-dependent protein degradation mechanism, is a highly conserved catabolic process seen in all eukaryotes. This cell protection system, which is present in all tissues and functions at a basic level, can be up- or downregulated in response to various stresses. A disruption in the natural route of the autophagy process is frequently followed by an interruption in the inherent operation of the body's cells and organs. Probiotics are live bacteria that protect the host through various mechanisms. One of the processes through which probiotics exert their beneficial effects on various cells and tissues is autophagy. Autophagy can assist in maintaining host homeostasis by stimulating the immune system and affecting numerous physiological and pathological responses. In this review, we particularly focus on autophagy impairments occurring in several human illnesses and investigate how probiotics affect the autophagy process under various circumstances.Abbreviation: AD: Alzheimer disease; AKT: AKT serine/threonine kinase; AMPK: 5'AMP-activated protein kinase; ATG: autophagy related; CCl4: carbon tetrachloride; CFS: cell-free supernatant; CMA: chaperone-mediated autophagy; CRC: colorectal cancer; EPS: L. plantarum H31 exopolysaccharide; HD: Huntington disease; HFD: high-fat diet; HPV: human papillomavirus; IFNG/IFN-γ: interferon gamma; IL6: interleukin 6; LGG: L. rhamnosus GG; LPS: lipopolysaccharide; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; PD: Parkinson disease; Pg3G: pelargonidin-3-O-glucoside; PI3K: phosphoinositide 3-kinase; PolyQ: polyglutamine; ROS: reactive oxygen species; SCFAs: short-chain fatty acids; SLAB51: a novel formulation of lactic acid bacteria and bifidobacteria; Slp: surface layer protein (of acidophilus NCFM); SNCA: synuclein alpha; ULK1: unc-51 like autophagy-activating kinase 1; YB: B. longum subsp. infantis YB0411; YFP: yeast fermentate prebiotic.
Collapse
Affiliation(s)
- Zahra Sadeghloo
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
François AC, Cesarini C, Taminiau B, Renaud B, Kruse CJ, Boemer F, van Loon G, Palmers K, Daube G, Wouters CP, Lecoq L, Gustin P, Votion DM. Unravelling Faecal Microbiota Variations in Equine Atypical Myopathy: Correlation with Blood Markers and Contribution of Microbiome. Animals (Basel) 2025; 15:354. [PMID: 39943124 PMCID: PMC11815872 DOI: 10.3390/ani15030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Hypoglycin A and methylenecyclopropylglycine are protoxins responsible for atypical myopathy in equids. These protoxins are converted into toxins that inhibit fatty acid β-oxidation, leading to blood accumulation of acylcarnitines and toxin conjugates, such as methylenecyclopropylacetyl-carnitine. The enzymes involved in this activation are also present in some prokaryotic cells, raising questions about the potential role of intestinal microbiota in the development of intoxication. Differences have been noted between the faecal microbiota of cograzers and atypical myopathy-affected horses. However, recent blood acylcarnitines profiling revealed subclinical cases among cograzers, challenging their status as a control group. This study investigates the faecal microbiota of horses clinically affected by atypical myopathy, their cograzers, and a control group of toxin-free horses while analysing correlations between microbiota composition and blood parameters. Faecal samples were analysed using 16S amplicon sequencing, revealing significant differences in α-diversity, evenness, and β-diversity. Notable differences were found between several genera, especially Clostridia_ge, Bacteria_ge, Firmicutes_ge, Fibrobacter, and NK4A214_group. Blood levels of methylenecyclopropylacetyl-carnitine and C14:1 correlated with variations in faecal microbial composition. The theoretical presence of enzymes in bacterial populations was also investigated. These results underscore the critical need to investigate the potential role of intestinal microbiota in this poisoning and may provide insights for developing prevention and treatment strategies.
Collapse
Affiliation(s)
- Anne-Christine François
- Department of Functional Sciences, Faculty of Veterinary Medicine, Pharmacology and Toxicology, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (B.R.); (P.G.); (D.-M.V.)
| | - Carla Cesarini
- Equine Clinical Department, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (C.C.); (L.L.)
| | - Bernard Taminiau
- Department of Food Sciences–Microbiology, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (B.T.); (G.D.)
| | - Benoît Renaud
- Department of Functional Sciences, Faculty of Veterinary Medicine, Pharmacology and Toxicology, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (B.R.); (P.G.); (D.-M.V.)
| | - Caroline-Julia Kruse
- Department of Functional Sciences, Faculty of Veterinary Medicine, Physiology and Sport Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium;
| | - François Boemer
- Biochemical Genetics Laboratory, CHU, University of Liège, 4000 Liège, Belgium;
| | - Gunther van Loon
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | | | - Georges Daube
- Department of Food Sciences–Microbiology, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (B.T.); (G.D.)
| | - Clovis P. Wouters
- Department of Functional Sciences, Faculty of Veterinary Medicine, Pharmacology and Toxicology, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (B.R.); (P.G.); (D.-M.V.)
| | - Laureline Lecoq
- Equine Clinical Department, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (C.C.); (L.L.)
| | - Pascal Gustin
- Department of Functional Sciences, Faculty of Veterinary Medicine, Pharmacology and Toxicology, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (B.R.); (P.G.); (D.-M.V.)
| | - Dominique-Marie Votion
- Department of Functional Sciences, Faculty of Veterinary Medicine, Pharmacology and Toxicology, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (B.R.); (P.G.); (D.-M.V.)
| |
Collapse
|
12
|
Karačić A, Zonjić J, Stefanov E, Radolović K, Starčević A, Renko I, Krznarić Ž, Ivančić M, Šatalić Z, Liberati Pršo AM. Short-Term Supplementation of Sauerkraut Induces Favorable Changes in the Gut Microbiota of Active Athletes: A Proof-of-Concept Study. Nutrients 2024; 16:4421. [PMID: 39771042 PMCID: PMC11677004 DOI: 10.3390/nu16244421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Since the gut microbiota is important for athlete health and performance, its optimization is increasingly gaining attention in sports nutrition, for example, with whole fermented foods. Sauerkraut is a traditional fermented food rich in pro-, pre-, and postbiotics, which has not yet been investigated in the field of sports nutrition. METHODS To determine whether sauerkraut could be used for gut microbiota optimization in sports nutrition, a proof-of-concept study was conducted. The microbiota composition of organic pasteurized sauerkraut was analyzed, and then healthy active athletes were provided with the same sauerkraut for 10 days as an intervention. The effects of sauerkraut on the athlete's gut microbiota, laboratory parameters, and bowel function were assessed. RESULTS Significant changes in the gut microbiota composition were seen on taxonomic and functional levels, independent of baseline microbiota composition, even after short-term supplementation. Most notably, there was an increase in several health-promoting genera of the family Lachnospiraceae, as well as significant alterations in metabolic pathways regarding cell wall synthesis and the metabolism of nucleotide bases. An increase in the proportion of lymphocytes and a decrease in B12 vitamin levels was observed, as well as a risk of indigestion in certain athletes, which significantly resolved after seven days of supplementation in all athletes. It is unclear whether the observed effects are attributable to the sauerkraut's own microbiome or its pre- and postbiotics since it is a whole food. CONCLUSIONS Our study has demonstrated that the concept of whole fermented foods, such as sauerkraut, could potentially be feasible and effective in sports nutrition for gut microbiota optimization.
Collapse
Affiliation(s)
- Andrija Karačić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
- The Gut Microbiome Center (CCM), Jablanska 82, 10000 Zagreb, Croatia
- Department of Internal Medicine, University Hospital “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia;
| | - Jadran Zonjić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Ena Stefanov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Katja Radolović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Antonio Starčević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Ira Renko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Željko Krznarić
- Department of Internal Medicine, Faculty of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Matija Ivančić
- Department of Internal Medicine, University Hospital “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia;
| | - Zvonimir Šatalić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Ana-Marija Liberati Pršo
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
- Department of Internal Medicine, University Hospital “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia;
| |
Collapse
|
13
|
Singhal S, Bhadana R, Jain BP, Gautam A, Pandey S, Rani V. Role of gut microbiota in tumorigenesis and antitumoral therapies: an updated review. Biotechnol Genet Eng Rev 2024; 40:3716-3742. [PMID: 36632709 DOI: 10.1080/02648725.2023.2166268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 01/13/2023]
Abstract
Gut microbiota plays a prominent role in regulation of host nutrientmetabolism, drug and xenobiotics metabolism, immunomodulation and defense against pathogens. It synthesizes numerous metabolites thatmaintain the homeostasis of host. Any disbalance in the normalmicrobiota of gut can lead to pathological conditions includinginflammation and tumorigenesis. In the past few decades, theimportance of gut microbiota and its implication in various diseases, including cancer has been a prime focus in the field of research. Itplays a dual role in tumorigenesis, where it can accelerate as wellas inhibit the process. Various evidences validate the effects of gutmicrobiota in development and progression of malignancies, wheremanipulation of gut microbiota by probiotics, prebiotics, dietarymodifications and faecal microbiota transfer play a significant role.In this review, we focus on the current understanding of theinterrelationship between gut microbiota, immune system and cancer,the mechanisms by which they play dual role in promotion andinhibition of tumorigenesis. We have also discussed the role ofcertain bacteria with probiotic characteristics which can be used tomodulate the outcome of the various anti-cancer therapies under theinfluence of the alteration in the composition of gut microbiota.Future research primarily focusing on the microbiota as a communitywhich affect and modulate the treatment for cancer would benoteworthy in the field of oncology. This necessitates acomprehensive knowledge of the roles of individual as well asconsortium of microbiota in relation to physiology and response ofthe host.
Collapse
Affiliation(s)
- Shivani Singhal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Renu Bhadana
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Buddhi Prakash Jain
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Shweta Pandey
- Department of Biotechnology, Govt Vishwanath Yadav Tamaskar Post-Graduate Autonomous College Durg, Chhattisgarh, India
| | - Vibha Rani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
14
|
Catassi G, Mateo SG, Occhionero AS, Esposito C, Giorgio V, Aloi M, Gasbarrini A, Cammarota G, Ianiro G. The importance of gut microbiome in the perinatal period. Eur J Pediatr 2024; 183:5085-5101. [PMID: 39358615 PMCID: PMC11527957 DOI: 10.1007/s00431-024-05795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
This narrative review describes the settlement of the neonatal microbiome during the perinatal period and its importance on human health in the long term. Delivery methods, maternal diet, antibiotic exposure, feeding practices, and early infant contact significantly shape microbial colonization, influencing the infant's immune system, metabolism, and neurodevelopment. By summarizing two decades of research, this review highlights the microbiome's role in disease predisposition and explores interventions like maternal vaginal seeding and probiotic and prebiotic supplementation that may influence microbiome development. CONCLUSION The perinatal period is a pivotal phase for the formation and growth of the neonatal microbiome, profoundly impacting long-term health outcomes. WHAT IS KNOWN • The perinatal period is a critical phase for the development of the neonatal microbiome, with factors such as mode of delivery, maternal diet, antibiotic exposure, and feeding practices influencing its composition and diversity, which has significant implications for long-term health. • The neonatal microbiome plays a vital role in shaping the immune system, metabolism, and neurodevelopment of infants. WHAT IS NEW • Recent studies have highlighted the potential of targeted interventions, such as probiotic and prebiotic supplementation, and innovative practices like maternal vaginal seeding, to optimize microbiome development during the perinatal period. • Emerging evidence suggests that specific bacterial genera and species within the neonatal microbiome are associated with reduced risks of developing chronic conditions, indicating new avenues for promoting long-term health starting from early life.
Collapse
Affiliation(s)
- Giulia Catassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Pediatric Gastroenterology and Liver Unit, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Sandra Garcia Mateo
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Gastroenterology, Lozano Blesa University Hospital, 50009, Zaragossa, Spain
| | - Annamaria Sara Occhionero
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Chiara Esposito
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Giorgio
- Department of Woman and Child Health and Public Health, UOC Pediatria, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy.
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
15
|
Huang X, Bao J, Yang M, Li Y, Liu Y, Zhai Y. The role of Lactobacillus plantarum in oral health: a review of current studies. J Oral Microbiol 2024; 16:2411815. [PMID: 39444695 PMCID: PMC11497578 DOI: 10.1080/20002297.2024.2411815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/09/2024] [Accepted: 08/27/2024] [Indexed: 10/25/2024] Open
Abstract
Background Oral non-communicable diseases, particularly dental caries and periodontal disease, impose a significant global health burden. The underlying microbial dysbiosis is a prominent factor, driving interest in strategies that promote a balanced oral microbiome. Lactobacillus plantarum, a gram-positive lactic acid bacterium known for its adaptability, has gained attention for its potential to enhance oral health. Recent studies have explored the use of probiotic L. plantarum in managing dental caries, periodontal disease, and apical periodontitis. However, a comprehensive review on its effects in this context is still lacking. Aims This narrative review evaluates current literature on L. plantarum's role in promoting oral health and highlights areas for future research. Content In general, the utilization of L. plantarum in managing non-communicable biofilm-dependent oral diseases is promising, but additional investigations are warranted. Key areas for future study include: exploring its mechanisms of action, identifying optimal strains or strain combinations of L. plantarum, determining effective delivery methods and dosages, developing commercial antibacterial agents from L. plantarum, and addressing safety considerations related to its use in oral care.
Collapse
Affiliation(s)
- Xinyan Huang
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Jianhang Bao
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
| | - Mingzhen Yang
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
| | - Yingying Li
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, China
| | - Youwen Liu
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, China
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
| |
Collapse
|
16
|
Steckler R, Magzal F, Kokot M, Walkowiak J, Tamir S. Disrupted gut harmony in attention-deficit/hyperactivity disorder: Dysbiosis and decreased short-chain fatty acids. Brain Behav Immun Health 2024; 40:100829. [PMID: 39184374 PMCID: PMC11342906 DOI: 10.1016/j.bbih.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Background Attention-Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder with complex genetic and environmental underpinnings. Emerging evidence suggests a significant role of gut microbiota in ADHD pathophysiology. This study investigates variations in gut microbiota composition and Short-Chain Fatty Acid (SCFA) profiles between children and adolescents with ADHD and healthy controls. Methods The study included 42 ADHD patients and 31 healthy controls, aged 6-18 years. Fecal samples were analyzed for microbial composition using 16S rRNA gene sequencing and for SCFA profiles through gas chromatography-mass spectrometry (GC-MS). The study assessed both α and β diversity of gut microbiota and quantified various SCFAs to compare between the groups. Results ADHD subjects demonstrated significantly reduced gut microbiota diversity, as indicated by lower α-diversity indices (Shannon index, Observed species, Faith PD index) and a trend towards significance in β-diversity (Weighted UniFrac). Notably, the ADHD group exhibited significantly lower levels of key SCFAs, including acetic, propionic, isobutyric, isovaleric, and valeric acids, highlighting a distinct microbial and metabolic profile in these individuals. Conclusion This study uncovers significant alterations in gut microbiota and SCFA profiles in children with ADHD, compared to healthy controls. The observed changes in SCFAs, known for their associations with other behavioral and neurologic pathologies, and for their role in neural signaling. These findings offer a metabolite fingerprint that could potentially lead to novel diagnostic and treatment approaches for ADHD, emphasizing the importance of gut microbiota in the disorder's pathogenesis and management.
Collapse
Affiliation(s)
- Rafi Steckler
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Poznan University of Medical Sciences, Poland
- Tel Hai Academic College, Israel
- Human Health and Nutrition Sciences Laboratory, MIGAL – Galilee Research Institute, Israel
| | - Faiga Magzal
- Tel Hai Academic College, Israel
- Human Health and Nutrition Sciences Laboratory, MIGAL – Galilee Research Institute, Israel
| | - Marta Kokot
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Poznan University of Medical Sciences, Poland
| | - Jaroslaw Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Poznan University of Medical Sciences, Poland
| | - Snait Tamir
- Tel Hai Academic College, Israel
- Human Health and Nutrition Sciences Laboratory, MIGAL – Galilee Research Institute, Israel
| |
Collapse
|
17
|
Leveau JHJ. Re-Envisioning the Plant Disease Triangle: Full Integration of the Host Microbiota and a Focal Pivot to Health Outcomes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:31-47. [PMID: 38684078 DOI: 10.1146/annurev-phyto-121423-042021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The disease triangle is a structurally simple but conceptually rich model that is used in plant pathology and other fields of study to explain infectious disease as an outcome of the three-way relationship between a host, a pathogen, and their environment. It also serves as a guide for finding solutions to treat, predict, and prevent such diseases. With the omics-driven, evidence-based realization that the abundance and activity of a pathogen are impacted by proximity to and interaction with a diverse multitude of other microorganisms colonizing the same host, the disease triangle evolved into a tetrahedron shape, which features an added fourth dimension representing the host-associated microbiota. Another variant of the disease triangle emerged from the recently formulated pathobiome paradigm, which deviates from the classical "one pathogen" etiology of infectious disease in favor of a scenario in which disease represents a conditional outcome of complex interactions between and among a host, its microbiota (including microbes with pathogenic potential), and the environment. The result is a version of the original disease triangle where "pathogen" is substituted with "microbiota." Here, as part of a careful and concise review of the origin, history, and usage of the disease triangle, I propose a next step in its evolution, which is to replace the word "disease" in the center of the host-microbiota-environment triad with the word "health." This triangle highlights health as a desirable outcome (rather than disease as an unwanted state) and as an emergent property of host-microbiota-environment interactions. Applied to the discipline of plant pathology, the health triangle offers an expanded range of targets and approaches for the diagnosis, prediction, restoration, and maintenance of plant health outcomes. Its applications are not restricted to infectious diseases only, and its underlying framework is more inclusive of all microbial contributions to plant well-being, including those by mycorrhizal fungi and nitrogen-fixing bacteria, for which there never was a proper place in the plant disease triangle. The plant health triangle also may have an edge as an education and communication tool to convey and stress the importance of healthy plants and their associated microbiota to a broader public and stakeholdership.
Collapse
Affiliation(s)
- Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, California, USA;
| |
Collapse
|
18
|
Mostafa F, Krüger A, Nies T, Frunzke J, Schipper K, Matuszyńska A. Microbial markets: socio-economic perspective in studying microbial communities. MICROLIFE 2024; 5:uqae016. [PMID: 39318452 PMCID: PMC11421381 DOI: 10.1093/femsml/uqae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024]
Abstract
Studying microbial communities through a socio-economic lens, this paper draws parallels with human economic transactions and microbes' race for resources. Extending the 'Market Economy' concept of social science to microbial ecosystems, the paper aims to contribute to comprehending the collaborative and competitive dynamics among microorganisms. Created by a multidisciplinary team of an economist, microbiologists, and mathematicians, the paper also highlights the risks involved in employing a socio-economic perspective to explain the complexities of natural ecosystems. Navigating through microbial markets offers insights into the implications of these interactions while emphasizing the need for cautious interpretation within the broader ecological context. We hope that this paper will be a fruitful source of inspiration for future studies on microbial communities.
Collapse
Affiliation(s)
- Fariha Mostafa
- Computational Life Science, Department of Biology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Aileen Krüger
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Tim Nies
- Computational Life Science, Department of Biology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Kerstin Schipper
- Institute of Microbiology, Heinrich-Heine University Dusseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anna Matuszyńska
- Computational Life Science, Department of Biology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
19
|
Pagkou D, Kogias E, Foroglou N, Kotzampassi K. Probiotics in Traumatic Brain Injury: New Insights into Mechanisms and Future Perspectives. J Clin Med 2024; 13:4546. [PMID: 39124812 PMCID: PMC11313054 DOI: 10.3390/jcm13154546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Traumatic brain injury (TBI) is a serious global public health issue, recognized as a chronic and progressive disease that can affect multiple organs, including the gastrointestinal (GI) tract. Research shows that there is a specific link between the GI tract and the central nervous system, termed the gut-brain axis, which consists of bidirectional exchange between these two. Several preclinical and clinical studies have demonstrated intestinal barrier dysfunction, intestinal inflammation and gut dysbiosis in patients with TBI. It is proven that probiotics can modulate the inflammatory process and modify gut microbiota. Numerous animal studies and human clinical trials have proven the effectiveness of selected bacterial strains as an adjuvant treatment in reducing inflammation, infection rates and time spent in intensive care of hospitalized patients suffering from brain injury. Thus, this review summarizes the current evidence regarding the beneficial effects of probiotic administration in patients suffering from TBI-related complications. This review will help identify novel therapeutic strategies in the future as probiotics have an extensive history of apparently safe use.
Collapse
Affiliation(s)
- Diamantoula Pagkou
- Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Kiriakidi 1, 54636 Thessaloniki, Greece; (E.K.); (N.F.)
| | - Evangelos Kogias
- Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Kiriakidi 1, 54636 Thessaloniki, Greece; (E.K.); (N.F.)
| | - Nikolaos Foroglou
- Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Kiriakidi 1, 54636 Thessaloniki, Greece; (E.K.); (N.F.)
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, Kiriakidi 1, 54636 Thessaloniki, Greece;
| |
Collapse
|
20
|
Bi Y, Yu W, Bian W, Jin M, He Y, Wang J, Miao X, Guo T, Ma X, Gong P, Li R, Xi J, Guo S, Gao Z. Metabolic and Microbial Dysregulation in Preterm Infants with Neonatal Respiratory Distress Syndrome: An Early Developmental Perspective. J Proteome Res 2024; 23:3460-3468. [PMID: 39013122 DOI: 10.1021/acs.jproteome.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Neonatal respiratory distress syndrome (NRDS) is one of the most severe respiratory disorders in preterm infants (PTIs) due to immature lung development. To delineate the serum metabolic alterations and gut microbiota variations in NRDS and assess their implications on neonatal development, we enrolled 13 NRDS neonates and 12 PTIs and collected fecal and serum specimens after birth. Longitudinal fecal sampling was conducted weekly for a month in NRDS neonates. NRDS neonates were characterized by notably reduced gestational ages and birth weights and a higher rate of asphyxia at birth relative to PTIs. Early postnatal disturbances in tryptophan metabolism were evident in the NRDS group, concomitant with elevated relative abundance of Haemophilus, Fusicatenibacter, and Vibrio. Integrative multiomics analyses revealed an inverse relationship between tryptophan concentrations and Blautia abundance. At one-week old, NRDS neonates exhibited cortisol regulation anomalies and augmented hepatic catabolism. Sequential microbial profiling revealed distinct gut microbiota evolution in NRDS subjects, characterized by a general reduction in potentially pathogenic bacteria. The acute perinatal stress of NRDS leads to mitochondrial compromise, hormonal imbalance, and delayed gut microbiota evolution. Despite the short duration of NRDS, its impact on neonatal development is significant and requires extended attention.
Collapse
Affiliation(s)
- Yanxu Bi
- Department of Pediatrics, Linfen Central Hospital, Linfen 041000, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Wenjie Bian
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Mengtong Jin
- Linfen Clinical Medicine Research Center, Linfen 041000, China
| | - Yukun He
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Jinglei Wang
- Department of Pediatrics, Linfen Central Hospital, Linfen 041000, China
| | - Xiaofeng Miao
- Linfen Clinical Medicine Research Center, Linfen 041000, China
| | - Tiantian Guo
- Linfen Clinical Medicine Research Center, Linfen 041000, China
| | - Xiaojun Ma
- Department of Respiratory and Critical Care Medicine, Linfen Central Hospital, Linfen 041000, China
| | - Pihua Gong
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Ran Li
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Jiangli Xi
- Department of Pediatrics, Linfen Central Hospital, Linfen 041000, China
| | - Shuming Guo
- Linfen Clinical Medicine Research Center, Linfen 041000, China
- Institute of Chest and Lung Diseases, Shanxi Medical University, Taiyuan 030001, China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
- Institute of Chest and Lung Diseases, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
21
|
Wu Z, Yu X, Chen P, Pan M, Liu J, Sahandi J, Zhou W, Mai K, Zhang W. Dietary Clostridium autoethanogenum protein has dose-dependent influence on the gut microbiota, immunity, inflammation and disease resistance of abalone Haliotis discus hannai. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109737. [PMID: 38960106 DOI: 10.1016/j.fsi.2024.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Clostridium autoethanogenum protein (CAP) is an eco-friendly protein source and has great application potential in aquafeeds. The present study aimed to investigate the effects of dietary CAP inclusion on the anti-oxidation, immunity, inflammation, disease resistance and gut microbiota of abalone Haliotis discus hannai after a 110-day feeding trial. Three isonitrogenous and isolipidic diets were formulated by adding 0 % (control), 4.10 % (CAP4.10) and 16.25 % (CAP16.25) of CAP, respectively. A total of 540 abalones with an initial mean body weight of 22.05 ± 0.19 g were randomly distributed in three groups with three replicates per group and 60 abalones per replicate. Results showed that the activities of superoxide dismutase and glutathione peroxidase in the cell-free hemolymph (CFH) were significantly decreased and the content of malondialdehyde in CFH was significantly increased in the CAP16.25 group. The diet with 4.1 % of CAP significantly increased the activities of lysozyme and acid phosphatase in CFH. The expressions of pro-inflammatory genes such as tumor necrosis factor-α (tnf-α), nuclear factor-κb (nf-κb) and toll-like receptor 4 (tlr4) in digestive gland were downregulated, and the expressions of anti-inflammatory genes such as β-defensin and mytimacin 6 in digestive gland were upregulated in the CAP4.10 group. Dietary CAP inclusion significantly decreased the cumulative mortality of abalone after the challenge test with Vibrio parahaemolyticus for 7 days. Dietary CAP inclusion changed the composition of gut microbiota of abalone. Besides, the balance of the ecological interaction network of bacterial genera in the intestine of abalone was enhanced by dietary CAP. The association analysis showed that two bacterial genera Ruegeria and Bacteroides were closely correlated with the inflammatory genes. In conclusion, the 4.10 % of dietary CAP enhanced the immunity and disease resistance as well as inhibited the inflammation of abalone. The 16.25 % of dietary CAP decreased the anti-oxidative capacity of abalone. The structure of the gut microbiota of abalone changed with dietary CAP levels.
Collapse
Affiliation(s)
- Zhenhua Wu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xiaojun Yu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Peng Chen
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Javad Sahandi
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wanyou Zhou
- Weihai JinPai Biological Technology Co., Ltd, Weihai, China
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
22
|
Celano G, Calabrese FM, Riezzo G, D’Attoma B, Ignazzi A, Di Chito M, Sila A, De Nucci S, Rinaldi R, Linsalata M, Apa CA, Mancini L, De Angelis M, Giannelli G, De Pergola G, Russo F. A Multi-Omics Approach to Disclose Metabolic Pathways Impacting Intestinal Permeability in Obese Patients Undergoing Very Low Calorie Ketogenic Diet. Nutrients 2024; 16:2079. [PMID: 38999827 PMCID: PMC11243313 DOI: 10.3390/nu16132079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
A very low calorie ketogenic diet (VLCKD) impacts host metabolism in people marked by an excess of visceral adiposity, and it affects the microbiota composition in terms of taxa presence and relative abundances. As a matter of fact, there is little available literature dealing with microbiota differences in obese patients marked by altered intestinal permeability. With the aim of inspecting consortium members and their related metabolic pathways, we inspected the microbial community profile, together with the set of volatile organic compounds (VOCs) from untargeted fecal and urine metabolomics, in a cohort made of obese patients, stratified based on both normal and altered intestinal permeability, before and after VLCKD administration. Based on the taxa relative abundances, we predicted microbiota-derived metabolic pathways whose variations were explained in light of our cohort symptom picture. A totally different number of statistically significant pathways marked samples with altered permeability, reflecting an important shift in microbiota taxa. A combined analysis of taxa, metabolic pathways, and metabolomic compounds delineates a set of markers that is useful in describing obesity dysfunctions and comorbidities.
Collapse
Affiliation(s)
- Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (C.A.A.); (L.M.); (M.D.A.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (C.A.A.); (L.M.); (M.D.A.)
| | - Giuseppe Riezzo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Benedetta D’Attoma
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Antonia Ignazzi
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Martina Di Chito
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Annamaria Sila
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Sara De Nucci
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Roberta Rinaldi
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Michele Linsalata
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Carmen Aurora Apa
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (C.A.A.); (L.M.); (M.D.A.)
| | - Leonardo Mancini
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (C.A.A.); (L.M.); (M.D.A.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (C.A.A.); (L.M.); (M.D.A.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy;
| | - Giovanni De Pergola
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| |
Collapse
|
23
|
Jawanda IK, Soni T, Kumari S, Prabha V. The evolving facets of vaginal microbiota transplantation: reinvigorating the unexplored frontier amid complex challenges. Arch Microbiol 2024; 206:306. [PMID: 38878076 DOI: 10.1007/s00203-024-04024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
In an age of cutting-edge sequencing methods and worldwide endeavors such as The Human Microbiome Project and MetaHIT, the human microbiome stands as a complex and diverse community of microorganisms. A central theme in current scientific inquiry revolves around reinstating a balanced microbial composition, referred to as "eubiosis," as a targeted approach for treating vast array of diseases. Vaginal Microbiota Transplantation (VMT), inspired by the success of fecal microbiota transplantation, emerges as an innovative therapy addressing vaginal dysbacteriosis by transferring the complete microbiota from a healthy donor. Antibiotics, while effective, pose challenges with adverse effects, high recurrence rates, and potential harm to beneficial Lactobacillus strains. Continued antibiotic usage also sparks worries regarding the development of resistant strains. Probiotics, though showing promise, exhibit inconsistency in treating multifactorial diseases, and concerns linger about their suitability for diverse genetic backgrounds. Given the recurrent challenges associated with antibiotic and probiotic treatments, VMT emerges as an imperative alternative, offering a unique and promising avenue for efficiently and reliably managing vaginal dysbiosis among a majority of women. This review critically evaluates findings from both animal and human studies, offering nuanced insights into the efficacy and challenges of VMT. An extensive analysis of clinical trials, provides a current overview of ongoing and completed trials, shedding light on the evolving clinical landscape and therapeutic potential of VMT. Delving into the origins, mechanisms, and optimized protocols of VMT, the review underscores the imperative for sustained research efforts to advance this groundbreaking gynecological therapy.
Collapse
Affiliation(s)
| | - Thomson Soni
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Seema Kumari
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Vijay Prabha
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
24
|
Alizadeh M, Shojadoost B, Fletcher C, Wang A, Abdelaziz K, Sharif S. Treatment of chickens with lactobacilli prior to challenge with Clostridium perfringens modifies innate responses and gut morphology. Res Vet Sci 2024; 172:105241. [PMID: 38555776 DOI: 10.1016/j.rvsc.2024.105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/16/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Necrotic enteritis caused by Clostridium perfringens (CP), is a common enteric disease of poultry that has been previously controlled by in-feed antibiotics. However, due to the rapid emergence of antimicrobial resistance, alternatives to antibiotics such as probiotics have received considerable attention because of their immunomodulatory and intestinal health benefits. The present study investigated the effects of probiotic lactobacilli on gut histomorphology and intestinal innate responses in chickens. Day-old male broiler chickens were treated with 1 × 107 or 1 × 108 colony-forming units (CFU) of a lactobacilli cocktail on days 1, 7, 14, and 20 post-hatch, while control groups were not treated with lactobacilli. On day 21, birds in all groups (except the negative control) were challenged with 3 × 108 CFU of CP for 3 days. Intestinal tissue samples were collected before and after the CP challenge to assess gene expression and for histomorphological analysis. Lactobacilli treatment at a dose of 1 × 108 CFU conferred partial protection against NE by lowering lesion scores, increasing villus height in the ileum and reducing crypt depth in the jejunum. In addition, 1 × 108 CFU of lactobacilli enhanced the expression of Toll-like receptor (TLR) 2, interferon-gamma (IFN-γ), interleukin (IL)-10, IL-12, and IL-13 in both the jejunum and ileum at different timepoints and subsequently decreased the expression of transforming growth factor beta (TGF-β) and IL-1β post-CP challenge. In conclusion, the results indicate that treatment with lactobacilli mitigated NE in a dose-dependent manner via improvement of intestinal morphology and modulation of innate immune response in chickens.
Collapse
Affiliation(s)
- Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA.
| | | | - Charlotte Fletcher
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Alice Wang
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Khaled Abdelaziz
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
25
|
Deyang T, Baig MAI, Dolkar P, Hediyal TA, Rathipriya AG, Bhaskaran M, PandiPerumal SR, Monaghan TM, Mahalakshmi AM, Chidambaram SB. Sleep apnoea, gut dysbiosis and cognitive dysfunction. FEBS J 2024; 291:2519-2544. [PMID: 37712936 DOI: 10.1111/febs.16960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/14/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Sleep disorders are becoming increasingly common, and their distinct effects on physical and mental health require elaborate investigation. Gut dysbiosis (GD) has been reported in sleep-related disorders, but sleep apnoea is of particular significance because of its higher prevalence and chronicity. Cumulative evidence has suggested a link between sleep apnoea and GD. This review highlights the gut-brain communication axis that is mediated via commensal microbes and various microbiota-derived metabolites (e.g. short-chain fatty acids, lipopolysaccharide and trimethyl amine N-oxide), neurotransmitters (e.g. γ-aminobutyric acid, serotonin, glutamate and dopamine), immune cells and inflammatory mediators, as well as the vagus nerve and hypothalamic-pituitary-adrenal axis. This review also discusses the pathological role underpinning GD and altered gut bacterial populations in sleep apnoea and its related comorbid conditions, particularly cognitive dysfunction. In addition, the review examines the preclinical and clinical evidence, which suggests that prebiotics and probiotics may potentially be beneficial in sleep apnoea and its comorbidities through restoration of eubiosis or gut microbial homeostasis that regulates neural, metabolic and immune responses, as well as physiological barrier integrity via the gut-brain axis.
Collapse
Affiliation(s)
- Tenzin Deyang
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Md Awaise Iqbal Baig
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Phurbu Dolkar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, Frederic and Mary Wolf Center, University of Toledo Health Science Campus, OH, USA
| | - Seithikuruppu R PandiPerumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Division of Research and Development, Lovely Professional University, Phagwara, India
| | - Tanya M Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, UK
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru, India
| |
Collapse
|
26
|
Sati P, Dhyani P, Sharma E, Attri DC, Jantwal A, Devi R, Calina D, Sharifi-Rad J. Gut Microbiota Targeted Approach by Natural Products in Diabetes Management: An Overview. Curr Nutr Rep 2024; 13:166-185. [PMID: 38498287 DOI: 10.1007/s13668-024-00523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW This review delves into the complex interplay between obesity-induced gut microbiota dysbiosis and the progression of type 2 diabetes mellitus (T2DM), highlighting the potential of natural products in mitigating these effects. By integrating recent epidemiological data, we aim to provide a nuanced understanding of how obesity exacerbates T2DM through gut flora alterations. RECENT FINDINGS Advances in research have underscored the significance of bioactive ingredients in natural foods, capable of restoring gut microbiota balance, thus offering a promising approach to manage diabetes in the context of obesity. These findings build upon the traditional use of medicinal plants in diabetes treatment, suggesting a deeper exploration of their mechanisms of action. This comprehensive manuscript underscores the critical role of targeting gut microbiota dysbiosis in obesity-related T2DM management and by bridging traditional knowledge with current scientific evidence; we highlighted the need for continued research into natural products as a complementary strategy for comprehensive diabetes care.
Collapse
Affiliation(s)
- Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Eshita Sharma
- Department of Biochemistry and Molecular Biology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Arvind Jantwal
- Department of Pharmaceutical Sciences, Kumaun University, Bhimtal, Uttarakhand, India
| | - Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
27
|
Nkeck JR, Tchuisseu-Kwangoua AL, Pelda A, Tamko WC, Hamadjoda S, Essama DB, Fojo B, Niasse M, Diallo S, Ngandeu-Singwé M. Current Approaches to Prevent or Reverse Microbiome Dysbiosis in Chronic Inflammatory Rheumatic Diseases. Mediterr J Rheumatol 2024; 35:220-233. [PMID: 39211023 PMCID: PMC11350408 DOI: 10.31138/mjr.240224.cap] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 09/04/2024] Open
Abstract
Advances in knowledge of the microbiome and its relationship with the immune system have led to a better understanding of the pathogenesis of chronic inflammatory rheumatic diseases (CIRD). Indeed, the microbiome dysbiosis now occupies a particular place with implications for the determinism and clinical expression of CIRD, as well as the therapeutic response of affected patients. Several approaches exist to limit the impact of the microbiome during CIRD. This review aimed to present current strategies to prevent or reverse microbiome dysbiosis based on existing knowledge, in order to provide practical information to healthcare professionals treating patients suffering from CIRD.
Collapse
Affiliation(s)
- Jan René Nkeck
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Ange Larissa Tchuisseu-Kwangoua
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Adeline Pelda
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Wilson Chia Tamko
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Saquinatou Hamadjoda
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Doris Bibi Essama
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Baudelaire Fojo
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Moustapha Niasse
- Department of Rheumatology, Dantec Teaching Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Saïdou Diallo
- Department of Rheumatology, Dantec Teaching Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Madeleine Ngandeu-Singwé
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| |
Collapse
|
28
|
Longo UG, Lalli A, Bandini B, Angeletti S, Lustig S, Budhiparama NC. The influence of gut microbiome on periprosthetic joint infections: State-of-the art. J ISAKOS 2024; 9:353-361. [PMID: 38272392 DOI: 10.1016/j.jisako.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Early periprosthetic joint infection constitutes one of the most frightening complications of joint replacement. Recently, some evidence has highlighted the potential link between dysregulation of the gut microbiota and degenerative diseases of joints. It has been hypothesized that microbiome dysbiosis may increase the risk of periprosthetic joint infection by facilitating bacterial translocation from these sites to the bloodstream or by impairing local or systemic immune responses. Although the processes tying the gut microbiome to infection susceptibility are still unknown, new research suggests that the presurgical gut microbiota-a previously unconsidered component-may influence the patient's ability to resist infection. Exploring the potential impact of the microbiome on periprosthetic joint infections may therefore bring new insights into the pathogenesis and therapy of these disorders. For a successful therapy, a proper surgical procedure in conjunction with an antibacterial concept is essential. As per the surgical approach, different treatment strategies include surgical irrigation, debridement, antibiotic therapy, and implant retention with or without polyethylene exchange. Other alternatives could be one-stage or two-stage revisions surgery. Interventions that either directly target gut microbes as well as interventions that modify the composition and/or function of the commensal microbes represent an innovative and potentially successful field to be explored. In recent times, innovative therapeutic methods have arisen in the realm of microbiome restoration and the management of gut-related ailments. These progressive approaches offer fresh perspectives on tackling intricate microbial imbalances in the gastrointestinal tract. These emerging therapies signify a shift towards more precise and individualized approaches to microbiome restoration and the management of gut-related disorders. Once a more advanced knowledge of the pathways linking the gut microbiota to musculoskeletal tissues is gained, relevant microbiome-based therapies can be developed. If dysbiosis is proven to be a significant contributor, developing treatments for dysbiosis may represent a new frontier in the prevention of periprosthetic joint infections.
Collapse
Affiliation(s)
- Umile Giuseppe Longo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Alberto Lalli
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy.
| | - Benedetta Bandini
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy.
| | - Silvia Angeletti
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy.
| | - Sebastien Lustig
- Orthopaedic Department, Lyon North University Hospital, Hôpital de La Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de la Croix Rousse, 69004 Lyon, France.
| | - Nicolaas Cyrillus Budhiparama
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Unversitas Airlangga, Jl. Mayjend. Prof. Dr. Moestopo 6-8, Surabaya 60286, Indonesia; Department of Orthopaedics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
29
|
Ziaka M, Exadaktylos A. Exploring the lung-gut direction of the gut-lung axis in patients with ARDS. Crit Care 2024; 28:179. [PMID: 38802959 PMCID: PMC11131229 DOI: 10.1186/s13054-024-04966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) represents a life-threatening inflammatory reaction marked by refractory hypoxaemia and pulmonary oedema. Despite advancements in treatment perspectives, ARDS still carries a high mortality rate, often due to systemic inflammatory responses leading to multiple organ dysfunction syndrome (MODS). Indeed, the deterioration and associated mortality in patients with acute lung injury (LI)/ARDS is believed to originate alongside respiratory failure mainly from the involvement of extrapulmonary organs, a consequence of the complex interaction between initial inflammatory cascades related to the primary event and ongoing mechanical ventilation-induced injury resulting in multiple organ failure (MOF) and potentially death. Even though recent research has increasingly highlighted the role of the gastrointestinal tract in this process, the pathophysiology of gut dysfunction in patients with ARDS remains mainly underexplored. This review aims to elucidate the complex interplay between lung and gut in patients with LI/ARDS. We will examine various factors, including systemic inflammation, epithelial barrier dysfunction, the effects of mechanical ventilation (MV), hypercapnia, and gut dysbiosis. Understanding these factors and their interaction may provide valuable insights into the pathophysiology of ARDS and potential therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic of Geriatric Medicine, Center of Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Ratiner K, Ciocan D, Abdeen SK, Elinav E. Utilization of the microbiome in personalized medicine. Nat Rev Microbiol 2024; 22:291-308. [PMID: 38110694 DOI: 10.1038/s41579-023-00998-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/20/2023]
Abstract
Inter-individual human variability, driven by various genetic and environmental factors, complicates the ability to develop effective population-based early disease detection, treatment and prognostic assessment. The microbiome, consisting of diverse microorganism communities including viruses, bacteria, fungi and eukaryotes colonizing human body surfaces, has recently been identified as a contributor to inter-individual variation, through its person-specific signatures. As such, the microbiome may modulate disease manifestations, even among individuals with similar genetic disease susceptibility risks. Information stored within microbiomes may therefore enable early detection and prognostic assessment of disease in at-risk populations, whereas microbiome modulation may constitute an effective and safe treatment tailored to the individual. In this Review, we explore recent advances in the application of microbiome data in precision medicine across a growing number of human diseases. We also discuss the challenges, limitations and prospects of analysing microbiome data for personalized patient care.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Dragos Ciocan
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Suhaib K Abdeen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany.
| |
Collapse
|
31
|
Baltazar-Díaz TA, Andrade-Villanueva JF, Sánchez-Álvarez P, Amador-Lara F, Holguín-Aguirre T, Sánchez-Reyes K, Álvarez-Zavala M, López-Roa RI, Bueno-Topete MR, González-Hernández LA. A Two-Faced Gut Microbiome: Butyrogenic and Proinflammatory Bacteria Predominate in the Intestinal Milieu of People Living with HIV from Western Mexico. Int J Mol Sci 2024; 25:4830. [PMID: 38732048 PMCID: PMC11084381 DOI: 10.3390/ijms25094830] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
HIV infection results in marked alterations in the gut microbiota (GM), such as the loss of microbial diversity and different taxonomic and metabolic profiles. Despite antiretroviral therapy (ART) partially ablating gastrointestinal alterations, the taxonomic profile after successful new ART has shown wide variations. Our objective was to determine the GM composition and functions in people living with HIV (PLWHIV) under ART in comparison to seronegative controls (SC). Fecal samples from 21 subjects (treated with integrase strand-transfer inhibitors, INSTIs) and 18 SC were included. We employed 16S rRNA amplicon sequencing, coupled with PICRUSt2 and fecal short-chain fatty acid (SCFA) quantification by gas chromatography. The INSTI group showed a decreased α-diversity (p < 0.001) compared to the SC group, at the expense of increased amounts of Pseudomonadota (Proteobacteria), Segatella copri, Lactobacillus, and Gram-negative bacteria. Concurrently, we observed an enrichment in Megasphaera and Butyricicoccus, both SCFA-producing bacteria, and significant elevations in fecal butyrate in this group (p < 0.001). Interestingly, gut dysbiosis in PLWHIV was characterized by a proinflammatory environment orchestrated by Pseudomonadota and elevated levels of butyrate associated with bacterial metabolic pathways, as well as the evident presence of butyrogenic bacteria. The role of this unique GM in PLWHIV should be evaluated, as well as the use of butyrate-based supplements and ART regimens that contain succinate, such as tenofovir disoproxil succinate. This mixed profile is described for the first time in PLWHIV from Mexico.
Collapse
Affiliation(s)
- Tonatiuh Abimael Baltazar-Díaz
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico;
- Instituto de Investigación en Inmunodeficiencias y VIH, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital 278, Guadalajara 44280, Mexico; (J.F.A.-V.); (K.S.-R.); (M.Á.-Z.)
| | - Jaime F. Andrade-Villanueva
- Instituto de Investigación en Inmunodeficiencias y VIH, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital 278, Guadalajara 44280, Mexico; (J.F.A.-V.); (K.S.-R.); (M.Á.-Z.)
- Unidad de VIH, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Guadalajara 44280, Mexico; (P.S.-Á.); (F.A.-L.); (T.H.-A.)
| | - Paulina Sánchez-Álvarez
- Unidad de VIH, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Guadalajara 44280, Mexico; (P.S.-Á.); (F.A.-L.); (T.H.-A.)
| | - Fernando Amador-Lara
- Unidad de VIH, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Guadalajara 44280, Mexico; (P.S.-Á.); (F.A.-L.); (T.H.-A.)
| | - Tania Holguín-Aguirre
- Unidad de VIH, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Guadalajara 44280, Mexico; (P.S.-Á.); (F.A.-L.); (T.H.-A.)
| | - Karina Sánchez-Reyes
- Instituto de Investigación en Inmunodeficiencias y VIH, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital 278, Guadalajara 44280, Mexico; (J.F.A.-V.); (K.S.-R.); (M.Á.-Z.)
| | - Monserrat Álvarez-Zavala
- Instituto de Investigación en Inmunodeficiencias y VIH, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital 278, Guadalajara 44280, Mexico; (J.F.A.-V.); (K.S.-R.); (M.Á.-Z.)
| | - Rocío Ivette López-Roa
- Laboratorio de Investigación y Desarrollo Farmacéutico, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1421, Guadalajara 44430, Mexico;
| | - Miriam Ruth Bueno-Topete
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico;
| | - Luz Alicia González-Hernández
- Instituto de Investigación en Inmunodeficiencias y VIH, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital 278, Guadalajara 44280, Mexico; (J.F.A.-V.); (K.S.-R.); (M.Á.-Z.)
- Unidad de VIH, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Guadalajara 44280, Mexico; (P.S.-Á.); (F.A.-L.); (T.H.-A.)
| |
Collapse
|
32
|
Ndung'u JK, Nguta JM, Mapenay IM, Moriasi GA. A Comprehensive Review of Ethnomedicinal Uses, Phytochemistry, Pharmacology, and Toxicity of Prunus africana (Hook. F.) Kalkman from Africa. SCIENTIFICA 2024; 2024:8862996. [PMID: 38654751 PMCID: PMC11039028 DOI: 10.1155/2024/8862996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Prunus africana, a widely utilized medicinal plant in various African ethnic communities, continues to hold significant importance in traditional healing practices. Research has identified phytochemical compounds in this plant, exhibiting diverse pharmacological activities that offer potential for pharmaceutical development. Notably, P. africana is employed in treating various ailments such as wounds, diabetes mellitus, malaria, benign prostatic hyperplasia, chest pain, and prostate cancer. Its pharmacological properties are attributed to a spectrum of bioactive compounds, including tannins, saponins, alkaloids, flavonoids, terpenoids, phytosterols, and fatty acids. Multiple studies have documented the anti-inflammatory, antimicrobial, antiandrogenic, antiangiogenic, antioxidant, antidipeptidyl peptidase-4 activity, analgesic, and astringent properties of P. africana extracts. This review offers a comprehensive compilation of ethnomedicinal applications, phytochemical composition, pharmacological effects, and toxicity assessments of P. africana, serving as a foundation for future preclinical and clinical investigations. By understanding its traditional uses and chemical constituents, researchers can target specific medical conditions with greater precision, potentially expediting the development of safe and effective pharmaceuticals. Moreover, toxicity assessments provide crucial insights into the safety profile of P. africana extracts, ensuring the development of safe pharmaceuticals to treat various diseases.
Collapse
Affiliation(s)
- James K. Ndung'u
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya
- Department of Pharmacy, Kenya Medical Training College, Nakuru Campus Kenya, P.O. Box 110, Nakuru, Kenya
| | - Joseph M. Nguta
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya
| | - Isaac M. Mapenay
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya
| | - Gervason A. Moriasi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100-GPO, Nairobi, Kenya
- Department of Medical Biochemistry, Mount Kenya University, P.O. Box 342-01000, Thika, Kenya
| |
Collapse
|
33
|
Li Z, Mo F, Guo K, Ren S, Wang Y, Chen Y, Schwartz PB, Richmond N, Liu F, Ronnekleiv-Kelly SM, Hu Q. Nanodrug-bacteria conjugates-mediated oncogenic collagen depletion enhances immune checkpoint blockade therapy against pancreatic cancer. MED 2024; 5:348-367.e7. [PMID: 38521069 DOI: 10.1016/j.medj.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/15/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) cancer cells specifically produce abnormal oncogenic collagen to bind with integrin α3β1 receptor and activate the downstream focal adhesion kinase (FAK), protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) signaling pathway. Collectively, this promotes immunosuppression and tumor proliferation and restricts the response rate of clinical cancer immunotherapies. METHODS Here, by leveraging the hypoxia tropism and excellent motility of the probiotic Escherichia coli strain Nissle 1917 (ECN), we developed nanodrug-bacteria conjugates to penetrate the extracellular matrix (ECM) and shuttle the surface-conjugated protein cages composed of collagenases and anti-programmed death-ligand 1 (PD-L1) antibodies to PDAC tumor parenchyma. FINDINGS We found the oncogenic collagen expression in human pancreatic cancer patients and demonstrated its interaction with integrin α3β1. We proved that reactive oxygen species (ROS) in the microenvironment of PDAC triggered collagenase release to degrade oncogenic collagen and block integrin α3β1-FAK signaling pathway, thus overcoming the immunosuppression and synergizing with anti-PD-L1 immunotherapy. CONCLUSIONS Collectively, our study highlights the significance of oncogenic collagen in PDAC immunotherapy, and consequently, we developed a therapeutic strategy that can deplete oncogenic collagen to synergize with immune checkpoint blockade for enhanced PDAC treatment efficacy. FUNDING This work was supported by the University of Wisconsin Carbone Cancer Center Research Collaborative and Pancreas Cancer Research Task Force, UWCCC Transdisciplinary Cancer Immunology-Immunotherapy Pilot Project, and the start-up package from the University of Wisconsin-Madison (to Q.H.).
Collapse
Affiliation(s)
- Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kai Guo
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Shuai Ren
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Patrick B Schwartz
- Department of Surgery, Division of Surgical Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nathaniel Richmond
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fengyuan Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sean M Ronnekleiv-Kelly
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Surgery, Division of Surgical Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
34
|
Duniere L, Frayssinet B, Achard C, Chevaux E, Plateau J. Conditioner application improves bedding quality and bacterial composition with potential beneficial impacts for dairy cow's health. Microbiol Spectr 2024; 12:e0426323. [PMID: 38376365 PMCID: PMC10994720 DOI: 10.1128/spectrum.04263-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Recycled manure solids (RMS) is used as bedding material in cow housing but can be at risk for pathogens development. Cows spend several hours per day lying down, contributing to the transfer of potential mastitis pathogens from the bedding to the udder. The effect of a bacterial conditioner (Manure Pro, MP) application was studied on RMS-bedding and milk qualities and on animal health. MP product was applied on bedding once a week for 3 months. Bedding and teat skin samples were collected from Control and MP groups at D01, D51, and D90 and analyzed through 16S rRNA amplicon sequencing. MP application modified bacterial profiles and diversity. Control bedding was significantly associated with potential mastitis pathogens, while no taxa of potential health risk were significantly detected in MP beddings. Functional prediction identified enrichment of metabolic pathways of agronomic interest in MP beddings. Significant associations with potential mastitis pathogens were mainly observed in Control teat skin samples. Finally, significantly better hygiene and lower Somatic Cell Counts in milk were observed for cows from MP group, while no group impact was observed on milk quality and microbiota. No dissemination of MP strains was observed from bedding to teats or milk. IMPORTANCE The use of Manure Pro (MP) conditioner improved recycled manure solids-bedding quality and this higher sanitary condition had further impacts on dairy cows' health with less potential mastitis pathogens significantly associated with bedding and teat skin samples of animals from MP group. The animals also presented an improved inflammation status, while milk quality was not modified. The use of MP conditioner on bedding may be of interest in controlling the risk of mastitis onset for dairy cows and further associated costs.
Collapse
Affiliation(s)
| | | | | | - Eric Chevaux
- Lallemand SAS, 19 rue des Briquetiers, Blagnac, France
| | - Julia Plateau
- Lallemand SAS, 19 rue des Briquetiers, Blagnac, France
| |
Collapse
|
35
|
Zhao S, Yan Q, Xu W, Zhang J. Gut microbiome in diabetic retinopathy: A systematic review and meta-analysis. Microb Pathog 2024; 189:106590. [PMID: 38402917 DOI: 10.1016/j.micpath.2024.106590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
CONTEXT Changes in the gut microbiome are linked with Type 2diabetes mellitus (T2DM) development, but alterations in patients with diabetic retinopathy (DR) are still being debated. OBJECTIVE To investigate the differences in biodiversity and relative abundance of gut microbiome between patients with DR and T2DM. METHODS A comprehensive search was performed in five electronic databases (PubMed, EMBASE, Cochrane Central Register of Controlled Trials, Web of Science, and CNKI) from the inception of each database through to August 2023. The standardized mean difference (SMD) and its 95% confidence interval (CI) were estimated using Stata 15.1. Furthermore, the alpha diversity index and relative abundance of the gut microbiome were calculated. The Egger test determined publication bias in the literature. RESULTS Seven case-control studies were included in the final dataset, comprising 195 patients with DR and 211 patients with T2DM. Compared to T2DM patients, patients in the DR group had a reduced but not significantly different α-diversity. The analysis of microbial composition at the phylum level revealed a marked increase in the relative abundance of Bacteroidetes(ES = 23.27, 95%CI[8.30, 38.23], P = 0.000) and a decline in Firmicutes(ES = 47.05, 95%CI[36.58, 57.52], P = 0.000), Proteobacteria (ES = 11.08, 95%CI[6.08, 16.07], P = 0.000) and Actinobacteria (ES = 10.43, 95%CI[1.64, 19.22], P = 0.001) in patients with DR when compared to those with T2DM. CONCLUSIONS An association exists between alterations in the gut microbiome of T2DM and the development and progression of DR. This suggests that re-establishing homeostasis of the gut microbiome could be a potential way to prevent or treat DR and requires further confirmation in future studies. REGISTRATION DATABASE Prospero. REGISTRATION NUMBER CRD42023455280.
Collapse
Affiliation(s)
- Shuang Zhao
- Shandong First Medical University, Jinan, China.
| | - Qi Yan
- Jiangsu Pei People's Hospital, China.
| | - Wanjing Xu
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, China.
| | - Juanmei Zhang
- The Department of Ophthalmology, Linyi People's Hospital, Linyi, China.
| |
Collapse
|
36
|
Wong-Chew RM, Nguyen TVH, Rogacion JM, Herve M, Pouteau E. Potential Complementary Effect of Zinc and Alkalihalobacillus clausii on Gut Health and Immunity: A Narrative Review. Nutrients 2024; 16:887. [PMID: 38542798 PMCID: PMC10976165 DOI: 10.3390/nu16060887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 01/03/2025] Open
Abstract
A balanced microbiota-microorganisms that live in the gut-is crucial in the early years of a child's life, while dysbiosis-altered microbiota-has been linked to the development of various diseases. Probiotics, such as Alkalihalobacillus clausii, are commonly used to restore the balance of gut microbiota and have shown additional antimicrobial and immunomodulatory properties. Intake of micronutrients can affect the structure and function of the gut barrier and of the microbiota by having multiple effects on cellular metabolism (e.g., immunomodulation, gene expression, and support structure proteins). An inadequate zinc intake increases the risk of deficiency and associated immune dysfunctions; it is responsible for an increased risk of developing gastrointestinal diseases, respiratory infections, and stunting. Paediatric zinc deficiency is a public health concern in many countries, especially in low-income areas. Currently, zinc supplementation is used to treat childhood diarrhoea. This review examines how combining A. clausii and zinc could improve dysbiosis, gut health, and immunity. It suggests that this combination could be used to prevent and treat infectious diseases and diarrhoea in children up to adolescence.
Collapse
Affiliation(s)
- Rosa María Wong-Chew
- Infectious Diseases Research Laboratory, Research Division, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06726, Mexico;
| | - Thi Viet Ha Nguyen
- Department of Paediatrics, Hanoi Medical University, 1,Ton That Tung, Hanoi 116001, Vietnam;
- Department of Gastroenterology, National Children’s Hospital, 18 Lane 879 La Thanh Street, Lang Thuong, Dong Da, Hanoi 116001, Vietnam
| | - Jossie M. Rogacion
- Department of Paediatrics, University of the Philippines, Philippine General Hospital, Manila 1000, Philippines;
| | - Maxime Herve
- Sanofi-Aventis, 38 Beach Road, Singapore 189767, Singapore;
| | - Etienne Pouteau
- Sanofi, 157 Avenue Charles de Gaulle, 92200 Neuilly-Sur-Seine, France
| |
Collapse
|
37
|
Roth-Walter F, Berni Canani R, O'Mahony L, Peroni D, Sokolowska M, Vassilopoulou E, Venter C. Nutrition in chronic inflammatory conditions: Bypassing the mucosal block for micronutrients. Allergy 2024; 79:353-383. [PMID: 38084827 DOI: 10.1111/all.15972] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Nutritional Immunity is one of the most ancient innate immune responses, during which the body can restrict nutrients availability to pathogens and restricts their uptake by the gut mucosa (mucosal block). Though this can be a beneficial strategy during infection, it also is associated with non-communicable diseases-where the pathogen is missing; leading to increased morbidity and mortality as micronutritional uptake and distribution in the body is hindered. Here, we discuss the acute immune response in respect to nutrients, the opposing nutritional demands of regulatory and inflammatory cells and particularly focus on some nutrients linked with inflammation such as iron, vitamins A, Bs, C, and other antioxidants. We propose that while the absorption of certain micronutrients is hindered during inflammation, the dietary lymph path remains available. As such, several clinical trials investigated the role of the lymphatic system during protein absorption, following a ketogenic diet and an increased intake of antioxidants, vitamins, and minerals, in reducing inflammation and ameliorating disease.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Roberto Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE-Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Liam O'Mahony
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Diego Peroni
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Emilia Vassilopoulou
- Pediatric Area, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Carina Venter
- Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
38
|
Gkitsaki I, Potsaki P, Dimou I, Laskari Z, Koutelidakis A, Giaouris E. Development of a functional Greek sheep yogurt incorporating a probiotic Lacticaseibacillus rhamnosus wild-type strain as adjunct starter culture. Heliyon 2024; 10:e24446. [PMID: 38312657 PMCID: PMC10835171 DOI: 10.1016/j.heliyon.2024.e24446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Greek yogurt is a fermented dairy product of high nutritional value that can be used as a matrix for the delivery of probiotics. The aim of this study was to develop a new probiotic Greek sheep yogurt with upgraded quality and functional characteristics. To do this, yogurt was manufactured by fermenting pasteurized milk with the commercial starter culture (Streptococcus thermophilus (ST), Lactobacillus bulgaricus (LB)) together with a probiotic Lacticaseibacillus rhamnosus (LR) wild-type strain (probiotic yogurt; PY). As a control, yogurt manufactured with only the starter culture (ST, LB) was used (conventional yogurt; CY) The survival of all three lactic acid bacteria (LAB) species (ST, LB, and LR) was monitored throughout the products' shelf life (storage at 4 °C for 25 days), and also following exposure to a static in vitro digestion model (SIVDM). The population dynamics of total aerobic plate count (APC), Enterobacteriaceae, yeasts and molds grown in both yogurts were also determined. The total antioxidant activity (AA) of yogurts was comparatively determined using in parallel two different assays, whereas the Folin-Ciocalteu assay was used to determine their total phenolic content (TPC). At each sampling day, yogurts were also evaluated for their pH, titratable acidity (TA) and main sensory characteristics. The population of probiotic LR remained stable during the shelf life (and above 108 CFU/g). Yogurt starters (ST, LB) were not detected following SIVDM, whereas LR (in PY) presented a reduction of about only one log. The AA and TPC of PY were found significantly higher than that of CY (P < 0.05). At the end of storage (25th day), neither pH nor TA differed significantly between the two yogurt types, while no fungal growth was observed in the PY. Consumer sensory analysis did not reveal important differences between the two yogurt types during their shelf life. To sum up, the novel yogurt was able to deliver to consumers a high number of probiotic cells (>108 CFU/g), presented increased antioxidant power, had an expanded shelf life, and maintained its good sensory attributes.
Collapse
Affiliation(s)
- Ioanna Gkitsaki
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Panagiota Potsaki
- Laboratory of Nutrition and Public Health, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Ioanna Dimou
- Laboratory of Nutrition and Public Health, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Zoi Laskari
- Mystakelli Traditional Dairy Products, 81103 Mantamados, Lesvos, Greece
| | - Antonios Koutelidakis
- Laboratory of Nutrition and Public Health, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Efstathios Giaouris
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| |
Collapse
|
39
|
Yadav M, Chauhan NS. Role of gut-microbiota in disease severity and clinical outcomes. Brief Funct Genomics 2024; 23:24-37. [PMID: 36281758 DOI: 10.1093/bfgp/elac037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2024] Open
Abstract
A delicate balance of nutrients, antigens, metabolites and xenobiotics in body fluids, primarily managed by diet and host metabolism, governs human health. Human gut microbiota is a gatekeeper to nutrient bioavailability, pathogens exposure and xenobiotic metabolism. Human gut microbiota starts establishing during birth and evolves into a resilient structure by adolescence. It supplements the host's metabolic machinery and assists in many physiological processes to ensure health. Biotic and abiotic stressors could induce dysbiosis in gut microbiota composition leading to disease manifestations. Despite tremendous scientific advancements, a clear understanding of the involvement of gut microbiota dysbiosis during disease onset and clinical outcomes is still awaited. This would be important for developing an effective and sustainable therapeutic intervention. This review synthesizes the present scientific knowledge to present a comprehensive picture of the role of gut microbiota in the onset and severity of a disease.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
40
|
Skoufou M, Tsigalou C, Vradelis S, Bezirtzoglou E. The Networked Interaction between Probiotics and Intestine in Health and Disease: A Promising Success Story. Microorganisms 2024; 12:194. [PMID: 38258020 PMCID: PMC10818559 DOI: 10.3390/microorganisms12010194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Probiotics are known to promote human health either precautionary in healthy individuals or therapeutically in patients suffering from certain ailments. Although this knowledge was empirical in past tomes, modern science has already verified it and expanded it to new limits. These microorganisms can be found in nature in various foods such as dairy products or in supplements formulated for clinical or preventive use. The current review examines the different mechanisms of action of the probiotic strains and how they interact with the organism of the host. Emphasis is put on the clinical therapeutic use of these beneficial microorganisms in various clinical conditions of the human gastrointestinal tract. Diseases of the gastrointestinal tract and particularly any malfunction and inflammation of the intestines seriously compromise the health of the whole organism. The interaction between the probiotic strains and the host's microbiota can alleviate the clinical signs and symptoms while in some cases, in due course, it can intervene in the underlying pathology. Various safety issues of the use of probiotics are also discussed.
Collapse
Affiliation(s)
- Maria Skoufou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Proctology Department, Paris Saint Joseph Hospital Paris, 75014 Paris, France
| | - Christina Tsigalou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Department of Gastrenterology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
41
|
Wiefels MD, Furar E, Eshraghi RS, Mittal J, Memis I, Moosa M, Mittal R, Eshraghi AA. Targeting Gut Dysbiosis and Microbiome Metabolites for the Development of Therapeutic Modalities for Neurological Disorders. Curr Neuropharmacol 2024; 22:123-139. [PMID: 36200211 PMCID: PMC10716879 DOI: 10.2174/1570159x20666221003085508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/10/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
The gut microbiota, composed of numerous species of microbes, works in synergy with the various organ systems in the body to bolster our overall health and well-being. The most well-known function of the gut microbiome is to facilitate the metabolism and absorption of crucial nutrients, such as complex carbohydrates, while also generating vitamins. In addition, the gut microbiome plays a crucial role in regulating the functioning of the central nervous system (CNS). Host genetics, including specific genes and single nucleotide polymorphisms (SNPs), have been implicated in the pathophysiology of neurological disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), and autism spectrum disorder (ASD). The gut microbiome dysbiosis also plays a role in the pathogenesis of these neurodegenerative disorders, thus perturbing the gut-brain axis. Overproduction of certain metabolites synthesized by the gut microbiome, such as short-chain fatty acids (SCFAs) and p-cresyl sulfate, are known to interfere with microglial function and trigger misfolding of alpha-synuclein protein, which can build up inside neurons and cause damage. By determining the association of the gut microbiome and its metabolites with various diseases, such as neurological disorders, future research will pave the way for the development of effective preventive and treatment modalities.
Collapse
Affiliation(s)
- Matthew D Wiefels
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Emily Furar
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Rebecca S Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jeenu Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Idil Memis
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Moeed Moosa
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Rahul Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Adrien A Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
42
|
Arenas-Gómez CM, Garcia-Gutierrez E, Escobar JS, Cotter PD. Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites. Crit Rev Microbiol 2023; 49:764-785. [PMID: 36369718 DOI: 10.1080/1040841x.2022.2142088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.
Collapse
Affiliation(s)
- Claudia Marcela Arenas-Gómez
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Enriqueta Garcia-Gutierrez
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Paul D Cotter
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
43
|
Hou JJ, Ma AH, Qin YH. Activation of the aryl hydrocarbon receptor in inflammatory bowel disease: insights from gut microbiota. Front Cell Infect Microbiol 2023; 13:1279172. [PMID: 37942478 PMCID: PMC10628454 DOI: 10.3389/fcimb.2023.1279172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disease that affects more than 3.5 million people, with rising prevalence. It deeply affects patients' daily life, increasing the burden on patients, families, and society. Presently, the etiology of IBD remains incompletely clarified, while emerging evidence has demonstrated that altered gut microbiota and decreased aryl hydrocarbon receptor (AHR) activity are closely associated with IBD. Furthermore, microbial metabolites are capable of AHR activation as AHR ligands, while the AHR, in turn, affects the microbiota through various pathways. In light of the complex connection among gut microbiota, the AHR, and IBD, it is urgent to review the latest research progress in this field. In this review, we describe the role of gut microbiota and AHR activation in IBD and discussed the crosstalk between gut microbiota and the AHR in the context of IBD. Taken as a whole, we propose new therapeutic strategies targeting the AHR-microbiota axis for IBD, even for other related diseases caused by AHR-microbiota dysbiosis.
Collapse
Affiliation(s)
| | | | - Yue-Hua Qin
- Department of Gastroenterology, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
44
|
Shahbazi R, Yasavoli-Sharahi H, Alsadi N, Sharifzad F, Fang S, Cuenin C, Cahais V, Chung FFL, Herceg Z, Matar C. Lentinula edodes Cultured Extract and Rouxiella badensis subsp. acadiensis (Canan SV-53) Intake Alleviates Immune Deregulation and Inflammation by Modulating Signaling Pathways and Epigenetic Mechanisms. Int J Mol Sci 2023; 24:14610. [PMID: 37834058 PMCID: PMC10572597 DOI: 10.3390/ijms241914610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Puberty is a critical developmental period of life characterized by marked physiological changes, including changes in the immune system and gut microbiota development. Exposure to inflammation induced by immune stressors during puberty has been found to stimulate central inflammation and lead to immune disturbance at distant sites from the gut; however, its enduring effects on gut immunity are not well explored. Therefore, in this study, we used a pubertal lipopolysaccharides (LPS)-induced inflammation mouse model to mimic pubertal exposure to inflammation and dysbiosis. We hypothesized that pubertal LPS-induced inflammation may cause long-term dysfunction in gut immunity by enduring dysregulation of inflammatory signaling and epigenetic changes, while prebiotic/probiotic intake may mitigate the gut immune system deregulation later in life. To this end, four-week-old female Balb/c mice were fed prebiotics/probiotics and exposed to LPS in the pubertal window. To better decipher the acute and enduring immunoprotective effects of biotic intake, we addressed the effect of treatment on interleukin (IL)-17 signaling related-cytokines and pathways. In addition, the effect of treatment on gut microbiota and epigenetic alterations, including changes in microRNA (miRNA) expression and DNA methylation, were studied. Our results revealed a significant dysregulation in selected cytokines, proteins, and miRNAs involved in key signaling pathways related to IL-17 production and function, including IL-17A and F, IL-6, IL-1β, transforming growth factor-β (TGF-β), signal transducer and activator of transcription-3 (STAT3), p-STAT3, forkhead box O1 (FOXO1), and miR-145 in the small intestine of adult mice challenged with LPS during puberty. In contrast, dietary interventions mitigated the lasting adverse effects of LPS on gut immune function, partly through epigenetic mechanisms. A DNA methylation analysis demonstrated that enduring changes in gut immunity in adult mice might be linked to differentially methylated genes, including Lpb, Rorc, Runx1, Il17ra, Rac1, Ccl5, and Il10, involved in Th17 cell differentiation and IL-17 production and signaling. In addition, prebiotic administration prevented LPS-induced changes in the gut microbiota in pubertal mice. Together, these results indicate that following a healthy diet rich in prebiotics and probiotics is an optimal strategy for programming immune system function in the critical developmental windows of life and controlling inflammation later in life.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (H.Y.-S.); (N.A.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (H.Y.-S.); (N.A.)
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (H.Y.-S.); (N.A.)
| | - Farzaneh Sharifzad
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Sandra Fang
- Translational Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (V.C.); (F.F.-L.C.); (Z.H.)
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (V.C.); (F.F.-L.C.); (Z.H.)
| | - Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (V.C.); (F.F.-L.C.); (Z.H.)
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (V.C.); (F.F.-L.C.); (Z.H.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (H.Y.-S.); (N.A.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
45
|
Zyoud SH, Shakhshir M, Abushanab AS, Koni A, Shahwan M, Jairoun AA, Abu Taha A, Al-Jabi SW. Unveiling the hidden world of gut health: Exploring cutting-edge research through visualizing randomized controlled trials on the gut microbiota. World J Clin Cases 2023; 11:6132-6146. [PMID: 37731574 PMCID: PMC10507538 DOI: 10.12998/wjcc.v11.i26.6132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND The gut microbiota plays a crucial role in gastrointestinal and overall health. Randomized clinical trials (RCTs) play a crucial role in advancing our knowledge and evaluating the efficacy of therapeutic interventions targeting the gut microbiota. AIM To conduct a comprehensive bibliometric analysis of the literature on RCTs involving the gut microbiota. METHODS Using bibliometric tools, a descriptive cross-sectional investigation was conducted on scholarly publications concentrated on RCTs related to gut microbiota, spanning the years 2003 to 2022. The study used VOSviewer version 1.6.9 to examine collaboration networks between different countries and evaluate the frequently employed terms in the titles and abstracts of the retrieved publications. The primary objective of this analysis was to identify key research areas and focal points associated with RCTs involving the gut microbiota. RESULTS A total of 1061 relevant articles were identified from the 24758 research articles published between 2003 and 2022. The number of publications showed a notable increase over time, with a positive correlation (R2 = 0.978, P < 0.001). China (n = 276, 26.01%), the United States (n = 254, 23.94%), and the United Kingdom (n = 97, 9.14%) were the leading contributing countries. Københavns Universitet (n = 38, 3.58%) and Dankook University (n = 35, 3.30%) were the top active institutions. The co-occurrence analysis shows current gut microbiota research trends and important topics, such as obesity interventions targeting the gut microbiota, the efficacy and safety of fecal microbiota transplantation, and the effects of dietary interventions on humans. CONCLUSION The study highlights the rapid growth and importance of research on RCTs that involve the gut microbiota. This study provides valuable insight into research trends, identifies key players, and outlines potential future directions in this field. Additionally, the co-occurrence analysis identified important topics that play a critical role in the advancement of science and provided insights into future research directions in this field.
Collapse
Affiliation(s)
- Sa’ed H Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
- Clinical Research Centre, An-Najah National University Hospital, Nablus 44839, Palestine
| | - Muna Shakhshir
- Department of Nutrition, An-Najah National University Hospital, Nablus 44839, Palestine
| | - Amani S Abushanab
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
| | - Amer Koni
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
- Division of Clinical Pharmacy, Hematology and Oncology Pharmacy Department, An-Najah National University Hospital, Nablus 44839, Palestine
| | - Moyad Shahwan
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Ammar Abdulrahman Jairoun
- Department of Health and Safety, Dubai Municipality, Dubai 67, United Arab Emirates
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), Pulau Pinang 11500, Malaysia
| | - Adham Abu Taha
- Department of Pathology, An-Najah National University Hospital, Nablus 44839, Palestine
- Department of Biomedical Sciences, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
| | - Samah W Al-Jabi
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
| |
Collapse
|
46
|
Palmer SJ. The gut microbiome: the origin of disease? Br J Community Nurs 2023; 28:440-444. [PMID: 37638752 DOI: 10.12968/bjcn.2023.28.9.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The gut microbiome in humans is considered a 'virtual organ'. They play an important part in pathophysiological and physiological processes, and regulate host homeostasis. Changes to their delicate composition can have a damaging effect on their hosts. In this article, Sarah Jane Palmer details how these microorganisms impact the human body and how they can be well-regulated.
Collapse
|
47
|
Jain A, Jain R, Jain SK. Assessment of Lactobacillus rhamnosus mediated protection against arsenic-induced toxicity in zebrafish: a qPCR-based analysis of Firmicutes and Bacteroidetes groups and embryonic development. Arch Microbiol 2023; 205:316. [PMID: 37608161 DOI: 10.1007/s00203-023-03647-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Arsenic poses a significant health risk worldwide, impacting the gut microbiota, reproductive health, and development. To address this issue, a cost-effective method like probiotic supplementation could be beneficial. However, the interplay between arsenic toxicity, probiotics, gut microbiota, and maternal transcript modulation remains unexplored. This study investigates the impact of Lactobacillus rhamnosus (L. rhamnosus) DSM 20021 on the proportions of Firmicutes and Bacteroidetes, as well as its effects on embryonic development in zebrafish induced by arsenic trioxide (As2O3). Adult zebrafish were exposed to both high and environmentally relevant concentrations of As2O3 (10, 50, and 500 ppb) for 1, 6, and 12 weeks. qPCR analysis revealed increased proportions of Firmicutes and Bacteroidetes in all As2O3-exposed and As2O3 + L. rhamnosus-exposed groups, while no significant changes were observed in groups exposed only to L. rhamnosus DSM 20021. The larvae, exposed to 500 ppb of As2O3 for 12 weeks, exhibited low growth, decreased survival rates, and morphological deformities. However, these adverse effects were reversed upon exposure to only L. rhamnosus DSM 20021. Furthermore, the expression of DVR1 and ABCC5, which are involved in defense against xenobiotics and embryo development, decreased significantly in As2O3 (500 ppb) and As2O3 (500 ppb) + L. rhamnosus-exposed groups, whereas ameliorative effects were observed in only L. rhamnosus DSM 20021-exposed groups.
Collapse
Affiliation(s)
- Abhishek Jain
- Department of Biotechnology, Dr. Harisingh Gour University, Sagar, 470003, M.P., India
| | - Roshni Jain
- Department of Biotechnology, Dr. Harisingh Gour University, Sagar, 470003, M.P., India
| | - Subodh Kumar Jain
- Department of Zoology, Dr. Harisingh Gour University, Sagar, 470003, M.P., India.
| |
Collapse
|
48
|
Jaramillo AP, Castells J, Ibrahimli S, Siegel S. Recurrent Multidrug-Resistant Clostridium difficile Infection Secondary to Ulcerative Colitis a Case Report. Med Sci (Basel) 2023; 11:52. [PMID: 37606431 PMCID: PMC10443252 DOI: 10.3390/medsci11030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
IBD consists of two diseases-CD and UC-that affect the digestive tract, with a greater affinity for the large bowel. In this case report, we focus on one of its most common complications. CDI is a pathology that is mostly secondary to UC. Another cause of this bacterial infection is established after the use of antibiotics, most commonly at the hospital level. Around 20 percent of CDI persists because of a chronic dysbiosis of the microbiota and low levels of antibodies against CD toxins. In this case report, we demonstrated mdCDI in a young woman after treatment with multiple drug therapies as well as with semi-invasive procedures as follows: antibiotics (vancomycin, fidaxomicin), anti-inflammatory agents (mesalamine, sulfasalazine), corticosteroids (budesonide, prednisone), integrin receptor antagonists (vedolizumab), several semi-invasive procedures such as fecal transplant microbiota (FMT), aminosalicylates (5-ASA), treatment with tumor necrosis factor (TNF) blockers (adalimumab, golimumab), and immunomodulators (upadcitinib, tofacitinib). This leads us to establish how rCDI and its resistance to different treatments make this a challenge for the health system, both for hospitals and for outpatients, as well as how time-consuming each treatment is from the first intake of the drug until its total efficacy or until patients reach a dose-response and time-response to the disease. Accordingly, this case report and other similar cases reflect the need for randomized control trials or meta-analyses to establish therapeutic guidelines for cases of mdCDI in the near future.
Collapse
Affiliation(s)
- Arturo P. Jaramillo
- General Practice, California Institute of Behavioral Neurosciences & Psychology, Fairfield, CA 94534, USA
| | - Javier Castells
- Internal Medicine, Universidad Católica de Santiago de Guayaquil, Guayaquil 090615, Ecuador
| | - Sabina Ibrahimli
- Cardiology, First Moscow State Medical University, 119992 Moscow, Russia
| | - Steven Siegel
- Department of Internal Medicine, Coney Island Hospital, 2601 Ocean Parkway, Brooklyn, NY 11235, USA
| |
Collapse
|
49
|
Józefiak A, Rawski M, Kierończyk B, Józefiak D, Mazurkiewicz J. Effect of two insect meals on the gut commensal microbiome of healthy sea trout (Salmo trutta vr. trutta). BMC Vet Res 2023; 19:124. [PMID: 37580683 PMCID: PMC10424358 DOI: 10.1186/s12917-023-03671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/21/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND The balance of the intestinal commensal microbiome of fish and other animals plays an important role in the physiological processes of healthy animals, contributes to the defense against pathogens, stimulates the immune system and facilitates nutrient metabolism. In the last decade, the interest in the application of the insects in fish nutrition increased, although little is known regarding the effects of insect meals on the gastrointenstinal tract microbiome of the sea trout fingerlings. The aim of this study was to evaluate the effect of two diets containing mealworm (MW) and superworm (SW) on the microbiome of the digesta of sea trout fingerlings and the relative abundances of different taxa among communities under controlled conditions. RESULTS The insect meals produced a similar weight gain and survival rate to sea trout fed fishmeal. The most abundant bacterial phylum in all the treatment groups was Firmicutes followed by Proteobacteria and Actinobacteria, and significant differences in the amount of Cyanobacteria were observed in the SW group. CONCLUSIONS The insect meals did not produce differences in the three most abundant phyla in the sea trout digesta. However, the effect of each type of meal on the lower taxonomic levels was evident, particularly in the case of the superworm meal. These microbiome differences indicated that mealworm meal was more related to fishmeal than superworm meal. Our results highlight the potential effects of insect meals, such as mealworm and superworm meals, on the microbiota of sea trout.
Collapse
Affiliation(s)
- Agata Józefiak
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland.
| | - Mateusz Rawski
- Division of Inland Fisheries and Aquaculture, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Bartosz Kierończyk
- Department of Animal Nutrition, Poznan University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland
| | - Damian Józefiak
- Department of Animal Nutrition, Poznan University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland
| | - Jan Mazurkiewicz
- Division of Inland Fisheries and Aquaculture, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| |
Collapse
|
50
|
Omotosho AO, Tajudeen YA, Oladipo HJ, Yusuff SI, AbdulKadir M, Muili AO, Egbewande OM, Yusuf RO, Faniran ZO, Afolabi AO, El‐Sherbini MS. Parkinson's disease: Are gut microbes involved? Brain Behav 2023; 13:e3130. [PMID: 37340511 PMCID: PMC10454343 DOI: 10.1002/brb3.3130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is a neurodegenerative disorder that affects more than 10 million individuals worldwide. It is characterized by motor and sensory deficits. Research studies have increasingly demonstrated a correlation between Parkinson's disease and alternations in the composition of the gut microbiota in affected patients. Also, the significant role of prebiotics and probiotics in gastrointestinal and neurological conditions is imperative to understand their relation to Parkinson's disease. METHOD To explore the scientific interaction of the gut-microbiota-brain axis and its association with Parkinson's disease, a comprehensive narrative review of the relevant literature was conducted. Articles were retrieved systematically from reputable sources, including PubMed, Science Direct, World Health Organization (WHO), and Advanced Google Scholar. Key search terms included are "Parkinson's Disease", "Gut Microbiome", "Braak's Theory", "Neurological Disorders", and "Gut-brain axis". Articles included in our review are published in English and they provide detailed information on the relationship between Parkinson's disease and gut microbiota RESULTS: This review highlights the impact of gut microbiota composition and associated factors on the progression of Parkinson's disease. Evidence-based studies highlighting the existing evidence of the relationship between Parkinson's disease and alteration in gut microbiota are discussed. Consequently, the potential mechanisms by which the gut microbiota may affect the composition of the gut microbiota were revealed, with a particular emphasis on the role of the gut-brain axis in this interplay. CONCLUSION Understanding the complex interplay between gut microbiota and Parkinson's disease is a potential implication for the development of novel therapeutics against Parkinson's disease. Following the existing relationship demonstrated by different evidence-based studies on Parkinson's disease and gut microbiota, our review concludes by providing recommendations and suggestions for future research studies with a particular emphasis on the impact of the microbiota-brain axis on Parkinson's disease.
Collapse
Affiliation(s)
- Abass Olawale Omotosho
- Department of Microbiology, Faculty of Pure and Applied SciencesKwara State University, Malete‐IlorinIlorinNigeria
| | - Yusuf Amuda Tajudeen
- Department of Microbiology, Faculty of Life SciencesUniversity of IlorinIlorinNigeria
- Faculty of Pharmaceutical SciencesUniversity of IlorinIlorinNigeria
| | - Habeebullah Jayeola Oladipo
- Department of Microbiology, Faculty of Life SciencesUniversity of IlorinIlorinNigeria
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of MedicineUniversity of IbadanIbadanNigeria
| | - Sodiq Inaolaji Yusuff
- Department of Medicine, Faculty of Clinical SciencesObafemi Awolowo UniversityIfeNigeria
| | - Muritala AbdulKadir
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of MedicineUniversity of IbadanIbadanNigeria
| | | | - Oluwaseyi Muyiwa Egbewande
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of MedicineUniversity of IbadanIbadanNigeria
| | - Rashidat Onyinoyi Yusuf
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of MedicineUniversity of IbadanIbadanNigeria
| | | | - Abdullateef Opeyemi Afolabi
- Faculty of Biomedical Sciences, Department of Microbiology and ImmunologyKampala International UniversityBushenyiUganda
| | - Mona Said El‐Sherbini
- Narrative Medicine and Planetary Health, Integrated Program of Kasr Al-Ainy (IPKA), Faculty of MedicineCairo UniversityCairoEgypt
- Invited Facultythe Nova Institute for HealthBaltimoreMDUSA
- Department of Medical Parasitology, Faculty of MedicineCairo UniversityCairoEgypt
| |
Collapse
|