1
|
Mahmudiono T, Fakhri Y, Daraei H, Mehri F, Einolghozati M, Mohamadi S, Mousavi Khaneghah A. The concentration of Lithium in water resources: A systematic review, meta-analysis and health risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:667-677. [PMID: 37261955 DOI: 10.1515/reveh-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023]
Abstract
The presence of trace elements such as lithium (Li) in water resources in the long term can endanger consumers' health. Several studies have been conducted on Li concentration in water sources; hence, this study attempted to retrieve studies using a systematic search. The search was conducted in Web of Sciences, Embase, PubMed, and Scopus databases from 1 January 2010 to 15 January 2023. Li concentration was meta-analyzed based on the type of water resources and countries subgroups in the random effects model (REM) statistical analysis. In addition, health risk assessment in different age groups was calculated using the target hazard quotient (THQ). This study included 76 papers with 157 data reports in our meta-analysis. The overall pooled concentration of Li was 5.374 (95 % CI: 5.261-5.487 μg/L). The pooled concentration of Li in groundwater (40.407 μg/L) was 14.53 times surface water (2.785 μg/L). The highest water Li content was attributed to Mexico (2,209.05 μg/L), Bolivia (1,444.05 μg/L), Iraq (1,350 μg/L), and Argentina (516.39 μg/L). At the same time, the lowest water Li content was associated with Morocco (1.20 μg/L), Spain (0.46 μg/L), and India (0.13 μg/L). THQ due to Li in water resources in consumers of Iraq, Mexico, South Africa, Afghanistan, Bolivia, Portugal, Malawi, South Korea, Nepal, South Korea, Argentina, and the USA was higher than 1 value. Therefore, continuous monitoring of Li concentration in water sources and reducing Li concentration, especially in groundwater water, using new water treatment processes in these countries are recommended.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hasti Daraei
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahtab Einolghozati
- Department of Nutrition and food Safety, School of Medicine. Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Mohamadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahre-Kord University, Shahre-Kord, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| |
Collapse
|
2
|
Iordache AM, Voica C, Roba C, Nechita C. Evaluation of potential human health risks associated with Li and their relationship with Na, K, Mg, and Ca in Romania's nationwide drinking water. Front Public Health 2024; 12:1456640. [PMID: 39377005 PMCID: PMC11456539 DOI: 10.3389/fpubh.2024.1456640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Background Increasing lithium (Li) demand worldwide due to its properties and role in renewable energy will raise water reservoir pollution and side effects on human health. Divergent results regarding Li concentration in water and affective disorders are found in the literature, which is why regional reports are expected. Objective The present study evaluated the occurrence and human health risks resulting from oral exposure, respectively, and the relationship between alkali metals (Li, Na, and K) and minerals (Mg, Ca) in balanced purified water (bottled) and spring water. Methods The ICP-MS technique was used to measure a national database with 53 bottled and 42 spring water samples randomly selected. One-way ANOVA, Pearson correlation, and HCA analysis were applied to assess the possible relationship between metals in water. The possible side effects of Li poisoning of water resources on human health have been evaluated using the Estimated Daily Intake Index (EDI) and Total Hazard Quotient (THQ). Results The toxic metals (As, Hg, and Pb) were measured, and the results indicate values above the detection limit of 22.3% of samples in the case of lead but not exceeding the safety limits. Depending on the water sources, such as bottled and spring water, the Li concentration varied between 0.06-1,557 and 0.09-984% μg/L. We found a strong positive correlation between Li and Na and Mg, varying between bottled and spring waters (p% <%0.001). Li exceeded the limit set by the Health-Based Screening Level (HBSL) in 41.37 and 19% of bottled and spring water samples. The oral reference doses (p-RfDs) for the noncancer assessment of daily oral exposure effects for a human lifetime exceeded threshold values. The THQ index shows potential adverse health effects, requiring further investigations and remedial actions in 27.58% of approved bottled waters and 2.38% of spring waters. Conclusion We can conclude that water is safe based on the Li concentration found in drinking water and supported by a gap in strict regulations regarding human Li ingestion. The present study can serve decision-makers and represent a starting database with metals of interest for further clinical studies. Decision-makers can also use it to find solutions for sustainable management of clean and safe drinking water.
Collapse
Affiliation(s)
- Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, Râmnicu Vâlcea, Romania
| | - Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Carmen Roba
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Constantin Nechita
- Department of Biometry, National Research Institute in Forestry Marin Dracea – ICAS, Bucharest, Voluntari, Romania
| |
Collapse
|
3
|
Chevalier N, Guillou P, Viguié C, Fini JB, Sachs LM, Michel-Caillet C, Mhaouty-Kodja S. Lithium and endocrine disruption: A concern for human health? ENVIRONMENT INTERNATIONAL 2024; 190:108861. [PMID: 38991890 DOI: 10.1016/j.envint.2024.108861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Lithium is a key medication for the treatment of psychiatric disorders and is also used in various industrial applications (including battery production and recycling). Here, we review published data on the endocrine-disrupting potential of lithium, with a particular focus on the thyroid hormone system. To this end, we used PubMed and Scopus databases to search for, select and review primary research addressing human and animal health endpoints during or after lithium exposure at non-teratogenic doses. Given the key role of thyroid hormones in neurodevelopmental processes, we focused at studies of the neural effects of developmental exposure to lithium in humans and animals. Our results show that lithium meets the World Health Organization's definition of a thyroid hormone system disruptor - particularly when used at therapeutic doses. When combined with knowledge of adverse outcome pathways linking molecular initiating events targeting thyroid function and neurodevelopmental outcomes, the neurodevelopmental data reported in animal experiments prompt us to suggest that lithium influences neurodevelopment. However, we cannot rule out the involvement of additional modes of action (i.e. unrelated to the thyroid hormone system) in the described neural effects. Given the increasing use of lithium salts in new technologies, attention must be paid to this emerging pollutant - particularly with regard to its potential effects at environmental doses on the thyroid hormone system and potential consequences on the developing nervous system.
Collapse
Affiliation(s)
| | | | - Catherine Viguié
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Jean-Baptiste Fini
- UMR 7221 Physiologie Moléculaire et Adaptation, Département Adaptation du Vivant, CNRS et Muséum National d'Histoire Naturelle. CP32, Paris, France
| | - Laurent M Sachs
- UMR 7221 Physiologie Moléculaire et Adaptation, Département Adaptation du Vivant, CNRS et Muséum National d'Histoire Naturelle. CP32, Paris, France
| | | | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Paris, France.
| |
Collapse
|
4
|
Neves O, Moreno F, Pinheiro D, Pinto MC, Inácio M. Soil low-density geochemical mapping of technology-critical elements (TCEs) and its environmental implications: The case of lithium in Portugal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173207. [PMID: 38750747 DOI: 10.1016/j.scitotenv.2024.173207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Increased use of technology-critical elements (TCEs) like lithium (Li), and their socio-environmental impacts, make it an issue of national and global importance. In Portugal, new Li exploration/exploitation projects are a very likely scenario. Thus, it is essential to establish geochemical backgrounds/thresholds for Li in soil, which can have several applications. Here, Li contents were determined and mapped from a previous low-density geochemical survey that covered the entire continental area of Portugal, following UNESCO's IGCP 259 project recommendations. The sampling sites were chosen in undisturbed/uncultivated land to ensure a reliable representation of "natural" soils. A total of 152 samples (0-20 cm; <2 mm) were taken for this study. Soil Li analysis was carried out by Flame Atomic Absorption Spectrometry (FAAS) after aqua regia (AR) extraction (geoavailable Li), while a subset of 55 samples underwent further digestion with a strong acid mixture to measure total Li (FAAS). This was done to ascertain the relationship between the two Li fractions and its environmental significance. Soil Li spatial distribution was produced with GIS software. Median values of 14 mg/kg for geoavailable Li and 60 mg/kg for total Li were estimated from these datasets. The first value is comparable to the median Li (11 mg/kg) from an AR-extraction for agricultural/grazing soils in Europe (GEMAS project). Based on spatial analysis, Cambisols overlying granitoids in northern/central Portugal contain the highest AR-extractable Li (40 mg/kg). Such areas are recognized for hard-rock Li mineralizations, mainly associated with aplite-pegmatites. Principal Component Analysis identified an important Li-Al relationship, linked to Cambisols and Leptosols overlying granitoids/metamorphic rocks. The geoavailable/total Li ratios revealed that >60 % of the samples have a relatively high proportion (>45 %) of Li that can be mobilized/dispersed in the surface environment. These findings are intended to support the management of potential concerns regarding Li mining in mainland Portugal.
Collapse
Affiliation(s)
- Orquídia Neves
- CERENA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Filipa Moreno
- Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | | | | | - Manuela Inácio
- GeoBiotec, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Iordache AM, Voica C, Roba C, Nechita C. Lithium Content and Its Nutritional Beneficence, Dietary Intake, and Impact on Human Health in Edibles from the Romanian Market. Foods 2024; 13:592. [PMID: 38397569 PMCID: PMC10888284 DOI: 10.3390/foods13040592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Lithium (Li) is present in human nutrition based on food intake, and several studies recommend it for treating mood disorders, even if the biological proprieties and biochemical mechanisms represent the basis for its use as an essential element. The Li content was evaluated using the inductively coupled plasma mass spectrometry technique (ICP-MS) in 1071 food and beverage samples from the Romanian market. The results show that Li had a decreasing mean concentration in the food samples as follows: vegetables leafy > bulbous > fructose > leguminous > egg whites > root vegetables > milk products > egg yolks > meats. Approximately a quarter of all data from each dataset category was extreme values (range between the third quartile and maximum value), with only 10% below the detection limit. Mean Li concentration indicated higher values in red wine, white wines, beers, and fruit juice and lower in ciders and bottled waters. A particular interest was addressed to plants for teas and coffee seeds, which showed narrow amounts of Li. For both food and beverages, two similar matrices, including egg whites and yolks and white and red wines, were found to have significant differences, which explains the high variability of Li uptake in various matrices. For 99.65% of the analyzed samples, the estimated daily intake of Li was below the provisional subchronic and chronic reference dose (2 µg/kgbw/day) for adverse effects in several organs and systems. Even so, a risk occurs in consuming bulbous vegetables (Li > 13.47 mg/kg) and fructose solano vegetables (Li > 11.33 mg/kg). The present study's findings indicate that ingesting most of the analyzed beverages and food samples could be considered safe, even if future studies regarding Li content, nutritional aspects, and human cohort diseases must be conducted.
Collapse
Affiliation(s)
- Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Ramnicu Valcea, 4 Uzinei Street, 240050 Ramnicu Valcea, Romania;
| | - Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat St., 400293 Cluj-Napoca, Romania
| | - Carmen Roba
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fântânele Street, 400294 400535 Cluj-Napoca, Romania;
| | - Constantin Nechita
- National Research and Development Institute for Forestry “Marin Drăcea”—INCDS, 128 Boulvard Eroilor, 077190 Voluntari, Romania
| |
Collapse
|
6
|
Dobosy P, Illés Á, Endrédi A, Záray G. Lithium concentration in tap water, bottled mineral water, and Danube River water in Hungary. Sci Rep 2023; 13:12543. [PMID: 37532748 PMCID: PMC10397251 DOI: 10.1038/s41598-023-38864-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Due to increased manufacture and recycling of lithium batteries across the world, we may anticipate a rise in lithium pollution in the aquatic environment and drinking water reservoirs. In order to investigate the current status regarding the lithium content in Hungarian tap waters, samples were collected from the public drinking water supply systems of 19 county seats in Hungary during seasonally selected times. Depending on the water sources, such as bank-filtrated river water, surface water from open reservoirs, and groundwater, the lithium concentrations varied between 0.90-4.23, 2.12-11.7 and 1.11-31.4 µg/L, respectively, while the median values were 3.52, 5.02 and 8.55 µg/L, respectively. The lithium concentration in the bottled Hungarian mineral waters was also determined since the daily intake of lithium can be influenced by the consumption of mineral waters. The concentrations ranged from 4.2 to 209 µg/L, while the median value was only 17.8 µg/L. Additionally, a correlation was only found between lithium and potassium concentrations. The lithium concentration was also assessed at ten sampling locations in the Hungarian segment of the Danube River since the Danube water is also a water source for additional drinking water utilities using bank filtration technology. The mean and median lithium concentrations were 2.78 and 2.64 µg/L, respectively.
Collapse
Affiliation(s)
- Péter Dobosy
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary
- National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary
| | - Ádám Illés
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary
- National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary
| | - Anett Endrédi
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary
| | - Gyula Záray
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary.
- National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary.
- Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary.
| |
Collapse
|
7
|
Bastos CM, Rocha F, Patinha C, Marinho-Reis P. Bioaccessibility by perspiration uptake of minerals from two different sulfurous peloids. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6621-6641. [PMID: 37341890 PMCID: PMC10403450 DOI: 10.1007/s10653-023-01639-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
The risks associated with the use of peloids in thermal centers, spas, or at home, must be tested to develop appropriate safety guidelines for peloids formulations and the release of substances of high concern. Additionally, the beneficial effects of some elements on human health should be assessed to aid in interpreting the therapeutic action and effectiveness of pelotherapy on dermatological or osteomuscular disorders. Therefore, a methodology was developed to better understand the biogeochemical behavior of the elements in formulated peloids. Two peloids were formulated with the same clay and two different sulfurous mineral-medicinal waters for 90 days, with light stirring every 15 days. Bentonite clay, with a high content of smectite and Ca and Mg as the main exchangeable cations, and high heat capacity, was used. The selected mineral-medicinal waters were collected from two Portuguese thermal centers with recognized therapeutic efficacy for rheumatic, respiratory and dermatological pathologies. The peloids were used without drying and withdrawn directly from the maturation tank, and a mixture of bentonite and demineralized water was prepared as a reference sample. A stabilized, ready-to-use, artificial perspiration test was used to simulate the peloids' interaction with skin. Thirty-one elements extracted from the two prepared peloids were analyzed using ICP-MS. The data were analyzed and related to the mineralogical composition of the original clay and supernatant composition of the maturation tanks. The content of some potentially toxic elements and metals' bioaccessibility by perspiration showed very low solubility and undetectable amounts extracted from the studied samples. This analytical method provided reliable information on dermal exposure and the identification of some elements that may enter the systemic circulation, requiring implementation of surveillance and control measures.
Collapse
Affiliation(s)
- Carla Marina Bastos
- Department of Geosciences, GeoBioTec Research Centre, University of Aveiro, 3810-193 Aveiro, Portugal
- Exatronic, Lda, Aveiro, Portugal
| | - Fernando Rocha
- Department of Geosciences, GeoBioTec Research Centre, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Patinha
- Department of Geosciences, GeoBioTec Research Centre, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Marinho-Reis
- Institute of Earth Sciences (ICT) – Pole of the University of Minho, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
An investigation into the association between suicide mortality rate and lithium levels in potable water: a review study. Int Clin Psychopharmacol 2023; 38:73-80. [PMID: 36719336 DOI: 10.1097/yic.0000000000000432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study aimed to investigate the association between lithium levels in potable water and suicide mortality rates in the total inhabitants. We systematically searched Embase, PubMed/MEDLINE, Scopus, PubMed Central (PMC), Google Scholar databases, as well as medRxiv using the following keywords: drinking water, lithium, standardized mortality ratio (SMR), tap water, suicide, and ground water. Pearson regression analysis was used to test an association between variables with 95% confidence interval (CI). A value of P < 0.05 was considered significant. A total of 16 eligible articles were identified. Lithium concentrations in drinking water range from 0.4 to 32.9 μg/l. Average rates of suicide mortality (per 100 000 capita) range between 0.790 (±0.198) and 123 (±50). About 16 original studies confirmed the inverse relationship between lithium concentrations in potable water and suicide mortality rates (R = -0.576; R2 = 0.3323; 95% CI, -0.820 to -0.325; β = -0.3.2; P = 0.019). High lithium concentrations in potable water were associated with decreased suicide rates. We concluded that lithium concentration in potable water was inversely associated with suicide mortality rates among a total population. However, further research is required to clarify the relationship between lithium concentrations in drinking water and suicide rate.
Collapse
|
9
|
Martins A, da Silva DD, Silva R, Carvalho F, Guilhermino L. Warmer water, high light intensity, lithium and microplastics: Dangerous environmental combinations to zooplankton and Global Health? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158649. [PMID: 36089038 DOI: 10.1016/j.scitotenv.2022.158649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Nowadays there is a high concern about the combined effects of global warming and emerging environmental contaminants with significant increasing trends of use, such as lithium (Li) and microplastics (MPs), both on wildlife and human health. Therefore, the effects of high light intensity (26,000 lx) or warmer water temperature (25 °C) on the long-term toxicity of Li and mixtures of Li and MPs (Li-MPs mixtures) were investigated using model populations of the freshwater zooplankton species Daphnia magna. Three 21-day bioassays were done in the laboratory at the following water temperatures and light intensities: (i) 20 °C/10830 lx; (ii) 20 °C/26000 lx (high light intensity); (iii) 25 °C/10830 lx (warmer temperature). Based on the 21-day EC50s on reproduction, high light intensity increased the reproductive toxicity of Li and Li-MPs mixtures by ~1.3 fold; warmer temperature increased the toxicity of Li by ~1.2 fold, and the toxicity of Li-MPs mixtures by ~1.4 fold based on the concentration of Li, and by ~2 fold based on the concentrations of MPs. At high light intensity, Li (0.04 mg/L) and Li-MPs mixtures (0.04 Li + 0.09 MPs mg/L) reduced the population fitness by 32 % and 41 %, respectively. Warmer temperature, Li (0.05 mg/L) and Li-MPs mixtures (0.05 Li + 0.09 MPs mg/L) reduced it by 63 % and 71 %, respectively. At warmer temperature or high light intensity, higher concentrations of Li and Li-MPs mixtures lead to population extinction. Based on the population growth rate and using data of bioassays with MPs alone done simultaneously, Li and MPs interactions were antagonistic or synergistic depending on the scenario. High light intensity and chemical stress generally acted synergistically. Warmer temperature and chemical stress always acted synergistically. These findings highlight the threats of long-term exposure to Li and Li-MPs mixtures to freshwater zooplankton and Global Health in a warmer world.
Collapse
Affiliation(s)
- Alexandra Martins
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Rua Central de Gandra, 4585-116 Gandra, Portugal
| | - Renata Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Lúcia Guilhermino
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
10
|
Martins A, da Silva DD, Silva R, Carvalho F, Guilhermino L. Long-term effects of lithium and lithium-microplastic mixtures on the model species Daphnia magna: Toxicological interactions and implications to 'One Health'. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155934. [PMID: 35577095 DOI: 10.1016/j.scitotenv.2022.155934] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Environmental contamination with lithium (Li) and microplastics (MP) has been steadily increasing and this trend is expected to continue in the future. Many freshwater ecosystems, which are crucial to reach the United Nations Sustainable Development Goals, are particularly vulnerable to Li and MP contamination, and other pressures. The long-term effects of Li, either alone or combined with MP (Li-MP mixtures), were investigated using the freshwater zooplankton micro-crustacean Daphnia magna as model species. In the laboratory, D. magna females were exposed for 21 days to water concentrations of Li (0.02, 0.04, 0.08 mg/L) or Li-MP mixtures (0.02 Li + 0.04 MP, 0.04 Li + 0.09 MP mg/L, 0.08 Li + 0.19 MP mg/L). In the range of concentrations tested, Li and Li-MP mixtures caused parental mortality, and decreased the somatic growth (up to 20% and 40% reduction, respectively) and the reproductive success (up to 93% and 90% reduction, respectively). The 21-day EC50s of Li and Li-MP mixtures on D. magna reproduction were 0.039 mg/L and 0.039 Li + 0.086 MP mg/L, respectively. Under exposure to the highest concentration of Li (0.08 mg/L) and Li-MP mixtures (0.08 Li + 0.19 MP mg/L), the mean of D. magna population growth rate was reduced by 67% and 58%, respectively. Based on the population growth rate and using data from a bioassay testing the same concentrations of MP alone and carried simultaneously, the toxicological interaction between Li and MP was antagonism under exposure to the lowest and the highest concentrations of Li-MP mixtures, and synergism under exposure to the medium concentration of Li-MP mixtures. These findings highlight the need of further investigating the combined effects of contaminants, and the threat of long-term environmental contamination with Li and MP to freshwater zooplankton, biodiversity, ecosystem services and 'One Health'.
Collapse
Affiliation(s)
- Alexandra Martins
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Rua Central de Gandra, 4585-116 Gandra, Portugal.
| | - Renata Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Lúcia Guilhermino
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| |
Collapse
|