1
|
Abtin S, Seyedaghamiri F, Aalidaeijavadi Z, Farrokhi AM, Moshrefi F, Ziveh T, Zibaii MI, Aliakbarian H, Rezaei-Tavirani M, Haghparast A. A review on the consequences of molecular and genomic alterations following exposure to electromagnetic fields: Remodeling of neuronal network and cognitive changes. Brain Res Bull 2024; 217:111090. [PMID: 39349259 DOI: 10.1016/j.brainresbull.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
The use of electromagnetic fields (EMFs) is essential in daily life. Since 1970, concerns have grown about potential health hazards from EMF. Exposure to EMF can stimulate nerves and affect the central nervous system, leading to neurological and cognitive changes. However, current research results are often vague and contradictory. These effects include changes in memory and learning through changes in neuronal plasticity in the hippocampus, synapses and hippocampal neuritis, and changes in metabolism and neurotransmitter levels. Prenatal exposure to EMFs has negative effects on memory and learning, as well as changes in hippocampal neuron density and histomorphology of hippocampus. EMF exposure also affects the structure and function of glial cells, affecting gate dynamics, ion conduction, membrane concentration, and protein expression. EMF exposure affects gene expression and may change epigenetic regulation through effects on DNA methylation, histone modification, and microRNA biogenesis, and potentially leading to biological changes. Therefore, exposure to EMFs possibly leads to changes in cellular and molecular mechanisms in central nervous system and alter cognitive function.
Collapse
Affiliation(s)
- Shima Abtin
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Seyedaghamiri
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Aalidaeijavadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebeh Ziveh
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Hadi Aliakbarian
- Faculty of Electrical Engineering, KN Toosi University of Technology, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
D'Adamo CR, Denmark D, Carreras-Gallo N, Dwaraka V, Smith R, Blue T, Messier H. A Pilot Study Evaluating the Feasibility and Efficacy of an In-Home Resonance-Based Electromagnetic Field Protection Device on Improving Markers of Health and Cognitive Function Among a Sample of Healthy Adults. Integr Med (Encinitas) 2024; 23:23-28. [PMID: 39355415 PMCID: PMC11441584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Background The dramatic increase in exposure to non-native sources of electromagnetic fields (EMF) in recent years has given rise to numerous human health concerns. The near pervasive exposure to radiofrequency (RF) emanating from wireless technologies inside the home (e.g., cell phones, wireless routers, "Smart" devices) and outside of the home (e.g., cell towers, automobiles, computers at work, tablets at school) is particularly troubling. While epidemiological studies are somewhat conflicting to date, RF exposure is currently classified by the World Health Organization as a Class 2B carcinogen. Mechanisms of activity of the deleterious effects of RF exposure on human health include the generation of excessive oxidative stress, chronic inflammation, and disruption of the production of melatonin and other hormones, all of which are believed to be due largely to the activation of voltage-gated calcium channels (VGCC). Mitigation strategies are currently generally limited to wireless device hygiene (e.g., hard-wired ethernet, turning off wireless routers at night, keeping cellphones away from the body) and metal-based shielding in the home, which can be expensive and not feasible for many. The goal of this pilot and feasibility trial was to evaluate the feasibility and preliminary signs of efficacy of an in-home resonance-based electromagnetic field protection device (BluShield) on various physiological and patient-reported outcomes commonly affected by excessive RF exposure. Methods A sample of relatively healthy adults was enrolled in a single arm, 12-week pilot and feasibility study. The intervention consisted of plugging in the BluShield device at home or at the participant's residence when traveling. Outcomes included laboratory panels assessing overall physiological health (CBC & CMP), blood markers related to inflammation, oxidative stress, DNA damage, and cellular senescence (Jinfiniti), a high-resolution genome-wide assessment of DNA methylation (TruDiagnostic), a validated questionnaire to assess cognitive function (CNS - Vital Signs), a wearable device to assess sleep and other physiological parameters (Oura ring), and a single-item assessment of overall health. Outcomes were compared before and after the intervention with paired t tests or Wilcoxon signed rank tests, depending upon the distribution of data. Results 25 participants enrolled in the study. All participants reported compliance with the EMF mitigation device throughout the course of the study, and no adverse events were reported. There were limited changes in conventional labs (decrease in glucose, increase in monocytes; P < .04]), but modest improvement in self-reported health (P = .02), improvements on numerous domains of the CNS - Vital Signs questionnaire (Composite Memory, Cognitive Flexibility, Executive Function, and Processing Speed; P < .02), wearable device parameters (deep sleep, heart rate variability, resting heart rate, and body temperature; P < .04), and perhaps most interestingly, hypermethylation of genes involved in RF exposure (including a key VGCC gene [CACNA1G]; P = .000045). Discussion The use of the BluShield is feasible and revealed improvements in some markers of sleep, cognitive function, and overall health. These improvements may be due in part to suppression of VGCC activity, which previous literature has demonstrated is activated by RF exposure and can generate oxidative stress and inflammation. An RF mitigation strategy should focus primarily on limiting modifiable exposures within the home, and the device appears to be a promising component of a comprehensive approach.. Controlled studies are needed to mitigate potential sources of confounding in this single-arm pilot study. A specific focus among populations with excessive RF exposures that are not modifiable within the home, such as those living in high-density urban settings, in close proximity to cell towers, or certain occupational hazards, also appears warranted.
Collapse
Affiliation(s)
- Christopher R D'Adamo
- Department of Family and Community Medicine, Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | | | | | - Ryan Smith
- TruDiagnostic, Lexington, KY, United States
| | - Tom Blue
- OvationLab, Richmond, VA, United States
| | | |
Collapse
|
3
|
Kim JH, Seok JY, Kim YH, Kim HJ, Lee JK, Kim HR. Exposure to Radiofrequency Induces Synaptic Dysfunction in Cortical Neurons Causing Learning and Memory Alteration in Early Postnatal Mice. Int J Mol Sci 2024; 25:8589. [PMID: 39201275 PMCID: PMC11355025 DOI: 10.3390/ijms25168589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The widespread use of wireless communication devices has necessitated unavoidable exposure to radiofrequency electromagnetic fields (RF-EMF). In particular, increasing RF-EMF exposure among children is primarily driven by mobile phone use. Therefore, this study investigated the effects of 1850 MHz RF-EMF exposure at a specific absorption rate of 4.0 W/kg on cortical neurons in mice at postnatal day 28. The results indicated a significant reduction in the number of mushroom-shaped dendritic spines in the prefrontal cortex after daily exposure for 4 weeks. Additionally, prolonged RF-EMF exposure over 9 days led to a gradual decrease in postsynaptic density 95 puncta and inhibited neurite outgrowth in developing cortical neurons. Moreover, the expression levels of genes associated with synapse formation, such as synaptic cell adhesion molecules and cyclin-dependent kinase 5, were reduced in the cerebral cortexes of RF-EMF-exposed mice. Behavioral assessments using the Morris water maze revealed altered spatial learning and memory after the 4-week exposure period. These findings underscore the potential of RF-EMF exposure during childhood to disrupt synaptic function in the cerebral cortex, thereby affecting the developmental stages of the nervous system and potentially influencing later cognitive function.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (J.Y.S.); (J.-K.L.)
| | - Jun Young Seok
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (J.Y.S.); (J.-K.L.)
| | - Yun-Hee Kim
- Department of Biology Education, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52609, Republic of Korea;
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea;
| | - Jin-Koo Lee
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (J.Y.S.); (J.-K.L.)
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (J.Y.S.); (J.-K.L.)
| |
Collapse
|
4
|
Benke G, Abramson MJ, Brzozek C, McDonald S, Kelsall H, Sanagou M, Zeleke BM, Kaufman J, Brennan S, Verbeek J, Karipidis K. The effects of radiofrequency exposure on cognition: A systematic review and meta-analysis of human observational studies. ENVIRONMENT INTERNATIONAL 2024; 188:108779. [PMID: 38821015 DOI: 10.1016/j.envint.2024.108779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND We aimed to assess evidence of long-term effects of exposure to radiofrequency (RF) electromagnetic fields (EMF) on indicators of cognition, including domains of learning and memory, executive function, complex attention, language, perceptual motor ability and social cognition, and of an exposure-response relationship between RF-EMF and cognition. METHODS We searched PubMed, Embase, PsycInfo and the EMF-Portal on September 30, 2022 without limiting by date or language of publication. We included cohort or case-control studies that evaluated the effects of RF exposure on cognitive function in one or more of the cognitive domains. Studies were rated for risk of bias using the OHAT tool and synthesised using fixed effects meta-analysis. We assessed the certainty of the evidence using the GRADE approach and considered modification by OHAT for assessing evidence of exposures. RESULTS We included 5 studies that reported analyses of data from 4 cohorts with 4639 participants consisting of 2808 adults and 1831 children across three countries (Australia, Singapore and Switzerland) conducted between 2006 and 2017. The main source of RF-EMF exposure was mobile (cell) phone use measured as calls per week or minutes per day. For mobile phone use in children, two studies (615 participants) that compared an increase in mobile phone use to a decrease or no change were included in meta-analyses. Learning and memory. There was little effect on accuracy (mean difference, MD -0.03; 95% CI -0.07 to 0.02) or response time (MD -0.01; 95% CI -0.04 to 0.02) on the one-back memory task; and accuracy (MD -0.02; 95%CI -0.04 to 0.00) or response time (MD -0.01; 95%CI -0.04 to 0.03) on the one card learning task (low certainty evidence for all outcomes). Executive function. There was little to no effect on the Stroop test for the time ratio ((B-A)/A) response (MD 0.02; 95% CI -0.01 to 0.04, very low certainty) or the time ratio ((D-C)/C) response (MD 0.00; 95% CI -0.06 to 0.05, very low certainty), with both tests measuring susceptibility to interference effects. Complex attention. There was little to no effect on detection task accuracy (MD 0.02; 95% CI -0.04 to 0.08), or response time (MD 0.02;95% CI 0.01 to 0.03), and little to no effect on identification task accuracy (MD 0.00; 95% CI -0.04 to 0.05) or response time (MD 0.00;95% CI -0.01 to 0.02) (low certainty evidence for all outcomes). No other cognitive domains were investigated in children. A single study among elderly people provided very low certainty evidence that more frequent mobile phone use may have little to no effect on the odds of a decline in global cognitive function (odds ratio, OR 0.81; 95% CI 0.42 to 1.58, 649 participants) or a decline in executive function (OR 1.07; 95% CI 0.37 to 3.05, 146 participants), and may lead to a small, probably unimportant, reduction in the odds of a decline in complex attention (OR 0.67;95%CI 0.27 to 1.68, 159 participants) and a decline in learning and memory (OR 0.75; 95% CI 0.29 to 1.99, 159 participants). An exposure-response relationship was not identified for any of the cognitive outcomes. DISCUSSION This systematic review and meta-analysis found only a few studies that provided very low to low certainty evidence of little to no association between RF-EMF exposure and learning and memory, executive function and complex attention. None of the studies among children reported on global cognitive function or other domains of cognition. Only one study reported a lack of an effect for all domains in elderly persons but this was of very low certainty evidence. Further studies are needed to address all types of populations, exposures and cognitive outcomes, particularly studies investigating environmental and occupational exposure in adults. Future studies also need to address uncertainties in the assessment of exposure and standardise testing of specific domains of cognitive function to enable synthesis across studies and increase the certainty of the evidence. OTHER This review was partially funded by the WHO radioprotection programme and prospectively registered on PROSPERO CRD42021257548.
Collapse
Affiliation(s)
- Geza Benke
- Monash University, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | - Jos Verbeek
- University Medical Centers Amsterdam, Amsterdam, the Netherlands.
| | | |
Collapse
|
5
|
Eeftens M, Pujol S, Klaiber A, Chopard G, Riss A, Smayra F, Flückiger B, Gehin T, Diallo K, Wiart J, Mazloum T, Mauny F, Röösli M. The association between real-life markers of phone use and cognitive performance, health-related quality of life and sleep. ENVIRONMENTAL RESEARCH 2023; 231:116011. [PMID: 37127107 DOI: 10.1016/j.envres.2023.116011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
INTRODUCTION The real-life short-term implications of electromagnetic fields (RF-EMF) on cognitive performance and health-related quality of life have not been well studied. The SPUTNIC study (Study Panel on Upcoming Technologies to study Non-Ionizing radiation and Cognition) aimed to investigate possible correlations between mobile phone radiation and human health, including cognition, health-related quality of life and sleep. METHODS Adult participants tracked various daily markers of RF-EMF exposures (cordless calls, mobile calls, and mobile screen time 4 h prior to each assessment) as well as three health outcomes over ten study days: 1) cognitive performance, 2) health-related quality of life (HRQoL), and 3) sleep duration and quality. Cognitive performance was measured through six "game-like" tests, assessing verbal and visuo-spatial performance repeatedly. HRQoL was assessed as fatigue, mood and stress on a Likert-scale (1-10). Sleep duration and efficiency was measured using activity trackers. We fitted mixed models with random intercepts per participant on cognitive, HRQoL and sleep scores. Possible time-varying confounders were assessed at daily intervals by questionnaire and used for model adjustment. RESULTS A total of 121 participants ultimately took part in the SPUTNIC study, including 63 from Besancon and 58 from Basel. Self-reported wireless phone use and screen time were sporadically associated with visuo-spatial and verbal cognitive performance, compatible with chance findings. We found a small but robust significant increase in stress 0.03 (0.00-0.06; on a 1-10 Likert-scale) in relation to a 10-min increase in mobile phone screen time. Sleep duration and quality were not associated with either cordless or mobile phone calls, or with screen time. DISCUSSION The study did not find associations between short-term RF-EMF markers and cognitive performance, HRQoL, or sleep duration and quality. The most consistent finding was increased stress in relation to more screen time, but no association with cordless or mobile phone call time.
Collapse
Affiliation(s)
- Marloes Eeftens
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - Sophie Pujol
- CHU de Besançon, Unité de Méthodologie en Recherche Clinique, Épidémiologie et Santé Publique, INSERM CIC, 1431, Besançon, France; Laboratoire Chrono-Environnement UMR 6249 CNRS / Université de Franche-Comté, Besançon, France
| | - Aaron Klaiber
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Gilles Chopard
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Franche-Comté, Besançon, France; Centre Mémoire de Ressources et de Recherche, Service de Neurologie, CHU de Besançon, France
| | - Andrin Riss
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Florian Smayra
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Benjamin Flückiger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Thomas Gehin
- CHU de Besançon, Unité de Méthodologie en Recherche Clinique, Épidémiologie et Santé Publique, INSERM CIC, 1431, Besançon, France; Laboratoire Chrono-Environnement UMR 6249 CNRS / Université de Franche-Comté, Besançon, France
| | - Kadiatou Diallo
- CHU de Besançon, Unité de Méthodologie en Recherche Clinique, Épidémiologie et Santé Publique, INSERM CIC, 1431, Besançon, France; Laboratoire Chrono-Environnement UMR 6249 CNRS / Université de Franche-Comté, Besançon, France
| | - Joe Wiart
- Chair C2M, LTCI Télecom ParisTech, Université Paris Saclay, 46 Rue Barrault, 75013, Paris, France
| | - Taghrid Mazloum
- Centre Mémoire de Ressources et de Recherche, Service de Neurologie, CHU de Besançon, France
| | - Frédéric Mauny
- CHU de Besançon, Unité de Méthodologie en Recherche Clinique, Épidémiologie et Santé Publique, INSERM CIC, 1431, Besançon, France; Laboratoire Chrono-Environnement UMR 6249 CNRS / Université de Franche-Comté, Besançon, France
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Hao Y, Liu W, Liu Y, Liu Y, Xu Z, Ye Y, Zhou H, Deng H, Zuo H, Yang H, Li Y. Effects of Nonthermal Radiofrequency Stimulation on Neuronal Activity and Neural Circuit in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205988. [PMID: 36755196 PMCID: PMC10104648 DOI: 10.1002/advs.202205988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Whether the nonthermal effects of radiofrequency radiation (RFR) exist and how nonthermal RFR acts on the nervous system are unknown. An animal model of spatial memory impairment is established by exposing mice to 2856-MHz RFR in the range of thermal noise (≤1 °C). Glutamate release in the dorsal hippocampus (dHPC) CA1 region is not significantly changed after radiofrequency exposure, whereas dopamine release is reduced. Importantly, RFR enhances glutamatergic CA1 pyramidal neuron calcium activity by nonthermal mechanisms, which recover to the basal level with RFR termination. Furthermore, suppressed dHPC dopamine release induced by radiofrequency exposure is due to decreased density of dopaminergic projections from the locus coeruleus to dHPC, and artificial activation of dopamine axon terminals or D1 receptors in dHPC CA1 improve memory damage in mice exposed to RFR. These findings indicate that nonthermal radiofrequency stimulation modulates ongoing neuronal activity and affects nervous system function at the neural circuit level.
Collapse
Affiliation(s)
- Yanhui Hao
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Weiqi Liu
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Yujie Liu
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Ying Liu
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Zhengtao Xu
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Yumeng Ye
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Hongmei Zhou
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Hua Deng
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Hongyan Zuo
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Hong Yang
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Yang Li
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
- Academy of Life ScienceAnhui Medical UniversityHefei230032China
- Department of PathologyChengde Medical CollegeChengde067000China
| |
Collapse
|
7
|
Spandole-Dinu S, Catrina AM, Voinea OC, Andone A, Radu S, Haidoiu C, Călborean O, Popescu DM, Suhăianu V, Baltag O, Tuță L, Roșu G. Pilot Study of the Long-Term Effects of Radiofrequency Electromagnetic Radiation Exposure on the Mouse Brain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3025. [PMID: 36833719 PMCID: PMC9961585 DOI: 10.3390/ijerph20043025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The increasing radiofrequency (RF) electromagnetic radiation pollution resulting from the development and use of technologies utilizing RF has sparked debate about the possible biological effects of said radiation. Of particular concern is the potential impact on the brain, due to the close proximity of communication devices to the head. The main aim of this study was to examine the effects of long-term exposure to RF on the brains of mice in a real-life scenario simulation compared to a laboratory setting. The animals were exposed continuously for 16 weeks to RF using a household Wi-Fi router and a laboratory device with a frequency of 2.45 GHz, and were compared to a sham-exposed group. Before and after exposure, the mice underwent behavioral tests (open-field test and Y-maze); at the end of the exposure period, the brain was harvested for histopathological analysis and assessment of DNA methylation levels. Long-term exposure of mice to 2.45 GHz RF radiation increased their locomotor activity, yet did not cause significant structural or morphological changes in their brains. Global DNA methylation was lower in exposed mice compared to sham mice. Further research is needed to understand the mechanisms behind these effects and to understand the potential effects of RF radiation on brain function.
Collapse
Affiliation(s)
- Sonia Spandole-Dinu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Ana-Maria Catrina
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Oana Cristina Voinea
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
- Pathology Department, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alina Andone
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Speranța Radu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Cerasela Haidoiu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Octavian Călborean
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Diana Mihaela Popescu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Vladimir Suhăianu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Octavian Baltag
- Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Leontin Tuță
- Center of Excellence in Communications and Information Technology, Military Technical Academy “Ferdinand I”, 050141 Bucharest, Romania
| | - Georgiana Roșu
- Department of Military Systems and Equipment, Military Technical Academy “Ferdinand I”, 050141 Bucharest, Romania
| |
Collapse
|
8
|
Eeftens M, Shen C, Sönksen J, Schmutz C, van Wel L, Liorni I, Vermeulen R, Cardis E, Wiart J, Toledano M, Röösli M. Modelling of daily radiofrequency electromagnetic field dose for a prospective adolescent cohort. ENVIRONMENT INTERNATIONAL 2023; 172:107737. [PMID: 36709672 DOI: 10.1016/j.envint.2023.107737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Radiofrequency electromagnetic fields originate from a variety of wireless communication sources operating near and far from the body, making it challenging to quantify daily absorbed dose. In the framework of the prospective cohort SCAMP (Study of Cognition, Adolescents and Mobile Phones), we aimed to characterize RF-EMF dose over a 2-year period. METHODS The SCAMP cohort included 6605 children from greater London, UK at baseline (age 12.1 years; 2014-2016) and 5194 at follow-up (age 14.2; 2016-2018). We estimated the daily dose of RF-EMF to eight tissues including the whole body and whole brain, using dosimetric algorithms for the specific absorption rate transfer into the body. We considered RF-EMF dose from 12 common usage scenarios such as mobile phone calls or data transmission. We evaluated the association between sociodemographic factors (gender, ethnicity, phone ownership and socio-economic status), and the dose change between baseline and follow-up. RESULTS Whole body dose was estimated at an average of 170 mJ/kg/day at baseline and 178 mJ/kg/day at follow-up. Among the eight tissues considered, the right temporal lobe received the highest daily dose (baseline 1150 mJ/kg/day, follow-up 1520 mJ/kg/day). Estimated daily dose [mJ/kg/day] increased between baseline and follow-up for head and brain related tissues, but remained stable for the whole body and heart. Doses estimated at baseline and follow-up showed low correlation among the 3384 children who completed both assessments. Asian ethnicity (compared to white) and owning a bar phone or no phone (as opposed to a smartphone) were associated with lower estimated whole-body and whole-brain RF-EMF dose, while black ethnicity, a moderate/low socio-economic status (compared to high), and increasing age (at baseline) were associated with higher estimated RF-EMF dose. CONCLUSION This study describes the first longitudinal exposure assessment for children in a critical period of development. Dose estimations will be used in further epidemiological analyses for the SCAMP study.
Collapse
Affiliation(s)
- Marloes Eeftens
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - Chen Shen
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; National Institute for Health Research Health Protection Research Units in Environmental Exposures and Health & Chemical and Radiation Threats and Hazards, in partnership with UK Health Security Agency, Imperial College London, W2 1PG, United Kingdom
| | - Jana Sönksen
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Claudia Schmutz
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Luuk van Wel
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Ilaria Liorni
- Foundation for Research on Information Technologies in Society (IT'IS Foundation), Zurich, Switzerland
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Elisabeth Cardis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Joe Wiart
- Chair C2M, LTCI Télecom ParisTech, Université Paris Saclay, 46 rue Barrault, 75013 Paris, France
| | - Mireille Toledano
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; National Institute for Health Research Health Protection Research Units in Environmental Exposures and Health & Chemical and Radiation Threats and Hazards, in partnership with UK Health Security Agency, Imperial College London, W2 1PG, United Kingdom; Mohn Centre for Children's Health and Wellbeing, School of Public Health, Imperial College London, W2 1PG, United Kingdom
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Yamazaki K, Ikeda-Araki A, Miyashita C, Tamura N, Yoshikawa T, Hikage T, Omiya M, Mizuta M, Ikuyo M, Tobita K, Onishi T, Taki M, Watanabe S, Kishi R. Measurement of personal radio frequency exposure in Japan: The Hokkaido Study on the Environment and Children's health. ENVIRONMENTAL RESEARCH 2023; 216:114429. [PMID: 36174753 DOI: 10.1016/j.envres.2022.114429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The opportunities for exposure to radiofrequency electromagnetic fields (RF-EMF) among children are increasing. Children's exposure to RF-EMF in Japan was recorded using a personal exposure meter (ExpoM-RF), and factors associated with the exposure examined. A total of 101 children, aged 10-15 years old, participated in the prospective birth cohort "Hokkaido study". RF-EMF data were recorded in the 700 MHz-5.8 GHz frequency range for 3 days. The recorded data were summarized into six groups of frequency bands: downlink from mobile phone base stations (DL), uplink from mobile phones to a base station (UL), Wireless Local Area Network (LAN), terrestrial digital TV broadcasting (digital TV), 2.5 GHz and 3.5 GHz Time Division Duplex (TDD), 1.9 GHz TDD, and total (the summation of power density in all measured frequency bands). A questionnaire was used to document the internet environment (at home) and mobile phone usage. Personal RF-EMF exposure in Japanese children was lower than that reported in studies in Europe. The DL signals from mobile phone base stations were the most significant contributors to total exposure, while Wireless LAN and digital TV were only higher at home. The urban residence was consistently associated with increases in the four groups of frequency bands (DL, UL, digital TV, and TDD). TDD level has several associations with mobile phone usage (calls using mobile phones, video viewing, text message service, and online game). The association between inattention/hyperactivity subscale of the Strengths and Difficulties Questionnaire (SDQ) and higher Wireless LAN exposure at nighttime was also noted. Further studies with additional data will shed light on factors involved in RF-EMF exposure among Japanese children.
Collapse
Affiliation(s)
- Keiko Yamazaki
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan.
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan; Faculty of Health Sciences, Hokkaido University, Sapporo, 0600812, Japan.
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan.
| | - Naomi Tamura
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan.
| | - Toshio Yoshikawa
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan.
| | - Takashi Hikage
- Faculty of Information Science and Technology, Hokkaido University, Sapporo, 0600814, Japan.
| | - Manabu Omiya
- Information Initiative Center, Hokkaido University, Sapporo, 0600811, Japan.
| | - Masahiro Mizuta
- Information Initiative Center, Hokkaido University, Sapporo, 0600811, Japan.
| | - Miwa Ikuyo
- Applied Electromagnetic Research Center, National Institute of Information and Communications Technology, Tokyo, 1840015, Japan.
| | - Kazuhiro Tobita
- Applied Electromagnetic Research Center, National Institute of Information and Communications Technology, Tokyo, 1840015, Japan.
| | - Teruo Onishi
- Applied Electromagnetic Research Center, National Institute of Information and Communications Technology, Tokyo, 1840015, Japan.
| | - Masao Taki
- Applied Electromagnetic Research Center, National Institute of Information and Communications Technology, Tokyo, 1840015, Japan.
| | - Soichi Watanabe
- Applied Electromagnetic Research Center, National Institute of Information and Communications Technology, Tokyo, 1840015, Japan.
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
10
|
Al-Khlaiwi T, Habib SS, Alshalan M, Al-Qhatani M, Alsowiegh S, Queid S, Alyabis O, Al-Khliwi H. Comparison of mobile phone usage and physical activity on glycemic status, body composition & lifestyle in male Saudi mobile phone users. Heliyon 2022; 8:e10646. [PMID: 36158074 PMCID: PMC9489969 DOI: 10.1016/j.heliyon.2022.e10646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/12/2022] [Accepted: 09/08/2022] [Indexed: 11/07/2022] Open
Abstract
Background &Objectives: This study aimed to compare the effects of mobile phone usage and physical activity on HbA1c, body composition, and lifestyle among male Saudi Arabian mobile phone users. Methods The study was conducted in the Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia from July 2020 to July 2021. The study sample consisted of 203 non-smoker male Saudi participants aged from 20 to 60 years who used mobile phones. Personal information was obtained through interviews using a proforma. The participants were divided into three groups according to their daily mobile phone usage: Group (1): less than 2 h, Group (2): 2–3 h, and Group (3): more than 3 h, and according to their physical activities: Group (1): sedentary, Group (2): average, and Group (3): athletes. Glycated Hemoglobin (HbA1c), Bioelectrical Impedance Analysis (BIA), and (SF) 36- items survey was performed. Results The mean age of 203 Saudi male adult participants was 28.0 ± 10.4 years. Mobile phone usage in the less than 2 h group was (33.5%), between 2-3 h (22.7%), and more than 3 h (43.8%) respectively. The mean age of Group (3), who used mobile phones for more than 3 h, was the lowest (23.9 ± 5.7). The results showed that HbA1C levels were almost equal in all three groups (5.8 ± 0.4, 5.7 ± 0.4, and 5.7 ± 0.3 respectively). In addition, emotional well-being and social functioning showed insignificant decreases in the more than 3 h group compared to other groups of mobile phone usage (69.3 ± 15.7, 70.9 ± 15.5, 65.2 ± 16.0, p = .091 and 82.9 ± 201, 81.2 ± 18.7, 77.6 ± 21.6, p = .267) respectively. No effect was detected between groups regarding various body compositions. Regarding physical activity classifications: the sedentary group constituted (36%) of the sample, whereas the average and athlete groups represented (53.7%) and (10.3%) of the total sample respectively. There was a significant decrease in BMI (29.6 ± 7.8, 25.3 ± 5.1,24.7 ± 5.6, p = .000), fat mass (24.7 ± 15.0, 17.1 ± 9.1, 15.3 ± 10.6, p = .000), and free fat mass (64.0 ± 10.2, 56.8 ± 8.7, 57.5 ± 8.0, p = .000) in the average and the athletic groups compared to the sedentary group. No significant difference was found in HbA1c between physical activity groups (5.8 ± 0.4, 5.7 ± 0.4, 5.7 ± 0.4, p = .218). Conclusions Mobile phone usage does not affect HbA1c and body composition parameters. Furthermore, we found the youngers used mobile phones longer than others. Insignificant decrease in emotional well-being and social functioning parameters of the style of life due to long mobile phone usage which needs more attention.
Collapse
Affiliation(s)
- Thamir Al-Khlaiwi
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Syed Shahid Habib
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | - Saud Queid
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Omar Alyabis
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
11
|
Bodewein L, Dechent D, Graefrath D, Kraus T, Krause T, Driessen S. Systematic review of the physiological and health-related effects of radiofrequency electromagnetic field exposure from wireless communication devices on children and adolescents in experimental and epidemiological human studies. PLoS One 2022; 17:e0268641. [PMID: 35648738 PMCID: PMC9159629 DOI: 10.1371/journal.pone.0268641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND For more than 20 years, the potential health risks of radiofrequency electromagnetic field (RF EMF) exposure from mobile communication devices on children and adolescents have been examined because they are considered sensitive population groups; however, it remains unclear whether such exposure poses any particular risk to them. OBJECTIVES The aim of this review was to systematically analyze and evaluate the physiological and health-related effects of RF EMF exposures from wireless communication devices (mobile phones, cordless phones, Bluetooth, etc.) on children and adolescents. METHODS This review was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Methodological limitations in individual studies were assessed using the Office of Health Assessment and Translation (OHAT) Risk-of-Bias Rating Tool for Human and Animal Studies. RESULTS A total of 42 epidemiological and 11 experimental studies were eligible for this review. Most of the studies displayed several methodological weaknesses that limited the internal validity of the results. Due to a lack of consistency regarding the outcomes as well as the lack of scientific rigor in most reviewed studies, the body of evidence for the effects of RF EMF of mobile communication devices on subjective symptoms, cognition, and behavior in children and adolescents was low to inadequate. Evidence from the studies investigating early childhood development, brain activity, cancer, and physiological parameters was considered inadequate for drawing conclusions about possible effects. DISCUSSION Overall, the body of evidence allows no final conclusion on the question whether exposure to RF EMF from mobile communication devices poses a particular risk to children and adolescents. There has been rapid development in technologies generating RF EMF, which are extensively used by children and adolescents. Therefore, we strongly recommend high-quality systematic research on children and adolescents, since they are generally considered as sensitive age groups.
Collapse
Affiliation(s)
- Lambert Bodewein
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Dagmar Dechent
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - David Graefrath
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thomas Kraus
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tobias Krause
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sarah Driessen
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Benke G, Abramson MJ, Zeleke BM, Kaufman J, Karipidis K, Kelsall H, McDonald S, Brzozek C, Feychting M, Brennan S. The effect of long-term radiofrequency exposure on cognition in human observational studies: A protocol for a systematic review. ENVIRONMENT INTERNATIONAL 2022; 159:106972. [PMID: 34953282 DOI: 10.1016/j.envint.2021.106972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The long term effects of exposure to radiofrequency (RF) electromagnetic fields (EMF) for frequencies from 100 kHz to 300 GHz on cognitive performance are best assessed using observational studies. In recent years, the use of mobile (cell) phones has been the main source of RF EMF exposure to the brain, although other sources of exposure may be significant. Cognitive function includes various mental and psychological abilities, which can be measured in a range of domains, such as learning, memory, reasoning, problem solving, decision making and attention. Although effects on cognitive function may be most evident later in life, in the experimental setting acute and immediate effects can only be studied. Observational studies are needed when effects are observed after months or years following short or long-term exposure. The importance of the effects of exposure on children has also been recently identified. OBJECTIVES To assess the long-term effects of RF EMF local and whole-body exposure compared to no or a lower level of exposure on indicators of cognition, including complex attention, executive function, learning and memory, perceptual motor ability and social cognition, but excluding cognitive effects caused by neurodegenerative diseases or neurodevelopmental disorders, and to assess if there is evidence of a dose response relationship. STUDY ELIGIBILITY AND CRITERIA We will include observational studies that have evaluated cognitive effects of RF energy including a comparator group with a different level of exposure. Studies must report at least one validated measure of cognitive function, including global or domain specific measures, or cognitive impairment, with a minimum follow-up of 6 months. Cohort or case-control studies published in the peer review literature in any language are eligible. We will exclude cross-sectional studies and any that only report brain structure or biomarkers. STUDY APPRAISAL AND SYNTHESIS METHOD We will conduct searches of PubMed, Embase, PsycINFO and the EMF-Portal. At least two authors will independently screen the titles/abstracts of all records, with any conflicts resolved by a third reviewer. Full-text screening will also be conducted independently by two authors with conflicts resolved by consensus. Data will be extracted from the studies included, such as identifiers and characteristics of the study design, exposure and comparator groups, participants, outcomes assessed and results. Risk of bias will be assessed with the Office of Health Assessment and Translation (OHAT) tool. We will conduct a meta-analysis of similar studies with a random effects model in STATA or similar software, if two or more studies are available for a given exposure-outcome combination. Confidence in the body evidence will be judged using GRADE methods as adapted by OHAT for reviews of environmental exposures.
Collapse
Affiliation(s)
- Geza Benke
- Monash University, Melbourne, Australia.
| | | | - B M Zeleke
- Monash University, Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Li Y, Deng P, Chen C, Ma Q, Pi H, He M, Lu Y, Gao P, Zhou C, He Z, Zhang Y, Yu Z, Zhang L. 1,800 MHz Radiofrequency Electromagnetic Irradiation Impairs Neurite Outgrowth With a Decrease in Rap1-GTP in Primary Mouse Hippocampal Neurons and Neuro2a Cells. Front Public Health 2021; 9:771508. [PMID: 34881219 PMCID: PMC8646047 DOI: 10.3389/fpubh.2021.771508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
Background: With the global popularity of communication devices such as mobile phones, there are increasing concerns regarding the effect of radiofrequency electromagnetic radiation (RF-EMR) on the brain, one of the most important organs sensitive to RF-EMR exposure at 1,800 MHz. However, the effects of RF-EMR exposure on neuronal cells are unclear. Neurite outgrowth plays a critical role in brain development, therefore, determining the effects of 1,800 MHz RF-EMR exposure on neurite outgrowth is important for exploring its effects on brain development. Objectives: We aimed to investigate the effects of 1,800 MHz RF-EMR exposure for 48 h on neurite outgrowth in neuronal cells and to explore the associated role of the Rap1 signaling pathway. Material and Methods: Primary hippocampal neurons from C57BL/6 mice and Neuro2a cells were exposed to 1,800 MHz RF-EMR at a specific absorption rate (SAR) value of 4 W/kg for 48 h. CCK-8 assays were used to determine the cell viability after 24, 48, and 72 h of irradiation. Neurite outgrowth of primary hippocampal neurons (DIV 2) and Neuro2a cells was observed with a 20 × optical microscope and recognized by ImageJ software. Rap1a and Rap1b gene expressions were detected by real-time quantitative PCR. Rap1, Rap1a, Rap1b, Rap1GAP, and p-MEK1/2 protein expressions were detected by western blot. Rap1-GTP expression was detected by immunoprecipitation. The role of Rap1-GTP was assessed by transfecting a constitutively active mutant plasmid (Rap1-Gly_Val-GFP) into Neuro2a cells. Results: Exposure to 1,800 MHz RF-EMR for 24, 48, and 72 h at 4 W/kg did not influence cell viability. The neurite length, primary and secondary neurite numbers, and branch points of primary mouse hippocampal neurons were significantly impaired by 48-h RF-EMR exposure. The neurite-bearing cell percentage and neurite length of Neuro2a cells were also inhibited by 48-h RF-EMR exposure. Rap1 activity was inhibited by 48-h RF-EMR with no detectable alteration in either gene or protein expression of Rap1. The protein expression of Rap1GAP increased after 48-h RF-EMR exposure, while the expression of p-MEK1/2 protein decreased. Overexpression of constitutively active Rap1 reversed the decrease in Rap1-GTP and the neurite outgrowth impairment in Neuro2a cells induced by 1,800 MHz RF-EMR exposure for 48 h. Conclusion: Rap1 activity and related signaling pathways are involved in the disturbance of neurite outgrowth induced by 48-h 1,800 MHz RF-EMR exposure. The effects of RF-EMR exposure on neuronal development in infants and children deserve greater focus.
Collapse
Affiliation(s)
- Yanqi Li
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Ping Deng
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Chunhai Chen
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Qinlong Ma
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Huifeng Pi
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Mindi He
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Yonghui Lu
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Peng Gao
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Chao Zhou
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Zhixin He
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Yanwen Zhang
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Zhengping Yu
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Lei Zhang
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| |
Collapse
|
14
|
Kim JH, Jeon S, Choi HD, Lee JH, Bae JS, Kim N, Kim HG, Kim KB, Kim HR. Exposure to long-term evolution radiofrequency electromagnetic fields decreases neuroblastoma cell proliferation via Akt/mTOR-mediated cellular senescence. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:846-857. [PMID: 34196262 DOI: 10.1080/15287394.2021.1944944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was to examine the potential effects of long-term evolution (LTE) radiofrequency electromagnetic fields (RF-EMF) on cell proliferation using SH-SY5Y neuronal cells. The growth rate and proliferation of SH-SY5Y cells were significantly decreased upon exposure to 1760 MHz RF-EMF at 4 W/kg specific absorption rate (SAR) for 4 hr/day for 4 days. Cell cycle analysis indicated that the cell cycle was delayed in the G0/G1 phase after RF-EMF exposure. However, DNA damage or apoptosis was not involved in the reduced cellular proliferation following RF-EMF exposure because the expression levels of histone H2A.X at Ser139 (γH2AX) were not markedly altered and the apoptotic pathway was not activated. However, SH-SY5Y cells exposed to RF-EMF exhibited a significant elevation in Akt and mTOR phosphorylation levels. In addition, the total amount of p53 and phosphorylated-p53 was significantly increased. Data suggested that Akt/mTOR-mediated cellular senescence led to p53 activation via stimulation of the mTOR pathway in SH-SY5Y cells. The transcriptional activation of p53 led to a rise in expression of cyclin-dependent kinase (CDK) inhibitors p21 and p27. Further, subsequent inhibition of CDK2 and CDK4 produced a fall in phosphorylated retinoblastoma (pRb at Ser807/811), which decreased cell proliferation. Taken together, these data suggest that exposure to RF-EMF might induce Akt/mTOR-mediated cellular senescence, which may delay the cell cycle without triggering DNA damage in SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, South Korea
| | - Sangbong Jeon
- Radio and Broadcasting Technology Laboratory, ETRI, Daejeon, South Korea
| | - Hyung-Do Choi
- Radio and Broadcasting Technology Laboratory, ETRI, Daejeon, South Korea
| | - Jae-Hun Lee
- Medical Laser Research Center, Dankook University, Cheonan, South Korea
| | - Jun-Sang Bae
- Medical Laser Research Center, Dankook University, Cheonan, South Korea
| | - Nam Kim
- School of Electrical and Computer Engineering, Chungbuk National University, Cheongju, South Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, South Korea
- NeuroVis Inc., Cheonan, Republic of Korea
| | - Kyu-Bong Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, South Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, South Korea
| |
Collapse
|