1
|
Zhang L, Hu M, Yang X, Zhao P. The role of repeat cerclage in managing subsequent pregnancies for patients with a prior history of cervical cerclage: a retrospective self-control study. Front Med (Lausanne) 2025; 12:1544075. [PMID: 40259987 PMCID: PMC12009855 DOI: 10.3389/fmed.2025.1544075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
In a woman who received cerclage in the previous pregnancy, obstetricians were highly likely to perform this surgery in her subsequent pregnancy. However, many researchers have advocated against the use of repeat cerclage. The objective of this study was to evaluate the effectiveness of repeat cerclage in managing the subsequent pregnancy for participants with a history of cervical cerclage. We retrospectively collected data from patients who had a history of cervical cerclage and received repeat cerclage in the subsequent pregnancy. A self-controlled comparative analysis was undertaken to evaluate the differences in baseline characteristics and pregnancy outcomes between the initial cerclage and the repeat cerclage. A total of 173 patients were included in the study. These patients were divided into two groups, the initial cerclage group and the repeat cerclage group. Consequently, the gestational age at delivery, birth weight, live birth outcome, and neonatal morbidity in the repeat cerclage group were significantly improved compared to the initial cerclage group (p < 0.001 for all aforementioned indicators). All patients were further divided into four subgroups based on their indications for initial cerclage. Specifically, 54 patients received an initial cerclage due to prior history (group A), 45 patients based on ultrasound findings (group B), 63 patients due to physical examination (group C), and 11 participants for inappropriate indications (group D). As a result, repeat cerclage significantly increased both gestational age at delivery and birth weight in group A, group B, and group C, with statistical significance noted as follows: group A (p = 0.007 for gestational age, p = 0.044 for birth weight), group B (p = 0.002 for gestational age, p = 0.011 for birth weight), and group C (p < 0.001 for both) No significant differences were noted in group D. In conclusion, the clinical outcome of repeat cerclage in patients with a prior history of cervical cerclage, regardless of whether it was indicated by history, ultrasound, or physical examination, was found to be significantly beneficial for the patients. For patients who have undergone a prior cerclage based on evidence-supported indications of CI, repeat cerclage may be a prudent consideration.
Collapse
Affiliation(s)
| | | | | | - Peng Zhao
- Department of Obstetrics, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Deprato A, Garud A, Azzolina D, Murgia N, Davenport MH, Kaul P, Lacy P, Moitra S. Associations between vaping during pregnancy and perinatal outcomes: A systematic review and meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137028. [PMID: 39754882 DOI: 10.1016/j.jhazmat.2024.137028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/02/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
Despite numerous studies linking prenatal vaping to adverse perinatal outcomes, a systematic assessment for critical comparison remains absent. To investigate these associations, we conducted a systematic search of studies assessing perinatal outcomes in mothers and/or neonates exposed to vaping during pregnancy compared to those in women without prenatal vaping exposure through MEDLINE, EMBASE, Scopus, Web of Science, Cochrane Library, PROSPERO, and Google Scholar until July 5, 2024. We performed inverse-variance random-effects meta-analyses for maternal and neonatal outcomes of 23 studies with a total of 924,376 participants with 7552 reporting vaping-only use during pregnancy. Prenatal vaping was associated with 53 % higher odds of an adverse maternal outcome (OR: 1.53; 95 % CI: 1.27-1.85; I2 = 80 %), particularly with decreased breastfeeding (OR: 0.53; 95 % CI: 0.38-0.72; I2 = 45 %) and reduced prevalence of adequate prenatal care (OR: 0.69; 95 % CI: 0.56-0.86; I2 = 82 %). Prenatal vaping was also associated with a similarly 53 % higher odds of an adverse neonatal outcome (OR: 1.53; 95 % CI: 1.34-1.76; I2 = 45 %), such as low birth weight (OR: 1.56; 95 % CI: 1.28-1.93; I2: 15 %), preterm birth (OR: 1.49; 955 CI: 1.27-1.76; I2: 0 %), and small for gestational age (OR: 1.48; 955 CI: 1.16-1.89; I2: 70 %). This is the first comprehensive systematic review and meta-analysis demonstrating vaping during pregnancy as a risk factor for increased odds of both maternal and neonatal outcomes and underscores the urgency to address awareness and regulations of vaping and its potential harms to both humans and the environment. REGISTRATION: PROSPERO CRD42023446266.
Collapse
Affiliation(s)
- Andy Deprato
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; Alberta Respiratory Centre, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Arundhati Garud
- Bagchi School of Public Health, Ahmedabad University, Ahmedabad, India
| | - Danila Azzolina
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Nicola Murgia
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Margie H Davenport
- Program for Pregnancy and Postpartum Health, University of Alberta, Edmonton, Alberta, Canada; Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Padma Kaul
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada; Canadian VIGOUR Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Paige Lacy
- Alberta Respiratory Centre, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Subhabrata Moitra
- Alberta Respiratory Centre, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Bagchi School of Public Health, Ahmedabad University, Ahmedabad, India.
| |
Collapse
|
3
|
Ruiz P, Cheng PY, Desai S, Shin M, Jarrett JM, Ward CD, Shim YK. Prevalence of Exposure to Environmental Metal Mixtures Among Pregnant Women in the United States National Health and Nutrition Examination Survey (NHANES) 1999-2018. J Xenobiot 2025; 15:38. [PMID: 40126256 PMCID: PMC11932210 DOI: 10.3390/jox15020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 03/25/2025] Open
Abstract
Although exposure to metals remains a public health concern, few studies have examined exposure to combinations of metals. This study characterized prevalent combinations of cadmium (Cd), mercury (Hg), and lead (Pb) in women (n = 10,152; aged 20-44 years) who participated in the U.S. National Health and Nutrition Examination Survey (NHANES) 1999-2018. To explore relative metal exposures within this population, Cd, Hg, and Pb blood levels were dichotomized as "high" and "low" categories using median values to represent the center of the metal concentrations in the study population, not thresholds for adverse health effects. The prevalence of the three metal combinations at "high" levels (singular, binary, tertiary combinations) was calculated. Multinomial logistic regression was used to calculate odds ratios for each combination relative to none of these combinations after adjusting for potential confounders. Among the pregnant women (n = 1297), singular Hg was most prevalent (19.2% [95% CI 15.0-23.3]), followed by singular Cd (14.7% [95% CI 11.2-18.2]), tertiary combination Cd/Hg/Pb (11.0% [95% CI 8.7-13.2]), binary combinations Cd/Pb (9.8% [95% CI 7.4-12.2]), Hg/Pb (9.2% [95% CI 6.5-11.8]), Cd/Hg (7.8% [95% CI 6.0-9.6]), and singular Pb (5.5% [95% CI 4.1-6.9]). We found significantly lower odds of having Cd/Hg/Pb (adjusted odds ratio (adjOR) = 0.49: p < 0.001) and Cd/Pb (adjOR = 0.68: p < 0.0364) combinations among pregnant women compared to non-pregnant women. The odds of having higher levels of singular Pb were significantly lower (adjOR = 0.31: p < 0.0001) in women pregnant in their first and second trimesters (n = 563) than in non-pregnant women (n = 6412), whereas, though nonsignificant, the odds were higher for women pregnant in their third trimester (n = 366) (adjOR = 1.25: p = 0.4715). These results indicate the possibility that the fetus might be exposed to higher levels of the metal mixtures due to placental transfer, particularly to Pb, during the early stages of pregnancy. Further research is warranted to understand the relationship between metal combination exposures during pregnancy and maternal and infant health.
Collapse
Affiliation(s)
- Patricia Ruiz
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA
| | - Po-Yung Cheng
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA
| | - Siddhi Desai
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Mikyong Shin
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA
| | - Jeffery M. Jarrett
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA
| | - Cynthia D. Ward
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA
| | - Youn K. Shim
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA
| |
Collapse
|
4
|
Flores-Espinosa P, Menon R, Kammala A, Richardson LS. Lead exposure at the feto-maternal interface: a cause for concern for fetal membrane trophoblasts. Toxicol Sci 2025; 203:195-205. [PMID: 39579145 PMCID: PMC11775422 DOI: 10.1093/toxsci/kfae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024] Open
Abstract
The integrity of fetal membranes enables biological functions that protect the fetus and maintain the pregnancy. Any compromise in fetal membrane function can predispose a pregnant woman to prelabor rupture of the membranes (pPROMs) and subsequently to preterm birth (PTB). Epidemiologic data suggest that lead exposure during pregnancy is one of several risk factors associated with PTB and pPROM. This heavy metal can cross placental and fetal membrane barriers, disrupting homeostasis in these tissues. Autophagy contributes to the maintenance of fetal membrane homeostasis during gestation, and dysfunctional autophagy is associated with pPROM. In this study, we determined the mechanistic impact of lead-induced cellular changes, autophagy, senescence, and inflammation in chorion trophoblast cells (CTCs) and amnion epithelial cells (AECs) of the fetal membranes. Lead exposure in CTCs induced autophagy dysfunction (increase in LC3B-II), augmented senescence (increased SA-β-galactosidase activity), and increased the release of inflammation. In AECs, lead exposure did effect autophagy, senescence, nor inflammation. The differential changes observed in CTCs and AECs after exposure to high lead concentrations may promote the weakening of fetal membranes and contribute to preterm rupture.
Collapse
Affiliation(s)
- Pilar Flores-Espinosa
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, United States
- Laboratorio de Inmunología de la Unidad Feto-Placentaria, Department of Immunobiochemestry, Instituto Nacional de Perinatología I.E.R, Mexico City 11000, Mexico
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, United States
| | - Ananth Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, United States
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, United States
| |
Collapse
|
5
|
Eaves LA, Lodge EK, Rohin WR, Roell KR, Manuck TA, Fry RC. Prenatal metal(loid) exposure and preterm birth: a systematic review of the epidemiologic evidence. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025:10.1038/s41370-025-00744-8. [PMID: 39863768 DOI: 10.1038/s41370-025-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Preterm birth (PTB) is a common pregnancy complication associated with significant neonatal morbidity. Prenatal exposure to environmental chemicals, including toxic and/or essential metal(loid)s, may contribute to PTB risk. OBJECTIVE We aimed to summarize the epidemiologic evidence of the associations among levels of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), lead (Pb), and zinc (Zn) assessed during the prenatal period and PTB or gestational age at delivery; to assess the quality of the literature and strength of evidence for an effect for each metal; and to provide recommendations for future research. METHODS We adapted the Navigation Guide methodology and followed PRISMA guidelines. We searched the MEDLINE/PubMed database for epidemiologic studies from 1995 to 2023. We used a customized risk of bias protocol and evaluated the sufficiency of evidence for an effect of each metal(loid) on PTB risk. RESULTS A total of 1206 studies were identified and screened. Of these, 139 were assessed for eligibility by reading the full-text, and 92 studies were ultimately included (arsenic: 40, cadmium: 30, chromium: 11, copper: 21, mercury: 27, manganese: 17, lead: 41, zinc: 18, metal(loid) mixtures: 12). We found sufficient evidence that lead increases the risk of PTB and, while the evidence was limited, suggestive evidence that cadmium and chromium increase the risk of PTB. The evidence was deemed inadequate to determine an effect for the other metal(loid)s. SIGNIFICANCE Future research would benefit from more precise PTB clinical phenotyping, measuring exposure early and longitudinally throughout pregnancy, using an appropriate media for metal(loid)s under study, and evaluating metal mixtures. Given the strength of evidence linking lead exposure and PTB, active and comprehensive prenatal screening for lead exposure among pregnant individuals is warranted. IMPACT By summarizing 92 epidemiologic studies that investigated the associations between metal exposure and preterm birth using the rigorous Navigation Guide methodology, our review provides compelling evidence for a strong link between prenatal lead exposure and preterm birth. Additionally, it suggests potential associations between cadmium and chromium exposure and preterm birth. Given the robust nature of this evidence, there is an urgent need for prenatal screening for lead exposure during pregnancy, along with targeted interventions to reduce exposure. These actions are critical for advancing maternal and child health.
Collapse
Affiliation(s)
- Lauren A Eaves
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Evans K Lodge
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wendy R Rohin
- Department of Maternal and Child Health, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kyle R Roell
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tracy A Manuck
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Yue X, Li Q, Tao J, Zhang H, Peng J, Zhang D, Yang J, Ji D, Tao F, Cao Y, Ji D, Liang C. The associations of the concentrations of toxic metals (including metalloid) in blood and follicular fluid with the risk of diminished ovarian reserve. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117144. [PMID: 39418720 DOI: 10.1016/j.ecoenv.2024.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Diminished ovarian reserve (DOR), a triggering factor for female infertility, affects 10% ∼ 35% of women of reproductive age. It is still unclear whether exposure to toxic metals (including metalloid) is associated with DOR risk, especially with respect to their relationships with the clinical phenotypes of DOR. METHODS A case-control study including 439 patients was conducted, and Ba, Ni, As, Tl, Cd, Pb, Hg, Al and Cr levels in BL and FF were measured. Subsequent analyses were focused on Ba, Ni, As and Tl, which had the highest weights in the associations of the nine toxic metals (including metalloid) with DOR risk, by integrating weighted quantile sum (WQS) regression and bayesian kernel machine regression (BKMR) models. Conditional logistic regression models and BKMR models were used to assess the individual and combined effects of Ba, Ni, As and Tl exposures on DOR risk. Multiple linear regression models were used to investigate the relationships between toxic metal (including metalloid) levels in BL and FF and the clinical characteristics of DOR. RESULTS The levels of Ba [second vs. lowest tertile: adjusted odds ratio (aOR) and 95 % confidence interval (CI) = 1.97 (1.13, 3.44); highest vs. lowest tertile: aOR (95 % CI) = 2.38 (1.32, 4.26)], Ni [highest vs. lowest tertile: aOR (95 % CI) = 2.59 (1.45, 4.65)] and As [highest vs. lowest tertile: aOR (95 % CI) = 1.96 (1.18, 3.25)] in BL, and Ba [highest vs. lowest tertile: aOR (95 % CI) = 4.60 (1.68, 12.61)] in FF were significantly associated with a higher risk of DOR, respectively. The significantly positive combined effect of the four toxic metals (including metalloid) on DOR risk was exhibited when their BL levels exceeded the 25th percentile compared with their median levels. Among these, As (0.9822) and Ba (0.9704) were the primary contributors to this relationship. Similarly, this finding was confirmed by the statistical results from FF samples, with a linear positive correlation between combined exposure and DOR risk, where Ba (0.9440) was the primary contributor. Finally, elevated levels of Ba, Ni, and As in BL and Ba in FF were significantly linked to the higher follicle-stimulating hormone (FSH) levels. The levels of Ba in BL and FF, as well as As in BL, were significantly associated with the lower luteinizing hormone (LH)/FSH ratio values. CONCLUSION Overall, the results of this study indicate that elevated levels of Ba, Ni, As and Tl are associated with a higher risk of DOR, whether individually or in combination, and that Ba levels in BL and FF are stable contributors. In addition, exposure to Ba, Ni, As and Tl is linked to various clinical phenotype parameters of DOR. Further research is needed to confirm these associations and to identify potential mechanisms involved.
Collapse
Affiliation(s)
- Xinyu Yue
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Qian Li
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jiajing Tao
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China / School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jie Peng
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Dongyang Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China / School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jing Yang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Duoxu Ji
- The First Clinical Medical College of Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Fangbiao Tao
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China / School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Dongmei Ji
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Chunmei Liang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China / School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
7
|
Wu T, Luo C, Li T, Zhang C, Chen HX, Mao YT, Wu YT, Huang HF. Effects of exposure to multiple metallic elements in the first trimester of pregnancy on the risk of preterm birth. MATERNAL & CHILD NUTRITION 2024; 20:e13682. [PMID: 38925571 PMCID: PMC11574644 DOI: 10.1111/mcn.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Exposure to certain heavy metals has been demonstrated to be associated with a higher risk of preterm birth (PTB). However, studies focused on the effects of other metal mixtures were limited. A nested case‒control study enrolling 94 PTB cases and 282 controls was conducted. Metallic elements were detected in maternal plasma collected in the first trimester using inductively coupled plasma‒mass spectrometry. The effect of maternal exposure on the risk of PTB was investigated using logistic regression, least absolute shrinkage and selection operator, restricted cubic spline (RCS), quantile g computation (QGC) and Bayesian kernel machine regression (BKMR). Vanadium (V) and arsenic (As) were positively associated with PTB risk in the logistic model, and V remains positively associated in the multi-exposure logistic model. QGC analysis determined V (69.42%) and nickel (Ni) (70.30%) as the maximum positive and negative contributors to the PTB risk, respectively. BKMR models further demonstrated a positive relationship between the exposure levels of the mixtures and PTB risk, and V was identified as the most important independent variable among the elements. RCS analysis showed an inverted U-shape effect of V and gestational age, and plasma V more than 2.18 μg/L was considered a risk factor for shortened gestation length. Exposure to metallic elements mixtures consisting of V, As, cobalt, Ni, chromium and manganese in the first trimester was associated with an increased risk of PTB, and V was considered the most important factor in the mixtures in promoting the incidence of PTB.
Collapse
Affiliation(s)
- Ting Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Chuan Luo
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Tao Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Chen Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hui-Xi Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yi-Ting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - He-Feng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Cardiology, Shanghai, China
| |
Collapse
|
8
|
Liu H, Li Z, Xie L, Jing G, Liang W, He J, Dang Y. The Relationship Between Heavy Metals and Missed Abortion: Using Mediation of Serum Hormones. Biol Trace Elem Res 2024; 202:3401-3412. [PMID: 37982984 DOI: 10.1007/s12011-023-03931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
Accumulating evidence suggests that heavy metal exposure may have adverse effects on the fetal development. Furthermore, disruption of serum hormone homeostasis can result in the adverse pregnancy outcomes. Therefore, this study aimed to investigate the potential association between heavy metals and missed abortion, with a focus on whether serum hormones mediate this relationship. The concentrations of heavy metals and hormones in serum were measured in this case-control study. Statistical models including, logistic regression model, principal component analysis (PCA), and weighted quantile sum (WQS) regression model were employed to examine the relationship between heavy metals, serum hormones, and missed abortion. Furthermore, the mediation analysis was performed to assess the role of serum hormones as potential mediators in this relationship. This study revealed significant associations between heavy metal exposure and missed abortion. Notable, the WQS index weight, which was mainly influenced by copper (Cu) and zine (Zn), is associated with missed abortion. Moreover, heavy metals including manganese (Mn), nickel (Ni), Zn, arsenic (As), Cu, cadmium (Cd), and lead (Pb) were found to be associated with serum levels of β-human chorionic gonadotropin (β-hCG), progesterone (P), estradiol (E2), and lactogen (HPL). In addition, the mediation analysis indicated that β-hCG explained a portion of the association (ranging from 18.77 to 43.51%) of between Mn, Ni, Zn, and As exposure and missed abortion. Serum P levels explained 17.93 to 51.70% of the association between Ni, Cu, and As exposure and missed abortion. Serum E2 levels played a significant mediating role, explaining a portion of the association (ranging from 22.14 to 73.60%) between Mn, Ni, Cu, As, Cd, and Pb exposure and missed abortion. Our results suggested that β-hCG, P, and E2 are one of the potential mediators in the complex relationship between heavy metals exposure and missed abortion. These results highlight the importance of considering both heavy metal exposure and serum hormone levels in understanding the etiology of missed abortion.
Collapse
Affiliation(s)
- Haixia Liu
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Zhilan Li
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Li'ao Xie
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Guangzhuang Jing
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Weitao Liang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Jie He
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Yuhui Dang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China.
| |
Collapse
|
9
|
Jin S, Yoon SZ, Choi YJ, Kang G, Choi SU. Prenatal exposure to air pollutants and the risk of congenital heart disease: a Korean national health insurance database-based study. Sci Rep 2024; 14:16940. [PMID: 39043676 PMCID: PMC11266520 DOI: 10.1038/s41598-024-63150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/25/2024] [Indexed: 07/25/2024] Open
Abstract
Air pollution and heavy metal exposure are emerging public health concerns. Prenatal exposure to air pollutants and heavy metals has been implicated in the development of congenital heart disease (CHD). However, the relationship between exposure to airborne heavy metals and CHD has not yet been investigated. Therefore, in this large population-based study, we investigated the association between air pollutants, including airborne heavy metals, and the risk of CHD using national health insurance claims data from South Korea. Data regarding 1,129,442 newborns and their mothers were matched with air pollutant levels during the first 8 weeks of gestation. In the five-air pollutant model, we found significant positive correlations between prenatal exposure to sulfur dioxide (SO2; odds ratio [OR] 6.843, 95% confidence interval [CI] 5.746-8.149) and cadmium (Cd; OR 1.513, 95% CI 1.187-1.930) and the risk of ventricular septal defects in newborns. This study highlights the association between prenatal exposure to air pollutants, including airborne heavy metals, and an elevated CHD risk. Further research is essential to validate and expand these findings, with the ultimate goal of enhancing public health outcomes.
Collapse
Affiliation(s)
- Sejong Jin
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, 15355, Republic of Korea
- Department of Neuroscience, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Seung Zhoo Yoon
- Department of Anesthesiology and Pain Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Yoon Ji Choi
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, 15355, Republic of Korea.
| | - Giung Kang
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, 15355, Republic of Korea
| | - Sung Uk Choi
- Department of Anesthesiology and Pain Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| |
Collapse
|
10
|
Yang X, Xu F, Ma G, Pu F. Maternal Exposure to Environmental Air Pollution and Premature Rupture of Membranes: Evidence from Southern China. Med Sci Monit 2024; 30:e943601. [PMID: 38812259 PMCID: PMC11149469 DOI: 10.12659/msm.943601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/03/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Exposure to air pollution (AP) during pregnancy is associated with pre-labor rupture of membranes (PROM). However, there is limited research on this topic, and the sensitive exposure windows remain unclear. The present study assessed the association between AP exposure and the risk of PROM, as well as seeking to identify the sensitive time windows. MATERIAL AND METHODS This retrospective study analyzed 4276 pregnant women's data from Tongling Maternal and Child Health Hospital from 2020 to 2022. We obtained air pollution data, including particulate matter (PM) with an aerodynamic diameter of ≤2.5 μm (PM₂․₅), particulate matter with an aerodynamic diameter of ≤10 μm (PM₁₀), nitrogen dioxide (NO₂), and ozone (O₃), from the Tongling Ecology and Environment Bureau. Demographic information was extracted from medical records. We employed a distributed lag model to identify the sensitive exposure windows of prenatal AP affecting the risk of PROM. We conducted a sensitivity analysis based on pre-pregnancy BMI. RESULTS We found a significant association between prenatal exposure to AP and increased PROM risk after adjusting for confounders, and the critical exposure windows of AP were the 6th to 7th months of pregnancy. In the underweight group, an increase of 10 µg/m³ in PM₂․₅ was associated with a risk of PROM, with an odds ratio (OR) of 1.48 (95% CI: 1.16, 1.89). Similarly, a 10 µg/m³ increase in PM₁₀ was associated with a risk of PROM, with an OR of 1.45 (95% CI: 1.05, 1.77). CONCLUSIONS Prenatal exposure to AP, particularly during months 6-7 of pregnancy, is associated with an increased risk of PROM. This study extends and strengthens the evidence on the association between prenatal exposure to AP and the risk of PROM, specifically identifying the critical exposure windows.
Collapse
Affiliation(s)
- Xiaowu Yang
- Department of Maternal Health Care, Maternal and Child Health Hospital of Tongling, Tongling, Anhui, PR China
| | - Fengsheng Xu
- Department of Diseases, The Public Health Service Center of Economic Development Zone of Hefei, Hefei, Anhui, PR China
| | - Gongyan Ma
- Department of AIDS Prevention and Control, Center for Disease Control of Liuan, Liuan, Anhui, PR China
| | - Feng Pu
- Department of Maternal Health Care, Maternal and Child Health Hospital of Tongling, Tongling, Anhui, PR China
| |
Collapse
|
11
|
Kinjo Y, Shibata E, Askew DJ, Tanaka R, Suga R, Shimono M, Sakuragi T, Morokuma S, Ogawa M, Sanefuji M, Hamada N, Ochiai M, Ohga S, Tsuji M, Kusuhara K, Yoshino K. Association of placental weight at birth with maternal whole blood concentration of heavy metals (cadmium, lead, mercury, selenium, and manganese): The Japan Environment and Children's Study (JECS). ENVIRONMENT INTERNATIONAL 2024; 188:108725. [PMID: 38759546 DOI: 10.1016/j.envint.2024.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Lifelong health is dependent on prenatal growth and development, influenced by the placental intrauterine environment. Charged with dual functions--exchange of oxygen and nutrients as well as a barrier against toxins--the placenta itself is susceptible to environmental exposure to heavy metals. OBJECTIVE To examine the use of placenta weight as a biomarker for heavy metal exposure using a large Japanese cohort of pregnant women. METHODS The placenta weight, as a biomarker of exposure to heavy metals (cadmium, lead, and mercury), was investigated using data from the Japan Environment and Children's Study (2011-2014). Selenium and manganese were included as factors directly affecting fetal growth or heavy metal toxicity. Maternal blood samples collected in the second or third trimester were used to measure heavy metal concentrations. The association between maternal blood metal concentrations and placenta weight was explored by applying Z scores and multivariable logistic regression analysis and classifying participants into quartiles (Q1, Q2, Q3, and Q4) according to metal concentrations. RESULTS This study included a total of 73,005 singleton pregnant women who delivered via live births and met the inclusion criteria. The median heavy metal concentrations in the maternal whole blood were 0.662 ng/g cadmium, 5.85 ng/g lead, 3.61 ng/g mercury, 168 ng/g selenium, and 15.3 ng/g manganese. Regression analysis revealed a significant correlation between placenta weight Z scores and maternal blood metal concentrations: cadmium, 0.0660 (standard error = 0.0074, p < 0.001); selenium, -0.3137 (standard error = 0.0276, p < 0.001); and manganese, 0.1483 (standard error = 0.0110, p < 0.001). CONCLUSION This study provides a robust examination of the association between heavy metal exposure and placenta weight. Cadmium and manganese showed a positive correlation with significant differences, whereas selenium showed a negative correlation. Essential elements notably affect placenta weight differently. No significant association was noted between lead or mercury and placenta weight.
Collapse
Affiliation(s)
- Yasuyuki Kinjo
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakushu 807-8555, Japan.
| | - Eiji Shibata
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakushu 807-8555, Japan.
| | - David J Askew
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakushu 807-8555, Japan.
| | - Rie Tanaka
- Department of Environmental Health, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakushu 807-8555, Japan.
| | - Reiko Suga
- Regional Center for Japan Environment and Children's Study, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakushu, Fukuoka 807-8555, Japan.
| | - Masayuki Shimono
- Regional Center for Japan Environment and Children's Study, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakushu, Fukuoka 807-8555, Japan.
| | - Toshihide Sakuragi
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakushu 807-8555, Japan; Department of Environmental Health, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakushu 807-8555, Japan.
| | - Seiichi Morokuma
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Masanobu Ogawa
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Masafumi Sanefuji
- Research Center for Environmental and Developmental Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | - Norio Hamada
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Research Center for Environmental and Developmental Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Masayuki Ochiai
- Research Center for Environmental and Developmental Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Shouichi Ohga
- Research Center for Environmental and Developmental Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Mayumi Tsuji
- Department of Environmental Health, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakushu 807-8555, Japan; Regional Center for Japan Environment and Children's Study, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakushu, Fukuoka 807-8555, Japan.
| | - Koichi Kusuhara
- Regional Center for Japan Environment and Children's Study, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakushu, Fukuoka 807-8555, Japan; Department of Pediatrics, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakushu 807-8555, Japan.
| | - Kiyoshi Yoshino
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakushu 807-8555, Japan; Regional Center for Japan Environment and Children's Study, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakushu, Fukuoka 807-8555, Japan.
| |
Collapse
|
12
|
Yanai T, Yoshida S, Takeuchi M, Kawakami C, Kawakami K, Ito S. Association between maternal heavy metal exposure and Kawasaki Disease, the Japan Environment and Children's Study (JECS). Sci Rep 2024; 14:9947. [PMID: 38689029 PMCID: PMC11061304 DOI: 10.1038/s41598-024-60830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/27/2024] [Indexed: 05/02/2024] Open
Abstract
Kawasaki disease (KD) is an acute systemic vasculitis primarily affecting young children, with an unclear etiology. We investigated the link between maternal heavy metal exposure and KD incidence in children using the Japan Environment and Children's Study, a large-scale nationwide prospective cohort with approximately 100,000 mother-child pairs. Maternal blood samples collected during the second/third trimester were analyzed for heavy metals [mercury (Hg), cadmium (Cd), lead (Pb), selenium (Se), manganese (Mn)], divided into four quartiles based on concentration levels. KD incidence within the first year of life was tracked via questionnaire. Among 85,378 mother-child pairs, 316 children (0.37%) under one year were diagnosed with KD. Compared with the lowest concentration group (Q1), the highest (Q4) showed odds ratios (95% confidence interval) for Hg, 1.29 (0.82-2.03); Cd, 0.99 (0.63-1.58); Pb, 0.84 (0.52-1.34); Se, 1.17 (0.70-1.94); Mn, 0.70 (0.44-1.11), indicating no concentration-dependent increase. Sensitivity analyses with logarithmic transformation and extended outcomes up to age 3 yielded similar results. No significant association was found between maternal heavy metal levels and KD incidence, suggesting that heavy metal exposure does not increase KD risk.
Collapse
Affiliation(s)
- Takanori Yanai
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Satomi Yoshida
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masato Takeuchi
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Chihiro Kawakami
- Kanagawa Regional Center for JECS, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Koji Kawakami
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Shuichi Ito
- Kanagawa Regional Center for JECS, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| |
Collapse
|
13
|
Khosravipour M, Golbabaei F. Short-term ambient temperature variations and incidence of preterm birth: A systematic review and meta-analysis. Int J Hyg Environ Health 2024; 256:114319. [PMID: 38171266 DOI: 10.1016/j.ijheh.2023.114319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
This study aimed to determine the short-term effects of ambient temperature variations exposures on the incidence of preterm birth (PTB) for each single lag day (lag0 to lag6) and cumulative lag days (lag0-1 to lag0-6) up to a week before birth. To find relevant publications, online databases, including Web of Science, PubMed, and Scopus were searched with appropriate keywords and Mesh terms from their inception to October 25, 2023. Overall, the number of 39 observational studies with 12.5 million pregnant women and 700.000 cases of PTB met our eligibility criteria. The associations of temperature variations with the incidence of PTB were investigated with two different meta-analyses, including the percentile meta-analysis (comparing different percentiles (P1 to P99) with a referent percentile (P50)), and the linear meta-analysis (per 5 °C increment of the temperature levels). For the percentile meta-analysis, we observed both extreme cold (P1, only lag 0) and heat (P95 and P99 with the highest risk at lag1 and lag0-6) exposures can be significantly associated with a higher risk of PTB. The pooled RR (95 % CI) per 5 °C increase in the temperature levels at lag0-6 was estimated as 1.038 (1.018, 1.058) for the overall analysis. Subgroup analysis based on the season shows a significant association in the warm season (RR = 1.082 and 95 % CI = 1.036, 1.128) at all lag days but not the cold season. For the single lag day, we observed the risk of PTB is the highest at lag1 and decreased with moving to lag6. In sum, we suppose there is a nearly V-shape non-linear association between air temperature levels and the incidence of PTB with the linear relationship for each unit increase (also decrease) in the temperature levels above (also below) moderate temperature limits. Future studies should investigate possible association of occupational heat and cold exposure during pregnancy on the incidence of adverse birth outcomes such as PTB.
Collapse
Affiliation(s)
- Masoud Khosravipour
- Occupational Health Engineering Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farideh Golbabaei
- Occupational Health Engineering Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Bozack AK, Rifas-Shiman SL, Baccarelli AA, Wright RO, Gold DR, Oken E, Hivert MF, Cardenas A. Associations of prenatal one-carbon metabolism nutrients and metals with epigenetic aging biomarkers at birth and in childhood in a US cohort. Aging (Albany NY) 2024; 16:3107-3136. [PMID: 38412256 PMCID: PMC10929819 DOI: 10.18632/aging.205602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Epigenetic gestational age acceleration (EGAA) at birth and epigenetic age acceleration (EAA) in childhood may be biomarkers of the intrauterine environment. We investigated the extent to which first-trimester folate, B12, 5 essential, and 7 non-essential metals in maternal circulation are associated with EGAA and EAA in early life. Bohlin EGAA and Horvath pan-tissue and skin and blood EAA were calculated using DNA methylation measured in cord blood (N=351) and mid-childhood blood (N=326; median age = 7.7 years) in the Project Viva pre-birth cohort. A one standard deviation increase in individual essential metals (copper, manganese, and zinc) was associated with 0.94-1.2 weeks lower Horvath EAA at birth, and patterns of exposures identified by exploratory factor analysis suggested that a common source of essential metals was associated with Horvath EAA. We also observed evidence nonlinear associations of zinc with Bohlin EGAA, magnesium and lead with Horvath EAA, and cesium with skin and blood EAA at birth. Overall, associations at birth did not persist in mid-childhood; however, arsenic was associated with greater EAA at birth and in childhood. Prenatal metals, including essential metals and arsenic, are associated with epigenetic aging in early life, which might be associated with future health.
Collapse
Affiliation(s)
- Anne K. Bozack
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, NY 10032, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health and Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Yang N, Quick HS, Melly SJ, Mullin AM, Zhao Y, Edwards J, Clougherty JE, Schinasi LH, Burris HH. Spatial Patterning of Spontaneous and Medically Indicated Preterm Birth in Philadelphia. Am J Epidemiol 2024; 193:469-478. [PMID: 37939071 DOI: 10.1093/aje/kwad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/18/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023] Open
Abstract
Preterm birth (PTB) remains a key public health issue that disproportionately affects Black individuals. Since spontaneous PTB (sPTB) and medically indicated PTB (mPTB) may have different causes and interventions, we quantified racial disparities for sPTB and mPTB, and we characterized the geographic patterning of these phenotypes, overall and according to race/ethnicity. We examined a pregnancy cohort of 83,952 singleton births at 2 Philadelphia hospitals from 2008-2020, and classified each PTB as sPTB or mPTB. We used binomial regression to quantify the magnitude of racial disparities between non-Hispanic Black and non-Hispanic White individuals, then generated small area estimates by applying a Bayesian model that accounts for small numbers and smooths estimates of PTB risk by borrowing information from neighboring areas. Racial disparities in both sPTB and mPTB were significant (relative risk of sPTB = 1.83, 95% confidence interval: 1.70, 1.98; relative risk of mPTB = 2.20, 95% confidence interval: 2.00, 2.42). The disparity was 20% greater in mPTB than sPTB. There was substantial geographic variation in PTB, sPTB, and mPTB risks and racial disparity. Our findings underscore the importance of distinguishing PTB phenotypes within the context of public health and preventive medicine. Future work should consider social and environmental exposures that may explain geographic differences in PTB risk and disparities.
Collapse
|
16
|
Issah I, Duah MS, Arko-Mensah J, Bawua SA, Agyekum TP, Fobil JN. Exposure to metal mixtures and adverse pregnancy and birth outcomes: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168380. [PMID: 37963536 DOI: 10.1016/j.scitotenv.2023.168380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Prenatal exposure to metal mixtures is associated with adverse pregnancy and birth outcomes like low birth weight, preterm birth, and small for gestational age. However, prior studies have used individual metal analysis, lacking real-life exposure scenarios. OBJECTIVES This systematic review aims to evaluate the strength and consistency of the association between metal mixtures and pregnancy and birth outcomes, identify research gaps, and inform future studies and policies in this area. METHODS The review adhered to the updated Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) checklist, along with the guidelines for conducting systematic reviews and meta-analyses of observational studies of etiology (COSMOS-E). Our data collection involved searching the PubMed, MEDLINE, and SCOPUS databases. We utilized inclusion criteria to identify relevant studies. These chosen studies underwent thorough screening and data extraction procedures. Methodological quality evaluations were conducted using the NOS framework for cohort and case-control studies, and the AXIS tool for cross-sectional studies. RESULTS The review included 34 epidemiological studies, half of which focused on birth weight, and the others investigated neonate size, preterm birth, small for gestational age, miscarriage, and placental characteristics. The findings revealed significant associations between metal mixtures (including mercury (Hg), nickel (Ni), arsenic (As), cadmium (Cd), manganese (Mn), cobalt (Co), lead (Pb), zinc (Zn), barium (Ba), cesium (Cs), copper (Cu), selenium (Se), and chromium (Cr)) and adverse pregnancy and birth outcomes, demonstrating diverse effects and potential interactions. CONCLUSION In conclusion, this review consistently establishes connections between metal exposure during pregnancy and adverse consequences for birth weight, gestational age, and other vital birth-related metrics. This review further demonstrates the need to apply mixture methods with caution but also shows that they can be superior to traditional approaches. Further research is warranted to deeper understand the underlying mechanisms and to develop effective strategies for mitigating the potential risks associated with metal mixture exposure during pregnancy.
Collapse
Affiliation(s)
- Ibrahim Issah
- West Africa Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Surgery, Tamale Teaching Hospital, Tamale, Ghana.
| | - Mabel S Duah
- West Africa Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biological, Environmental and Occupational Health, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; West African Center for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - John Arko-Mensah
- West Africa Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biological, Environmental and Occupational Health, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Serwaa A Bawua
- West Africa Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biological, Environmental and Occupational Health, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Thomas P Agyekum
- Department of Occupational and Environmental Health and Safety, School of Public Health, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana
| | - Julius N Fobil
- West Africa Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biological, Environmental and Occupational Health, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
17
|
Sherratt S. Hearing Loss and Disorders: The Repercussions of Climate Change. Am J Audiol 2023; 32:793-811. [PMID: 37812783 DOI: 10.1044/2023_aja-23-00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
PURPOSE Climate change is considered to be the greatest threat to human health in the 21st century, and its effects are accelerating. Extensive research has clearly demonstrated its increasing impact across the continuum of health conditions. Despite this, there has been limited attention to the ramifications of climate change on hearing loss and hearing disorders. This lack of consideration is somewhat surprising as the environment itself and its changing nature have a substantial effect on hearing. METHOD Tackling climate change could be the greatest global health opportunity of the 21st century. To address this issue, this tutorial provides a general introduction to climate change and its three major elements (pollution, infectious diseases, and extreme weather events) and their effects on health. The substantial consequences of climate change for the incidence, development, and exacerbation of hearing loss and disorders are clearly described and detailed. CONCLUSIONS The challenge of responding to this very real and escalating threat to hearing requires a combination of prevention, advocacy, and education. These three roles place audiologists in the perfect position to take action on the far-reaching effects of climate change on hearing loss and disorders. To respond to this challenge and to fulfill these roles, several strategies, ranging from the individual level to the global level, are delineated for audiologists to incorporate into their practice.
Collapse
Affiliation(s)
- Sue Sherratt
- Communication Research Australia, Newcastle, New South Wales
| |
Collapse
|
18
|
Hoover JH, Coker ES, Erdei E, Luo L, Begay D, MacKenzie D, Lewis J. Preterm Birth and Metal Mixture Exposure among Pregnant Women from the Navajo Birth Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127014. [PMID: 38109118 PMCID: PMC10727039 DOI: 10.1289/ehp10361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Preterm birth (PTB), defined as birth before 37 wk gestation, is associated with hypertension, diabetes, inadequate prenatal care, unemployment or poverty, and metal exposure. Indigenous individuals are more likely to have maternal risk factors associated with PTB compared with other populations in the United States; however, the role of environmental metals on PTB among pregnant Indigenous women remains uncertain. Previous research identified associations between PTB and individual metals, but there is limited investigation on metal mixtures and this birth outcome. OBJECTIVES We used a mixtures analysis framework to investigate the association between metal mixtures and PTB among pregnant Indigenous women from the Navajo Birth Cohort Study (NBCS). METHODS Maternal urine and blood samples were collected at the time of study enrollment and analyzed for metals by inductively coupled plasma dynamic reaction cell mass spectrometry. Bayesian Profile Regression was used to identify subgroups (clusters) of individuals with similar patterns of coexposure and to model association with PTB. RESULTS Results indicated six subgroups of maternal participants with distinct exposure profiles, including one group with low exposure to all metals and one group with total arsenic, cadmium, lead, and uranium concentrations exceeding representative concentrations calculated from the National Health and Nutrition Examination Survey (NHANES). Compared with the reference group (i.e., the lowest exposure subgroup), the subgroup with the highest overall exposure had a relative risk of PTB of 2.9 times (95% credible interval: 1.1, 6.1). Exposures in this subgroup were also higher overall than NHANES median values for women 14-45 years of age. DISCUSSION Given the wide range of exposures and elevated PTB risk for the most exposed subgroups in a relatively small study, follow-up investigation is recommended to evaluate associations between metal mixture profiles and other birth outcomes and to test hypothesized mechanisms of action for PTB and oxidative stress caused by environmental metals. https://doi.org/10.1289/EHP10361.
Collapse
Affiliation(s)
- Joseph H. Hoover
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Department of Environmental Science, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, Arizona, USA
| | - Eric S. Coker
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Esther Erdei
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Li Luo
- Department of Internal Medicine and Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - David Begay
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Debra MacKenzie
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - NBCS Study Team
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Johnnye Lewis
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
19
|
Lis N, Lamnisos D, Bograkou-Tzanetakou A, Hadjimbei E, Tzanetakou IP. Preterm Birth and Its Association with Maternal Diet, and Placental and Neonatal Telomere Length. Nutrients 2023; 15:4975. [PMID: 38068836 PMCID: PMC10708229 DOI: 10.3390/nu15234975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Preterm birth (PTB), a multi-causal syndrome, is one of the global epidemics. Maternal nutrition, but also neonatal and placental telomere length (TL), are among the factors affecting PTB risk. However, the exact relationship between these factors and the PTB outcome, remains obscure. The aim of this review was to investigate the association between PTB, maternal nutrition, and placental-infant TL. Observational studies were sought with the keywords: maternal nutrition, placental TL, newborn, TL, and PTB. No studies were found that included all of the keywords simultaneously, and thus, the keywords were searched in dyads, to reach assumptive conclusions. The findings show that maternal nutrition affects PTB risk, through its influence on maternal TL. On the other hand, maternal TL independently affects PTB risk, and at the same time PTB is a major determinant of offspring TL regulation. The strength of the associations, and the extent of the influence from covariates, remains to be elucidated in future research. Furthermore, the question of whether maternal TL is simply a biomarker of maternal nutritional status and PTB risk, or a causative factor of PTB, to date, remains to be answered.
Collapse
Affiliation(s)
- Nikoletta Lis
- Department of Health Sciences, European University Cyprus, Nicosia 2404, Cyprus; (N.L.); (D.L.)
- Maternity Clinic, Cork University Maternity Hospital, T12 YE02 Cork, Ireland
| | - Demetris Lamnisos
- Department of Health Sciences, European University Cyprus, Nicosia 2404, Cyprus; (N.L.); (D.L.)
| | | | - Elena Hadjimbei
- Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| | - Irene P. Tzanetakou
- Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| |
Collapse
|
20
|
Liu Y, Wang T, Ge Y, Shen H, Li J, Qiao C. Individual and combined association between nutritional trace metals and the risk of preterm birth in a recurrent pregnancy loss cohort. Front Nutr 2023; 10:1205748. [PMID: 38099181 PMCID: PMC10720726 DOI: 10.3389/fnut.2023.1205748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Background Recurrent pregnancy loss (RPL) was associated with an elevated risk of pregnancy complications, particularly preterm birth (PTB). However, the risk factors associated with PTB in RPL remained unclear. Emerging evidence indicated that maternal exposure to metals played a crucial role in the development of PTB. The objective of our study was to investigate the individual and combined associations of nutritional trace metals (NTMs) during pregnancy with PTB in RPL. Methods Using data from a recurrent pregnancy loss cohort (n = 459), propensity score matching (1:3) was performed to control for covariates. Multiple logistic regression and multiple linear regression were employed to identify the individual effects, while elastic-net regularization (ENET) and Bayesian kernel machine regression (BKMR) were used to examine the combined effects on PTB in RPL. Results The logistic regression model found that maternal exposure to copper (Cu) (quantile 4 [Q4] vs. quantile 1 [Q1], odds ratio [OR]: 0.21, 95% confidence interval [CI]: 0.05, 0.74) and zinc (Zn) (Q4 vs. Q1, OR: 0.19, 95%CI: 0.04, 0.77) was inversely associated with total PTB risk. We further constructed environmental risk scores (ERSs) using principal components and interaction terms derived from the ENET model to predict PTB accurately (p < 0.001). In the BKMR model, we confirmed that Cu was the most significant component (PIP = 0.85). When other metals were fixed at the 25th and 50th percentiles, Cu was inversely associated with PTB. In addition, we demonstrated the non-linear relationships of Zn with PTB and the potential interaction between Cu and other metals, including Zn, Ca, and Fe. Conclusion In conclusion, our study highlighted the significance of maternal exposure to NTMs in RPL and its association with PTB risk. Cu and Zn were inversely associated with PTB risk, with Cu identified as a crucial factor. Potential interactions between Cu and other metals (Zn, Ca, and Fe) further contributed to the understanding of PTB etiology in RPL. These findings suggest opportunities for personalized care and preventive interventions to optimize maternal and infant health outcomes.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Tingting Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Yunpeng Ge
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Hongfei Shen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Jiapo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| | - Chong Qiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, China
| |
Collapse
|
21
|
Zhao L, Li T, Wang H, Fan YM, Xiao Y, Wang X, Wang S, Sun P, Wang P, Jiangcuo Z, Tong L, Wang L, Peng W. Association of co-exposure to metal(loid)s during pregnancy with birth outcomes in the Tibetan plateau. CHEMOSPHERE 2023; 342:140144. [PMID: 37704082 DOI: 10.1016/j.chemosphere.2023.140144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Maternal metal (loid)s exposure has been related to birth outcomes but the results are still inconclusive. Most previous studies have discussed the single metal (loid)s, neglecting the scene of co-exposure. We examined the associations of both single metal (loid)s and metal mixtures with birth outcomes in a birth cohort from the Tibetan Plateau, including body weight, body length, head circumference, small for gestational age (SGA), and Ponderal index (PI). In our analysis of 1069 women, we measured 29 metal (loid)s in urine samples in the third trimester. The associations of single metal (loid)s with categorical or continuous birth outcomes were evaluated using a generalized linear mixed-effects model or linear mixed-effects model, respectively. The least absolute shrinkage and selection operator, Bayesian kernel machine, and Quantile g-computation regression were used to explore the joint association. We also evaluated the interactive effects of ethnicity and altitude on the effect of metal (loid)s on birth outcomes. Copper (Cu) concentration in maternal urine was positively associated with SGA, birth weight, birth length, and head circumference in the single pollutant models. For instance, Cu was associated with an increased risk of SGA [OR (95% CI) = 1.56 (1.23, 1.97); P < 0.001]. We didn't find significant joint association of metal mixtures with birth outcomes except a positive association between the mixture of Cu, Magnesium (Mg), and Iron (Fe) with the risk of SGA when the exposure level was above its 80th percentile, and Cu dominated the adverse association in a non-linear manner. Living altitude modified the associations of Cu with SGA and the positive association was only found in participants living at high altitude. In conclusion, maternal urinary metal (loid)s, especially Cu, was the dominant harmful metal (loid)s when associated with SGA on the Tibetan Plateau.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Public Health, Nutrition and Health Promotion Center, Medical College, Qinghai University, Xining, China
| | - Tiemei Li
- Department of Public Health, Nutrition and Health Promotion Center, Medical College, Qinghai University, Xining, China
| | - Haijing Wang
- Department of Public Health, Nutrition and Health Promotion Center, Medical College, Qinghai University, Xining, China
| | - Yue-Mei Fan
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, China
| | - Xuejun Wang
- Department of Anesthesiology, Qinghai Red Cross Hospital, Xining, China
| | - Shulin Wang
- Department of Public Health, Nutrition and Health Promotion Center, Medical College, Qinghai University, Xining, China
| | - Pin Sun
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Pinhua Wang
- Department of Obstetrics and Gynecology, Qinghai Red Cross Hospital, Xining, China
| | | | - Li Tong
- Department of Traditional Chinese Medicine, Medical College of Qinghai University, Xining, China; Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Medical College, Qinghai University, Qinghai, China
| | - Liehong Wang
- Department of Obstetrics and Gynecology, Qinghai Red Cross Hospital, Xining, China.
| | - Wen Peng
- Department of Public Health, Nutrition and Health Promotion Center, Medical College, Qinghai University, Xining, China; Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Medical College, Qinghai University, Qinghai, China.
| |
Collapse
|
22
|
Eaves LA, Keil AP, Jukic AM, Dhingra R, Brooks JL, Manuck TA, Rager JE, Fry RC. Toxic metal mixtures in private well water and increased risk for preterm birth in North Carolina. Environ Health 2023; 22:69. [PMID: 37845729 PMCID: PMC10577978 DOI: 10.1186/s12940-023-01021-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Prenatal exposure to metals in private well water may increase the risk of preterm birth (PTB) (delivery < 37 weeks' gestation). In this study, we estimated associations between arsenic, manganese, lead, cadmium, chromium, copper, and zinc concentrations in private well water and PTB incidence in North Carolina (NC). METHODS Birth certificates from 2003-2015 (n = 1,329,071) were obtained and pregnancies were assigned exposure using the mean concentration and the percentage of tests above the maximum contaminant level (MCL) for the census tract of each individuals' residence at the time of delivery using the NCWELL database (117,960 well water tests from 1998-2019). We evaluated associations between single metals and PTB using adjusted logistic regression models. Metals mixtures were assessed using quantile-based g-computation. RESULTS Compared with those in other census tracts, individuals residing in tracts where > 25% of tests exceeded the MCL for lead (aOR 1.10, 95%CI 1.02,1.18) or cadmium (aOR 1.11, 95% CI 1.00,1.23) had an increased odds of PTB. Conversely, those residing in areas with > 25% MCL for zinc (aOR 0.77 (95% CI: 0.56,1.02) and copper (aOR 0.53 (95% CI: 0.13,1.34)) had a reduced odds of PTB. A quartile increase in the concentrations of a mixture of lead, cadmium, and chromium was associated with a small increased odds for PTB (aOR 1.02, 95% CI 1.01, 1.03). This metal mixture effect was most pronounced among American Indian individuals (aOR per quartile increase in all metals: 1.19 (95% CI 1.06,1.34)). CONCLUSIONS In a large study population of over one million births, lead and cadmium were found to increase the risk of PTB individually and in a mixture, with additional mixtures-related impacts estimated from co-exposure with chromium. This study highlights critical racial and ethnic health disparities in relation to private well water thereby emphasizing the urgent need for improved private well water quality to protect vulnerable populations.
Collapse
Affiliation(s)
- Lauren A Eaves
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 166A Rosenau Hall, CB #7431, Chapel Hill, NC, 27599, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Keil
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne Marie Jukic
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Radhika Dhingra
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 166A Rosenau Hall, CB #7431, Chapel Hill, NC, 27599, USA
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Jada L Brooks
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tracy A Manuck
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Julia E Rager
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 166A Rosenau Hall, CB #7431, Chapel Hill, NC, 27599, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 166A Rosenau Hall, CB #7431, Chapel Hill, NC, 27599, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
23
|
Zhao L, Wang S, Liu M, Cao Z, Xiao Y, Wang P, Jiangcuo Z, Jian W, Zhang Y, Xu R, Wang X, Peng W. Maternal urinary metal(loid)s and risk of preterm birth: A cohort study in the Tibetan Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122085. [PMID: 37348700 DOI: 10.1016/j.envpol.2023.122085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Maternal metal(loid)s exposure has been related to preterm birth (PTB), but the results are still inconclusive. Previous studies have mainly discussed the harmful metal(loid)s, neglecting beneficial ones. We examined the association of maternal metal(loid)s with PTB and gestational age (GA) in a birth cohort from the Tibetan Plateau. We measured 29 metal(loid)s in urine samples from 1081 pregnant women in the third trimester. Information regarding demographics, socioeconomic status, diet, medication, and lifestyle was collected through standardized interviews. The associations of single metal(loid)s with PTB or GA were evaluated using a generalized linear mixed-effects model or linear mixed-effects model. Elastic net and Bayesian kernel machine regressions were used to explore the joint associations. Magnesium (Mg), Copper (Cu), and Tin (Sn) were the main "harmful" metal(loid)s positively and negatively associated with PTB or GA, respectively. Mg was the dominant "harmful" metal(loid)s associated with PTB in a J-shape. A one-fold increase in Mg was associated with a 38% increased risk of PTB [OR (95% CI) = 1.38 (1.15, 1.65), PFDR<0.05] and 0.17 weeks shortening of GA [β (95% CI) = -0.25 (-0.35, -0.14), PFDR<0.05]. Cesium (Cs), rubidium (Rb), and Molybdenum (Mo) were the main "beneficial" metals. Cs dominated the "beneficial" associations and was negatively associated with PTB in a linear manner. A one-fold increase in Cs was associated with a 67% decreased risk of PTB [OR (95% CI) = 0.43 (0.27, 0.67), PFDR<0.05] and 0.24 weeks of prolonged GA [β (95% CI) = 0.35 (0.13, 0.56), PFDR<0.05]. Ethnicity and living altitude modified the association of Mg and Cu with PTB or GA. In conclusion, Maternal urinary metal(loid)s were bi-directionally associated with PTB in a population in the Tibetan Plateau. Mg and Cs were the dominant "harmful" and "beneficial" metal(loid)s, respectively.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Public Health, Medical College, Qinghai University, Xining, Qinghai, China
| | - Shulin Wang
- Department of Public Health, Medical College, Qinghai University, Xining, Qinghai, China
| | - Miao Liu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Zhongqiang Cao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Pinhua Wang
- Department of Obstetrics and Gynecology, Qinghai Red Cross Hospital, Xining, Qinghai, China
| | | | - Wenxiu Jian
- Department of Public Health, Medical College, Qinghai University, Xining, Qinghai, China
| | - Yangrui Zhang
- Department of Public Health, Medical College, Qinghai University, Xining, Qinghai, China
| | - Ruihua Xu
- Department of Public Health, Medical College, Qinghai University, Xining, Qinghai, China
| | - Xuejun Wang
- Department of Anesthesiology, Qinghai Red Cross Hospital, Xining, Qinghai, China
| | - Wen Peng
- Department of Public Health, Medical College, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
24
|
Berky AJ, Weinhouse C, Vissoci J, Rivera N, Ortiz EJ, Navio S, Miranda JJ, Mallipudi A, Fixen E, Hsu-Kim H, Pan WK. In Utero Exposure to Metals and Birth Outcomes in an Artisanal and Small-Scale Gold Mining Birth Cohort in Madre de Dios, Peru. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:97008. [PMID: 37747404 PMCID: PMC10519195 DOI: 10.1289/ehp10557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Few birth cohorts in South America evaluate the joint effect of minerals and toxic metals on neonatal health. In Madre de Dios, Peru, mercury exposure is prevalent owing to artisanal gold mining, yet its effect on neonatal health is unknown. OBJECTIVES We aimed to determine whether toxic metals are associated with lower birth weight and shorter gestational age independently of antenatal care and other maternal well-being factors. METHODS Data are from the COhorte de NAcimiento de MAdre de Dios (CONAMAD) birth cohort, which enrolled pregnant women in Madre de Dios prior to their third trimester and obtained maternal and cord blood samples at birth. We use structural equation models (SEMs) to construct latent variables for the maternal metals environment (ME) and the fetal environment (FE) using concentrations of calcium, iron, selenium, zinc, magnesium, mercury, lead, and arsenic measured in maternal and cord blood, respectively. We then assessed the relationship between the latent variables ME and FE, toxic metals, prenatal visits, hypertension, and their effect on gestational age and birth weight. RESULTS Among 198 mothers successfully enrolled and followed at birth, 29% had blood mercury levels that exceeded the U.S. Centers for Disease Control and Prevention threshold of 5.8 μ g / L and 2 mothers surpassed the former 5 - μ g / dL threshold for blood lead. The current threshold value is 3.5 μ g / dL . Minerals and toxic metals loaded onto ME and FE latent variables. ME was associated with FE (β = 0.24; 95% CI: 0.05, 0.45). FE was associated with longer gestational age (β = 2.31; 95% CI: - 0.3 , 4.51) and heavier birth weight. Mercury exposure was not directly associated with health outcomes. A 1% increase in maternal blood lead shortened gestational age by 0.05 d (β = - 0.75 ; 95% CI: - 1.51 , - 0.13 ), which at the 5 - μ g / dL threshold resulted in a loss of 3.6 gestational days and 76.5 g in birth weight for newborns. Prenatal care visits were associated with improved birth outcomes, with a doubling of visits from 6 to 12 associated with 5.5 more gestational days (95% CI: 1.6, 9.4) and 319 g of birth weight (95% CI: 287.6, 350.7). DISCUSSION Maternal lead, even at low exposures, was associated with shorter gestation and lower birth weight. Studies that focus only on harmful exposures or nutrition may mischaracterize the dynamic maternal ME and FE. SEMs provide a framework to evaluate these complex relationships during pregnancy and reduce overcontrolling that can occur with linear regression. https://doi.org/10.1289/EHP10557.
Collapse
Affiliation(s)
- Axel J. Berky
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Joao Vissoci
- Division of Emergency Medicine, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nelson Rivera
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Ernesto J. Ortiz
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Susy Navio
- Dirección Regional de Salud, Ministerio de Salud del Perú, Madre de Dios, Perú
| | - J. Jaime Miranda
- CRONICAS Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru
- School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andres Mallipudi
- Bellevue Hospital Center/Ronald O. Perelman Department of Emergency Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Emma Fixen
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - William K. Pan
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
25
|
Qiu Z, Li W, Qiu Y, Chen Z, Yang F, Xu W, Gao Y, Liu Z, Li Q, Jiang M, Liu H, Zhan Y, Dai L. Third trimester as the susceptibility window for maternal PM 2.5 exposure and preterm birth: A nationwide surveillance-based association study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163274. [PMID: 37019233 DOI: 10.1016/j.scitotenv.2023.163274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
Maternal PM2.5 exposure has been identified as a potential risk factor for preterm birth, yet the inconsistent findings on the susceptible exposure windows may be partially due to the influence of gaseous pollutants. This study aims to examine the association between PM2.5 exposure and preterm birth during different susceptible exposure windows after adjusting for exposure to gaseous pollutants. We collected 2,294,188 records of singleton live births from 30 provinces of China from 2013 to 2019, and the gridded daily concentrations of air pollutants (including PM2.5, O3, NO2, SO2, and CO) were derived by using machine learning models for assessing individual exposure. We employed logistic regression to develop single-pollutant models (including PM2.5 only) and co-pollutant models (including PM2.5 and a gaseous pollutant) to estimate the odds ratio for preterm birth and its subtypes, with adjustment for maternal age, neonatal sex, parity, meteorological conditions, and other potential confounders. In the single-pollutant models, PM2.5 exposure in each trimester was significantly associated with preterm birth, and the third trimester exposure showed a stronger association with very preterm birth than that with moderate to late preterm birth. The co-pollutant models revealed that preterm birth might be significantly associated only with maternal exposure to PM2.5 in the third trimester, and not with exposure in the first or second trimester. The observed significant associations between preterm birth and maternal PM2.5 exposure in the first and second trimesters in single-pollutant models might primarily be influenced by exposure to gaseous pollutants. Our study provides evidence that the third trimester may be the susceptible window for maternal PM2.5 exposure and preterm birth. The association between PM2.5 exposure and preterm birth could be influenced by gaseous pollutants, which should be taken into consideration when evaluating the impact of PM2.5 exposure on maternal and fetal health.
Collapse
Affiliation(s)
- Zhimei Qiu
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; The Joint Laboratory for Pulmonary Development and Related Diseases, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenyan Li
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Yang Qiu
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhiyu Chen
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Fumo Yang
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wenli Xu
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Yuyang Gao
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Zhen Liu
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Qi Li
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Min Jiang
- Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hanmin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Li Dai
- The Joint Laboratory for Pulmonary Development and Related Diseases, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
26
|
Yim G, McGee G, Gallagher L, Baker E, Jackson BP, Calafat AM, Botelho JC, Gilbert-Diamond D, Karagas MR, Romano ME, Howe CG. Metals and per- and polyfluoroalkyl substances mixtures and birth outcomes in the New Hampshire Birth Cohort Study: Beyond single-class mixture approaches. CHEMOSPHERE 2023; 329:138644. [PMID: 37031836 PMCID: PMC10208216 DOI: 10.1016/j.chemosphere.2023.138644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
We aimed to investigate the joint, class-specific, and individual impacts of (i) PFAS, (ii) toxic metals and metalloids (referred to collectively as "metals"), and (iii) essential elements on birth outcomes in a prospective pregnancy cohort using both established and recent mixture modeling approaches. Participants included 537 mother-child pairs from the New Hampshire Birth Cohort Study. Concentrations of 6 metals and 5 PFAS were measured in maternal toenail clippings and plasma, respectively. Birth weight, birth length, and head circumference at birth were abstracted from medical records. Joint, index-wise, and individual associations of the metals and PFAS concentrations with birth outcomes were evaluated using Bayesian Kernel Machine Regression (BKMR) and Bayesian Multiple Index Models (BMIM). After controlling for potential confounders, the metals-PFAS mixture was associated with a larger head circumference at birth, which was driven by manganese. When using BKMR, the difference in the head circumference z-score when changing manganese from its 25th to 75th percentiles while holding all other mixture components at their medians was 0.22 standard deviations (95% posterior credible interval [CI]: -0.02, 0.46). When using BMIM, the posterior mean of index weight estimates assigned to manganese for head circumference z-score was 0.72 (95% CI: 0, 0.99). Prenatal exposure to the metals-PFAS mixture was not associated with birth weight or birth length by either BKMR or BMIM. Using both traditional and new mixture modeling approaches, prenatal exposure to manganese was associated with a larger head circumference at birth after accounting for exposure to PFAS and multiple toxic and essential metals.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| | - Glen McGee
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Lisa Gallagher
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Emily Baker
- Department of Obstetrics and Gynecology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth-Hitchcock Weight and Wellness Center, Department of Medicine at Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA; Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
27
|
Bah HAF, dos Santos NR, Gomes Junior EA, Costa DO, Martinez VO, Pires EM, Santana JVA, Cerqueira FDS, Menezes-Filho JA. Maternal Exposure to Potentially Toxic Metals and Birth Weight: Preliminary Results from the DSAN-12M Birth Cohort in the Recôncavo Baiano, Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6211. [PMID: 37444059 PMCID: PMC10340643 DOI: 10.3390/ijerph20136211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Prenatal exposure to potentially toxic metals (PTM) may impair fetal growth (FG). We investigated the relationship between maternal exposure to lead (Pb), cadmium (Cd) and manganese (Mn) and birth weight (BW) of 74 newborns. Blood was collected during the second trimester of pregnancy to determine Pb (PbB) and Cd (CdB), while hair (MnH) and toenails (MnTn) were used for Mn. Samples were analyzed by graphite furnace atomic absorption spectrophotometry (GFAAS). Sociodemographic and BW data were collected from questionnaires and maternity records, respectively. The medians (P25th-P75th) of PbB, CdB, MnH, and MnTn were, respectively, 0.9 (0.5-1.8) µg/dL; 0.54 (0.1-0.8) µg/L; 0.18 (0.1-0.4) µg/g; and 0.65 (0.37-1.22) µg/g. The means (standard deviation) of birth weight according to sex were 3067 (426.3) and 3442 (431) grams, respectively, for girls and boys. MnTn presented an inverse correlation with the BW/gestational age ratio for girls (rho = -0.478; p = 0.018), suggesting the effect of sex modification. Although BW correlation with CdB was not statistically significant, hierarchical linear regression (beta = -2.08; 95% CI-4.58 to 0.41) suggested a fetotoxic effect. These results confirmed the threat PTMs may represent and the need for more extensive research to elucidate their role in inadequate FG in developing countries.
Collapse
Affiliation(s)
- Homègnon A. Ferréol Bah
- Institute of Collective Health, Federal University of Bahia, Salvador 40110-040, Brazil
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil
| | - Nathália R. dos Santos
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil
| | - Erival A. Gomes Junior
- Graduate Program in Food Science, College of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil
| | - Daisy O. Costa
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil
| | - Victor O. Martinez
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil
| | - Elis Macêdo Pires
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil
| | - João V. Araújo Santana
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil
| | - Filipe da Silva Cerqueira
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil
| | - José A. Menezes-Filho
- Institute of Collective Health, Federal University of Bahia, Salvador 40110-040, Brazil
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil
| |
Collapse
|
28
|
Li S, Dong X, Xu L, Wu Z. Nephroprotective Effects of Selenium Nanoparticles Against Sodium Arsenite-Induced Damages. Int J Nanomedicine 2023; 18:3157-3176. [PMID: 37333733 PMCID: PMC10276609 DOI: 10.2147/ijn.s413362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction The potential effects of selenium nanoparticles (SeNPs) administration on arsenic exposure-mediated nephrotoxicity by alleviating fibrosis, inflammation, oxidative stress-related damage, and apoptosis remains more detailed investigations. Methods After the synthesis of selenium nanoparticles (SeNPs) by sodium selenite (Na2SeO3) through a versatile and green procedure, the biosafety of SeNPs was assessed by assaying renal functions and inflammation in mice. Subsequently, nephroprotective effects of SeNPs against sodium arsenite (NaAsO2)-induced damages were confirmed by biochemical, molecular, and histopathological assays, including renal function, histological lesion, fibrosis, inflammation, oxidative stress-related damage, and apoptosis in mice renal tissues and renal tubular duct epithelial cells (HK2 cells). Results The excellent biocompatibility and safety of SeNPs prepared in this study were confirmed by the non-significant differences in the renal functions and inflammation levels in mice between the negative control (NC) and 1 mg/kg SeNPs groups (p>0.05). The results of biochemical, molecular, and histopathological assays confirmed that daily administration of 1 mg/kg SeNPs for 4 weeks not only ameliorated renal dysfunctions and injuries caused by NaAsO2 exposure but also inhibited the fibrosis, inflammation, oxidative stress-related damage, and apoptosis in the renal tissues of NaAsO2-exposed mice. In addition, altered viability, inflammation, oxidative stress-related damage, and apoptosis in the NaAsO2-exposed HK2 cells were effectively reversed after 100 μg/mL SeNPs supplementation. Conclusion Our findings authentically confirmed the biosafety and nephroprotective effects of SeNPs against NaAsO2 exposure-induced damages by alleviating inflammation, oxidative stress-related damage, and apoptosis.
Collapse
Affiliation(s)
- Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia People’s Hospital, Hohhot, 010021, People’s Republic of China
| | - Xingna Dong
- Department of Geriatric Medical Center, Inner Mongolia People’s Hospital, Hohhot, 010021, People’s Republic of China
| | - Limeng Xu
- Department of Geriatric Medical Center, Inner Mongolia People’s Hospital, Hohhot, 010021, People’s Republic of China
| | - Zhenli Wu
- Department of Geriatric Medical Center, Inner Mongolia People’s Hospital, Hohhot, 010021, People’s Republic of China
| |
Collapse
|
29
|
Qing Y, Zheng J, Tang T, Li S, Cao S, Luo Y, Chen Y, He W, Wang J, Zhou Y, Xu C, Zhang W, Ping S, Jiang M, Li D, Ji Y, Yang S, Du J, Li Y. Risk assessment of combined exposure to lead, cadmium, and total mercury among the elderly in Shanghai, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114874. [PMID: 37054469 DOI: 10.1016/j.ecoenv.2023.114874] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Lead (Pb), cadmium (Cd) and total mercury (THg) are toxic heavy metals (THMs) that are widely present in the environment and can cause substantial health problems. However, previous risk assessment studies have rarely focused on the elderly population and have usually targeted a single heavy metal, which might underestimate the long-term accumulative and synergistic effects of THMs in humans. Based on the food frequency questionnaire and inductively coupled plasma mass spectrometry, this study assessed external and internal exposures to Pb, Cd and THg in 1747 elderly people in Shanghai. Probabilistic risk assessment with the relative potential factor (RPF) model was used to assess the neurotoxicity and nephrotoxicity risks of combined THMs exposures. The mean external exposures of Pb, Cd and THg in Shanghai elderly were 46.8, 27.2 and 4.9 μg/day, respectively. Plant-based foods are the main source of Pb and THg exposure, while Cd is mainly from animal-based foods. The mean concentrations of Pb, Cd and THg were 23.3, 1.1 and 2.3 μg/L in the whole blood, and 6.2, 1.0 and 2.0 μg/L in the morning urine, respectively. Combined exposure to THMs leading to 10.0 % and 7.1 % of Shanghai elderly at risk of neurotoxicity and nephrotoxicity. The results of this study have important implications for understanding the profiles of Pb, Cd and THg exposure in the elderly living in Shanghai and provide data support for risk assessment and control of nephrotoxicity and neurotoxicity from combined THMs exposure in the elderly.
Collapse
Affiliation(s)
- Ying Qing
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201300, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | | | - TianRan Tang
- Guizhou Meteorological Observatory, Guizhou 550081, China
| | - Shichun Li
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Shiyu Cao
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yingyi Luo
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yanfeng Chen
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Wenting He
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Jutao Wang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yang Zhou
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Chenchen Xu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Weiwen Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Siyuan Ping
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Meng Jiang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Dan Li
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yunhe Ji
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Shuyu Yang
- Nutrilite Health Institute, Shanghai 201203, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai 201203, China.
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201300, China.
| |
Collapse
|
30
|
Dettwiler M, Flynn AC, Rigutto-Farebrother J. Effects of Non-Essential "Toxic" Trace Elements on Pregnancy Outcomes: A Narrative Overview of Recent Literature Syntheses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5536. [PMID: 37107818 PMCID: PMC10139051 DOI: 10.3390/ijerph20085536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 05/11/2023]
Abstract
Adverse pregnancy outcomes and their complications cause increased maternal and neonatal morbidity and mortality and contribute considerably to the global burden of disease. In the last two decades, numerous narrative and systematic reviews have emerged assessing non-essential, potentially harmful, trace element exposure as a potential risk factor. This narrative review summarizes the recent literature covering associations between exposure to cadmium, lead, arsenic, and mercury and pregnancy outcomes and highlights common limitations of existing evidence that may hinder decision-making within public health. Several initial scoping searches informed our review, and we searched PubMed (latest date July 2022) for the literature published within the last five years reporting on cadmium, lead, arsenic, or mercury and pre-eclampsia, preterm birth, or prenatal growth. Pre-eclampsia may be associated with cadmium and strongly associated with lead exposure, and exposure to these metals may increase risk of preterm birth. Many reviews have observed cadmium to be negatively associated with birth weight. Additionally, lead and arsenic exposure may be negatively associated with birth weight, with arsenic exposure also adversely affecting birth length and head circumference. These findings should be interpreted with caution due to the limitations of the reviews summarized in this paper, including high heterogeneity due to different exposure assessment methods, study designs, and timing of sampling. Other common limitations were the low quality of the included studies, differences in confounding variables, the low number of studies, and small sample sizes.
Collapse
Affiliation(s)
- Maria Dettwiler
- Human Nutrition Laboratory, Institute for Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Angela C. Flynn
- Department of Nutritional Sciences, King’s College London, London SE1 9NH, UK
| | | |
Collapse
|
31
|
Ishitsuka K, Tsuji M, Yamamoto M, Tanaka R, Suga R, Kuwamura M, Sakuragi T, Shimono M, Kusuhara K. Association between maternal fish consumption during pregnancy and preterm births: the Japan Environment and Children's Study. Environ Health Prev Med 2023; 28:47. [PMID: 37648522 PMCID: PMC10480610 DOI: 10.1265/ehpm.23-00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/30/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Fish are a rich source of essential nutrients that protect against preterm birth. However, as fish can absorb environmental pollutants, their consumption can also increase the risk of preterm birth. This study aimed to assess whether maternal fish consumption during pregnancy is associated with preterm birth in a nationwide large Japanese cohort that consumed relatively high amounts and many types of fish. METHODS This study included 81,428 mother-child pairs enrolled in a nationwide prospective Japanese birth cohort study. Fish consumption was assessed using a validated food frequency questionnaire. Multivariate logistic regression was used to investigate the association of total consumption of fish, fatty fish and lean fish, fish paste, and seafood and clams with preterm birth, adjusted for potential confounders. RESULTS There was no association between overall fish consumption and preterm births. However, the highest quintile of fish paste consumption was significantly associated with an increased risk of preterm birth (odds ratio [OR]: 1.11; 95% confidence interval [CI: 1.04, 1.17]). The consumption of baked fish paste at least three times per week was significantly associated with preterm birth (OR: 1.20; 95% CI: 1.03, 1.40). Consumption of other types of fish, except fish paste, was not significantly associated with preterm birth risk. CONCLUSIONS Fish paste consumption may increase the risk of preterm birth. Further studies are required to confirm this association.
Collapse
Affiliation(s)
- Kazue Ishitsuka
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health
- Departiment of Social Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Mayumi Tsuji
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health
- Regional Center for Japan Environment and Children’s Study, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Megumi Yamamoto
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health
- Department of Environment and Public Health, National Institute for Minamata Disease, Minamata, Japan
| | - Rie Tanaka
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health
| | - Reiko Suga
- Regional Center for Japan Environment and Children’s Study, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mami Kuwamura
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health
- Department of Pediatrics, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Toshihide Sakuragi
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health
| | - Masayuki Shimono
- Regional Center for Japan Environment and Children’s Study, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Pediatrics, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Koichi Kusuhara
- Regional Center for Japan Environment and Children’s Study, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Pediatrics, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - the Japan Environment and Children’s Study Group
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health
- Departiment of Social Medicine, National Center for Child Health and Development, Tokyo, Japan
- Department of Environment and Public Health, National Institute for Minamata Disease, Minamata, Japan
- Regional Center for Japan Environment and Children’s Study, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Pediatrics, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
32
|
Bloom MS, Varde M, Newman RB. Environmental toxicants and placental function. Best Pract Res Clin Obstet Gynaecol 2022; 85:105-120. [PMID: 36274037 PMCID: PMC11184919 DOI: 10.1016/j.bpobgyn.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 12/14/2022]
Abstract
The placenta is a temporary endocrine organ that facilitates gas, nutrient, and waste exchange between maternal and fetal compartments, partially shielding the fetus from potentially hazardous environmental toxicants. However, rather than being "opaque", the placenta is translucent or even transparent to some potential fetal developmental hazards, including toxic trace elements (TEs), perfluoroalkyl and polyfluoroalkyl substances (PFAS), and environmental phenols (EPs) to which women with pregnancy are frequently exposed. These agents are both passively and actively transferred to the fetal compartment, where endocrine disruption, oxidative stress, and epigenetic changes may occur. These pathologies may directly impact the fetus or deposit and accumulate in the placenta to indirectly impact fetal development. Thus, it is critical for clinicians to understand the potential placental toxicity and transfer of widely distributed environmental agents ubiquitous during pregnancy. With such knowledge, targeted interventions and clinical recommendations can be developed to limit those risks.
Collapse
Affiliation(s)
- Michael S Bloom
- Department of Global and Community Health, George Mason University, 4400 University Dr., MS 5B7, Fairfax, VA 22030, USA.
| | - Meghana Varde
- Department of Global and Community Health, George Mason University, 4400 University Dr., MS 5B7, Fairfax, VA 22030, USA.
| | - Roger B Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Rm 634, Clinical Science Bldg., 96 Jonathan Lucas St., Charleston, SC 29425, USA.
| |
Collapse
|
33
|
Li Z, Lewin M, Ruiz P, Nigra AE, Henderson NB, Jarrett JM, Ward C, Zhu J, Umans JG, O'Leary M, Zhang Y, Ragin-Wilson A, Navas-Acien A. Blood cadmium, lead, manganese, mercury, and selenium levels in American Indian populations: The Strong Heart Study. ENVIRONMENTAL RESEARCH 2022; 215:114101. [PMID: 35977585 PMCID: PMC9644284 DOI: 10.1016/j.envres.2022.114101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND Many American Indian (AI) communities are in areas affected by environmental contamination, such as toxic metals. However, studies assessing exposures in AI communities are limited. We measured blood metals in AI communities to assess historical exposure and identify participant characteristics associated with these levels in the Strong Heart Study (SHS) cohort. METHOD Archived blood specimens collected from participants (n = 2014, all participants were 50 years of age and older) in Arizona, Oklahoma, and North and South Dakota during SHS Phase-III (1998-1999) were analyzed for cadmium, lead, manganese, mercury, and selenium using inductively coupled plasma triple quadrupole mass spectrometry. We conducted descriptive analyses for the entire cohort and stratified by selected subgroups, including selected demographics, health behaviors, income, waist circumference, and body mass index. Bivariate associations were conducted to examine associations between blood metal levels and selected socio-demographic and behavioral covariates. Finally, multivariate regression models were used to assess the best model fit that predicted blood metal levels. FINDINGS All elements were detected in 100% of study participants, with the exception of mercury (detected in 73% of participants). The SHS population had higher levels of blood cadmium and manganese than the general U.S. population 50 years and older. The median blood mercury in the SHS cohort was at about 30% of the U.S. reference population, potentially due to low fish consumption. Participants in North Dakota and South Dakota had the highest blood cadmium, lead, manganese, and selenium, and the lowest total mercury levels, even after adjusting for covariates. In addition, each of the blood metals was associated with selected demographic, behavioral, income, and/or weight-related factors in multivariate models. These findings will help guide the tribes to develop education, outreach, and strategies to reduce harmful exposures and increase beneficial nutrient intake in these AI communities.
Collapse
Affiliation(s)
- Zheng Li
- Office of Community Health and Hazard Assessment, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Michael Lewin
- Office of Community Health and Hazard Assessment, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Patricia Ruiz
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, School of Public Health, Columbia University, New York City, NY, USA
| | - Noelle B Henderson
- Office of Community Health and Hazard Assessment, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jeffery M Jarrett
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cynthia Ward
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jianhui Zhu
- MedStar Health Research Institute, Hyattsville, MD, USA
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, USA; Georgetown-Howard Universities Center for Clinical and Translational Science, Washington DC, USA
| | - Marcia O'Leary
- Missouri Breaks Industries and Research, Inc., Eagle Butte, SD, USA
| | - Ying Zhang
- Center for American Indian Health Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Angela Ragin-Wilson
- Office of Associate Director, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, School of Public Health, Columbia University, New York City, NY, USA
| |
Collapse
|
34
|
Liang C, Zhang Z, Cao Y, Wang J, Shen L, Jiang T, Li D, Zou W, Zong K, Liang D, Xu X, Liu Y, Tao F, Luo G, Ji D, Cao Y. Exposure to multiple toxic metals and polycystic ovary syndrome risk: Endocrine disrupting effect from As, Pb and Ba. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157780. [PMID: 35926607 DOI: 10.1016/j.scitotenv.2022.157780] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) affects 5 % ~ 20 % of women of reproductive age and is a serious health problem. Whether exposure to lead (Pb), mercury (Hg), arsenic (As), barium (Ba) or (cadmium) Cd is associated with an increased risk of PCOS, particularly their joint effect as well as their association with the clinical phenotype of PCOS is limited and unclear. OBJECTIVES We aimed to explore the associations of the blood Pb, Hg, As, Ba and Cd levels and risk of PCOS in Chinese women of reproductive age. METHODS A case-control study was used and included 369 women with PCOS and 441 controls. The levels of Pb, Hg, As, Ba and Cd were measured in fasting blood samples collected on the 2nd or 3rd day of menstruation or vaginal bleeding after drug withdrawal; basal sex hormone levels, fasting glucose and fasting insulin were measured simultaneously. Unconditional logistic regression models were used to assess the relationship of the blood Pb, Hg, As, Ba or Cd levels with PCOS risk. Bayesian kernel machine regression (BKMR) was used to assess the joint effect of Pb, Hg, As, Ba and Cd on PCOS risk and estimate which metal or metals contributed most to the association. Multiple linear regression models were used to investigate the relationships between the levels of selected metals and parameters of the clinical PCOS phenotype. RESULTS The mean ± SD ages of women in the case and control groups were 28.80 ± 3.39 and 28.97 ± 2.39 years, respectively; their mean ± SD BMIs were 23.86 ± 3.51 kg/m2 and 22.08 ± 3.14 kg/m2, respectively. The blood levels of three metals (Pb, As and Ba) were statistically associated with PCOS risk based on single-metal models. With each natural logarithm transformed (ln) unit increase in blood concentrations of Pb, higher likelihood of PCOS can be found, the adjusted odd ratio (aOR) and 95 % confidence interval (CI) was 1.83 (1.35-2.48), and these for As and Ba were 2.49 (1.86-3.33) and 1.20 (1.04-1.39), respectively. Compared with women at the first tertile group, higher likelihoods of PCOS among women in the second and third tertiles of the Pb group were observed, aORs and 95 % CIs were 1.81 (1.22-2.68) and 2.08 (1.42-3.04), respectively; and higher likelihoods of PCOS among women in the third tertiles of As and Ba group were also observed, the aORs and 95%CIs were 2.83 (1.93-4.15) and 1.89 (1.32-2.72), respectively. BKMR analysis also showed a statistically significant and positive joint effect of five metals on PCOS risk when the blood levels of five metals were all above the 55th percentile compared with their median levels, and As (100 %) and Pb (67.44 %) were the major contributors to the association. The blood As levels were positively associated with the luteinizing hormone (LH) levels and LH/FSH (follicle-stimulating hormone) ratio values, the blood Ba levels were negatively associated with the FSH levels, and the blood Pb levels were positively associated with the fasting insulin levels and homeostasis model assessment of insulin resistance (HOMA-IR) values. CONCLUSIONS Our results suggest a positive association between exposure to multiple toxic metals (Pb, Hg, As, Ba and Cd) and PCOS risk. As and Pb were the major contributors, evaluated either as a single agent or metal mixture; and Pb, As, and Ba were associated with different parameters of the clinical PCOS phenotype. Additional studies are warranted to confirm these associations, particularly regarding the synergistic effect of toxic metals.
Collapse
Affiliation(s)
- Chunmei Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhikang Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yu Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jieyu Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Lingchao Shen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Tingting Jiang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Danyang Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kai Zong
- Technical Center of Hefei Customs District, No. 329 Tunxi Road, Hefei 230022, Anhui, China
| | - Dan Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaofeng Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Guiying Luo
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
35
|
Mohany KM, El-Asheer OM, Raheem YFA, sayed AAE, El-Baz MAEHH. Neonatal heavy metals levels are associated with the severity of neonatal respiratory distress syndrome: a case–control study. BMC Pediatr 2022; 22:635. [PMID: 36333705 PMCID: PMC9635146 DOI: 10.1186/s12887-022-03685-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Background This case–control study aimed to compare lead (Pb), cadmium (Cd), and arsenic (As) levels in neonates with respiratory distress syndrome (NRDS) with those levels in normal neonates and tested their associations with the severity of NRDS indicated by the levels of serum surfactant protein D (SP-D) and cord blood cardiac troponin I (CTnI), and high-sensitive C-reactive protein (hs-CRP). Methods The study included two groups: G1 (60 healthy neonates) and G2 (100 cases with NRDS). Cord blood Pb, erythrocytic Cd (E-Cd), neonatal scalp hair As (N-As), maternal urinary Cd (U-Cd), and arsenic (U-As) were measured by a Thermo Scientific iCAP 6200, while CTnI, hs-CRP, and SP-D by their corresponding ELISA kits. Results The levels of cord blood Pb, E-Cd, N-As, U-Cd, U-As, SP-D, CTnI, and hs-CRP were significantly higher in G2 than G1 (p = 0.019, 0.040, 0.003, 0.010, 0.011, < 0.001, 0.004, < 0.001, respectively). While the birth weight, and APGAR score at 1, 5 and 10 min were significantly lower in G2 than G1 (p = 0.002, < 0.001, < 0.001, < 0.001, respectively). The levels of the studied heavy metals correlated positively with the levels of SP-D, CTnI, and hs-CRP. Conclusion Heavy metals toxicity may be accused to be one of the causes of NRDS especially if other apparent causes are not there. Measuring and follow-up of heavy metal levels should be considered during pregnancy.
Collapse
Affiliation(s)
- Khalid M. Mohany
- grid.252487.e0000 0000 8632 679XDepartment of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt ,grid.252487.e0000 0000 8632 679XDepartment of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, EL Gammaa Street, Assiut city, 00201146007069 Egypt
| | - Osama Mahmoud El-Asheer
- grid.252487.e0000 0000 8632 679XDepartment of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Yaser F. Abdel Raheem
- grid.252487.e0000 0000 8632 679XDepartment of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Abd-Elrasoul sayed
- grid.252487.e0000 0000 8632 679XClinical Pharmacist at Assiut University Children Hospital, Assiut, Egypt
| | - Mona Abd El-Hamid Hassan El-Baz
- grid.252487.e0000 0000 8632 679XDepartment of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
36
|
Maternal blood metal concentrations are associated with C-reactive protein and cell adhesion molecules among pregnant women in Puerto Rico. Environ Epidemiol 2022; 6:e214. [PMID: 35975168 PMCID: PMC9374188 DOI: 10.1097/ee9.0000000000000214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 01/08/2023] Open
Abstract
Studies have revealed a link between aberrant levels of maternal C-reactive protein (CRP) and cell adhesion molecules (CAMs) with adverse birth outcomes. Some epidemiologic studies have indicated that long-term metal exposures can modulate the levels of CRP and CAMs, but the associations between prenatal metal exposures and the levels of CRP and CAMs have yet to be studied more extensively. In this study, we assessed associations between maternal blood metal levels and CRP/CAMs among 617 pregnant women in the Puerto Rico PROTECT birth cohort.
Collapse
|
37
|
Kim C, Cathey AL, Watkins DJ, Mukherjee B, Rosario-Pabón ZY, Vélez-Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD. Maternal blood metal concentrations are associated with matrix metalloproteinases (MMPs) among pregnant women in Puerto Rico. ENVIRONMENTAL RESEARCH 2022; 209:112874. [PMID: 35123972 PMCID: PMC10443181 DOI: 10.1016/j.envres.2022.112874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/11/2023]
Abstract
BACKGROUND/AIM Matrix metalloproteinases (MMPs) are important regulators of uterine remodeling, a critical process for healthy pregnancies, and studies have revealed a link between an imbalance in MMPs and adverse birth outcomes. Toxicological studies have indicated that exposure to heavy metals can alter the levels of inflammatory cytokines, including MMPs. Despite growing evidence, the clear association between heavy metal exposure and MMPs has yet to be explored extensively in human populations. To have a better understanding of the association, in this study, we assessed associations between maternal blood metal levels with MMPs among 617 pregnant women in the Puerto Rico PROTECT birth cohort. METHODS We measured blood concentrations for 11 metals in the first and/or second trimester of pregnancy using ICP-MS. MMPs (MMP1, MMP2, and MMP9) were quantified using a customized Luminex assay. Linear mixed effects models (LMEs) were used to regress MMPs on metals and included random intercepts for study participants to account for correlated repeated outcome measures. Fetal sex effects were estimated using interaction terms between metal exposure variables and fetal sex indicators. RESULTS We observed significant associations between cesium, manganese, and zinc with all the MMPs that were measured. We also observed differences in metal-MMPs associations by fetal sex. Cobalt was positively associated with MMP1 only in women with male fetuses, and cesium was negatively associated with MMP1 only in women with female fetuses. MMP2 had significant associations with maternal blood metal concentrations only in women with female fetuses. CONCLUSION Certain metals were significantly associated with MMPs that are responsible for uterine remodeling and healthy pregnancies. Most of these associations differed by fetal sex. This study highlighted significant metal-MMPs associations that may inform research on new avenues for understanding heavy metal-induced adverse birth outcomes and the development of diagnostic tools.
Collapse
Affiliation(s)
- Christine Kim
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Amber L Cathey
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Deborah J Watkins
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Bhramar Mukherjee
- University of Michigan School of Public Health, Department of Biostatistics, Ann Arbor, MI, United States
| | - Zaira Y Rosario-Pabón
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, PR, USA
| | - Carmen M Vélez-Vega
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, PR, USA
| | | | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| | - John D Meeker
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States.
| |
Collapse
|
38
|
De Asis-Cruz J, Andescavage N, Limperopoulos C. Adverse Prenatal Exposures and Fetal Brain Development: Insights From Advanced Fetal Magnetic Resonance Imaging. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:480-490. [PMID: 34848383 DOI: 10.1016/j.bpsc.2021.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Converging evidence from clinical and preclinical studies suggests that fetal vulnerability to adverse prenatal exposures increases the risk for neuropsychiatric diseases such as autism spectrum disorder, schizophrenia, and depression. Recent advances in fetal magnetic resonance imaging have allowed us to characterize typical fetal brain growth trajectories in vivo and to interrogate structural and functional alterations associated with intrauterine exposures, such as maternal stress, environmental toxins, drugs, and obesity. Here, we review proposed mechanisms for how prenatal influences disrupt neurodevelopment, including the role played by maternal and fetal inflammatory responses. We summarize insights from magnetic resonance imaging research in fetuses, highlight recent discoveries in normative fetal development using quantitative magnetic resonance imaging techniques (i.e., three-dimensional volumetry, proton magnetic resonance spectroscopy, placental diffusion imaging, and functional imaging), and discuss how baseline trajectories are shaped by prenatal exposures.
Collapse
Affiliation(s)
- Josepheen De Asis-Cruz
- Developing Brain Institute, Department of Radiology, Children's National Hospital, Washington, DC
| | - Nickie Andescavage
- Developing Brain Institute, Department of Radiology, Children's National Hospital, Washington, DC; Department of Neonatology, Children's National Hospital, Washington, DC
| | - Catherine Limperopoulos
- Developing Brain Institute, Department of Radiology, Children's National Hospital, Washington, DC.
| |
Collapse
|
39
|
Kim C, Ashrap P, Watkins DJ, Mukherjee B, Rosario-Pabón ZY, Vélez-Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD. Maternal Metals/Metalloid Blood Levels Are Associated With Lipidomic Profiles Among Pregnant Women in Puerto Rico. Front Public Health 2022; 9:754706. [PMID: 35096734 PMCID: PMC8790322 DOI: 10.3389/fpubh.2021.754706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Background/Aim: The association between heavy metal exposure and adverse birth outcomes is well-established. However, there is a paucity of research identifying biomarker profiles that may improve the early detection of heavy metal-induced adverse birth outcomes. Because lipids are abundant in our body and associated with important signaling pathways, we assessed associations between maternal metals/metalloid blood levels with lipidomic profiles among 83 pregnant women in the Puerto Rico PROTECT birth cohort. Methods: We measured 10 metals/metalloid blood levels during 24–28 weeks of pregnancy. Prenatal plasma lipidomic profiles were identified by liquid chromatography–mass spectrometry-based shotgun lipidomics. We derived sums for each lipid class and sums for each lipid sub-class (saturated, monounsaturated, polyunsaturated), which were then regressed on metals/metalloid. False discovery rate (FDR) adjusted p-values (q-values) were used to account for multiple comparisons. Results: A total of 587 unique lipids from 19 lipid classes were profiled. When controlling for multiple comparisons, we observed that maternal exposure to manganese and zinc were negatively associated with plasmenyl-phosphatidylethanolamine (PLPE), particularly those containing polyunsaturated fatty acid (PUFA) chains. In contrast to manganese and zinc, arsenic and mercury were positively associated with PLPE and plasmenyl-phosphatidylcholine (PLPC). Conclusion: Certain metals were significantly associated with lipids that are responsible for the biophysical properties of the cell membrane and antioxidant defense in lipid peroxidation. This study highlighted lipid-metal associations and we anticipate that this study will open up new avenues for developing diagnostic tools.
Collapse
Affiliation(s)
- Christine Kim
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Pahriya Ashrap
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Zaira Y Rosario-Pabón
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, Puerto Rico
| | - Carmen M Vélez-Vega
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, Puerto Rico
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| |
Collapse
|
40
|
Zhang M, Liu C, Li WD, Xu XD, Cui FP, Chen PP, Deng YL, Miao Y, Luo Q, Zeng JY, Lu TT, Shi T, Zeng Q. Individual and mixtures of metal exposures in associations with biomarkers of oxidative stress and global DNA methylation among pregnant women. CHEMOSPHERE 2022; 293:133662. [PMID: 35063557 DOI: 10.1016/j.chemosphere.2022.133662] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/09/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to metals has been linked with adverse pregnancy outcomes. Oxidative stress and epigenetic changes are potential mechanisms of action. OBJECTIVES We aimed to examine the associations of individual and mixtures of metal exposures with oxidative stress and DNA methylation among pregnant women. METHODS We measured a panel of 16 metals and 3 oxidative stress biomarkers including 8-hydroxydeoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA) and 8-isoprostaglandin F2α (8-isoPGF2α) in urine from 113 pregnant women in a Chinese cohort. Biomarkers of global DNA methylation including Alu and long interspersed nucleotide element-1 (LINE-1) in cord blood were measured. Multivariable linear regression and Bayesian kernel machine regression (BKMR) models were separately applied to estimate the associations between individual and mixtures of metal exposures and biomarkers of oxidative stress and global DNA methylation. RESULTS In single-metal analyses, we observed positive associations between 11 metals [arsenic (As), cadmium (Cd), thallium (Tl), barium (Ba), nickel (Ni), vanadium (V), cobalt (Co), zinc (Zn), copper (Cu), selenium (Se) and molybdenum (Mo)] and at least one of oxidative stress biomarkers (all FDR-adjusted P-values < 0.05). In mixture analyses, we found positive overall associations of metal mixtures with 8-OHdG and 8-isoPGF2α, and Se was the most important predictor. There was no evidence on associations of urinary metals as individual chemicals and mixtures with Alu and LINE-1 methylation. CONCLUSION Urinary metals as individual chemicals and mixtures were associated with increased oxidative stress, especially Se.
Collapse
Affiliation(s)
- Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Ding Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xue-Dan Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
41
|
Vidal MS, Menon R, Yu GFB, Amosco MD. Environmental Toxicants and Preterm Birth: A Bibliometric Analysis of Research Trends and Output. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052493. [PMID: 35270186 PMCID: PMC8909635 DOI: 10.3390/ijerph19052493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Preterm birth remains a problem globally, as multiple factors contribute to its etiology and pathogenesis. One such factor is the exposure to environmental toxicants, in which recent literature has described contributory roles in disease progression. This study aims to show research trends and collaborations in papers related to environmental toxicants and preterm birth through a bibliometric analysis to determine hot spots for research as well as to identify already established themes that can point to policy making and development. Using the Scopus database, we were able to identify 956 original research articles from 72 countries between 1955 and 2021; bibliographic information was exported, analyzed, and visualized using Bibliometrix and VOSviewer. There was an annual growth of research and reporting in this area, which significantly increased within the last two decades. The top countries that have published on this topic include the USA (n = 343), China (n = 103), and Australia (n = 43), with strong international collaboration in reports from China. Top journals for publication include Environmental Research (n = 53), Environmental Health Perspectives (n = 47), and Environment International (n = 46). Previous literature focused on establishing toxicants that are significantly associated with preterm birth, with current research focusing on molecular mechanisms of environmental toxicants. Overall, our bibliometric analysis gives a scoping view of the existing research landscape in terms of environmental health and preterm birth.
Collapse
Affiliation(s)
- Manuel S. Vidal
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
- Correspondence:
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Gracia Fe B. Yu
- Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila 1000, Philippines;
| | - Melissa D. Amosco
- Department of Obstetrics and Gynecology, Philippine General Hospital, University of the Philippines Manila, Manila 1000, Philippines;
| |
Collapse
|
42
|
Preterm Labor, a Syndrome Attributed to the Combination of External and Internal Factors. MATERNAL-FETAL MEDICINE 2022. [DOI: 10.1097/fm9.0000000000000136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
43
|
The Impact of Oxidative Stress of Environmental Origin on the Onset of Placental Diseases. Antioxidants (Basel) 2022; 11:antiox11010106. [PMID: 35052610 PMCID: PMC8773163 DOI: 10.3390/antiox11010106] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress (OS) plays a pivotal role in placental development; however, abnormal loads in oxidative stress molecules may overwhelm the placental defense mechanisms and cause pathological situations. The environment in which the mother evolves triggers an exposure of the placental tissue to chemical, physical, and biological agents of OS, with potential pathological consequences. Here we shortly review the physiological and developmental functions of OS in the placenta, and present a series of environmental pollutants inducing placental oxidative stress, for which some insights regarding the underlying mechanisms have been proposed, leading to a recapitulation of the noxious effects of OS of environmental origin upon the human placenta.
Collapse
|
44
|
Neamtu RI, Craina M, Dahma G, Popescu AV, Erimescu AG, Citu I, Dobrescu A, Horhat FG, Vulcanescu DD, Gorun F, Bernad ES, Motoc A, Citu IC. Heavy metal ion concentration in the amniotic fluid of preterm and term pregnancies from two cities with different industrial output. Exp Ther Med 2022; 23:111. [PMID: 34970334 PMCID: PMC8713173 DOI: 10.3892/etm.2021.11034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
The growth and development of the fetus is a complex phenomenon that can be influenced by several variables. High quantities of heavy metal ions in the amniotic fluid have been linked to poor health, especially in industrial, polluted and poor areas. The aim of the present study was to assess the differences in the concentration of these ions between preterm (weeks 15-37) and term pregnancies (starting at week 37). Another objective was to compare pregnancies from two cities with different industry levels. Two sample lots from two Romanian cities were analyzed. A total of 100 patients from Timisoara were compared with 60 from Petrosani, a heavy industry city in Romania. Demographic data were collected, and amniocentesis was performed on all women. Lead (Pb), copper (Cu), nickel (Ni), cadmium (Cd), arsenic (As), iron (Fe) and zinc (Zn) concentrations were assessed. Descriptive and analytical statistics were performed using the Mann-Whitney U test for non-parametric data and the Fisher's exact test for categorical data. In addition, categorical data was represented graphically. In the Timisoara cohort, the differences in heavy metal concentrations between preterm and term pregnancies were not statistically significant. In the Petrosani cohort, however, the concentrations of Zn (P=0.02606) and Cd (P=0.01512) were higher in preterm than in term pregnancies. When comparing the two cohorts as a whole, the concentration of Pb (P=0.04513), Cd (P=0.00002), As (P=0.03027) and Zn (P<0.00001) were higher in the patients from Petrosani than in those from Timisoara. Only Cu concentrations were higher in the Timisoara cohort (P<0.00001). The concentrations of Ni (P=0.78150) and Fe (P=0.44540) did not differ statistically. Thus, amniocentesis is an important diagnostic and exploratory tool in determining differences in the concentrations of elements such as heavy metal ions. Research over a longer period of time should be carried out to examine the relation between heavy metal ions concentration and possible postnatal health outcomes.
Collapse
Affiliation(s)
- Radu Ionut Neamtu
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Marius Craina
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - George Dahma
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alin Viorel Popescu
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adelina Geanina Erimescu
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ioana Citu
- Department of Internal Medicine I, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Amadeus Dobrescu
- Department of Surgery, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Florin George Horhat
- Multidisciplinary Research Center on Antimicrobial Resistance (Multi-Rez), Microbiology Department, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania.,Clinical Laboratory, 'Louis Turcanu' Emergency Hospital for Children, 300011 Timisoara, Romania
| | - Dan Dumitru Vulcanescu
- Multidisciplinary Research Center on Antimicrobial Resistance (Multi-Rez), Microbiology Department, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania.,Clinical Laboratory, 'Louis Turcanu' Emergency Hospital for Children, 300011 Timisoara, Romania
| | - Florin Gorun
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Elena Silvia Bernad
- Department of Internal Medicine I, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Andrei Motoc
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania.,Department of Anatomy and Embryology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ioan Cosmin Citu
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
45
|
Reassuringly expensive - A commentary on obstetric emergency training in high-resource settings. Best Pract Res Clin Obstet Gynaecol 2021; 80:14-24. [PMID: 34893439 DOI: 10.1016/j.bpobgyn.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
The pathophysiologic origins of obstetrical emergencies are complicated and may well be influenced by events prior to conception. Such problems are not likely to be resolved soon, and in the meantime, high-resource countries simply cannot afford to divert more and more money to litigation and the costs of preventable morbidities for either mother or child. It is long past time we tackled these acute care problems where most first occur-the Maternity unit. It is reasonable to ask whether hospitals (and society at large) are getting what they believe they are buying. Training to satisfy a regulation without improving patient outcomes functionally erects one more barrier to the pursuit of optimal patient outcomes. Why then continue squandering limited resources and precious lives if current hospital training is not improving outcomes? In this monograph, I focus on training programs for the management of obstetrical emergencies.
Collapse
|
46
|
Exposome and foetoplacental vascular dysfunction in gestational diabetes mellitus. Mol Aspects Med 2021; 87:101019. [PMID: 34483008 DOI: 10.1016/j.mam.2021.101019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
A balanced communication between the mother, placenta and foetus is crucial to reach a successful pregnancy. Several windows of exposure to environmental toxins are present during pregnancy. When the women metabolic status is affected by a disease or environmental toxin, the foetus is impacted and may result in altered development and growth. Gestational diabetes mellitus (GDM) is a disease of pregnancy characterised by abnormal glucose metabolism affecting the mother and foetus. This disease of pregnancy associates with postnatal consequences for the child and the mother. The whole endogenous and exogenous environmental factors is defined as the exposome. Endogenous insults conform to the endo-exposome, and disruptors contained in the immediate environment are the ecto-exposome. Some components of the endo-exposome, such as Selenium, vitamins D and B12, adenosine, and a high-fat diet, and ecto-exposome, such as the heavy metals Arsenic, Mercury, Lead and Copper, and per- and polyfluoroakyl substances, result in adverse pregnancies, including an elevated risk of GDM or gestational diabesity. The impact of the exposome on the human placenta's vascular physiology and function in GDM and gestational diabesity is reviewed.
Collapse
|
47
|
Comess S, Donovan G, Gatziolis D, Deziel NC. Exposure to atmospheric metals using moss bioindicators and neonatal health outcomes in Portland, Oregon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117343. [PMID: 34030082 DOI: 10.1016/j.envpol.2021.117343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/07/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Studying the impacts of prenatal atmospheric heavy-metal exposure is challenging, because biological exposure monitoring does not distinguish between specific sources, and high-resolution air monitoring data is lacking for heavy metals. Bioindicators - animal or plant species that can capture environmental quality - are a low-cost tool for evaluating exposure to atmospheric heavy-metal pollution that have received little attention in the public-health literature. We obtained birth records for Portland, Oregon live births (2008-2014) and modeled metal concentrations derived from 346 samples of moss bioindicators collected in 2013. Exposure estimates were assigned using mother's residential address at birth for six metals with known toxic and estrogenic effects (arsenic, cadmium, chromium, cobalt, nickel, lead). Associations were evaluated for continuous (cts) and quartile-based (Q) metal estimates and three birth outcomes (preterm birth (PTB; <37 weeks)), very PTB (vPTB; <32 weeks), small for gestational age (SGA; 10th percentile of weight by age and sex)) using logistic regression models with adjustment for demographic characteristics, and stratified by maternal race. Chromium and cobalt were associated with increased odds of vPTB (chromium - odds ratio (OR)cts = 1.09, 95% CI: 1.00, 1.17; cobalt - ORQ4vsQ1 = 1.33, 95% CI: 1.03, 1.71). Cobalt, chromium and cadmium were significantly associated with odds of SGA, although the direction of association differed by metal (cobalt - ORcts = 1.04, 95% CI: 1.01, 1.07; chromium - ORQ3vsQ1 = 0.91, 95% CI: 0.83, 0.99; cadmium - ORcts = 0.96, 95% CI: 0.93, 1.00). In stratified analyses, odds of SGA were significantly different among non-white mothers compared to white mothers with exposure to chromium, cobalt, lead and nickel. This novel application of a moss-based exposure metric found that exposure to some atmospheric metals is associated with adverse birth outcomes. These findings are consistent with previous literature and suggest that moss bioindicators are a useful complement to traditional exposure-assessment methods.
Collapse
Affiliation(s)
- Saskia Comess
- Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Geoffrey Donovan
- USDA Forest Service, PNW Research Station, 620 SW Main, Suite 502, Portland, OR, 97205, USA.
| | - Demetrios Gatziolis
- USDA Forest Service, PNW Research Station, 620 SW Main, Suite 502, Portland, OR, 97205, USA
| | - Nicole C Deziel
- Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
48
|
Cowell W, Colicino E, Levin-Schwartz Y, Enlow MB, Amarasiriwardena C, Andra SS, Gennings C, Wright RO, Wright RJ. Prenatal metal mixtures and sex-specific infant negative affectivity. Environ Epidemiol 2021; 5:e147. [PMID: 33870019 PMCID: PMC8043734 DOI: 10.1097/ee9.0000000000000147] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/04/2021] [Indexed: 11/27/2022] Open
Abstract
Prenatal exposure to metals has been associated with a range of adverse neurocognitive outcomes; however, associations with early behavioral development are less well understood. We examined joint exposure to multiple co-occurring metals in relation to infant negative affect, a stable temperamental trait linked to psychopathology among children and adults. METHODS Analyses included 308 mother-infant pairs enrolled in the PRISM pregnancy cohort. We measured As, Ba, Cd, Cs, Cr, Pb, and Sb in urine, collected on average during late pregnancy, by ICP-MS. At age 6 months, we assessed negative affect using the Infant Behavior Questionnaire-Revised. We used Weighted Quantile Sum (WQS) regression with repeated holdout validation to estimate the joint association between the metals and global negative affectivity, as well as four subdomains (Fear, Sadness, Distress to Limitations, and Falling Reactivity). We also tested for a sex interaction with estimated stratified weights. RESULTS In adjusted models, urinary metals were associated with higher scores on the Fear scale (βWQS = 0.20, 95% confidence interval [CI]: 0.09, 0.30), which captures behavioral inhibition, characterized by startle or distress to sudden changes in the environment and inhibited approach to novelty. We observed a significant sex interaction (95% CI for the cross-product term: -0.19, -0.01), and stratified weights showed girls (61.6%) contributed substantially more to the mixture effect compared with boys (38.4%). Overall, Ba contributed the greatest mixture weight (22.5%), followed by Cs (14.9%) and As (14.6%). CONCLUSIONS Prenatal exposure to metals was associated with increased infant scores on the temperamental domain of fear, with girls showing particular sensitivity.Key words: Prenatal; Metals; Mixtures; Temperament; Infancy; Negative affect.
Collapse
Affiliation(s)
- Whitney Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yuri Levin-Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children’s Hospital, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Syam S. Andra
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|