1
|
Wang Y, Liu Y, Zhang H, Duan X, Ma J, Sun H, Tian W, Wang S. Carbonaceous materials in structural dimensions for advanced oxidation processes. Chem Soc Rev 2025; 54:2436-2482. [PMID: 39895415 DOI: 10.1039/d4cs00338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Carbonaceous materials have attracted extensive research and application interests in water treatment owing to their advantageous structural and physicochemical properties. Despite the significant interest and ongoing debates on the mechanisms through which carbonaceous materials facilitate advanced oxidation processes (AOPs), a systematic summary of carbon materials across all dimensions (0D-3D nanocarbon to bulk carbon) in various AOP systems remains absent. Addressing this gap, the current review presents a comprehensive analysis of various carbon/oxidant systems, exploring carbon quantum dots (0D), nanodiamonds (0D), carbon nanotubes (1D), graphene derivatives (2D), nanoporous carbon (3D), and biochar (bulk 3D), across different oxidant systems: persulfates (peroxymonosulfate/peroxydisulfate), ozone, hydrogen peroxide, and high-valent metals (Mn(VII)/Fe(VI)). Our discussion is anchored on the identification of active sites and elucidation of catalytic mechanisms, spanning both radical and nonradical pathways. By dissecting catalysis-related factors such as sp2/sp3 C, defects, and surface functional groups that include heteroatoms and oxygen groups in different carbon configurations, this review aims to provide a holistic understanding of the catalytic nature of different dimensional carbonaceous materials in AOPs. Furthermore, we address current challenges and underscore the potential for optimizing and innovating water treatment methodologies through the strategic application of carbon-based catalysts. Finally, prospects for future investigations and the associated bottlenecks are proposed.
Collapse
Affiliation(s)
- Yunpeng Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Ya Liu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
2
|
Serna-Galvis EA, Mendoza-Merlano C, Arboleda-Echavarría J, Torres-Palma RA, Echavarría-Isaza A. Comparison of three different zeolites to activate peroxymonosulfate for the degradation of the pharmaceutical ciprofloxacin in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6856-6870. [PMID: 40016608 PMCID: PMC11928394 DOI: 10.1007/s11356-025-35994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/20/2025] [Indexed: 03/01/2025]
Abstract
Zeolites are typically used as adsorbents for the removal of organic pollutants from water but recently are gaining attention as catalysts for the activation of persulfates toward contaminants degradation. In this work, the capability of a zeolite Y (FAU-type) and two zeolites beta (BEA-type) to activate peroxymonosulfate (PMS) toward the degradation of one representative pollutant of a pharmaceutical nature (i.e., ciprofloxacin) was tested and compared. Initially, the characterization of the considered zeolites was carried out, evidencing that they had different Si/Al, surface area, and basicity. Then, the main degradation pathway involved in the target pollutant degradation was determined and the activating ability of three zeolites was compared. It was found that among the three tested materials, zeolite Y had the highest activating capability toward PMS for ciprofloxacin degradation (showing ~ 90% degradation after 10 min of treatment). The synergy (S) of the systems followed the order: zeolites beta/PMS (S, 0.5-1.4) < zeolite Y/PMS (S, 3.9), revealing that the Si/Al ratio has a determinant role in the zeolite/peroxymonosulfate combination, being convenient lower values of such a ratio. In the most adequate combination (i.e., zeolite Y/PMS), the pharmaceutical was attacked by singlet oxygen (coming from the PMS activation by the zeolite via basic sites), which modified ciprofloxacin on its piperazyl ring, producing two intermediates. Theoretical analyses based on the structure suggested that the two intermediates have low toxicity against mammals. Additionally, experimental tests showed that the zeolite Y/PMS process led to a resultant solution without antimicrobial activity against S. aureus. Finally, it can be mentioned that ZY/PMS was used to deal with ciprofloxacin in synthetic hospital wastewater, achieving ~ 40% pollutant elimination after 60 min of treatment.
Collapse
Affiliation(s)
- Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| | - Carlos Mendoza-Merlano
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| | - Johana Arboleda-Echavarría
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
- Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| | - Adriana Echavarría-Isaza
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia.
| |
Collapse
|
3
|
Humayun S, Hayyan M, Alias Y. A review on reactive oxygen species-induced mechanism pathways of pharmaceutical waste degradation: Acetaminophen as a drug waste model. J Environ Sci (China) 2025; 147:688-713. [PMID: 39003083 DOI: 10.1016/j.jes.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 07/15/2024]
Abstract
Innately designed to induce physiological changes, pharmaceuticals are foreknowingly hazardous to the ecosystem. Advanced oxidation processes (AOPs) are recognized as a set of contemporary and highly efficient methods being used as a contrivance for the removal of pharmaceutical residues. Since reactive oxygen species (ROS) are formed in these processes to interact and contribute directly toward the oxidation of target contaminant(s), a profound insight regarding the mechanisms of ROS leading to the degradation of pharmaceuticals is fundamentally significant. The conceptualization of some specific reaction mechanisms allows the design of an effective and safe degradation process that can empirically reduce the environmental impact of the micropollutants. This review mainly deliberates the mechanistic reaction pathways for ROS-mediated degradation of pharmaceuticals often leading to complete mineralization, with a focus on acetaminophen as a drug waste model.
Collapse
Affiliation(s)
- Saba Humayun
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Centre for Ionic Liquids, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Maan Hayyan
- Chemical Engineering Program, Faculty of Engineering and Technology, Muscat University, Muscat P.C.130, Oman.
| | - Yatimah Alias
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Centre for Ionic Liquids, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
4
|
Li J, Li J, Chen Z, Wan Y, Wang Y, Pei Z, Pei Y. Lactobionic acid modified cobalt coordination polymer-coated peroxymonosulfate nanoparticles generate sulfate/hydroxy dual-radicals for targeted cancer therapy. J Mater Chem B 2024; 12:12665-12671. [PMID: 39506566 DOI: 10.1039/d4tb01777c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Free radical therapy, based on the sulfate radical derived from peroxymonosulfate, has recently been explored as a potential cancer treatment. However, while it is promising, its successful application is restricted by several limitations including the uncontrollable generation of free radicals and the instability in aqueous medium. Herein, we prepared LCP nanoparticles by using PMS as a core, the Co-coordination polymer (Co-CP) as a coating layer, and lactobionic acid as a targeting ligand for hepatoma carcinoma cells. LCP could be activated by cobalt ions released from Co-CP, and successfully induced apoptosis and ferroptosis via the inhibition of glutathione peroxidase 4 and caused the accumulation of lipid peroxidation to enhance the efficacy of free radical therapy.
Collapse
Affiliation(s)
- Jiahui Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Jiaxuan Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Zelong Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Yichen Wan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Yi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| |
Collapse
|
5
|
Jiang Z, Shi Z, Li C, Wang H, Huang Y, Ye L. Nitrogen-Doped Carbon Materials for Persulfate Activation via Electron Transfer Pathways. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20584-20595. [PMID: 39297556 DOI: 10.1021/acs.langmuir.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The incorporation of nitrogen into carbon materials is a strategy that effectively boosts their catalytic potency. Herein, a nitrogen-enriched carbon substance, designated as CN0.6, was synthesized from melamine, serving as a precursor. This substance has been established to act as an efficient catalyst devoid of metals for the activation of peroxymonosulfate (PMS). At a temperature of 25 °C, a concentration of 0.05 g/L CN0.6 along with 1 mM PMS suffices to achieve the complete degradation of concentrated tetracycline hydrochloride (TC) in a short period of 4 min. This enhanced catalytic performance is attributed to the optimal level of nitrogen doping, which elevates the pyrrolic nitrogen content and introduces additional defects characterized by an ID/IG ratio of 1.02. These factors collectively augment the adsorptive capacity for PMS and create a greater number of active sites to facilitate its activation. The dominance of a nonradical electron transfer mechanism in the CN0.6/PMS system has been confirmed through a series of analyses, including radical identification, quenching tests, and electrochemical assessments. Employing high-resolution liquid chromatography coupled with tandem mass spectrometry (LC-MS), the investigation identified three potential degradation routes for TC. Furthermore, the intermediates produced are determined to possess reduced toxicity in comparison to TC. The findings of this study offer a approach to the synthesis of highly efficient nitrogen-doped, metal-free catalysts, presenting a promising strategy for the degradation of environmental pollutants.
Collapse
Affiliation(s)
- Ziyi Jiang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang ,Hubei 443002, China
| | - Zhonglian Shi
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang ,Hubei 443002, China
| | - Chao Li
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang ,Hubei 443002, China
| | - Huiqing Wang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang ,Hubei 443002, China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China
| | - Liqun Ye
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang ,Hubei 443002, China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
6
|
Tong ZX, Oh WD. The role of chitosan in promoting the catalytic activity of bismuth ferrite as peroxymonosulfate activator for antibiotics removal. Int J Biol Macromol 2024; 277:134453. [PMID: 39098691 DOI: 10.1016/j.ijbiomac.2024.134453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Chitosan possesses electron-rich amino (-NH2) and hydroxyl (-OH) moieties which can anchor with transition metal ions during synthesis. Herein, chitosan was employed as an additive to prepare bismuth ferrite (BFO) via hydrothermal approach. The characterization studies revealed that adding chitosan during BFO synthesis leads to the creation of more oxygen vacancies. The performance of chitosan modified BFO (CMB) was evaluated as peroxymonosulfate (PMS) activator for ciprofloxacin (CIP) removal. Apparently, the addition of 10 wt% chitosan during BFO synthesis (CMB-10) resulted in 1.7 times increase of performance compared to the pristine BFO. Increasing the catalyst loading and PMS dosage resulted in positive effect with 5.7 and 1.9 times rate enhancement, respectively. The CMB-10 exhibited tolerance against pH variation, water matrix, and interfering species. The scavenging experiments indicated that singlet oxygen (1O2), superoxide radicals (O2•-) and sulfate radicals (SO4•-) played a major role in CIP degradation. These reactive oxygen species were generated from PMS activation via Fe3+/Fe2+ and Bi5+/Bi3+ coupling, and oxygen vacancies on the catalyst surface. The CIP degradation pathways were also elucidated based on the detected CIP intermediates. Overall, this study provides insights into the use of chitosan to prepare sustainable materials for pollutants removal via PMS activation.
Collapse
Affiliation(s)
- Zhi-Xiang Tong
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
7
|
Li S, Zhang Y, Ding S, Li X, Wang W, Dong N, Nie M, Chen P. Investigation into the Synergistic Effect of the Zinc Peroxide/Peroxymonosulfate Double-Oxidation System for the Efficient Degradation of Tetracycline. Molecules 2024; 29:4120. [PMID: 39274968 PMCID: PMC11397340 DOI: 10.3390/molecules29174120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
The increasingly severe antibiotic pollution has become one of the most critical issues. In this study, a zinc peroxide/peroxymonosulfate (ZnO2/PMS) double-oxidation system was developed for tetracycline (TC) degradation. A small amount of ZnO2 (10 mg) and PMS (30 mg) could effectively degrade 82.8% of TC (100 mL, 50 mg/L), and the degradation process could be well described by the pseudo-second-order kinetic model. Meanwhile, the ZnO2/PMS double-oxidation system showed high adaptability in terms of reaction temperature (2-40 °C), initial pH value (4-12), common inorganic anions (Cl-, NO3-, SO42- and HCO3-), natural water source and organic pollutant type. The quenching experiment and electron paramagnetic resonance (EPR) characterization results confirmed that the main reactive oxygen species (ROS) was singlet oxygen (1O2). Moreover, three possible pathways of TC degradation were deduced according to the analyses of intermediates. On the basis of comparative characterization and experiment results, a synergistic activation mechanism was further proposed for the ZnO2/PMS double-oxidation system, accounting for the superior degradation performance. The released OH- and H2O2 from ZnO2 could activate PMS to produce major 1O2 and minor superoxide radicals (•O2-), respectively.
Collapse
Affiliation(s)
- Shefeng Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
| | - Yong Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
| | - Siyu Ding
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
| | - Xuli Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
| | - Wei Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ningning Dong
- Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Miaomiao Nie
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
| | - Pei Chen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Engineering Research Center for Soil and Groundwater Pollution Control, Wuhan 430070, China
- Pilot Base of Ecological Environmental Chemicals and Low-Carbon Technology Transformation, Wuhan 430023, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Li J, Lyu W, Mi X, Qian C, Liu Y, Yu J, Kaner RB, Liao Y. Conjugated Microporous Polymers-Based Catalytic Membranes with Hierarchical Channels for High-Throughput Removal of Micropollutants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401966. [PMID: 38828756 PMCID: PMC11304305 DOI: 10.1002/advs.202401966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Indexed: 06/05/2024]
Abstract
Engineering a catalytic membrane capable of efficiently removing emerging organic microcontaminants under ultrahigh flux conditions is of significance for water purification. Herein, drawing inspiration from the functional attributes of lymphatic vessels involved in immunosurveillance and fluid transport with minimal energy consumption, a novel hierarchical porous catalytic membrane is engineered. This membrane, based on an innovative nitrogen-rich conjugated microporous polymer (polytripheneamine, PTPA), is synthesized using an electrospinning coupled in situ polymerization approach. The resulting bioinspired membrane with hierarchical channels comprises a thin layer (≈1.7 µm) of crosslinked PTPA nanoparticles covering the interconnected electrospun nanofibers. This unique design creates an intrinsic microporous angstrom-confined system capable of activating peroxymonosulfate (PMS) to generate 98.7% singlet oxygen (1O2), enabling durable and highly efficient degradation of microcontaminants. Additionally, the presence of a thin layer of mesoporous structure between PTPA nanoparticles and macroporous channels within the interwoven nanofibers enhances mass transfer efficiency and facilitates high flux rates. Notably, the prepared hierarchical porous organic catalytic membrane demonstrates enduring high-efficiency degradation performance with a superior permeance (>95% and >2500 L m-2 h-1 bar-1) sustained over 100 h. This work introduces an innovative pathway for the design of high-performance catalytic membranes for the removal of emerging organic microcontaminants.
Collapse
Affiliation(s)
- Jiaqiang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Xuejin Mi
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Cheng Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental ProtectionCollege of Environmental Science and EngineeringDonghua UniversityShanghai201620China
| | - Junrong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Richard B. Kaner
- Department of Chemistry and BiochemistryDepartment of Materials Science and Engineering and the California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
9
|
Manickavasagam G, He C, Lin KYA, Saaid M, Oh WD. Recent advances in catalyst design, performance, and challenges of metal-heteroatom-co-doped biochar as peroxymonosulfate activator for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 252:118919. [PMID: 38631468 DOI: 10.1016/j.envres.2024.118919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The escalation of global water pollution due to emerging pollutants has gained significant attention. To address this issue, catalytic peroxymonosulfate (PMS) activation technology has emerged as a promising treatment approach for effectively decontaminating a wide range of pollutants. Recently, modified biochar has become an increasingly attractive as PMS activator. Metal-heteroatom-co-doped biochar (MH-BC) has emerged as a promising catalyst that can provide enhanced performance over heteroatom-doped and metal-doped biochar due to the synergism between metal and heteroatom in promoting PMS activation. Therefore, this review aims to discuss the fabrication pathways (i.e., internal vs external doping and pre-vs post-modification) and key parameters (i.e., source of precursors, synthesis methods, and synthesis conditions) affecting the performance of MH-BC as PMS activator. Subsequently, an overview of all the possible PMS activation pathways by MH-BC is provided. Subsequently, Also, the detection, identification, and quantification of several reactive species (such as, •OH, SO4•-, O2•-, 1O2, and high valent oxo species) generated in the catalytic PMS system by MH-BC are also evaluated. Lastly, the underlying challenges associated with poor stability, the lack of understanding regarding the interaction between metal and heteroatom during PMS activation and quantification of radicals in multi-ROS system are also deliberated.
Collapse
Affiliation(s)
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Mardiana Saaid
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
10
|
Wang Y, Jiao T, Zhang P, Hou W, Li Z, Dong C, Zhang W, Zhang L. Efficient degradation of tetracycline via peroxymonosulfate activation by phosphorus-doped biochar loaded with cobalt nanoparticles. Dalton Trans 2024; 53:10189-10200. [PMID: 38819397 DOI: 10.1039/d4dt00758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The accumulation of tetracycline hydrochloride (TCH) threatens human health because of its potential biological toxicity. Carbon -based materials with easy isolation and excellent performance that can activate peroxymonosulfate (PMS) to generate reactive oxygen species for TCH degradation are essential, but the development of such materials remains a significant challenge. In this study, based on the idea of treating waste, tricobalt tetraoxide loaded P-doped biochar (Co NP-PBC) was synthesised to activate PMS for the degradation of TCH. Possible degradation pathways and intermediate products of TCH were identified using High performance liquid chromatography tandem mass spectrometry (HPLC-MS) detection and density functional theory analysis. Toxicity analysis software was used to predict the toxicity of the intermediate products. Compared to catalysts loaded with Fe and Mn and other Co-based catalysts, Co NP-PBC exhibited an optimal performance (with a kinetic constant of 0.157 min-1 for TCH degradation), and over 99.0% of TCH can be degraded within 20 min. This mechanism demonstrates that the non-free radical oxidation of 1O2 plays a major role in the degradation of TCH. This study provides insights into the purification of wastewater using BC-based catalysts.
Collapse
Affiliation(s)
- Yunpeng Wang
- Institute of Environmental Science, School of Environmental and Resources Sciences, Shanxi University, 030006, China.
| | - Ting Jiao
- Institute of Environmental Science, School of Environmental and Resources Sciences, Shanxi University, 030006, China.
| | - Peng Zhang
- Institute of Environmental Science, School of Environmental and Resources Sciences, Shanxi University, 030006, China.
| | - Wanyi Hou
- Institute of Environmental Science, School of Environmental and Resources Sciences, Shanxi University, 030006, China.
| | - Zhongping Li
- Institute of Environmental Science, School of Environmental and Resources Sciences, Shanxi University, 030006, China.
- Shanxi Laboratory for Yellow River, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, School of Environmental and Resources Sciences, Shanxi University, 030006, China.
- Shanxi Laboratory for Yellow River, Taiyuan 030006, China
| | - Wanying Zhang
- School of chemistry and materials science, Shanxi Normal University, Taiyuan 030031, China
| | - Lei Zhang
- Department of Biology, Xinzhou Normal University, Xinzhou 034000, China
| |
Collapse
|
11
|
do Carmo Dias G, de Souza NCS, de Souza EIP, Puiatti GA, Moreira RPL. Enhanced degradation of Direct Red 80 dye via Fenton-like process mediated by cobalt ferrite: generated superoxide radicals and singlet oxygen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28025-28039. [PMID: 38523211 DOI: 10.1007/s11356-024-32976-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Azo dyes, widely used in the textile industry, contribute to effluents with significant organic content. Therefore, the aim of this work was to synthesize cobalt ferrite (CoFe2O4) using the combustion method and assess its efficacy in degrading the azo dye Direct Red 80 (DR80). TEM showed a spherical structure with an average size of 33 ± 12 nm. Selected area electron diffraction and XRD confirmed the presence of characteristic crystalline planes specific to CoFe2O4. The amount of Co and Fe metals were determined by ICP-OES, indicating an n(Fe)/n(Co) ratio of 2.02. FTIR exhibited distinct bands corresponding to Co-O (455 cm-1) and Fe-O (523 cm-1) bonds. Raman spectroscopy detected peaks associated with octahedral and tetrahedral sites. For the first time, the material was applied to degrade DR80 in an aqueous system, with the addition of persulfate. Consistently, within 60 min, these trials achieved nearly 100% removal of DR80, even after the material had undergone five cycles of reuse. The pseudo-second-order model was found to be the most fitting model for the experimental data (k2 = 0.07007 L mg-1 min-1). The results strongly suggest that degradation primarily occurred via superoxide radicals and singlet oxygen. Furthermore, the presence of UV light considerably accelerated the degradation process (k2 = 1.54093 L mg-1 min-1). The material was applied in a synthetic effluent containing various ions, and its performance consistently approached 100% in the photo-Fenton system. Finally, two degradation byproducts were identified through HPLC-MS/MS analysis.
Collapse
Affiliation(s)
- Gessica do Carmo Dias
- Departament of Chemistry, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Noemi Cristina Silva de Souza
- Departament of Chemistry, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Eduardo Israel Pimenta de Souza
- Departament of Chemistry, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Gustavo Alves Puiatti
- Department of Civil Engineering, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Renata Pereira Lopes Moreira
- Departament of Chemistry, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
12
|
Wu Y, Zhao Q, Wang J, Lu S, Zhou L, Lei J, Zhang J, Liu Y. Boosting Peroxymonosulfate Activation via CoS/MXene Nanocomposite for Rhodamine B Degradation under Simulated Sunlight Irradiation. Chem Asian J 2024; 19:e202300881. [PMID: 38065840 DOI: 10.1002/asia.202300881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Indexed: 12/22/2023]
Abstract
Cobalt-based heterogeneous catalysts have been demonstrated as an effective PMS activator for pollutant degradation. However, the limited active sites on their surface lead to an unsatisfactory catalytic efficiency. Immobilizing the catalysts on the support material can be a promising modification strategy to solve this problem. MXene has been considered as an ideal support material due to its unique morphology and physicochemical properties. Therefore, in this work, the CoS-loaded Ti3 C2 MXene (CoS/Ti3 C2 MXene) catalyst for peroxymonosulfate (PMS) activation was successfully synthesized through a solvothermal method. Under the simulated sunlight irradiation, the CoS/Ti3 C2 MXene+PMS system achieved an impressive efficiency in removing the organic pollutant rhodamine B (97.2 % in 10 min). Among the tested catalysts, 30 %-CoS-TC stood out, exhibited a broad pH tolerance from 5 to 9 and maintained robust degradation performance over cycles. Upon detailed analysis, the degradation mechanism revealed the collaborative action dominated by singlet oxygen, and supplemented by photogenerated holes and superoxide radicals in the process. Notably, the sandwich-like structure of MXene played a pivotal role, not only dispersing the CoS particles evenly on the surface of catalysts, but also providing ample space for the active sites, thus accelerating the PMS activation for the degradation of rhodamine B. Overall, this study developed an innovative MXene-based catalyst for the application of environmental remediation.
Collapse
Affiliation(s)
- Yizhou Wu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Qingzi Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jia Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Sitong Lu
- Shanghai Geological Engineering Exploration (Group) Co.,Ltd., Shanghai, 200072, P. R. China
| | - Liang Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| | - Juying Lei
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- Shanghai Geological Engineering Exploration (Group) Co.,Ltd., Shanghai, 200072, P. R. China
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yongdi Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
13
|
Lou J, An J, Wang X, Cheng M, Cui Y. A novel DBD/VUV/PMS process for efficient sulfadiazine degradation in wastewater: Singlet oxygen-dominated nonradical oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132650. [PMID: 37813033 DOI: 10.1016/j.jhazmat.2023.132650] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
In this study, a novel process of dielectric barrier discharge plasma/vacuum ultraviolet/peroxymonosulfate (DBD/VUV/PMS) for the nonradical-dominated degradation of sulfadiazine (SDZ) was investigated. The hybrid system has significant synergistic effects, with 95.5% SDZ and 68.3% TOC removal within 10 min. The activation efficiency of DBD/VUV (69.0%) on PMS via multipath was 2.07 times higher than that of single DBD (33.3%) under alkaline conditions. Electron paramagnetic resonance analyses and trapping experiments showed 1O2 was the primary active substance in the DBD/VUV/PMS process. The predominant role of 1O2 revealed that SDZ removal mainly followed the nonradical reaction pathway, contrary to the previously reported non-thermal plasma (NTP)-based radical-dominated process. Multiple spectroscopy analysis showed the efficient degradation process of SDZ. Unlike the radical attack sites, the SDZ transformation pathway by nonradical 1O2 was probably initiated by an aniline ring site attack based on density functional theory (DFT) calculations and product analyses. The DBD/VUV/PMS process reduced energy consumption by 69% compared to DBD. Finally, the evaluation of ecotoxicity and PMS utilization demonstrated the advantages and application prospects of the DBD/VUV/PMS process. This research developed a new nonradical-dominated pathway for antibiotic degradation by the photo/plasma/persulfate process.
Collapse
Affiliation(s)
- Jing Lou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Jiutao An
- College of Resources and Environment Engineering, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Meng Cheng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yingjun Cui
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
14
|
Yao C, Zhang J, Gao L, Jin C, Wang S, Jiang W, Liang H, Feng P, Li X, Ma L, Wei H, Sun C. Enhancing sodium percarbonate catalytic wet peroxide oxidation with artificial intelligence-optimized swirl flow: Ni single atom sites on carbon nanotubes for improved reactivity and silicon resistance. CHEMOSPHERE 2024; 346:140606. [PMID: 37939928 DOI: 10.1016/j.chemosphere.2023.140606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
H2O2 is widely used in the treatment of refractory organic pollutants.However, due to its explosive and corrosive chemical characteristics, H2O2 will bring great safety risks and troubles in transportation.So we chose sodium percarbonate(SPC) to be used in catalytic wet peroxide oxidation enhanced by swirl flow(SF-CWPO) and we designed carbon nanotubes with Ni single atom sites(Ni-NCNTs/AC) to activate SPC to treat an m-cresol wastewater containing Si.Meanwhile, artificial intelligence which used Artificial neural network (ANN) was used to optimize the conditions.Under the conditions of pH = 9.27, reaction time of 8.91 min, m-cresol concentration is 59.09 mg L-1, SPC dosage is 2.80 g L-1 and Na2SiO3·9H2O dosage is 77.27 mg L-1, the degradation rate of total organic carbon(TOC) and m-cresol reaches 94.37% and 100%, respectively.Finally, the applicability of Ni-NCNTs/AC-SPC-SF-CWPO technology was evaluated in a wastewater system of a sewage treatment enterprise and Fourier transform ion cyclotron resonance mass spectrum(FT-ICR MS) analysis and chemical oxygen demand(COD) analysis showed the great ability of Ni-NCNTs/AC-SPC-SF-CWPO technology to treat wastewater.It is believed that this paper is of great significance to the design and construction of the in-depth research and industrial application of SF-CWPO.
Collapse
Affiliation(s)
- Chenxing Yao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Liansong Gao
- Shenyang Jianzhu University, Shenyang, 110168, China
| | - Chengyu Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengzhe Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenshuo Jiang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanrui Liang
- Guangxi Normal University, Guilin, 541006, China
| | - Pan Feng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xianru Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lei Ma
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Chenglin Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
15
|
Rayaroth MP, Aravind UK, Boczkaj G, Aravindakumar CT. Singlet oxygen in the removal of organic pollutants: An updated review on the degradation pathways based on mass spectrometry and DFT calculations. CHEMOSPHERE 2023; 345:140203. [PMID: 37734498 DOI: 10.1016/j.chemosphere.2023.140203] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
The degradation of pollutants by a non-radical pathway involving singlet oxygen (1O2) is highly relevant in advanced oxidation processes. Photosensitizers, modified photocatalysts, and activated persulfates can generate highly selective 1O2 in the medium. The selective reaction of 1O2 with organic pollutants results in the evolution of different intermediate products. While these products can be identified using mass spectrometry (MS) techniques, predicting a proper degradation mechanism in a 1O2-based process is still challenging. Earlier studies utilized MS techniques in the identification of intermediate products and the mechanism was proposed with the support of theoretical calculations. Although some reviews have been reported on the generation of 1O2 and its environmental applications, a proper review of the degradation mechanism by 1O2 is not yet available. Hence, we reviewed the possible degradation pathways of organic contaminants in 1O2-mediated oxidation with the support of density functional theory (DFT). The Fukui function (FF, f-, f+, and f0), HOMO-LUMO energies, and Gibbs free energies obtained using DFT were used to identify the active site in the molecule and the degradation mechanism, respectively. Electrophilic addition, outer sphere type single electron transfer (SET), and addition to the hetero atoms are the key mechanisms involved in the degradation of organic contaminants by 1O2. Since environmental matrices contain several contaminants, it is difficult to experiment with all contaminants to identify their intermediate products. Therefore, the DFT studies are useful for predicting the intermediate compounds during the oxidative removal of the contaminants, especially for complex composition wastewater.
Collapse
Affiliation(s)
- Manoj P Rayaroth
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, ME, 04544, USA.
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi 682022, Kerala, India
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233, Gdansk, G. Narutowicza 11/12 Str, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India; Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India.
| |
Collapse
|
16
|
Li J, Lu H, Wang A, Wen X, Huang Y, Li Q. The fates of antibiotic resistance genes and their association with cell membrane permeability in response to peroxydisulfate during composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118659. [PMID: 37478721 DOI: 10.1016/j.jenvman.2023.118659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/18/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
The aims of this study were to use metagenomics to reveal the fates of antibiotic resistance genes (ARGs) during composting under the regulation of peroxydisulfate and clarify the relationship between ARGs and cell membrane permeability. Results showed that peroxydisulfate increased cell membrane permeability by effectively regulating the expression of outer membrane protein and lipopolysaccharide related genes. Besides, it reduced polysaccharides and proteins in extracellular polymer substances by 36% and 58%, respectively, making it easier for intracellular ARGs (i-ARGs) to reach the extracellular environment, among which the absolute intracellular abundance of mphK, Erm(31), and tet(44) decreased to 1.2, 1.0, and 0.89 fold of the control, respectively. Finally, variation partitioning analysis showed that i-ARGs dominated the removal of ARGs. These results revealed that the removal of i-ARGs by activated peroxydisulfate was the key to the removal of ARGs and increased cell membrane permeability played a key role for peroxydisulfate to remove i-ARGs during composting.
Collapse
Affiliation(s)
- Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Heng Lu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Ao Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
17
|
Hao C, Rao F, Zhang Y, Wang H, Chen J, Wågberg T, Hu G. Low-temperature molten-salt synthesis of Co 3O 4 nanoparticles grown on MXene can rapidly remove ornidazole via peroxymonosulfate activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:121811. [PMID: 37209900 DOI: 10.1016/j.envpol.2023.121811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
We further developed previous work on MXene materials prepared using molten salt methodology. We substituted single, with mixed salts, and reduced the melting point from >724 °C to <360 °C. Cobalt (Co) compounds were simultaneously etched and doped while the MXene material was created using various techniques in which Co compounds occur as Co3O4. The synthesized Co3O4/MXene compound was used as a peroxymonosulfate (PMS) activator that would generate free radicals to degrade antibiotic ornidazole (ONZ). Under optimal conditions, almost 100% of ONZ (30 mg/L) was degraded within 10 min. The Co3O4/MXene + PMS system efficiently degraded ONZ in natural water bodies, and had a broad pH adaptation range (4-11), and strong anion anti-interference. We investigated how the four active substances were generated using radical quenching and electron paramagnetic resonance (EPR) spectroscopy. We identified 12 ONZ intermediates by liquid chromatography-mass spectrometry and propose a plausible degradative mechanism.
Collapse
Affiliation(s)
- Chenglin Hao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Fengling Rao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Yunqiu Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Huaisheng Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Jianbin Chen
- Research Academy of Non-metallic Mining Industry Development, Materials and Environmental Engineering College, Chizhou University, Chizhou, 247000, China
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå, 901 87, Sweden
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
| |
Collapse
|
18
|
Yueyu S. The synergistic degradation of pollutants in water by photocatalysis and PMS activation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10927. [PMID: 37723660 DOI: 10.1002/wer.10927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In recent years, the synergistic degradation of water pollutants through advanced oxidation technology has emerged as a prominent research area due to its integration of various advanced oxidation technologies. The combined utilization of peroxymonosulfate (PMS) activation technology and photocatalysis demonstrates mild and nontoxic characteristics, enabling the degradation of water pollutants across a wide pH range. Moreover, this approach reduces the efficiency of electron hole recombination, broadens the catalyst's light response range, facilitates electron transfer of PMS, and ultimately improves its photocatalytic performance. The paper reviews the current research status of photocatalytic technology and PMS activation technology, respectively, while highlighting the advancements achieved through the integration of photocatalytic synergetic PMS activation technology for water pollutant degradation. Furthermore, this review delves into the mechanisms involving both free radicals and nonradicals in the reaction process and presents a promising prospect for future development in water treatment technology. PRACTITIONER POINTS: Degradation of water pollutants by photocatalysis and PMS synergistic action has emerged. Synergism can enhance the generation of free radicals. This technology can provide theoretical support for actual wastewater treatment.
Collapse
Affiliation(s)
- Song Yueyu
- Department of Architecture and Environmental Engineering, Taiyuan University, Taiyuan, China
| |
Collapse
|
19
|
Yan Y, Wei Z, Duan X, Long M, Spinney R, Dionysiou DD, Xiao R, Alvarez PJJ. Merits and Limitations of Radical vs. Nonradical Pathways in Persulfate-Based Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12153-12179. [PMID: 37535865 DOI: 10.1021/acs.est.3c05153] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Urbanization and industrialization have exerted significant adverse effects on water quality, resulting in a growing need for reliable and eco-friendly treatment technologies. Persulfate (PS)-based advanced oxidation processes (AOPs) are emerging as viable technologies to treat challenging industrial wastewaters or remediate groundwater impacted by hazardous wastes. While the generated reactive species can degrade a variety of priority organic contaminants through radical and nonradical pathways, there is a lack of systematic and in-depth comparison of these pathways for practical implementation in different treatment scenarios. Our comparative analysis of reaction rate constants for radical vs. nonradical species indicates that radical-based AOPs may achieve high removal efficiency of organic contaminants with relatively short contact time. Nonradical AOPs feature advantages with minimal water matrix interference for complex wastewater treatments. Nonradical species (e.g., singlet oxygen, high-valent metals, and surface activated PS) preferentially react with contaminants bearing electron-donating groups, allowing enhancement of degradation efficiency of known target contaminants. For byproduct formation, analytical limitations and computational chemistry applications are also considered. Finally, we propose a holistically estimated electrical energy per order of reaction (EE/O) parameter and show significantly higher energy requirements for the nonradical pathways. Overall, these critical comparisons help prioritize basic research on PS-based AOPs and inform the merits and limitations of system-specific applications.
Collapse
Affiliation(s)
- Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, United States
| |
Collapse
|
20
|
Peng X, Zhou C, Li X, Qi K, Gao L. Degradation of tetracycline by peroxymonosulfate activated with Mn 0.85Fe 2.15O 4-CNTs: Key role of singlet oxygen. ENVIRONMENTAL RESEARCH 2023; 227:115750. [PMID: 37003552 DOI: 10.1016/j.envres.2023.115750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
Tetracycline (TC) is a kind of electron-rich organic, and singlet oxygen (1O2) oxidative pathway-based advanced oxidation processes (AOPs) have represented outstanding selective degradation to such pollutants. In this paper, an excellent prepared strategy for 1O2 dominated catalyst was adopted. A catalyst composed of non-stoichiometric doping Mn-Fe bimetallic oxide supported on CNTs (0.3-Mn0.85Fe2.15O4-CNTs) was synthesized and optimized by regulating the non-stoichiometric doping ratio of Mn & Fe and the loading amount of CNTs. Through optimization and control experiments, the optimized catalyst represented 94.9% of TC removal efficiency within 60 min in neutral condition under relatively low concentrations of Mn0.85Fe2.15O4-CNTs (0.4 g/L) and PMS (0.8 mM). Through SEM and XRD characterization, Mn0.85Fe2.15O4-CNTs was a hybrid of cubic Mn0.85Fe2.15O4 uniformly dispersing on CNTs. By the characterization of XPS and FT-IR, more CO bonds and low-valent Mn (II) & Fe (II) appeared in Mn0.85Fe2.15O4-CNTs. Reactive oxygen species (ROS) was determined by radical quenching experiments and electron spin resonance (EPR) spectroscopy, and 1O2 was verified to be the dominated ROS. The mechanism for PMS' activation was speculated, and more low-valent Mn (II) and Fe (II) contributed to the production of free-radical (•OH & SO4•-), while the reaction between PMS and the enhanced CO bond on Mn0.85Fe2.15O4-CNTs played a crucial part in the generation of 1O2. In addition, through the comparative degradation of four different organics with distinct charge densities, the excellent selectivity of 1O2-based oxidative pathway to electron-rich pollutants was found. This paper supplied a good strategy to prepare catalyst for PMS activation to form a 1O2-dominated oxidative pathway.
Collapse
Affiliation(s)
- Xueer Peng
- College of Environmental Engineering, University of Science & Technology of Taiyuan, Jinzhong, 030600, China
| | - Chenyang Zhou
- College of Environmental Engineering, University of Science & Technology of Taiyuan, Jinzhong, 030600, China
| | - Xuelian Li
- College of Environmental Engineering, University of Science & Technology of Taiyuan, Jinzhong, 030600, China
| | - Kai Qi
- College of Environmental Engineering, University of Science & Technology of Taiyuan, Jinzhong, 030600, China
| | - Lili Gao
- College of Environmental Engineering, University of Science & Technology of Taiyuan, Jinzhong, 030600, China.
| |
Collapse
|
21
|
Liang J, Liu H, Zou M, Tao X, Zhou J, Dang Z, Lu G. Degradation efficiency and mechanism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by thermally activated persulfate system. CHEMOSPHERE 2023; 325:138396. [PMID: 36931399 DOI: 10.1016/j.chemosphere.2023.138396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) as a typical brominated flame retardant (BFR) have attracted worldwide attention due to the high environmental risk and resistance to conventional remediation processes. In this study, thermally activated persulfate (TAP) process was applied to degrade 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), which is the most toxic and representative PBDEs in e-waste dismantling sites. Impact factors such as PDS dosage, heating temperature, and initial pH were evaluated. Results showed that BDE-47 can be 100% degraded within 180 min under the condition of PDS:BDE-47 = 1000:1, 60 °C, and pH = 7. Quenching experiments combined with EPR analysis further proved the important role of SO4·- in oxidating BDE-47. According to high-resolution mass spectrometry (HRMS) analysis, only one oxidation product of low toxicity was detected during the oxidation process. Theoretical calculations further revealed that the oxidation process mainly involved radical attack at C-Br bond, cleavage of C-Br bond, and fission of ether bond, and HSO4· may also play an important role in BDE-47 degradation in TAP system. In addition, TAP system exhibited universality as all selected PBDE congeners can be degraded, and the degradation rate of PBDEs was greatly affected by the number of substituted Br atoms in a negative trend. Overall, these findings indicate that TAP can be applied as an effective method for removal of PBDEs, and we provide a new insight for the practical application of TAP technology in BDE-47 degradation from experimental and theoretical aspects.
Collapse
Affiliation(s)
- Jiahao Liang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - He Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Mengyao Zou
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
22
|
Wang L, Wang Y, Wang Z, Du P, Xing L, Xu W, Ni J, Liu S, Wang Y, Yu G, Dai Q. Proton transfer triggered in-situ construction of C=N active site to activate PMS for efficient autocatalytic degradation of low-carbon fatty amine. WATER RESEARCH 2023; 240:120119. [PMID: 37247441 DOI: 10.1016/j.watres.2023.120119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Removal of low-carbon fatty amines (LCFAs) in wastewater treatment poses a significant technical challenge due to their small molecular size, high polarity, high bond dissociation energy, electron deficiency, and poor biodegradability. Moreover, their low Brønsted acidity deteriorates this issue. To address this problem, we have developed a novel base-induced autocatalytic technique for the highly efficient removal of a model pollutant, dimethylamine (DMA), in a homogeneous peroxymonosulfate (PMS) system. A high reaction rate constant of 0.32 min-1 and almost complete removal of DMA within 12 min are achieved. Multi-scaled characterizations and theoretical calculations reveal that the in situ constructed C=N bond as the crucial active site activates PMS to produce abundant 1O2. Subsequently, 1O2 oxidizes DMA through multiple H-abstractions, accompanied by the generation of another C=N structure, thus achieving the autocatalytic cycle of pollutant. During this process, base-induced proton transfers of pollutant and oxidant are essential prerequisites for C=N fabrication. A relevant mechanism of autocatalytic degradation is unraveled and further supported by DFT calculations at the molecular level. Various assessments indicate that this self-catalytic technique exhibits a reduced toxicity and volatility process, and a low treatment cost (0.47 $/m3). This technology has strong environmental tolerance, especially for the high concentrations of chlorine ion (1775 ppm) and humic acid (50 ppm). Moreover, it not only exhibits excellent degradation performance for different amine organics but also for the coexisting common pollutants including ofloxacin, phenol, and sulforaphane. These results fully demonstrate the superiority of the proposed strategy for practical application in wastewater treatment. Overall, this autocatalysis technology based on the in-situ construction of metal-free active site by regulating proton transfer will provide a brand-new strategy for environmental remediation.
Collapse
Affiliation(s)
- Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yanan Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhixiang Wang
- National Key Laboratory of Biochemical Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Penghui Du
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Lei Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Weichao Xu
- National Key Laboratory of Biochemical Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jincheng Ni
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Shuai Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yihao Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Guangfei Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Qin Dai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
23
|
Wang L, Xiao K, Zhao H. The debatable role of singlet oxygen in persulfate-based advanced oxidation processes. WATER RESEARCH 2023; 235:119925. [PMID: 37028213 DOI: 10.1016/j.watres.2023.119925] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Singlet oxygen (1O2) attracts much attention in persulfate-based advanced oxidation processes (PS-AOPs), because of its wide pH tolerance and high selectivity toward electron-rich organics. However, there are conflicts about the 1O2 role in PS-AOPs on several aspects, including the formation of different key reactive oxygen species (ROS) at similar active sites, pH dependence, broad-spectrum activity, and selectivity in the elimination of organic pollutants. To a large degree, these conflicts root in the drawbacks of the methods to identify and evaluate the role of 1O2. For example, the quenchers of 1O2 have high reactivity to other ROS and persulfate as well. In addition, electron transfer process (ETP) also selectively oxidizes organics, having a misleading effect on the identification of 1O2. Therefore, in this review, we summarized and discussed some basic properties of 1O2, the debatable role of 1O2 in PS-AOPs on multiple aspects, and the methods and their drawbacks to identify and evaluate the role of 1O2. On the whole, this review aims to better understand the role of 1O2 in PS-AOPs and further help with its reasonable utilization.
Collapse
Affiliation(s)
- Liangjie Wang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
24
|
Wang L, Li J, Liu X, Zhang J, Zeng P, Song Y. Overestimation of 1O 2 role in N-doped carbon materials/peroxymonosulfate system: The misleading of furfuryl alcohol quenching effect. CHEMOSPHERE 2023; 324:138264. [PMID: 36858119 DOI: 10.1016/j.chemosphere.2023.138264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Singlet oxygen (1O2) is frequently observed in persulfate-based advanced oxidation processes (PS-AOPs), however its significance in the removal of organic compounds is debatable. To evaluate the role of 1O2, some organic pollutants that have been proven to be successfully degraded by 1O2 in earlier research were selected as the targeted pollutants of this study. In the activation of peroxymonosulfate (PMS) using Co-BTC (a type of metal-organic framework)/melamine derived nitrogen-doped carbon material (Co-BTC/10MNC) as the catalyst, 1O2 and surface-bound SO4•- are discovered, however only surface-bound SO4•- was the dominant species. The degree of inhibition of furfuryl alcohol (FFA) on the removal of organics is reliant on the reaction rates of SO4•- and organics, rather than on the quenching impact of FFA on 1O2. The lower kSO4•- organics have, the easier it is for FFA to inhibit their removal. In short, the quenching effect of FFA is not solid evidence to identify 1O2. Besides, it is found that the influence of HCO3- is related to the second order reaction rate constant (kHCO3•) between HCO3• and organics, implying that the selective removal of some organics is due to that corresponding inorganic radicals (Cl•, NO3•, HCO3• or HPO4•-) have good ability to degrade these organics, rather than 1O2 as the key reactive oxygen species.
Collapse
Affiliation(s)
- Liangjie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiali Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ping Zeng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
25
|
Serna-Galvis EA, Martínez-Mena YL, Arboleda-Echavarría J, Hoyos-Ayala DA, Echavarría-Isaza A, Torres-Palma RA. Zeolite 4A activates peroxymonosulfate toward the production of singlet oxygen for the selective degradation of organic pollutants. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
26
|
Manz KE, Kulaots I, Greenley CA, Landry PJ, Lakshmi KV, Woodcock MJ, Hellerich L, Bryant JD, Apfelbaum M, Pennell KD. Low-temperature persulfate activation by powdered activated carbon for simultaneous destruction of perfluorinated carboxylic acids and 1,4-dioxane. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129966. [PMID: 36162307 DOI: 10.1016/j.jhazmat.2022.129966] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Carbonaceous materials have emerged as a method of persulfate activation for remediation. In this study, persulfate activation using powdered activated carbon (PAC) was demonstrated at temperatures relevant to groundwater (5-25 °C). At room temperature, increasing doses of PAC (1-20 g L-1) led to increased persulfate activation (3.06 × 10-6s-1 to 2.10 × 10-4 with 1 and 20 g L-1 PAC). Activation slowed at lower temperatures (5 and 11 °C); however, substantial (>70 %) persulfate activation was achieved. PAC characterization showed that persulfate is activated at the surface of the PAC, as indicated by an increase in the PAC C:O ratio. Similarly, electron paramagnetic resonance (EPR) spectroscopy studies with a spin trapping agents (5,5-dimethyl-1-pyrroline N-oxide (DMPO)) and 2,2,6,6-tetramethylpiperidine (TEMP) revealed that singlet oxygen was not the main oxidizing species in the reaction. DMPO was oxidized to form 5,5-dimethylpyrrolidone-2(2)-oxyl-(1) (DMPOX), which forms in the presence of strong oxidizers, such as sulfate radicals. The persulfate/PAC system is demonstrated to simultaneously degrade both perfluorooctanoic acid (PFOA) and 1,4-dioxane at room temperature and 11 °C. With a 20 g L-1 PAC and 75 mM persulfate, 80 % and 70 % of the PFOA and 1,4-dioxane, respectively, degraded within 6 h at room temperature. At 11 °C, the same PAC and persulfate doses led to 57% dioxane degradation and 54 % PFOA degradation within 6 h. Coupling PAC with persulfate offers an effective, low-cost treatment for simultaneous destruction of 1,4-dioxane and PFOA.
Collapse
Affiliation(s)
- Katherine E Manz
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Indrek Kulaots
- School of Engineering, Brown University, Providence, RI 02912, USA
| | | | - Patrick J Landry
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | - Lucas Hellerich
- Woodard & Curran, 213 Court Street, 4th Floor, Middletown, CT 06457, USA
| | - J Daniel Bryant
- Woodard & Curran, 50 Millstone Road, Building 400, East Windsor, NJ 08520, USA
| | - Mike Apfelbaum
- Woodard & Curran, 40 Shattuck Road, Suite 110, Andover, MA 01810, USA
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
27
|
Ghanbari S, Fatehizadeh A, Taheri E, Khiadani M, Iqbal HMN. Degradation of 4-chlorophenol using MnOOH and γ-MnOOH nanomaterials as porous catalyst: Performance, synergistic mechanism, and effect of co-existing anions. ENVIRONMENTAL RESEARCH 2022; 215:114316. [PMID: 36116494 DOI: 10.1016/j.envres.2022.114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Transition metal catalysts have been proven to be a highly-potent catalyst for peroxymonosulfate (PMS) activation. The present work aimed to synthesizes the γ-MnOOH and MnOOH based on the one-pot hydrothermal method as PMS activators for efficient degradation of 4-chlorophenol (4-CP). The effect of operational parameters including solution pH, γ-MnOOH and MnOOH dose, PMS dose, 4-CP concentration, and also mixture media composition was elaborated. The results showed that the combination of MnOOH and γ-MnOOH with PMS noticeably creates a synergistic effect (SF) in 4-CP degradation by both PMS/MnOOH and PMS/γ-MnOOH process, with a SF value of 48.14 and 97.42, respectively. In both systems, the removal of 4-CP decreased in severely alkaline and acidic conditions, while no significant changes were observed in pH 5 to 9. Also, coexisting PO43- significantly reduced the removal efficiency of both systems. In addition, the effect of humic acid (HA) as a classical scavenger was investigated and showed that presence of 4 mg/L HA reduced the removal efficiency of 4-CP in the PMS/MnOOH process from 97.44% to 79.3%. The three consecutive use of both catalysts turned out that MnOOH has better stability than γ-MnOOH with lower Mn ions leaching. More importantly, quenching experiment showed that both non-radical (1O2 and O2-) and radical (SO4- and OH) pathways are involved in 4-CP degradation and non-radical pathway was the dominant one in both systems.
Collapse
Affiliation(s)
- Sobhan Ghanbari
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
28
|
Liu X, Shao P, Gao S, Bai Z, Tian J. Benzoquinone-assisted heterogeneous activation of PMS on Fe 3S 4 via formation of active complexes to mediate electron transfer towards enhanced bisphenol A degradation. WATER RESEARCH 2022; 226:119218. [PMID: 36240709 DOI: 10.1016/j.watres.2022.119218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Benzoquinone (BQ) is of great significance for enhancement of contaminants degradation in the homogeneous oxidation system of peroxymonosulfate (PMS). However, the role of BQ in the heterogeneous activation of PMS for contaminants oxidation is still not clear. Herein, this work reported that the addition of BQ into the Fe3S4/PMS system could effectively enhance the degradation and mineralization of bisphenol A (BPA). Mechanistic study uncovered that the BQ and PMS would form active complexes (BQ-PMS*) on the surface of Fe3S4 and the excited BQ-PMS* can oxidize the BPA. To be specific, the electron of BPA was extracted by BQ-PMS* and then transfer to the surface of Fe3S4. The surface electron can induce the change of valence state of S and Fe elements, which can trigger the degradation of BPA and inhibit the decomposition of BQ itself. To the best of our knowledge, it is the first time to unveil the positive role of BQ in the heterogeneous activation of PMS, which may shed new light on the establishment of high-efficient PMS-based oxidation technology for remediation of organic pollutant.
Collapse
Affiliation(s)
- Xiwen Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhaoyu Bai
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
29
|
Tang S, Liu H, Zhu E, Zhao T, Wang Z, Jiao T, Zhang Q, Yuan D. Boosting peroxydisulfate Fenton-like reaction by protocatechuic acid chelated-Fe2+ with broad pH range. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Ojo BO, Arotiba OA, Mabuba N. Sonoelectrochemical oxidation of sulfamethoxazole in simulated and actual wastewater on a piezo-polarizable FTO/BaZr x Ti (1-x)O 3 electrode: reaction kinetics, mechanism and reaction pathway studies. RSC Adv 2022; 12:30892-30905. [PMID: 36349008 PMCID: PMC9614641 DOI: 10.1039/d2ra04876k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/13/2022] [Indexed: 11/14/2022] Open
Abstract
The sonoelectrochemical (SEC) oxidation of sulfamethoxazole (SMX) in simulated and actual wastewater on FTO/BaZr(0.1)Ti(0.9)O3, FTO/BaZr(0.05)Ti(0.95)O3 and FTO/BaTiO3 electrodes is hereby presented. Electrodes from piezo-polarizable BaZr(0.1)Ti(0.9)O3, BaZr(0.05)Ti(0.95)O3, and BaTiO3 materials were prepared by immobilizing these materials on fluorine-doped tin dioxide (FTO) glass. Electrochemical characterization performed on the electrodes using chronoamperometry and electrochemical impedance spectroscopy techniques revealed that the FTO/BaZr(0.1)Ti(0.9)O3 anode displayed the highest sonocurrent density response of 2.33 mA cm-2 and the lowest charge transfer resistance of 57 Ω. Compared to other electrodes, these responses signaled a superior mass transfer on the FTO/BaZr(0.1)Ti(0.9)O3 anode occasioned by an acoustic streaming effect. Moreover, a degradation efficiency of 86.16% (in simulated wastewater), and total organic carbon (TOC) removal efficiency of 63.16% (in simulated wastewater) and 41.47% (in actual wastewater) were obtained upon applying the FTO/BaZr(0.1)Ti(0.9)O3 electrode for SEC oxidation of SMX. The piezo-polarizable impact of the FTO/BaZr(0.1)Ti(0.9)O3 electrode was further established by the higher rate constant obtained for the FTO/BaZr(0.1)Ti(0.9)O3 electrode as compared to the other electrodes during SEC oxidation of SMX under optimum operational conditions. The piezo-potential effect displayed by the FTO/BaZr(0.1)Ti(0.9)O3 electrode can be said to have impacted the generation of reactive species, with hydroxyl radicals playing a predominant role in the degradation of SMX in the SEC system. Additionally, a positive synergistic index obtained for the electrode revealed that the piezo-polarization effect of the FTO/BaZr(0.1)Ti(0.9)O3 electrode activated during sonocatalysis combined with the electrochemical oxidation process during SEC oxidation can be advantageous for the decomposition of pharmaceuticals and other organic pollutants in water.
Collapse
Affiliation(s)
- Babatope O. Ojo
- Department of Chemical Sciences, University of JohannesburgDoornfontein 2028JohannesburgSouth Africa
| | - Omotayo A. Arotiba
- Department of Chemical Sciences, University of JohannesburgDoornfontein 2028JohannesburgSouth Africa,Centre for Nanomaterials Science Research, University of JohannesburgSouth Africa
| | - Nonhlangabezo Mabuba
- Department of Chemical Sciences, University of JohannesburgDoornfontein 2028JohannesburgSouth Africa,Centre for Nanomaterials Science Research, University of JohannesburgSouth Africa
| |
Collapse
|
31
|
Scaria J, Nidheesh P. The role of non-radical pathway in heterogeneous activation of persulfate and H2O2 by superparamagnetic magnetite-reduced graphene oxide nanocomposite. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
A Review of Sulfate Radical-Based and Singlet Oxygen-Based Advanced Oxidation Technologies: Recent Advances and Prospects. Catalysts 2022. [DOI: 10.3390/catal12101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, advanced oxidation process (AOPs) based on sulfate radical (SO4●−) and singlet oxygen (1O2) has attracted a lot of attention because of its characteristics of rapid reaction, efficient treatment, safety and stability, and easy operation. SO4●− and 1O2 mainly comes from the activation reaction of peroxymonosulfate (PMS) or persulfate (PS), which represent the oxidation reactions involving radicals and non-radicals, respectively. The degradation effects of target pollutants will be different due to the type of oxidant, reaction system, activation methods, operating conditions, and other factors. In this paper, according to the characteristics of PMS and PS, the activation methods and mechanisms in these oxidation processes, respectively dominated by SO4●− and 1O2, are systematically introduced. The research progress of PMS and PS activation for the degradation of organic pollutants in recent years is reviewed, and the existing problems and future research directions are pointed out. It is expected to provide ideas for further research and practical application of advanced oxidation processes dominated by SO4●− and 1O2.
Collapse
|
33
|
Zeng T, Jin S, Li S, Bao J, Jin Z, Wang D, Dong F, Zhang H, Song S. Covalent Triazine Frameworks with Defective Accumulation Sites: Exceptionally Modulated Electronic Structure for Solar-Driven Oxidative Activation of Peroxymonosulfate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9474-9485. [PMID: 35613434 DOI: 10.1021/acs.est.2c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Precisely tailoring the electronic structure and surface chemistry of metal-free covalent triazine frameworks (CTFs) for efficient photoactivation of oxyanions is environmentally desirable but still challenging. Of interest to us in this work was to construct artificial defective accumulation sites into a CTF network (CTF-SDx) to synchronously modulate both thermodynamic (e.g., band structure) and kinetic (e.g., charge separation/transfer/utilization and surface adsorption) behaviors and probe how the transformation affected the subsequent activation mechanism of peroxymonosulfate (PMS). With the incorporation of terminal cyano (-CN) groups and boron (B) dopants, the delocalized CTF-SD underwent a narrowed electronic energy gap for increased optical absorption as well as a downshifted valence band position for enhanced oxidation capacity. Moreover, the localized charge accumulation regions induced by the electron-withdrawing -CN groups facilitated the exciton dissociation process, while the adjacent electron-deficient areas enabled strong affinity toward PMS molecules. All of these merits impelled the photoactivation reaction with PMS, and a 15-fold enhancement of bisphenol-A (BPA) removal was found in the CTF-SD2/PMS/vis system compared with the corresponding pristine CTF system. Mechanistic investigations demonstrated that this system decomposed organics primarily through a singlet oxygen-mediated nonradical process, which originated from PMS oxidative activation over photoinduced holes initiated by an electron transfer process, thereby opening a new avenue for designing an efficient PMS activation strategy for the selective oxidation of organic pollutants.
Collapse
Affiliation(s)
- Tao Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Sijia Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Shuqi Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Jiawen Bao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Zhiquan Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Da Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Feilong Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Haiyan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, P. R. China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| |
Collapse
|
34
|
Tian X, Huang H, Zhang H, Yan Y. Preparation of structured N-CNTs/PSSF composite catalyst to activate peroxymonosulfate for phenol degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Bianco GV, Sacchetti A, Grande M, D'Orazio A, Milella A, Bruno G. Effective hole conductivity in nitrogen-doped CVD-graphene by singlet oxygen treatment under photoactivation conditions. Sci Rep 2022; 12:8703. [PMID: 35610345 PMCID: PMC9130222 DOI: 10.1038/s41598-022-12696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Nitrogen substitutional doping in the π-basal plane of graphene has been used to modulate the material properties and in particular the transition from hole to electron conduction, thus enlarging the field of potential applications. Depending on the doping procedure, nitrogen moieties mainly include graphitic-N, combined with pyrrolic-N and pyridinic-N. However, pyridine and pyrrole configurations of nitrogen are predominantly introduced in monolayer graphene:N lattice as prepared by CVD. In this study, we investigate the possibility of employing pyridinic-nitrogen as a reactive site as well as activate a reactive center at the adjacent carbon atoms in the functionalized C-N bonds, for additional post reaction like oxidation. Furthermore, the photocatalytic activity of the graphene:N surface in the production of singlet oxygen (1O2) is fully exploited for the oxidation of the graphene basal plane with the formation of pyridine N-oxide and pyridone structures, both having zwitterion forms with a strong p-doping effect. A sheet resistance value as low as 100 Ω/□ is reported for a 3-layer stacked graphene:N film.
Collapse
Affiliation(s)
- Giuseppe Valerio Bianco
- Institute of Nanotechnology, CNR‑NANOTEC, Dipartimento Di Chimica, Università Di Bari, via Orabona, 4, 70126, Bari, Italy.
| | - Alberto Sacchetti
- Institute of Nanotechnology, CNR‑NANOTEC, Dipartimento Di Chimica, Università Di Bari, via Orabona, 4, 70126, Bari, Italy
| | - Marco Grande
- Institute of Nanotechnology, CNR‑NANOTEC, Dipartimento Di Chimica, Università Di Bari, via Orabona, 4, 70126, Bari, Italy
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico Di Bari, via Orabona,4, 70123, Bari, Italy
| | - Antonella D'Orazio
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico Di Bari, via Orabona,4, 70123, Bari, Italy
| | - Antonella Milella
- Institute of Nanotechnology, CNR‑NANOTEC, Dipartimento Di Chimica, Università Di Bari, via Orabona, 4, 70126, Bari, Italy
- Dipartimento di Chimica, Università Di Bari, via Orabona, 4, 70126, Bari, Italy
| | - Giovanni Bruno
- Institute of Nanotechnology, CNR‑NANOTEC, Dipartimento Di Chimica, Università Di Bari, via Orabona, 4, 70126, Bari, Italy
| |
Collapse
|
36
|
Bao Y, Yan W, Sun PP, Yeow Seow JZ, Lua SK, Lee WJ, Liang YN, Lim TT, Xu ZJ, Zhou K, Hu X. Unexpected Intrinsic Catalytic Function of Porous Boron Nitride Nanorods for Highly Efficient Peroxymonosulfate Activation in Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18409-18419. [PMID: 35426679 DOI: 10.1021/acsami.2c00755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Porous boron nitride (BN) nanorods, which were synthesized via a one-stage pyrolysis, exhibited excellent catalytic performance for organics' degradation via peroxymonosulfate (PMS) activation. The origin of the unexpected catalytic function of porous BN nanorods was proposed, in which non-radical oxidation driven by the defects on porous BN dominated the sulfamethoxazole degradation via the generation of singlet oxygen (1O2). The adsorption energy between PMS and BN was calculated via density functional theory (DFT), and the PMS activation kinetics were further investigated using an electrochemical methodology. The evolution of 1O2 was verified by electron spin resonance (ESR) and chemical scavenging experiments. The observed non-radical oxidation presented a high robustness in different water matrices, combined with a series of much less toxic intermediates. The used BN was easily regenerated by heating in air, in which the B-O bond was fully recovered. These findings provide new insights for BN as a non-metal catalyst for organics' degradation via PMS activation, in both theoretical and practical prospects.
Collapse
Affiliation(s)
- Yueping Bao
- Environmental Chemistry & Materials Centre (ECMC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore 637141, Singapore
| | - Weili Yan
- Rolls-Royce @ NTU Corporate Lab, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ping-Ping Sun
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Justin Zhu Yeow Seow
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore 639798 Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shun Kuang Lua
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Emerging nanoscience Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wen Jie Lee
- Environmental Chemistry & Materials Centre (ECMC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore 637141, Singapore
- Interdisciplinary Graduate Programme (IGP), Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yen Nan Liang
- Environmental Chemistry & Materials Centre (ECMC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore 637141, Singapore
| | - Teik-Thye Lim
- Environmental Chemistry & Materials Centre (ECMC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Zhichuan J Xu
- Environmental Chemistry & Materials Centre (ECMC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore 637141, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Environmental Process Modelling Centre (EPMC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore 637141, Singapore
| | - Xiao Hu
- Environmental Chemistry & Materials Centre (ECMC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore 637141, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
37
|
Tyagi S, McKillican BP, Salvador TK, Gichinga MG, Eberle WJ, Viner R, Makaravage KJ, Johnson TS, Russell CA, Roy S. Bioinspired Synthesis of Pinoxaden Metabolites Using a Site-Selective C-H Oxidation Strategy. J Org Chem 2022; 87:6202-6211. [PMID: 35442682 DOI: 10.1021/acs.joc.2c00440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A bioinspired synthesis of Pinoxaden metabolites 2-5 is described herein. A site-selective C-H oxidation strategy validated by density functional theory (DFT) calculations was devised for preparing metabolites 2-4. Oxidation of the benzylic C-H bond in tertiary alcohol 7 using K2S2O8 and catalytic AgNO3 formed the desired metabolite 2 that enabled access to metabolites 3 and 4 in a single step. Unlike most metal/persulfate-catalyzed transformations reported for the C-C and C-O bond formation reactions wherein the metal acts as a catalyst, we propose that Ag(I)/K2S2O8 plays the role of an initiator in the oxidation of intermediate 7 to 2. Metabolite 2 was subjected to a ruthenium tetroxide-mediated C-H oxidation to form metabolites 3 and 4 as a mixture that were purified to isolate pure standards of these metabolites. Metabolite 5 was synthesized from readily available advanced intermediate 9 via a House-Meinwald-type rearrangement in one step using a base.
Collapse
Affiliation(s)
- Sameer Tyagi
- Product Metabolism Analytical Sciences, Syngenta Group, 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - Bruce P McKillican
- Product Metabolism Analytical Sciences, Syngenta Group, 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - Tolani K Salvador
- Product Metabolism Analytical Sciences, Syngenta Group, 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - Moses G Gichinga
- Product Metabolism Analytical Sciences, Syngenta Group, 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - William J Eberle
- Product Metabolism Analytical Sciences, Syngenta Group, 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - Russell Viner
- Research Chemistry, Syngenta Group, Jealott's Hill International Research Center, Bracknell, Berkshire RG 42 6EY, United Kingdom
| | - Katarina J Makaravage
- Product Metabolism Analytical Sciences, Syngenta Group, 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - Trey S Johnson
- Product Metabolism Analytical Sciences, Syngenta Group, 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - C Adam Russell
- Product Metabolism Analytical Sciences, Syngenta Group, Jealott's Hill International Research Center, Bracknell, Berkshire RG 42 6EY, United Kingdom
| | - Subho Roy
- TCG Lifesciences, Chembiotek, Block BN, Plot 7, Salt Lake Electronics Complex, Sector V, Kolkata 700091, West Bengal, India
| |
Collapse
|
38
|
Choong ZY, Lin KYA, Lisak G, Lim TT, Oh WD. Multi-heteroatom-doped carbocatalyst as peroxymonosulfate and peroxydisulfate activator for water purification: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128077. [PMID: 34953256 DOI: 10.1016/j.jhazmat.2021.128077] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Catalytic activation of peroxymonosulfate (PMS) and peroxydisulfate (PDS) (or collectively known as persulfate, PS) using carbocatalyst is increasingly gaining attention as a promising technology for sustainable recalcitrant pollutant removal in water. Single heteroatom doping using either N, S, B or P is widely used to enhance the performance of the carbocatalyst for PS activation. However, the performance enhancement from single heteroatom doping is limited by the type of heteroatom used. To further enhance the performance of the carbocatalyst beyond the limit of single heteroatom doping, multi-heteroatom doping can be conducted. This review aims to provide a state-of-the-art overview on the development of multi-heteroatom-doped carbocatalyst for PS activation. The potential synergistic and antagonistic interactions of various heteroatoms including N and B, N and S, N and P, and N and halogen for PS activation are evaluated. Thereafter, the preparation strategies to develop multi-heteroatom-doped carbocatalyst including one-step and multi-step preparation approaches along with the characterization techniques are discussed. Evidence and summary of the performance of multi-heteroatom-doped carbocatalyst for various recalcitrant pollutants removal via PS activation are also provided. Finally, the prospects of employing multi-heteroatom-doped carbocatalyst including the need to study the correlation between different heteroatom combination, surface moiety type, and amount of dopant with the PS activation mechanism, identifying the best heteroatom combination, improving the durability of the carbocatalyst, evaluating the feasibility for full-scale application, developing low-cost multi-heteroatom-doped carbocatalyst, and assessing the environmental impact are also briefly discussed.
Collapse
Affiliation(s)
- Zheng-Yi Choong
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, Taiwan
| | - Grzegorz Lisak
- Resource and Reclamation Centre (R3C), Nanyang Environment and Water Research Institute (NEWRI), 1 Cleantech Loop, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Teik-Thye Lim
- Resource and Reclamation Centre (R3C), Nanyang Environment and Water Research Institute (NEWRI), 1 Cleantech Loop, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
39
|
Zhou T, Du J, Wang Z, Xiao G, Luo L, Faheem M, Ling H, Bao J. Degradation of sulfamethoxazole by MnO2/heat-activated persulfate: Kinetics, synergistic effect and reaction mechanism. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
40
|
Fatimah I, Fadillah G, Yanti I, Doong RA. Clay-Supported Metal Oxide Nanoparticles in Catalytic Advanced Oxidation Processes: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:825. [PMID: 35269318 PMCID: PMC8912419 DOI: 10.3390/nano12050825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/29/2022]
Abstract
Advanced oxidation processes (AOPs) utilizing heterogeneous catalysts have attracted great attention in the last decade. The use of solid catalysts, including metal and metal oxide nanoparticle support materials, exhibited better performance compared with the use of homogeneous catalysts, which is mainly related to their stability in hostile environments and recyclability and reusability. Various solid supports have been reported to enhance the performance of metal and metal oxide catalysts for AOPs; undoubtedly, the utilization of clay as a support is the priority under consideration and has received intensive interest. This review provides up-to-date progress on the synthesis, features, and future perspectives of clay-supported metal and metal oxide for AOPs. The methods and characteristics of metal and metal oxide incorporated into the clay structure are strongly influenced by various factors in the synthesis, including the kind of clay mineral. In addition, the benefits of nanomaterials from a green chemistry perspective are key aspects for their further considerations in various applications. Special emphasis is given to the basic schemes for clay modifications and role of clay supports for the enhanced mechanism of AOPs. The scaling-up issue is suggested for being studied to further applications at industrial scale.
Collapse
Affiliation(s)
- Is Fatimah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Yogyakarta 55112, Indonesia; (G.F.); (I.Y.)
| | - Ganjar Fadillah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Yogyakarta 55112, Indonesia; (G.F.); (I.Y.)
| | - Ika Yanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Yogyakarta 55112, Indonesia; (G.F.); (I.Y.)
| | - Ruey-an Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
41
|
Zhong M, Li M, Fan Z, Huang W, Hao H, Xia Z, Zhang Q, Peng H, Zhang Y. Tuning the crystallinity of MnO2 oxidant to achieve highly efficient pollutant degradation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Jin ZY, Fatima H, Zhang Y, Shao Z, Chen XJ. Recent Advances in Bio‐Compatible Oxygen Singlet Generation and Its Tumor Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Yang Jin
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Hira Fatima
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
| | - Yue Zhang
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Zongping Shao
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing Jiangsu 211816 P. R. China
| | - Xiang Jian Chen
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| |
Collapse
|
43
|
Oh WD, Ho YC, Mohamad M, Ho CD, Ravi R, Lim JW. Systematic Performance Comparison of Fe 3+/Fe 0/Peroxymonosulfate and Fe 3+/Fe 0/Peroxydisulfate Systems for Organics Removal. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5284. [PMID: 34576510 PMCID: PMC8468805 DOI: 10.3390/ma14185284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Activated zero-valent iron (Ac-ZVI) coupled with Fe3+ was employed to activate peroxymonosulfate (PMS) and peroxydisulfate (PDS) for acid orange 7 (AO7) removal. Fe3+ was used to promote Fe2+ liberation from Ac-ZVI as an active species for reactive oxygen species (ROS) generation. The factors affecting AO7 degradation, namely, the Ac-ZVI:Fe3+ ratio, PMS/PDS dosage, and pH, were compared. In both PMS and PDS systems, the AO7 degradation rate increased gradually with increasing Fe3+ concentration at fixed Ac-ZVI loading due to the Fe3+-promoted liberation of Fe2+ from Ac-ZVI. The AO7 degradation rate increased with increasing PMS/PDS dosage due to the greater amount of ROS generated. The degradation rate in the PDS system decreased while the degradation rate in the PMS system increased with increasing pH due to the difference in the PDS and PMS activation mechanisms. On the basis of the radical scavenging study, sulfate radical was identified as the dominant ROS in both systems. The physicochemical properties of pristine and used Ac-ZVI were characterized, indicating that the used Ac-ZVI had an increased BET specific surface area due to the formation of Fe2O3 nanoparticles during PMS/PDS activation. Nevertheless, both systems displayed good reusability and stability for at least three cycles, indicating that the systems are promising for pollutant removal.
Collapse
Affiliation(s)
- Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Mardawani Mohamad
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Kelantan, Malaysia;
| | - Chii-Dong Ho
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei 251, Taiwan;
| | - Rajiv Ravi
- School of Applied Sciences, Faculty of Integrated Life Science, Quest International University, Ipoh 30250, Perak, Malaysia;
| | - Jun-Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia;
| |
Collapse
|