1
|
Talukdar P, Gohain RB, Bharadwaj P, Thakur D, Biswas S. Inactivation of Candida albicans, Staphylococcus aureus and multidrug-resistant Escherichia coli with dielectric barrier discharged cold atmospheric plasma: a comparative study with antimicrobial drugs. J Med Microbiol 2025; 74. [PMID: 39879135 DOI: 10.1099/jmm.0.001965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Introduction. Cold atmospheric plasma (CAP) has emerged as a promising technology for neutralizing microbes, including multidrug-resistant strains. This study investigates CAP's potential as an alternative to traditional antimicrobial drugs for microbial inactivation.Hypothesis/Gap Statement. In the era of increasing antimicrobial resistance, there is a persistent need for alternative antimicrobial strategies. CAP exerts its effects by generating reactive oxygen and nitrogen species (RONS), but its comparative efficacy against antimicrobial drugs requires further exploration.Aim. To evaluate the antimicrobial efficacy of CAP in inactivating multidrug-resistant Escherichia coli (ATCC BAA-2469), Staphylococcus aureus (MTCC 96) and Candida albicans (MTCC 227) and to compare its effectiveness with standard antimicrobial drugs.Methodology. CAP, produced by an indigenously developed dielectric barrier discharge (DBD) setup comprising a quartz-glass-covered high-voltage electrode and a grounded stainless steel mesh electrode, was used to treat three pathogenic samples with varying treatment times (0-60 s). The zone of inhibition (ZoI; zone where microbes cannot grow) induced by CAP was compared with the ZoI of selected antimicrobial drugs (5-300 mcg). Scanning electron microscopy (SEM) analysed morphological changes, while optical emission spectroscopy (OES) detected RONS generated during treatment. Growth curve analysis assessed CAP's impact on microbial growth, and statistical analysis compared CAP-induced ZoI with drug-induced ZoI.Results. CAP treatment produced substantial ZoI against E. coli, S. aureus and C. albicans, with the largest ZoI (1194±35.35 mm²) in C. albicans after 60 s. DBD-CAP showed equivalent or superior efficacy compared with selected antimicrobial drugs based on ZoI comparisons. SEM revealed extensive cellular damage in all three pathogens, with visible morphological disruption within 60 s. Growth curve analysis showed a significant delay in microbial proliferation with increasing CAP exposure, effectively inhibiting growth over 24 h. OES confirmed the presence of RONS-related molecular bands [N2(C-B), N2 +(B-X) and OH(A-X)] and atomic O lines in the CAP.Conclusion. CAP treatment exhibits equivalent or superior antimicrobial activity compared to selected antimicrobial drugs. CAP treatment exerts effects by inactivating pathogens, disintegrating cellular morphology and delaying microbial growth. These findings highlight CAP as a promising alternative to prolonged treatments, addressing antimicrobial resistance and advancing clinical strategies.
Collapse
Affiliation(s)
- Punam Talukdar
- Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Reetesh Borpatra Gohain
- Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pranami Bharadwaj
- Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debajit Thakur
- Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subir Biswas
- Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Oh H, Lee J. Psychrotrophic Bacteria Threatening the Safety of Animal-Derived Foods: Characteristics, Contamination, and Control Strategies. Food Sci Anim Resour 2024; 44:1011-1027. [PMID: 39246535 PMCID: PMC11377203 DOI: 10.5851/kosfa.2024.e70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024] Open
Abstract
Animal-derived foods, such as meat and dairy products, are prone to spoilage by psychrotrophic bacteria due to their high-water activity and nutritional value. These bacteria can grow at refrigerated temperatures, posing significant concerns for food safety and quality. Psychrotrophic bacteria, including Pseudomonas, Listeria, and Yersinia, not only spoil food but can also produce heat-resistant enzymes and toxins, posing health risks. This review examines the characteristics and species composition of psychrotrophic bacteria in animal-derived foods, their impact on food spoilage and safety, and contamination patterns in various products. It explores several nonthermal techniques to combat bacterial contamination as alternatives to conventional thermal methods, which can affect food quality. This review highlights the importance of developing nonthermal technologies to control psychrotrophic bacteria that threaten the cold storage of animal-derived foods. By adopting these technologies, the food industry can better ensure the safety and quality of animal-derived foods for consumers.
Collapse
Affiliation(s)
- Hyemin Oh
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Jeeyeon Lee
- Department of Food & Nutrition, Dong-eui University, Busan 47340, Korea
| |
Collapse
|
3
|
Barjasteh A, Kaushik N, Choi EH, Kaushik NK. Cold Atmospheric Pressure Plasma Solutions for Sustainable Food Packaging. Int J Mol Sci 2024; 25:6638. [PMID: 38928343 PMCID: PMC11203612 DOI: 10.3390/ijms25126638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Increasing the number of resistant bacteria resistant to treatment is one of the leading causes of death worldwide. These bacteria are created in wounds and injuries and can be transferred through hospital equipment. Various attempts have been made to treat these bacteria in recent years, such as using different drugs and new sterilization methods. However, some bacteria resist drugs, and other traditional methods cannot destroy them. In the meantime, various studies have shown that cold atmospheric plasma can kill these bacteria through different mechanisms, making cold plasma a promising tool to deactivate bacteria. This new technology can be effectively used in the food industry because it has the potential to inactivate microorganisms such as spores and microbial toxins and increase the wettability and printability of polymers to pack fresh and dried food. It can also increase the shelf life of food without leaving any residue or chemical effluent. This paper investigates cold plasma's potential, advantages, and disadvantages in the food industry and sterilization.
Collapse
Affiliation(s)
- Azadeh Barjasteh
- Department of Physics, Lorestan University, Khorramabad 68151-44316, Iran;
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea;
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea;
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea;
| |
Collapse
|
4
|
Wang Y, Liu Y, Zhao Y, Sun Y, Duan M, Wang H, Dai R, Liu Y, Li X, Jia F. Bactericidal efficacy difference between air and nitrogen cold atmospheric plasma on Bacillus cereus: Inactivation mechanism of Gram-positive bacteria at the cellular and molecular level. Food Res Int 2023; 173:113204. [PMID: 37803533 DOI: 10.1016/j.foodres.2023.113204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 10/08/2023]
Abstract
As an emerging food processing technology, cold atmospheric plasma (CAP) has attracted great attention in the field of microbial inactivation. Although CAP has been proven to effectively inactivate a variety of foodborne pathogens, there is less research on the inactivation of Bacillus cereus, and the exact inactivation mechanism is still unclear. Elucidating the inactivation mechanism will help to develop and optimize this sterilization method, with the prospective application in industrialized food production. This study aims to explore the bactericidal efficacy difference between air and nitrogen CAP on B. cereus, a typical Gram-positive bacterium, and reveals the inactivation mechanism of CAP at the cellular and molecular level, by observing the change of the cell membrane, cell morphological damage, intracellular antioxidant enzyme activity and cellular biomacromolecules changes. The results showed that both air CAP and nitrogen CAP could effectively inactivate B. cereus, which was due to the reactive oxygen and nitrogen species (RONS) generated by the plasma causing bacterial death. The damage pathways of CAP on Gram-positive bacteria could be explained by disrupting the bacterial cell membrane and cell morphology, disturbing the intracellular redox homeostasis, and destroying biomacromolecules in the cells. The differences in active species generated by the plasma were the main reason for the different bactericidal efficiencies of air CAP and nitrogen CAP, where air CAP producing RONS with stronger oxidative capacity in a shorter time. This study indicates that air CAP is an effective, inexpensive and green technology for B. cereus inactivation, providing a basis for industrial application in food processing.
Collapse
Affiliation(s)
- Yuhan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yana Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yijie Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yingying Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Miaolin Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yi Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
5
|
Li Q, Li C, Ye Q, Gu Q, Wu S, Zhang Y, Wei X, Xue L, Chen M, Zeng H, Zhang J, Wu Q. Occurrence, molecular characterization and antibiotic resistance of Cronobacter spp. isolated from wet rice and flour products in Guangdong, China. Curr Res Food Sci 2023; 7:100554. [PMID: 37559946 PMCID: PMC10407891 DOI: 10.1016/j.crfs.2023.100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/27/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023] Open
Abstract
This study explored the prevalence of Cronobacter spp. in wet rice and flour products from Guangdong province, China, the molecular characteristics and antimicrobial susceptibility profiles of the isolates were identified. Among 249 samples, 100 (40.16%) were positive for Cronobacter spp., including 77 wet rice and 23 wet flour products. Eleven serotypes were characterized among 136 isolates with C. sakazakii O2 (n = 32) predominating. Forty-nine MLST patterns were assigned, 15 of which were new. C. sakazakii ST4 (n = 17) was the dominant ST, which is previously reported to have caused three deaths; followed by C. malonaticus ST7 (n = 15), which is connected to adult infections. All strains presented susceptibility to ampicillin/sulbactam, imipenem, aztreonam and trimethoprim/sulfamethoxazole. The isolates showed maximum resistance to cephalothin, and the resistance and intermediate rates were 91.91% and 3.68%, each. Two strains, croM234A1 and croM283-1, displayed resistance to three antibiotics. High contamination level and predominant number of pathogenic STs of Cronobacter in wet rice and flour products implied a potential risk to public healthiness. This survey could provide comprehensive information for establishing more targeted control methods for Cronobacter spp.
Collapse
Affiliation(s)
| | | | - Qinghua Ye
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Qihui Gu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Shi Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Youxiong Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Xianhu Wei
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Liang Xue
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Moutong Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Haiyan Zeng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| |
Collapse
|
6
|
Zhang H, Zhang C, Han Q. Mechanisms of bacterial inhibition and tolerance around cold atmospheric plasma. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12618-w. [PMID: 37421472 PMCID: PMC10390405 DOI: 10.1007/s00253-023-12618-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 07/10/2023]
Abstract
The grim situation of bacterial infection has undoubtedly become a major threat to human health. In the context of frequent use of antibiotics, a new bactericidal method is urgently needed to fight against drug-resistant bacteria caused by non-standard use of antibiotics. Cold atmospheric plasma (CAP) is composed of a variety of bactericidal species, which has excellent bactericidal effect on microbes. However, the mechanism of interaction between CAP and bacteria is not completely clear. In this paper, we summarize the mechanisms of bacterial killing by CAP in a systematic manner, discuss the responses of bacteria to CAP treatment that are considered to be related to tolerance and their underlying mechanisms, review the recent advances in bactericidal applications of CAP finally. This review indicates that CAP inhibition and tolerance of survival bacteria are a set of closely related mechanisms and suggests that there might be other mechanisms of tolerance to survival bacteria that had not been discovered yet. In conclusion, this review shows that CAP has complex and diverse bactericidal mechanisms, and has excellent bactericidal effect on bacteria at appropriate doses. KEY POINTS: • The bactericidal mechanism of CAP is complex and diverse. • There are few resistant bacteria but tolerant bacteria during CAP treatment. • There is excellent germicidal effect when CAP in combination with other disinfectants.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Chengxi Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qi Han
- Department of Oral Pathology, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
7
|
Ko E, Bai J. Effective control of antibiotic resistance using a sonication-based combinational treatment and its application to fresh food. ULTRASONICS SONOCHEMISTRY 2022; 90:106198. [PMID: 36244093 PMCID: PMC9579713 DOI: 10.1016/j.ultsonch.2022.106198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/16/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics have been widely used to treat several infectious diseases. However, the overuse of antibiotics has promoted the emergence and spread of antibiotic resistant bacteria (ARB) in various fields, including the food industry. In this study, the antimicrobial efficacies of two conventional sterilization methods, mild heat, and sonication, were evaluated and optimized to develop a new strategy against ARB. Simultaneous mild heat and sonication (HS) treatment led to a significant reduction in viable cell counts, achieving a 5.58-log reduction in 4 min. However, no remarkable decrease in viable cell counts was observed in individually treated groups. Interestingly, the release of antibiotic resistance genes (ARGs) increased in a time-dependent manner in the heat-treated and HS-treated groups. The inactivation levels of ARGs increased as the HS treatment time increased from 2 to 8 min, and most ARGs were degraded after 8 min. In contrast, no significant inactivation of ARGs was observed in the heat-treated and sonication-treated groups after 8 min. These results reveal the synergistic effect of the combination treatment in controlling not only ARB but also ARGs. Finally, on applying this newly developed combination treatment to fresh food (cherry tomato and carrot juice), 3.97- and 4.28-log microbial inactivation was achieved, respectively. In addition, combination treatment did not affect food quality during storage for 5 days. Moreover, HS treatment effectively inactivated ARGs in fresh food systems.
Collapse
Affiliation(s)
- Eunjin Ko
- Division of Applied Food System, Major in Food Science & Technology, Seoul Women's University, Seoul 01797, South Korea
| | - Jaewoo Bai
- Division of Applied Food System, Major in Food Science & Technology, Seoul Women's University, Seoul 01797, South Korea.
| |
Collapse
|
8
|
Wang Z, Jia H, Yang J, Hu Z, Wang Z, Yue T, Yuan Y. Inactivation of Alicyclobacillus contaminans in apple juice by dielectric barrier discharge plasma. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Punia Bangar S, Suri S, Nayi P, Phimolsiripol Y. Cold plasma for microbial safety: Principle, mechanism, and factors responsible. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences Clemson University Clemson 29634 U.S.A
| | - Shweta Suri
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat Haryana 131028 India
| | - Pratik Nayi
- Department of Tropical Agriculture and International Cooperation National Pingtung University of Science and Technology 1 Shuefu Road Neipu Pingtung 91201 Taiwan
| | | |
Collapse
|
10
|
Hernández-Torres CJ, Reyes-Acosta YK, Chávez-González ML, Dávila-Medina MD, Kumar Verma D, Martínez-Hernández JL, Narro-Céspedes RI, Aguilar CN. Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J Biol Sci 2022; 29:1957-1980. [PMID: 35531194 PMCID: PMC9072910 DOI: 10.1016/j.sjbs.2021.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
The rising need for wholesome, fresh, safe and “minimally-processed” foods has led to pioneering research activities in the emerging non-thermal technology of food processing. Cold plasma is such an innovative and promising technology that offers several potential applications in the food industry. It uses the highly reactive, energetic and charged gas molecules and species to decontaminate the food and package surfaces and preserve the foods without causing thermal damage to the nutritional and quality attributes of food. Cold plasma technology showed promising results about the inactivation of pathogens in the food industry without affecting the food quality. It is highly effective for surface decontamination of fruits and vegetables, but extensive research is required before its commercial utilization. Recent patents are focused on the applications of cold plasma in food processing and preservation. However, further studies are strongly needed to scale up this technology for future commercialization and understand plasma physics for getting better results and expand the applications and benefits. This review summarizes the emerging trends of cold plasma along with its recent applications in the food industry to extend shelf life and improve the quality of food. It also gives an overview of plasma generation and principles including mechanism of action. Further, the patents based on cold plasma technology have also been highlighted comprehensively for the first time.
Collapse
Affiliation(s)
- Catalina J. Hernández-Torres
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Yadira K. Reyes-Acosta
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam D. Dávila-Medina
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - José L. Martínez-Hernández
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa I. Narro-Céspedes
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
11
|
Kang JH, Jeon YJ, Min SC. Effects of packaging parameters on the microbial decontamination of Korean steamed rice cakes using in-package atmospheric cold plasma treatment. Food Sci Biotechnol 2021; 30:1535-1542. [PMID: 34868702 PMCID: PMC8595375 DOI: 10.1007/s10068-021-00978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022] Open
Abstract
The effects of packaging materials, package shape, and secondary packaging on the inactivation of indigenous mesophilic aerobic bacteria in Korean steamed rice cakes using in-package atmospheric dielectric barrier discharge cold plasma (ADCP) treatment were investigated. Inactivation of indigenous mesophilic aerobic bacteria by ADCP treatment (21 kV, 3 min) was significantly increased by 0.6 and 0.8 log CFU/g (p < 0.05) from 0.7 ± 0.1 and 0.5 ± 0.1 CFU/g, respectively, when polypropylene (PP) and low-density polyethylene (LDPE) were laminated with nylon, respectively. Secondary packaging lowered the inactivation level by 0.7-0.8 log CFU/g from 1.1 to 1.3 log CFU/g. In-package ADCP treatment did not alter the water vapor permeability, oxygen transmission rate, and tensile properties of PP, LDPE, nylon/PP, and nylon/LDPE. Thus, the results demonstrated that lamination of PP or LDPE with nylon and treatment before secondary packaging may be effective strategies for microbial inactivation by in-package ADCP treatment.
Collapse
Affiliation(s)
- Joo Hyun Kang
- Department of Food Science and Technology, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul, 01797 Republic of Korea
| | - Ye Jeong Jeon
- Department of Food Science and Technology, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul, 01797 Republic of Korea
| | - Sea Cheol Min
- Department of Food Science and Technology, Seoul Women’s University, 621, Hwarangro, Nowon-gu, Seoul, 01797 Republic of Korea
| |
Collapse
|
12
|
Settapramote N, Utama-ang N, Petiwathayakorn T, Settakorn K, Svasti S, Srichairatanakool S, Koonyosying P. Antioxidant Effects of Anthocyanin-Rich Riceberry™ Rice Flour Prepared Using Dielectric Barrier Discharge Plasma Technology on Iron-Induced Oxidative Stress in Mice. Molecules 2021; 26:4978. [PMID: 34443567 PMCID: PMC8399969 DOI: 10.3390/molecules26164978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Redox-active iron generates reactive oxygen species that can cause oxidative organ dysfunction. Thus, the anti-oxidative systems in the body and certain dietary antioxidants, such as anthocyanins, are needed to control oxidative stress. We aimed to investigate the effects of dielectric barrier discharge (DBD) plasma technology in the preparation of Riceberry™ rice flour (PRBF) on iron-induced oxidative stress in mice. PRBF using plasma technology was rich in anthocyanins, mainly cyanidine-3-glucoside and peonidine-3-glucoside. PRBF (5 mg AE/mg) lowered WBC numbers in iron dextran (FeDex)-loaded mice and served as evidence of the reversal of erythrocyte superoxide dismutase activity, plasma total antioxidant capacity, and plasma and liver thiobarbituric acid-reactive substances in the loading mice. Consequently, the PRBF treatment was observed to be more effective than NAC treatment. PRBF would be a powerful supplementary and therapeutic antioxidant product that is understood to be more potent than NAC in ameliorating the effects of iron-induced oxidative stress.
Collapse
Affiliation(s)
- Natwalinkhol Settapramote
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.U.-a.)
- Cluster of High Value Product from Thai Rice for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Agro-Industry, Faculty of Agriculture and Technology, Surin Campus, Rajamangala University of Technology Isan, Surin 32000, Thailand
| | - Niramon Utama-ang
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.U.-a.)
- Cluster of High Value Product from Thai Rice for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Touchwin Petiwathayakorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (S.S.)
| | - Kornvipa Settakorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (S.S.)
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakorn Pathom 71300, Thailand;
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (S.S.)
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (S.S.)
| |
Collapse
|