1
|
Gao S, Mu X, Li W, Wen Y, Ma Z, Liu K, Zhang C. Invisible threats in soil: Microplastic pollution and its effects on soil health and plant growth. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:158. [PMID: 40202677 DOI: 10.1007/s10653-025-02464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025]
Abstract
Microplastics (MPs) are a significant environmental contaminant that increasingly threaten soil health and crop productivity in agricultural systems. This review explores the origins, migration patterns, and ecological impacts of MPs within soil environments, specifically examining their influence on soil structure, microbial communities, and nutrient cycles essential for plant growth. Despite the progress in understanding Microplastic (MP) pollution, gaps remain in assessing the long-term implications on soil stability, microbial biodiversity, and crop yield. Through bibliometric and synthesis analyses of recent studies, this paper identifies how MPs disrupt soil physical and chemical processes, alter microbial dynamics, and interfere with carbon and nitrogen cycles, resulting in reduced soil fertility and compromised crop health. Key findings reveal that MPs can infiltrate plant root systems, impair water and nutrient uptake, and even accumulate in plant tissues, causing oxidative stress, cellular dysfunction, and yield reduction. This work emphasizes the urgent need for refined environmental risk assessments and sustainable agricultural practices to mitigate MP pollution. This comprehensive synthesis offers a foundational perspective to guide future research and policy efforts in addressing MPs' environmental and agricultural impacts.
Collapse
Affiliation(s)
- Shuanglong Gao
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Xiaoguo Mu
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Wenhao Li
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China.
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China.
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China.
| | - Yue Wen
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Zhanli Ma
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Keshun Liu
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Cunhong Zhang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| |
Collapse
|
2
|
Xie Y, Zhang J, Lyu Y, Jiang Y, Sun Y, Zhang Z, Wei H, Liu X, Rui Y, Yang W, Zhang P. Microplastics and Dechlorane Plus co-exposure amplifies their impacts on soybean plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125638. [PMID: 39756564 DOI: 10.1016/j.envpol.2025.125638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The co-existence of microplastics (MPs) and organic pollutants on agricultural ecosystems pose potential implications for both food safety and environmental integrity. The combined effects of MPs with Dechlorane Plus (DP), a newly listed banned flame retardant, remain unknown. This study explores the biological responses of soybean plants to exposure from polyethylene (PE) and polyvinyl chloride (PVC) MPs and DP. Results showed that combined exposure altered the activity of antioxidant enzymes and inhibited the growth of soybean plants, compared with DP or MPs exposure alone. DP markedly reduced both the root length and root weight of soybean plants in a dose-dependent manner. Proteomics profiling suggests that PE interacts with protein translation and modification pathways, particularly via the regulation of heat shock protein binding. High concentration DP (HDP) treatment group enhances the plant's stress resistance by regulating relevant proteins through the modulation of hydrogen peroxide catabolic protein expression and the formation of water channel proteins. In the combined treatments, low concentration DP with PVC triggered increased protein expression related to photosynthesis response, further demonstrating the enhanced inhibitory effects. This study for the first time maps the changes in the physiological and the molecular mechanisms of the impacts on higher plant caused by MPs and DP co-exposure.
Collapse
Affiliation(s)
- Yu Xie
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yaping Lyu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yaqi Jiang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100093, China
| | - Yi Sun
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100093, China
| | - Ziqi Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Haojie Wei
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xingxin Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100093, China
| | - Wenlong Yang
- Key Laboratory for Dioxin Pollution Control of MEE, National Research Center for Environmental Analysis and Measurement, Beijing, 100029, China.
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
3
|
Mu L, Gao Z, Wang M, Tang X, Hu X. The Combined Toxic Effects of Polystyrene Microplastics and Arsenate on Lettuce Under Hydroponic Conditions. TOXICS 2025; 13:86. [PMID: 39997901 PMCID: PMC11860235 DOI: 10.3390/toxics13020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
The combined pollution of microplastics (MPs) and arsenic (As) has gradually been recognized as a global environmental problem, which calls for detailed investigation of the synergistic toxic effects of MPs and As on plants and their mechanisms. Therefore, the interaction between polystyrene microplastics (PS-MPs) and arsenate (AsO43-) (in the following text, it is abbreviated as As(V)) and its toxic effects on lettuce were investigated in this study. Firstly, chemisorption was identified as the main mechanism between PS-MPs and As(V) by the analysis of adsorption kinetics, adsorption thermodynamics, and Fourier transform infrared spectroscopy (FTIR). At the same time, the addition of As(V) promoted the penetration of PS-MPs through the continuous endodermal region of the Casparis strip. Furthermore, compared with the CK group, it was found that the co-addition of As(V) exacerbated the lowering effect of PS-MPs on the pH value of the rhizosphere environment and the inhibitory effect on root growth. In the P20V10 group, the pH decreased by 33.0%. Compared to the CK group, P20, P20V1, and P20V10 decreased the chlorophyll content by 68.45% (16 SPAD units), 71.37% (17.73 SPAD units), and 61.74% (15.36 SPAD units) and the root length by 19.31% (4.18 cm), 50.72% (10.98 cm), and 47.90% (10.37 cm) in lettuce. P5V10 and P20V10 increased CAT content by 153.54% (33.22 U·(mgprol)-1) and 182.68% ((38.2 U·(mgprol)-1)), Ca by 31.27% and 37.68%, and Zn by 41.85% and 41.85%, but the presence of As(V) reduced Na by 22.85% (P5V1) and 49.95% (P5V10). The co-exposure significantly affected the physiological and biochemical indicators as well as the nutritional quality of the lettuce. Finally, the metabolomic analysis of the lettuce leaves showed that combined pollution with PS-MPs and As(V) affected the metabolic pathways of the tricarboxylic acid cycle (TCA cycle), sulfur metabolism, and pyruvate metabolism. This study provides data for pollution management measures for co-exposure to PS-MPs and As(V).
Collapse
Affiliation(s)
- Li Mu
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (Z.G.); (M.W.)
| | - Ziwei Gao
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (Z.G.); (M.W.)
| | - Mengyuan Wang
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (Z.G.); (M.W.)
| | - Xin Tang
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (Z.G.); (M.W.)
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China;
| |
Collapse
|
4
|
Liu S, Suo Y, Wang J, Chen B, Wang K, Yang X, Zhu Y, Zhang J, Lu M, Liu Y. Impact of Polystyrene Microplastics on Soil Properties, Microbial Diversity and Solanum lycopersicum L. Growth in Meadow Soils. PLANTS (BASEL, SWITZERLAND) 2025; 14:256. [PMID: 39861609 PMCID: PMC11768701 DOI: 10.3390/plants14020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
The pervasive presence of microplastics (MPs) in agroecosystems poses a significant threat to soil health and plant growth. This study investigates the effects of varying concentrations and sizes of polystyrene microplastics (PS-MPs) on the Solanum lycopersicum L.'s height, dry weight, antioxidant enzyme activities, soil physicochemical properties, and rhizosphere microbial communities. The results showed that the PS0510 treatment significantly increased plant height (93.70 cm, +40.83%) and dry weight (2.98 g, +100%). Additionally, antioxidant enzyme activities improved across treatments for S. lycopersicum L. roots. Physicochemical analyses revealed enhanced soil organic matter and nutrient levels, including ammonium nitrogen, phosphorus, and effective potassium. Using 16S rRNA sequencing and molecular ecological network techniques, we found that PS-MPs altered the structure and function of the rhizosphere microbial community associated with S. lycopersicum L. The PS1005 treatment notably increased microbial diversity and displayed the most complex ecological network, while PS1010 led to reduced network complexity and more negative interactions. Linear discriminant analysis effect size (LEfSe) analysis identified biomarkers at various taxonomic levels, reflecting the impact of PS-MPs on microbial community structure. Mantel tests indicated positive correlations between microbial diversity and soil antioxidant enzyme activity, as well as relationships between soil physicochemical properties and enzyme activity. Predictions of gene function revealed that PS-MP treatments modified carbon and nitrogen cycling pathways, with PS1005 enhancing methanogenesis genes (mcrABG) and PS1010 negatively affecting denitrification genes (nirK, nirS). This study provides evidence of the complex effects of PS-MPs on soil health and agroecosystem functioning, highlighting their potential to alter soil properties and microbial communities, thereby affecting plant growth.
Collapse
Affiliation(s)
- Shuming Liu
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; (S.L.)
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Yan Suo
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Jinghuizi Wang
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Binglin Chen
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Kaili Wang
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Xiaoyu Yang
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Yaokun Zhu
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Jiaxing Zhang
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Mengchu Lu
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; (S.L.)
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| | - Yunqing Liu
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China; (S.L.)
- School of Resources and Environment, Yili Normal University, Yining 835000, China
| |
Collapse
|
5
|
Masciarelli E, Casorri L, Di Luigi M, Beni C, Valentini M, Costantini E, Aielli L, Reale M. Microplastics in Agricultural Crops and Their Possible Impact on Farmers' Health: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 22:45. [PMID: 39857498 PMCID: PMC11765068 DOI: 10.3390/ijerph22010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
The indiscriminate use of plastic products and their inappropriate management and disposal contribute to the increasing presence and accumulation of this material in all environmental zones. The chemical properties of plastics and their resistance to natural degradation lead over time to the production of microplastics (MPs) and nanoplastics, which are dispersed in soil, water, and air and can be absorbed by plants, including those grown for food. In agriculture, MPs can come from many sources (mulch film, tractor tires, compost, fertilizers, and pesticides). The possible effects of this type of pollution on living organisms, especially humans, increase the need to carry out studies to assess occupational exposure in agriculture. It would also be desirable to promote alternative materials to plastic and sustainable agronomic practices to protect the safety and health of agricultural workers.
Collapse
Affiliation(s)
- Eva Masciarelli
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, National Institute for Insurance Against Accidents at Work, Via R. Ferruzzi, 38/40, 00143 Rome, Italy; (E.M.); (L.C.)
| | - Laura Casorri
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, National Institute for Insurance Against Accidents at Work, Via R. Ferruzzi, 38/40, 00143 Rome, Italy; (E.M.); (L.C.)
| | - Marco Di Luigi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance Against Accidents at Work, Via di Fontana Candida, 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Claudio Beni
- Research Centre for Engineering and Agro-Food Processing, Council for Agricultural Research and Economics, Via della Pascolare, 16, Monterotondo, 00015 Rome, Italy;
| | - Massimiliano Valentini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Via Ardeatina, 546, 00178 Rome, Italy;
| | - Erica Costantini
- Department Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (E.C.); (L.A.); (M.R.)
| | - Lisa Aielli
- Department Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (E.C.); (L.A.); (M.R.)
| | - Marcella Reale
- Department Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (E.C.); (L.A.); (M.R.)
| |
Collapse
|
6
|
Guo W, Li J, Wu Z, Chi G, Lu C, Ma J, Hu Y, Zhu B, Yang M, Chen X, Liu H. Biodegradable and conventional mulches inhibit nitrogen fixation by peanut root nodules - potentially related to microplastics in the soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136423. [PMID: 39536342 DOI: 10.1016/j.jhazmat.2024.136423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Mulching has been demonstrated to improve the soil environment and promote plant growth. However, the effects of mulching and mulch-derived microplastics (MPs) on nitrogen fixation by root nodules remain unclear. In this study, we investigated the effects of polyethylene (PE) and polylactic acid-polybutylene adipate-co-terephthalate (PLA-PBAT) film mulching on nitrogen fixation by root nodules after 4 years of continuous mulching using 15N tracer technology. Additionally, we examined the relationship between nitrogen fixation and MPs. We found a reduction in the proportion of nitrogen fixation by nodules (54.3 %-58.7 %) due to mulching. This decrease may be attributed to reduced dinitrogenase activity and flavonoid content at the seedling stage caused by mulching, and mulching with PLA-PBAT films significantly decreased the abundance of Bradyrhizobium at maturity. Furthermore, combined analysis of nitrogen-fixing bacteria (nifH) and metabolomes indicated that N-lauroylethanolamine may act as a regulatory signal influencing the root nodule nitrogen fixation process and that mulching resulted in significant changes in its content. The mantel test and PLS-PM suggest that microplastic from mulching may harm root nodule nitrogen fixation. This study reveals the influence of mulching on plant nitrogen uptake and the potential threat of mulch-derived microplastics, with a special focus on root nodule nitrogen fixation.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jizhi Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengfeng Wu
- Shandong Peanut Research Institute, Qingdao266100, China
| | - Guangyu Chi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Caiyan Lu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jian Ma
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yanyu Hu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bin Zhu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaoyin Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Huiying Liu
- Liaoning Academy of Agricultural Sciences, Shenyang 110161, China.
| |
Collapse
|
7
|
Zantis LJ, Adamczyk S, Velmala SM, Adamczyk B, Vijver MG, Peijnenburg W, Bosker T. Comparing the impact of microplastics derived from a biodegradable and a conventional plastic mulch on plant performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173265. [PMID: 38754499 DOI: 10.1016/j.scitotenv.2024.173265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Agricultural lands have been identified as plastic sinks. One source is plastic mulches, which are a source of micro- and nano-sized plastics in agricultural soils. Because of their persistence, there is now a push towards developing biodegradable plastics, which are designed to undergo (partial) breakdown after entering the environment. Yet, limited research has investigated the impacts of both conventional and biodegradable plastics on distinct plants. Moreover, comparisons among studies are difficult due to differences in experimental design. This study directly compares the effects of artificially weathered conventional polyethylene (PE) and starch-based biodegradable polybutylene adipate terephthalate (PBAT) on four food crops, including two monocots (barley, Hordeum vulgare, and wheat, Triticum aestivum L.) and two dicots (carrot, Daucus carota, and lettuce, Lactuca sativa L.). We investigated the effects of environmentally relevant low, medium, and high (0.01 %, 0.1 %, 1 % w/w) concentrations of PE and starch-PBAT blend on seed germination (acute toxicity), and subsequently on plant growth and chlorophyll through a pot-plant experiment (chronic toxicity). Germination of all species was not affected by both plastics. However, root length was reduced for lettuce and wheat seedlings. No other effects were recorded on monocots. We observed a reduction in shoot length and bud wet weight of carrot seedlings for the highest concentration of PE and starch-PBAT blend. Chronic exposure resulted in a significant decrease in shoot biomass of barley and lettuce. Additionally, a positive increase in the number of leaves of lettuce was observed for both plastics. Chlorophyll content was increased in lettuce when exposed to PE and starch-PBAT blend. Overall, adverse effects in dicots were more abundant than in monocots. Importantly, we found that the biodegradable plastic caused more commonly adverse effects on plants compared to conventional plastic, which was confirmed by a mini-review of studies directly comparing the impact of conventional and biodegradable microplastics.
Collapse
Affiliation(s)
- Laura J Zantis
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Sylwia Adamczyk
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Sannakajsa M Velmala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Bartosz Adamczyk
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Willie Peijnenburg
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands.
| | - Thijs Bosker
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| |
Collapse
|
8
|
Kataria N, Yadav S, Garg VK, Rene ER, Jiang JJ, Rose PK, Kumar M, Khoo KS. Occurrence, transport, and toxicity of microplastics in tropical food chains: perspectives view and way forward. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:98. [PMID: 38393462 DOI: 10.1007/s10653-024-01862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/06/2024] [Indexed: 02/25/2024]
Abstract
Microplastics, which have a diameter of less than 5 mm, are becoming an increasingly prevalent contaminant in terrestrial and aquatic ecosystems due to the dramatic increase in plastic production to 390.7 million tonnes in 2021. Among all the plastics produced since 1950, nearly 80% ended up in the environment or landfills and eventually reached the oceans. Currently, 82-358 trillion plastic particles, equivalent to 1.1-4.9 million tonnes by weight, are floating on the ocean's surface. The interactions between microorganisms and microplastics have led to the transportation of other associated pollutants to higher trophic levels of the food chain, where microplastics eventually reach plants, animals, and top predators. This review paper focuses on the interactions and origins of microplastics in diverse environmental compartments that involve terrestrial and aquatic food chains. The present review study also critically discusses the toxicity potential of microplastics in the food chain. This systematic review critically identified 206 publications from 2010 to 2022, specifically reported on microplastic transport and ecotoxicological impact in aquatic and terrestrial food chains. Based on the ScienceDirect database, the total number of studies with "microplastic" as the keyword in their title increased from 75 to 4813 between 2010 and 2022. Furthermore, various contaminants are discussed, including how microplastics act as a vector to reach organisms after ingestion. This review paper would provide useful perspectives in comprehending the possible effects of microplastics and associated contaminants from primary producers to the highest trophic level (i.e. human health).
Collapse
Affiliation(s)
- Navish Kataria
- Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, 121006, India
| | - Sangita Yadav
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Vinod Kumar Garg
- Department of Environmental Sciences and Technology, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601 DA, Delft, The Netherlands
| | - Jheng-Jie Jiang
- Advanced Environmental Ultra Research Laboratory (ADVENTURE), Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Center for Environmental Risk Management (CERM), Chung Yuan Christian University, Taoyuan, Taiwan
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, Haryana, 125055, India
| | - Mukesh Kumar
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
9
|
Khan AR, Ulhassan Z, Li G, Lou J, Iqbal B, Salam A, Azhar W, Batool S, Zhao T, Li K, Zhang Q, Zhao X, Du D. Micro/nanoplastics: Critical review of their impacts on plants, interactions with other contaminants (antibiotics, heavy metals, and polycyclic aromatic hydrocarbons), and management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169420. [PMID: 38128670 DOI: 10.1016/j.scitotenv.2023.169420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Microplastic/nanoplastics (MPs/NPs) contamination is not only emerging threat to the agricultural system but also constitute global hazard to the environment worldwide. Recent review articles have addressed the environmental distribution of MPs/NPs and their single-exposure phytotoxicity in various plant species. However, the mechanisms of MPs/NPs-induced phytotoxicity in conjunction with that of other contaminants remain unknown, and there is a need for strategies to ameliorate such phytotoxicity. To address this, we comprehensively review the sources of MPs/NPs, their uptake by and effects on various plant species, and their phytotoxicity in conjunction with antibiotics, heavy metals, polycyclic aromatic hydrocarbons (PAHs), and other toxicants. We examine mechanisms to ameliorate MP/NP-induced phytotoxicity, including the use of phytohormones, biochar, and other plant-growth regulators. We discuss the effects of MPs/NPs -induced phytotoxicity in terms of its ability to inhibit plant growth and photosynthesis, disrupt nutrient metabolism, inhibit seed germination, promote oxidative stress, alter the antioxidant defense system, and induce genotoxicity. This review summarizes the novel strategies for mitigating MPs/NPs phytotoxicity, presents recent advances, and highlights research gaps, providing a foundation for future studies aimed at overcoming the emerging problem of MPs/NPs phytotoxicity in edible crops.
Collapse
Affiliation(s)
- Ali Raza Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Guanlin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Jiabao Lou
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Babar Iqbal
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Sundas Batool
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Pakistan
| | - Tingting Zhao
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Kexin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qiuyue Zhang
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering,Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
10
|
Su D, Li W, Zhang Z, Cai H, Zhang L, Sun Y, Liu X, Tian Z. Discrepancy of Growth Toxicity of Polystyrene Nanoplastics on Soybean ( Glycine max) and Mung Bean ( Vigna radiata). TOXICS 2024; 12:155. [PMID: 38393250 PMCID: PMC10892715 DOI: 10.3390/toxics12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Nanoplastics, as a hot topic of novel contaminants, lack extensive concern in higher plants; especially the potential impact and mechanism of nanoplastics on legume crops remains elusive. In this study, the toxicity of polystyrene nanoplastics (PS-NPs, 200 nm) with diverse doses (control, 10, 50, 100, 200, 500 mg/L) to soybean and mung bean plants grown hydroponically for 7 d was investigated at both the macroscopic and molecular levels. The results demonstrated that the root length of both plants was markedly suppressed to varying degrees. Similarly, mineral elements (Fe, Zn) were notably decreased in soybean roots, consistent with Cu alteration in mung bean. Moreover, PS-NPs considerably elevated malondialdehyde (MDA) levels only in soybean roots. Enzyme activity data indicated mung bean exhibited significant damage only at higher doses of PS-NPs stress than soybean, implying mung bean is more resilient. Transcriptome analysis showed that PS-NPs stimulated the expression of genes associated with the antioxidant system in plant roots. Furthermore, starch and sucrose metabolism might play a key role in coping with PS-NPs to enhance soybean resistance, but the MAPK pathway was enriched in mung bean. Our findings provide valuable perspectives for an in-depth understanding of the performance of plants growing in waters contaminated by nanoplastics.
Collapse
Affiliation(s)
- Dan Su
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wangwang Li
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Zhaowei Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
| | - Hui Cai
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Le Zhang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Yuanlong Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoning Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
| | - Zhiquan Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| |
Collapse
|
11
|
Sahasa RGK, Dhevagi P, Poornima R, Ramya A, Karthikeyan S, Priyatharshini S. Dose-dependent toxicity of polyethylene microplastics (PE-MPs) on physiological and biochemical response of blackgram and its associated rhizospheric soil properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119168-119186. [PMID: 37919496 DOI: 10.1007/s11356-023-30550-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Microplastic contamination in terrestrial ecosystem is emerging as a global threat due to rapid production of plastic waste and its mismanagement. It affects all living organisms including plants. Hence, the current study aims at understanding the effect of polyethylene microplastics (PE-MPs) at different concentrations (0, 0.25, 0.50, 0.75, and 1.00% w/w) on the plant growth and yield attributes. With blackgram as a test crop, results revealed that a maximum reduction in physiological traits like photosynthetic rate; chlorophyll a, b; and total chlorophyll by 5, 14, 10, and 13% at flowering stage; and an increase in biochemical traits like ascorbic acid, malondialdehyde, proline, superoxide dismutase, and catalase by 11, 29.7, 16, 22, and 30% during vegetative stage was observed with 1% PE-MP application. Moreover, a reduction in growth and yield attributes was also observed with increasing concentration of microplastics. Additionally, application of 1% PE-MPs decreased the soil bulk density, available phosphorus, and potassium, whereas the EC, organic carbon, microbial biomass carbon, NO3-N, and NH4-N significantly increased. Moreover, the presence of PE-MPs in soil also had a significant influence on the soil enzyme activities. Metagenomic analysis (16 s) reveals that at genus level, Bacillus (19%) was predominant in control, while in 1% PE-MPs, Rubrobacter (28%) genus was dominant. Microvirga was found exclusively in T5, while the relative abundance of Gemmatimonas declined from T1 to T5. This study thus confirms that microplastics exert a dose-dependent effect on soil and plant characteristics.
Collapse
Affiliation(s)
| | - Periyasamy Dhevagi
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India, 641 003.
| | - Ramesh Poornima
- Vanavarayar Institute of Agriculture, Pollachi, Tamil Nadu, India, 642 103
| | - Ambikapathi Ramya
- Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan, 11529
| | - Subburamu Karthikeyan
- Centre for Post Harvest Technology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India, 641 003
| | - Sengottaiyan Priyatharshini
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India, 641 003
| |
Collapse
|
12
|
Dhevagi P, Keerthi Sahasa RG, Poornima R, Ramya A. Unveiling the effect of microplastics on agricultural crops - a review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:793-815. [PMID: 37941363 DOI: 10.1080/15226514.2023.2275152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Microplastics (MPs), ever since they were identified as a potential and widely distributed persistent contaminant, the number of studies highlighting their impacts on various terrestrial ecosystems have been increasing. Recently, the effect of MPs on the agricultural ecosystem has gained momentum. Hence, the present review examines the impact of microplastics on agricultural crop systems and the mechanism underlying its toxicity. The current review revealed that most of the studies were conducted at a laboratory scale and under controlled conditions. Additionally, it was observed that polystyrene (PS) followed by polyethylene (PE) are the most studied polymer type, while the most studied plants are wheat and maize. Hitherto, literature studies suggest that the microplastics' influence on plant growth can be negative or sometimes neutral; while in some cases it exerts a hormetic effect which depends on other factors determining plant growth. Notably, the main mechanisms through which microplastics influence plant growth are mechanical damage, alteration of soil properties, or by leaching of additives. Overall, with burgeoning research interest in this aspect, the current review has significant implications for the toxicity of MPs on plants and throws light on the need to develop novel guidelines toward the sustainable use of plastics in agricultural sector. However, realistic field-level studies and estimating the MPs concentration at various region are essential to develop remediation approaches. Future studies should also focus on translocation and accumulation of micron sized MPs in edible portion of crops and their effect on food safety.
Collapse
Affiliation(s)
- Periyasamy Dhevagi
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Ramesh Poornima
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Ambikapathi Ramya
- Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
13
|
Kaur M, Yang K, Wang L, Xu M. Interactive effects of polyethylene microplastics and cadmium on growth of Glycine max. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101178-101191. [PMID: 37648924 DOI: 10.1007/s11356-023-29534-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
The interaction of microplastics (MPs) and heavy metals (HMs) can lead to aggravation of detrimental effects in the plants, animals, and even human beings. Keeping this in view, the present study was designed to assess the combined toxic effects of polyethylene MPs (PE-MPs) and cadmium (Cd) on germination indices and seedling growth of soybean (Glycine max). Particle sizes of 13 and 6.5 μm and six treatments (control, Cd, 6.5 μm PE, 6.5 μm PE + Cd, 13 μm PE, and 13 μm PE + Cd) were set to simulate the effects of PE-MPs and Cd on the growth of soybean when used alone or in combined form. As compared to the control, 6.5 μm PE treatment showed significant effect on most of the germination indices, i.e., decrease in the germination index by 31%, 44% decrease in the vigor index, and 28% decrease in germination rate whereas mean germination time showed no significant differences. Treatment of smaller-size PE-MPs and Cd significantly inhibited both dry and fresh weights. All treatment groups resulted in significant effect on catalase, peroxidase, and superoxide dismutase activities of seedlings depicting adverse effects of interaction of PE-MPs and Cd. Our findings demonstrated the phyto-toxicity of PE-MPs and Cd in G. max, and it would lead to serious implications in human beings. Our study is important as it provides preliminary information regarding MP absorption and their accumulation in different levels of food chain. It can also form the basis for future research on single the combined effects of different types and sizes of MPs and heavy metals on the terrestrial plants.
Collapse
Affiliation(s)
- Mandeep Kaur
- College of Geography and Environmental Science, Henan University, Jinming Campus, Kaifeng, 475004, Henan, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Jinming Campus, Kaifeng, 475004, Henan, China
| | - Ke Yang
- Jinming Campus, Miami College, Henan University, Kaifeng, 475004, Henan, China
| | - Lin Wang
- College of Geography and Environmental Science, Henan University, Jinming Campus, Kaifeng, 475004, Henan, China.
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Jinming Campus, Kaifeng, 475004, Henan, China.
- Jinming Campus, Miami College, Henan University, Kaifeng, 475004, Henan, China.
| | - Ming Xu
- College of Geography and Environmental Science, Henan University, Jinming Campus, Kaifeng, 475004, Henan, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Jinming Campus, Kaifeng, 475004, Henan, China
- BNU-HKUST Laboratory for Green Innovation, Beijing Normal University, Zhuhai, China
| |
Collapse
|
14
|
Han Z, Osman R, Liu Y, Wei Z, Wang L, Xu M. Analyzing the impacts of cadmium alone and in co-existence with polypropylene microplastics on wheat growth. FRONTIERS IN PLANT SCIENCE 2023; 14:1240472. [PMID: 37636097 PMCID: PMC10449543 DOI: 10.3389/fpls.2023.1240472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Heavy metals typically coexist with microplastics (MPs) in terrestrial ecosystems. Yet, little is known about how the co-existence of heavy metals and MPs affect crops. Therefore, this study aimed to evaluate the impact of cadmium (Cd; 40 mg/L) alone and its co-existence with polypropylene (PP)-MPs (50 and 100 µm) on seed germination, root and shoot growth, seedling dry weight (DW), and antioxidant enzyme activities of wheat. The study demonstrated that the germination rate of wheat did not vary significantly across treatment groups. Yet, the inhibitory impact on wheat seed germination was strengthened under the co-existence of Cd and PP-MPs, as the effect of a single treatment on seed germination was non-significant. The germination index and mean germination time of wheat seeds were not affected by single or combined toxicity of Cd and PP-MPs. In contrast, Cd and PP-MPs showed synergistic effects on germination energy. Wheat root and shoot length were impeded by Cd alone and in combination with PP-MPs treatments. The DW of wheat seedlings showed significant change across treatment groups until the third day, but on the seventh day, marginal differences were observed. For example, on third day, the DW of the Cd treatment group increased by 6.9% compared to CK, whereas the DW of the 100 µm PP-MPs+Cd treatment group decreased by 8.4% compared to CK. The co-occurrence of Cd and PP-MPs indicated that 50 μm PP-MPs+Cd had an antagonistic impact on wheat seedling growth, whereas 100 μm PP-MPs+Cd had a synergistic impact due to the larger size of PP-MPs. The antioxidant enzyme system of wheat seeds and seedlings increased under single Cd pollution, while the activities of superoxide dismutase, catalase, and peroxidase were decreased under combined pollution. Our study found that Cd adversely affects wheat germination and growth, while the co-existence of Cd and PP-MPs have antagonistic and synergistic effects depending on the size of the PP-MPs.
Collapse
Affiliation(s)
- Zhiwei Han
- Miami College, Henan University, Kaifeng, China
| | - Raheel Osman
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng, China
| | - Yi Liu
- Miami College, Henan University, Kaifeng, China
| | | | - Lin Wang
- Miami College, Henan University, Kaifeng, China
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng, China
| | - Ming Xu
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng, China
- BNU-HKUST Laboratory for Green Innovation, Beijing Normal University, Zhuhai, China
| |
Collapse
|
15
|
Kim E, Song M, Ramu AG, Choi D. Analysis of impacts of exogenous pollutant bisphenol-A penetration on soybeans roots and their biological growth. RSC Adv 2023; 13:9781-9787. [PMID: 36998516 PMCID: PMC10043879 DOI: 10.1039/d2ra08090g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Bisphenol A (BPA) is a common chemical used in plastic production. BPA, which has the potential to be poisonous to plants, has lately emerged as a serious environmental concern owing to its extensive usage and release patterns. Prior study has only looked at how BPA affects plants up to a certain stage in their growth. The precise mechanism of toxicity, penetration of BPA, and damage to internal root tissues remains unknown. Therefore, the goal of this study was to examine the hypothesized mechanism for BPA-induced root cells by studying the effects of bisphenol A (BPA) on the ultrastructure and function of root tip cells of soybean plants. We looked at plant changes in root cell tissues after BPA exposure. Further, the biological characteristics that responded to BPA stress were investigated, and the accumulation of BPA in the root, stem, and leaf of the soybean plant was systematically investigated by using FTIR and SEM analysis. The uptake of BPA is a key internal factor that contributes to changes in biological characteristics. Our findings provide insight into how BPA could alter plant root growth, which might contribute new knowledge toward a better scientific appraisal of the possible dangers of BPA exposure for plants.
Collapse
Affiliation(s)
- Eujung Kim
- Department of Materials Science and Engineering, Hongik University 2639-Sejong-ro, Jochiwon-eup Sejong-city 30016 Republic of Korea
| | - Minjung Song
- Department of Materials Science and Engineering, Hongik University 2639-Sejong-ro, Jochiwon-eup Sejong-city 30016 Republic of Korea
| | - Adam Gopal Ramu
- Department of Materials Science and Engineering, Hongik University 2639-Sejong-ro, Jochiwon-eup Sejong-city 30016 Republic of Korea
| | - Dongjin Choi
- Department of Materials Science and Engineering, Hongik University 2639-Sejong-ro, Jochiwon-eup Sejong-city 30016 Republic of Korea
| |
Collapse
|
16
|
Khalid N, Aqeel M, Noman A, Fatima Rizvi Z. Impact of plastic mulching as a major source of microplastics in agroecosystems. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130455. [PMID: 36463747 DOI: 10.1016/j.jhazmat.2022.130455] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
The contamination of agroecosystems by microplastics (MPs) has raised great concerns recently. Plastic mulching has contributed a lot in the building of MP pollution in farmlands. This technique has been in use for decades worldwide because of its immense advantages, preferably in drier and colder regions. The physical extraction of plastic mulches at the end of the growing season is very laborious and ineffective, and thus small pieces of mulches are left in the field which later convert into MP particles after aging, weathering, or on exposure to solar radiation. MPs not only influence physical, chemical, or biological properties of soils but also reduce crop productivity which could be a threat to our food security. They also interact with and accumulate other environmental contaminants such as microbial pathogens, heavy metals, and persistent organic pollutants on their surfaces which increase their risk of toxicity in the environment. MPs also transfer from one trophic level to the other in the food chain and ultimately may impact human health. Because of the ineffectiveness of the recovery of plastic film fragments from fields, researchers are now mainly focusing on alternative solutions to conventional plastic mulch films such as the use of biodegradable mulches. In this review, we have discussed the issue of plastic mulch films in agroecosystems and tried to link already existing knowledge to the current limitations in research on this topic from cropland soils and future prospects have been identified and proposed.
Collapse
Affiliation(s)
- Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan.
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University, Sialkot, Pakistan
| |
Collapse
|
17
|
Kaur M, Shen C, Wang L, Xu M. Exploration of Single and Co-Toxic Effects of Polypropylene Micro-Plastics and Cadmium on Rice ( Oryza sativa L.). NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223967. [PMID: 36432253 PMCID: PMC9696531 DOI: 10.3390/nano12223967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 11/07/2022] [Indexed: 05/07/2023]
Abstract
The widespread application of micro-plastics (MP) and their release in the open environment has become a matter of worldwide concern. When interacting with contaminants such as heavy metals in the soil ecosystem, MPs can result in detrimental effects on the soil environment and plant growth and development. However, information based on the interaction between MPs and heavy metals and their effects on terrestrial plants is still limited. Keeping this in mind, the present study was conducted to explore the single and combined toxicity of polypropylene (PP) MPs (13 and 6.5 μm) and cadmium (Cd) on germination indices; root and stem growth; fresh and dry weight; and anti-oxidative enzyme activities of rice (Oryza sativa L.) seedlings. Our results indicated that a single application of PP MP and Cd on rice seedlings inhibited most of the germination indicators, while their co-occurrence (PP + Cd) showed a reduction in the overall toxicity to some extent. A single application of both the contaminants significantly inhibited root length, stem length, fresh weight and the activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) enzymes in rice seedling, while no significant effect on dry weight was observed. The combined toxicity of both PP and Cd revealed that 13 μm PP + Cd had an antagonistic effect on the growth of rice seedlings, while 6.5 μm PP + Cd showed a synergistic effect. The present study revealed that smaller PP MP particles (6.5 µm) prominently affected plant growth more as compared to larger particles (13 µm). Our work reported the combined effect of PP MP and Cd on the germination and growth of rice for the first time. This study can provide the basis for future research on the combined effects of different types and sizes of MPs and heavy metals on the terrestrial ecosystem.
Collapse
Affiliation(s)
- Mandeep Kaur
- College of Geography and Environmental Science, Henan University, Jinming Campus, Kaifeng 475004, China
- Henan Key Laboratory of Earth System Observation and Modeling, Jinming Campus, Henan University, Kaifeng 475004, China
| | - Chengcheng Shen
- Miami College, Jinming Campus, Henan University, Kaifeng 475004, China
| | - Lin Wang
- College of Geography and Environmental Science, Henan University, Jinming Campus, Kaifeng 475004, China
- Henan Key Laboratory of Earth System Observation and Modeling, Jinming Campus, Henan University, Kaifeng 475004, China
- Miami College, Jinming Campus, Henan University, Kaifeng 475004, China
- Correspondence: (L.W.); (M.X.)
| | - Ming Xu
- College of Geography and Environmental Science, Henan University, Jinming Campus, Kaifeng 475004, China
- Henan Key Laboratory of Earth System Observation and Modeling, Jinming Campus, Henan University, Kaifeng 475004, China
- BNU-HKUST Laboratory for Green Innovation, Beijing Normal University, Zhuhai 519087, China
- Correspondence: (L.W.); (M.X.)
| |
Collapse
|
18
|
El-Sherif DM, Eloffy MG, Elmesery A, Abouzid M, Gad M, El-Seedi HR, Brinkmann M, Wang K, Al Naggar Y. Environmental risk, toxicity, and biodegradation of polyethylene: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81166-81182. [PMID: 36205861 DOI: 10.1007/s11356-022-23382-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Polyethylene is the second-most-commonly-used commercial polymer. It is used in various industries, including agricultural mulches, composite materials, and packaging. Since polyethylene is not biodegradable, it can persist for a long time in water and soil, strangling otherwise fruitful land. The ecological and toxicological consequences and the fate of polyethylene have only recently been revealed. As a result, the primary goal of this review is to shed light on the reported toxicity of polyethylene to the environment and living creatures and highlight recent research on its degradation process through bibliometric analysis. To do that, we searched Web of Science database literature up to August 2021 and performed the bibliometric analysis using VOSviewer. We found that relative research interest showed a positive trend, particularly in the last 5 years. China and the Chinese Academy of Sciences had the highest published papers. Methods for polyethylene biodegradation by invertebrates, bacteria, and fungi were also reported indicating the need for future research to investigate and develop new biodegradation technologies.
Collapse
Affiliation(s)
- Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Manal G Eloffy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Alaa Elmesery
- Industrial Biotechnology Unit, Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Mohammed Gad
- Zoology Department, Faculty of Science, Al-Azhar University, Asyut, Egypt
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 32512, Egypt
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, 751 24, Uppsala, SE, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, S7N 3H5, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
19
|
Roy T, Dey TK, Jamal M. Microplastic/nanoplastic toxicity in plants: an imminent concern. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:27. [PMID: 36279030 PMCID: PMC9589797 DOI: 10.1007/s10661-022-10654-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 05/04/2023]
Abstract
The toxic impact of microplastics/nanoplastics (MPs/NPs) in plants and the food chain has recently become a top priority. Several research articles highlighted the impact of MPs/NPs on the aquatic food chain; however, very little has been done in the terrestrial ecosystem. A number of studies revealed that MPs/NPs uptake and subsequent translocation in plants alter plant morphological, physiological, biochemical, and genetic properties to varying degrees. However, there is a research gap regarding MPs/NPs entry into plants, associated factors influencing phytotoxicity levels, and potential remediation plans in terms of food safety and security. To address these issues, all sources of MPs/NPs intrusion in agroecosystems should be revised to avoid these hazardous materials with special consideration as preventive measures. Furthermore, this review focuses on the routes of accumulation and transmission of MPs/NPs into plant tissues, related aspects influencing the intensity of plant stress, and potential solutions to improve food quality and quantity. This paper also concludes by providing an outlook approach of applying exogenous melatonin and introducing engineered plants that would enhance stress tolerance against MPs/NPs. In addition, an overview of inoculation of beneficial microorganisms and encapsulated enzymes in soil has been addressed, which would make the degradation of MPs/NPs faster.
Collapse
Affiliation(s)
- Tapati Roy
- Department of Agronomy, Faculty of Agriculture, Khulna Agricultural University, Khulna, Bangladesh
- Micropastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Thuhin K Dey
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
- Micropastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Mamun Jamal
- Department of Chemistry, Faculty of Civil Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh.
- Micropastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh.
| |
Collapse
|
20
|
Shi R, Liu W, Lian Y, Wang Q, Zeb A, Tang J. Phytotoxicity of polystyrene, polyethylene and polypropylene microplastics on tomato (Lycopersicon esculentum L.). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115441. [PMID: 35661879 DOI: 10.1016/j.jenvman.2022.115441] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Despite the fact that microplastic pollution in terrestrial ecosystems has received increasing attention, there are few studies on the potential effects of different microplastics on terrestrial plants. In this study, the toxicity of polystyrene (PS), polyethylene (PE) and polypropylene (PP) microplastics with different concentrations (0, 10, 100, 500 and 1000 mg/L) to tomato (Lycopersicon esculentum L.) were studied by a hydroponic experiment. The results showed that the three microplastics had inhibitory effects on seed germination when the concentration was less than or equal to 500 mg/L, and the inhibition rate ranged from 10.1% to 23.6%. Interestingly, the inhibition effect was alleviated under 1000 mg/L microplastic treatment. Generally, PE was more toxic to seedling growth than PS and PP. Additionally, it was confirmed that microplastics could cause oxidative stress in plants, and PP was relatively less toxic to antioxidant enzymes than PS and PE. These results can provide a theoretical basis and data support for further investigation on the toxicity of microplastics to tomatoes, and contribute to understanding the type specificity of microplastics' toxic effects on plants.
Collapse
Affiliation(s)
- Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| |
Collapse
|
21
|
Kumari A, Rajput VD, Mandzhieva SS, Rajput S, Minkina T, Kaur R, Sushkova S, Kumari P, Ranjan A, Kalinitchenko VP, Glinushkin AP. Microplastic Pollution: An Emerging Threat to Terrestrial Plants and Insights into Its Remediation Strategies. PLANTS (BASEL, SWITZERLAND) 2022; 11:340. [PMID: 35161320 PMCID: PMC8837937 DOI: 10.3390/plants11030340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Microplastics (MPs) are ubiquitous and constitute a global hazard to the environment because of their robustness, resilience, and long-term presence in the ecosystem. For now, the majority of research has primarily focused on marine and freshwater ecosystems, with just a small amount of attention towards the terrestrial ecosystems. Although terrestrial ecosystems are recognized as the origins and routes for MPs to reach the sea, there is a paucity of knowledge about these ecological compartments, which is necessary for conducting effective ecological risk assessments. Moreover, because of their high persistence and widespread usage in agriculture, agribusiness, and allied sectors, the presence of MPs in arable soils is undoubtedly an undeniable and severe concern. Consequently, in the recent decade, the potential risk of MPs in food production, as well as their impact on plant growth and development, has received a great deal of interest. Thus, a thorough understanding of the fate and risks MPs, as well as prospective removal procedures for safe and viable agricultural operations in real-world circumstances, are urgently needed. Therefore, the current review is proposed to highlight the potential sources and interactions of MPs with agroecosystems and plants, along with their remediation strategies.
Collapse
Affiliation(s)
- Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.M.); (T.M.); (S.S.); (A.R.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.M.); (T.M.); (S.S.); (A.R.)
| | - Saglara S. Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.M.); (T.M.); (S.S.); (A.R.)
| | - Sneh Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (S.R.); (R.K.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.M.); (T.M.); (S.S.); (A.R.)
| | - Rajanbir Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (S.R.); (R.K.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.M.); (T.M.); (S.S.); (A.R.)
| | - Poonam Kumari
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India;
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.M.); (T.M.); (S.S.); (A.R.)
| | - Valery P. Kalinitchenko
- All-Russia Research Institute for Phytopathology RAS, 5 Institute St., Big Vyazyomy, 143050 Moscow, Russia; (V.P.K.); (A.P.G.)
- Institute of Fertility of Soils of South Russia, Krivoshlykova St., Persianovka, 346493 Moscow, Russia
| | - Alexey P. Glinushkin
- All-Russia Research Institute for Phytopathology RAS, 5 Institute St., Big Vyazyomy, 143050 Moscow, Russia; (V.P.K.); (A.P.G.)
| |
Collapse
|