1
|
Sivaprakasam N, Vaithiyanathan S, Gandhi K, Narayanan S, Kavitha PS, Rajasekaran R, Muthurajan R. Metagenomics approaches in unveiling the dynamics of Plant Growth-Promoting Microorganisms (PGPM) vis-à-vis Phytophthora sp. suppression in various crop ecological systems. Res Microbiol 2024; 175:104217. [PMID: 38857835 DOI: 10.1016/j.resmic.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Phytophthora species are destructive pathogens causing yield losses in different ecological systems, such as potato, black pepper, pepper, avocado, citrus, and tobacco. The diversity of plant growth-promoting microorganisms (PGPM) plays a crucial role in disease suppression. Knowledge of metagenomics approaches is essential for assessing the dynamics of PGPM and Phytophthora species across various ecosystems, facilitating effective management strategies for better crop protection. This review discusses the dynamic interplay between PGPM and Phytophthora sp. using metagenomics approaches that sheds light on the potential of PGPM strains tailored to specific crop ecosystems to bolster pathogen suppressiveness.
Collapse
Affiliation(s)
- Navarasu Sivaprakasam
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Karthikeyan Gandhi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Swarnakumari Narayanan
- Department of Nematology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P S Kavitha
- School of Post Graduate Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Raghu Rajasekaran
- Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Raveendran Muthurajan
- Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Salwan R, Rana A, Saini R, Sharma A, Sharma M, Sharma V. Diversity analysis of endophytes with antimicrobial and antioxidant potential from Viola odorata: an endemic plant species of the Himalayas. Braz J Microbiol 2023; 54:2361-2374. [PMID: 37227628 PMCID: PMC10484869 DOI: 10.1007/s42770-023-01010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
Viola odorata, also known as "Banafshah" in high altitudes of Himalayas, is well known for its pharmaceutical importance in Ayurvedic and Unani medicinal system. The plant is a source of various drugs for its anti-inflammatory, diaphoretic, diuretic, emollient, expectorant, antipyretic, and laxative properties. The endophytes of plants have been reported for their role in modulating various physiological and biological processes of the host plants. In the present study, a total of 244 endophytes were isolated in pure cultures from the roots of Viola odorata, and genetic diversity was evaluated using amplified ribosomal DNA restriction analysis (ARDRA) and enterobacterial repetitive intergenic consensus (ERIC). The molecular fingerprinting revealed variation among various rRNA types among morphologically different endophytes based on ARDRA and ERIC-PCR. The screening of endophytes showed antimicrobial activity of 11 bacterial isolates and one actinomycete SGA9 against various pathogens Bacillus cereus, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. The antioxidant activity revealed the majority of the bacterial isolates able to scavenge the free radical in the range of 10-50% and 8 bacterial isolates in the range of 50-85%. Principal component analysis separated eight isolates away from the central eclipse and form a separate group based on antimicrobial and antioxidant potential. The identification of these eight isolates showed affiliation with different species of the genus Enterobacter, Microbacterium, Pseudomonas, Rhizobium, and Streptomyces. This is the first report on the characterization of endophytic bacteria and actinomycetes from endemic Viola odorata. Results suggested that these endophytes could be explored for the production of antimicrobial and antioxidant products.
Collapse
Affiliation(s)
- Richa Salwan
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur (HP), 177 001, India.
| | - Aditi Rana
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur (HP), 177 001, India
| | - Raj Saini
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur (HP), 177 001, India
| | - Amit Sharma
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur (HP), 177 001, India
| | - Monica Sharma
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur (HP), 177 001, India
| | - Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali (PB.), 140 413, India
| |
Collapse
|
3
|
Pandey AK, Dinesh K, Yadav S, Sharma HK, Babu A. Functional traits and phylogenetic analysis of top-soil inhabiting rhizobacteria associated with tea rhizospheres in North Bengal, India. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100200. [PMID: 37706093 PMCID: PMC10495634 DOI: 10.1016/j.crmicr.2023.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Rhizobacteria associated with cultivated crops are known to stimulate plant growth through various indirect or direct mechanisms. In recent years, the host list of plant growth promotion/promoting rhizobacteria has expanded to include bean, barley, cotton, maize, rice, vegetables, peanut, rice, wheat, and several plantation crops. However, interaction of rhizobacteria with tea plants of organic and conventional tea gardens is poorly understood. In the present study, rhizobacterial species associated with tea rhizosphere were isolated from 14 tea gardens located in North Bengal, India. In total, 16 rhizobacterial isolates isolated from collected soil samples were assessed for antagonistic and plant growth promotion/promoting activity under laboratory conditions. Molecular characterization based on sequencing of 16S rRNA gene revealed dominance of Bacillus with five species followed by Pseudomonas with two species. Interestingly, only one isolate was affiliated with actinobacteria, i.e., Microbacterium barkeri. Out of 16 isolates, isolates Bacillus subtilis OKAKP01, B. subtilis BNLG01, B. paramycoides BOK01, M. barkeri BPATH02, and Stenotrophomonas maltophilia BSEY01 showed highest growth inhibition against Fusarium solani (68.2 to 72.8%), Pseudopestalotiopsis theae (71.1 to 85.6%), and Exobasidium vexans (67.4 to 78.3%) causing respective Fusarium dieback, gray blight, and blister blight diseases in tea crop. Further, these five isolates also possessed significantly greater antifungal (siderophore producer, protease, chitinase, and cellulase activity) and plant growth promotion/promoting (indole-3-acetic acid production, ACC deaminase, ammonia, and phosphate solubilization) traits over other eleven rhizobacterial isolates. Therefore, these five isolates of rhizobacteria were chosen for their plant growth promotion/promoting activity on tea plants in nursery conditions. Results from nursery experiments revealed that these five rhizobacteria significantly improved growth rates of tea plants compared with the control. Therefore, this study suggests that these rhizobacteria could be used to formulate biopesticides and biofertilizers, which could be applied to sustainable tea cultivation to improve crop health and reduce disease attack.
Collapse
Affiliation(s)
- Abhay K. Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Centre, Nagrakata, Jalpaiguri, West Bengal 735225, India
| | - K. Dinesh
- Department of Plant Pathology, College of Horticulture, Dr. Y.S.R. Horticultural University, Anantharajupeta, Andhra Pradesh 516105, India
| | - Shivanand Yadav
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Centre, Nagrakata, Jalpaiguri, West Bengal 735225, India
| | - Harshit K. Sharma
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Centre, Nagrakata, Jalpaiguri, West Bengal 735225, India
| | - Azariah Babu
- Tea Research Association, Tocklai Tea Research Institute, Jorhat, Assam 785008, India
| |
Collapse
|
4
|
Morphological and Molecular Identification of Fusarium ipomoeae as the Causative Agent of Leaf Spot Disease in Tobacco from China. Microorganisms 2022; 10:microorganisms10101890. [DOI: 10.3390/microorganisms10101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Tobacco (Nicotiana tabacum L.), which creates jobs for 33 million people and contributes two trillion dollars’ tax annually, is one of the most important economic plants globally. However, tobacco is seriously threatened by numerous diseases during production. Previously, the field survey of tobacco diseases was conducted in the Guizhou and Guangxi provinces, the two main tobacco-producing areas in China. A serious leaf spot disease, with a 22% to 35% incidence, was observed in farming plants. In order to determine the causal agents, we collected the disease samples and isolated the pathogenic fungi. The pathogen was identified as Fusariumipomoeae, based on the morphological characteristics and phylogenetic analysis. Pathogenicity tests showed that F. ipomoeae could induce tobacco leaf spot and blight. To our knowledge, this is the first report worldwide of F. ipomoeae causing leaf spots and stems on tobacco. Our study reveals the serious consequences of F. ipomoeae on tobacco filed production and provides information for future diagnosis and management of the Fusarium disease.
Collapse
|
5
|
Borba MP, Ferrero APDS, de Souza Lameira R, Van Der Sand ST. The intricate molecular identification of Streptomyces: a case study on Antarctic soil isolates. Arch Microbiol 2022; 204:476. [PMID: 35829937 DOI: 10.1007/s00203-022-03093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
Despite the worldwide use of 16S rRNA to identify bacterial species, the use of this gene does not discriminate the 750 species in the genus Streptomyces. A MLST scheme was constructed with rpoB, gyrB, recA, trpB and atpD genes to access the genomic variances in Streptomyces species evolution. We analyze the housekeeping genes in 49 Streptomyces isolates from Antarctic soil. It was used two different databases, GenBank and EzBioCloud to compare the 16S sequences. The species founded in both databases are not the same, but in both cases, a few isolates achieve the necessary high percentage to consider the identification. There is a lack of deposited sequences in the other genes, as the data in GenBank proved to be insufficient. Isolate LMA323St_9 has the potential to be studied as a novel species. Besides that, the use of housekeeping genes gives robust phylogenetic information to understand in group relationships.
Collapse
Affiliation(s)
- Marcela Proença Borba
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Ana Paula da Silva Ferrero
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Renata de Souza Lameira
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sueli Teresinha Van Der Sand
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
6
|
Kuzmina LY, Gilvanova EA, Galimzyanova NF, Arkhipova TN, Ryabova AS, Aktuganov GE, Sidorova LV, Kudoyarova GR, Melent’ev AI. Characterization of the Novel Plant Growth-Stimulating Strain Advenella kashmirensis IB-K1 and Evaluation of Its Efficiency in Saline Soil. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722020072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Estoppey A, Weisskopf L, Di Francesco E, Vallat-Michel A, Bindschedler S, Chain PS, Junier P. Improved methods to assess the effect of bacteria on germination of fungal spores. FEMS Microbiol Lett 2022; 369:6553822. [PMID: 35325127 DOI: 10.1093/femsle/fnac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/08/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial-fungal interactions (BFI) play a major role on ecosystem functioning and might be particularly relevant at a specific development stage. For instance, in the case of biological control of fungal pathogens by bacteria, a highly relevant kind of BFI, in-vitro experiments often assess the impact of a bacterium on the inhibition of actively growing mycelia. However, this fails to consider other stages of plant infection such as the germination of a spore or a sclerotium. This study aims to present novel experimental platforms for in-vitro experiments with fungal spores, in order to assess the effect of bacteria on germination and fungal growth control, to recover the metabolites produced in the interaction, and to enhance direct visualisation of BFI. Botrytis cinerea, a phytopathogenic fungus producing oxalic acid (OA) as pathogenicity factor, was used as model. Given that oxalotrophic bacteria have been shown previously to control the growth of B. cinerea, the oxalotrophic bacteria Cupriavidus necator and Cupriavidus oxalaticus were used as models. The experiments performed demonstrated the suitability of the methods and confirmed that both bacteria were able to control the growth of B. cinerea, but only in media in which soluble OA was detected by the fungus. The methods presented here can be easily performed in any microbiology laboratory and are not only applicable to screen for potential biocontrol agents, but also to better understand BFI.
Collapse
Affiliation(s)
- Aislinn Estoppey
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Eva Di Francesco
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Armelle Vallat-Michel
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Patrick S Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
8
|
Özdoğan DK, Akçelik N, Akçelik M. Genetic Diversity and Characterization of Plant Growth-Promoting Effects of Bacteria Isolated from Rhizospheric Soils. Curr Microbiol 2022; 79:132. [PMID: 35290524 DOI: 10.1007/s00284-022-02827-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 11/02/2021] [Indexed: 01/18/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) have the potential to make a significant contribution to the development of sustainable agricultural systems. Generally, PGPRs function in three different ways, summarized as the synthesis of certain compounds for plants, facilitating the uptake of certain nutrients from the soil and protecting plants from diseases. This study aims to isolate plant growth-promoting bacteria from different plant rhizospheres from Ankara province, to reveal their genetic diversity, and to determine their plant growth-promoting properties. The identification of the 69 isolates was made according to the 16S rDNA sequence results and ARDRA analyses were also performed using AluI, HeaIII, and MspI enzymes. Nitrogen fixation, phosphate dissolving, IAA (indole-3-acetic acid) and siderophore production capacities of the 69 bacterial strains including 12 different genera (30 Pseudomonas, 13 Arthrobacter, 7 Bacillus, 4 Phyllobacter, 4 Variovorax, 3 Olivibacter, 3 Enterobacter, 2 Paenarthrobacter, 1 Stenotrophomonas, 1 Flavobacterium, 1 Caulobacter, 1 Paenibacillus) were evaluated in in vitro conditions. Nitrogen fixation capacities of 55 isolates varied between 2.29 and 46.11 µg mL-1 according to micro-kjeldahl method. Among the strains studied, nifH gene was detected only in Paenibacillus polymyxa H8/2 strain. The highest Phosphorus dissolving and IAA production capacity (in tryptophan-added medium) of isolates were 186.52 µg mL-1, and 50.05 μg mL-1 respectively, and 31 of 69 isolates were able to produce siderophore. Regarding antifungal activities, results showed that 31 bacterial isolates had antagonistic activities against at least one of the tested pathogens. Nitrogen fixation and phosphate solubilizing potential of the promising bacterial strains were determined through two-independent pot experiments with wheat and it has been found that they have positive effects on the yield parameters of wheat.
Collapse
Affiliation(s)
- Dilek Kaya Özdoğan
- Soil Fertilizer and Water Resources Center Research Institute, Ankara, Turkey.
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Mustafa Akçelik
- Faculty of Science, Department of Biology, Ankara University, Ankara, Turkey
| |
Collapse
|
9
|
Survey of plant growth promoting and antagonistic traits in winter wheat grain endophytic bacteria. EUREKA: LIFE SCIENCES 2021. [DOI: 10.21303/2504-5695.2021.001978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this work was to isolate endophytic bacteria from wheat grains and to evaluate their plant growth promoting traits (PGPT) as well as an inhibitory effect on P. syringae pv. atrofaciens (McCulloch) growth. Endophytic bacteria were isolated by a culture-dependent protocol from the grains of winter wheat variety of Ukrainian selection Podolyanka with high resistance to syringae. Totally 2.7±0.09 CFU/1 g of dry wheat grain were isolated, ten cultivable bacterial isolates were obtained. Spore-forming bacilli predominated in the wheat grain endophytic community. Gram-negative fermenting and non-fermenting rod-shaped bacteria and Gram-positive cocci were also present. Seven out of ten isolates possessed numerous plant growth promoting traits including phosphate solubilization, oligonitrotrophy, and indolic compound producing. Two isolates possessed antagoniscic activity against syringae in vitro along with plant growth promoting features. According to biochemical profiling and mass-spectrophotometric identification, these two isolates were assigned to Paenibacillus and Brevibacillus genera. These endophytic bacteria can be considered as promising objects for agrobiotechnology. However, more research is needed to confirm their biotechnological potential in planta experiments
Collapse
|
10
|
Yadav AN, Kour D, Kaur T, Devi R, Yadav A, Dikilitas M, Abdel-Azeem AM, Ahluwalia AS, Saxena AK. Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Characterization of antifungal metabolite phenazine from rice rhizosphere fluorescent pseudomonads (FPs) and their effect on sheath blight of rice. Saudi J Biol Sci 2020; 27:3313-3326. [PMID: 33304137 PMCID: PMC7715052 DOI: 10.1016/j.sjbs.2020.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 11/23/2022] Open
Abstract
We have shown, the outcome of antifungal activity of phenazine derivatives which is produced by fluorescent pseudomonads (FPs) for the control of sheath blight of rice. A total of 50 fluorescent pseudomonads (FPs) were isolated from rice rhizosphere. Off which, 36 FPs exhibited antagonistic activity against Rhizoctonia solani, Macrophomina phaseolina, Fusarium oxysporum, Alternaria alternata and Sclerotium rolfsii up to 70–80% compared to control by dual culture method. BOX-PCR analyses of antagonistic isolates indicated that two phylogenetic group, where group I consisted of 28 isolates and eight isolates belongs to group II. Among 36 FPs, a total of 10 FPs revealed that the presence of phenazine derivatives on thin layer chromatography (TLC), which is coincided with that of authentic phenazine with Rf value 0.57. Similar to TLC analysis, antibiotic encoding gene phenazine-1-carboxamide (PCN) was detected in 10 FPs by PCR analysis with respective primer. Among, PCN detected isolates of FPs, a significant biocontrol potential possessing isolate designated as VSMKU1 and it was showed prominent antifungal activity against R. solani and other tested fungal pathogens. Hence, the isolate VSMKU1 was selected for further studies. The selected isolate VSMKU1 was identified as Pseudomonas aeruginosa by 16S rDNA sequence analysis. The antifungal metabolite phenazine like compound produced by VSMKU1 was confirmed by UV, FT-IR and HPLC analysis. The phenazine compound from VSMKU1 significantly arrest the growth of R. solani compared to carbendazim by well diffusion method. The detached leaf assay showed remarkable inhibition of lesion height 80 to 85% by the treatments of culture (VSMKU1), cell free culure filtrate and phenazine like compound compared to control and other treatments was observed in detached leaves of rice. These results emphasized that VSMKU1 isolate can be used as an alternative potential biocontrol agent against sheath blight of rice, instead of using commercial fungicide such as validamycin and carbendazim which cause environmental pollution and health hazards.
Collapse
|
12
|
Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling, India. Sci Rep 2020; 10:15536. [PMID: 32968101 PMCID: PMC7511344 DOI: 10.1038/s41598-020-72439-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
A total of 120 rhizobacteria were isolated from seven different tea estates of Darjeeling, West Bengal, India. Based on a functional screening of in vitro plant growth-promoting (PGP) activities, thirty potential rhizobacterial isolates were selected for in-planta evaluation of PGP activities in rice and maize crops. All the thirty rhizobacterial isolates were identified using partial 16S rRNA gene sequencing. Out of thirty rhizobacteria, sixteen (53.3%) isolates belong to genus Bacillus, five (16.6%) represent genus Staphylococcus, three (10%) represent genus Ochrobactrum, and one (3.3%) isolate each belongs to genera Pseudomonas, Lysinibacillus, Micrococcus, Leifsonia, Exiguobacterium, and Arthrobacter. Treatment of rice and maize seedlings with these thirty rhizobacterial isolates resulted in growth promotion. Besides, rhizobacterial treatment in rice triggered enzymatic [ascorbate peroxidase (APX), catalase (CAT), chitinase, and phenylalanine ammonia-lyase (PAL)], and non-enzymatic [proline and polyphenolics] antioxidative defense reactions indicating their possible role in the reduction of reactive oxygen species (ROS) burden and thereby priming of plants towards stress mitigation. To understand such a possibility, we tested the effect of rhizobacterial consortia on biotic stress tolerance of rice against necrotrophic fungi, Rhizoctonia solani AG1-IA. Our results indicated that the pretreatment with rhizobacterial consortia increased resistance of the rice plants towards the common foliar pathogen like R. solani AG1-IA. This study supports the idea of the application of plant growth-promoting rhizobacterial consortia in sustainable crop practice through the management of biotic stress under field conditions.
Collapse
|
13
|
Evaluation of BOX-PCR and REP-PCR as Molecular Typing Tools for Antarctic Streptomyces. Curr Microbiol 2020; 77:3573-3581. [PMID: 32939638 DOI: 10.1007/s00284-020-02199-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Molecular studies led to the resurgence of natural products research from genus Streptomyces, already known for their long history and importance for the pharmaceutical industry. However, species belonging to this genus are difficult to identify and the most commonly used techniques, which are based on 16S rRNA sequencing, do not discriminate between related species. In this work, amplification profiles generated from BOX-PCR and REP-PCR of 49 Antarctic soil streptomycetes were compared to evaluate the diversity present in the group and to characterize the bacterial isolates, along with some 16S rRNA amplifications. The BOX-A1R primer exhibit clearer amplification fragments, different from the amplification patterns obtained using the REP 1R and 2R primers. A higher diversity was observed with REP-PCR amplifications, even though a larger number of fragments was obtained with BOX-A1R primer amplifications. There are at least four isolates that showed great similarity (about 90%) in both techniques. In other hand, there are two others that are 90% similar in BOX-PCR, but distant in REP-PCR, showing only 40% of similarity. Results of the combination of BOX-PCR and REP-PCR represent a simple and low-cost method to discriminate between Streptomyces strains. There is no species identification with only the 16S rRNA, most isolates seem to be related to S. globisporus. Further studies added to the obtained results may provide better data to help the characterization of these microorganisms.
Collapse
|
14
|
Potential PGPR Properties of Cellulolytic, Nitrogen-Fixing, Phosphate-Solubilizing Bacteria in Rehabilitated Tropical Forest Soil. Microorganisms 2020; 8:microorganisms8030442. [PMID: 32245141 PMCID: PMC7143980 DOI: 10.3390/microorganisms8030442] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 11/17/2022] Open
Abstract
In the midst of the major soil degradation and erosion faced by tropical ecosystems, rehabilitated forests are being established to avoid the further deterioration of forest lands. In this context, cellulolytic, nitrogen-fixing (N-fixing), phosphate-solubilizing bacteria are very important functional groups in regulating the elemental cycle and plant nutrition, hence replenishing the nutrient content in forest soils. As is the case for other potential plant growth-promoting (PGP) rhizobacteria, these functional bacteria could have cross-functional abilities or beneficial traits that are essential for plants and can improve their growth. This study was conducted to isolate, identify, and characterize selected PGP properties of these three functional groups of bacteria from tropical rehabilitated forest soils at Universiti Putra Malaysia Bintulu Sarawak Campus, Malaysia. The bacteria were isolated based on their colonial growth on respective functional media, identified using both molecular and selected biochemical properties, and were assessed for their functional quantitative activities as well as PGP properties based on seed germination tests and indole-3-acetic acid (IAA) production. Out of the 15 identified bacterial isolates that exhibited beneficial phenotypic traits, a third belong to the genus Burkholderia and a fifth to Stenotrophomonas sp., with both genera consisting of members from two different functional groups. The results of the experiments confirm the multiple PGP traits of some selected bacterial isolates based on their respective high functional activities, root and shoot lengths, and seedling vigor improvements when bacterized on mung bean seeds, as well as significant IAA production. The results of this study suggest that these functional bacterial strains could potentially be included in bio-fertilizer formulations for crop growth on acid soils.
Collapse
|
15
|
Tang A, Haruna AO, Majid NMA, Jalloh MB. Potential PGPR Properties of Cellulolytic, Nitrogen-Fixing, Phosphate-Solubilizing Bacteria in Rehabilitated Tropical Forest Soil. Microorganisms 2020; 8:microorganisms8030442. [PMID: 32245141 DOI: 10.1101/351916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 05/22/2023] Open
Abstract
In the midst of the major soil degradation and erosion faced by tropical ecosystems, rehabilitated forests are being established to avoid the further deterioration of forest lands. In this context, cellulolytic, nitrogen-fixing (N-fixing), phosphate-solubilizing bacteria are very important functional groups in regulating the elemental cycle and plant nutrition, hence replenishing the nutrient content in forest soils. As is the case for other potential plant growth-promoting (PGP) rhizobacteria, these functional bacteria could have cross-functional abilities or beneficial traits that are essential for plants and can improve their growth. This study was conducted to isolate, identify, and characterize selected PGP properties of these three functional groups of bacteria from tropical rehabilitated forest soils at Universiti Putra Malaysia Bintulu Sarawak Campus, Malaysia. The bacteria were isolated based on their colonial growth on respective functional media, identified using both molecular and selected biochemical properties, and were assessed for their functional quantitative activities as well as PGP properties based on seed germination tests and indole-3-acetic acid (IAA) production. Out of the 15 identified bacterial isolates that exhibited beneficial phenotypic traits, a third belong to the genus Burkholderia and a fifth to Stenotrophomonas sp., with both genera consisting of members from two different functional groups. The results of the experiments confirm the multiple PGP traits of some selected bacterial isolates based on their respective high functional activities, root and shoot lengths, and seedling vigor improvements when bacterized on mung bean seeds, as well as significant IAA production. The results of this study suggest that these functional bacterial strains could potentially be included in bio-fertilizer formulations for crop growth on acid soils.
Collapse
Affiliation(s)
- Amelia Tang
- Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu 97008, Sarawak, Malaysia
| | - Ahmed Osumanu Haruna
- Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu 97008, Sarawak, Malaysia
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nik Muhamad Ab Majid
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohamadu Boyie Jalloh
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan Branch, Locked Bag No. 3, Sandakan 90509, Sabah, Malaysia
| |
Collapse
|
16
|
Sant' Anna D, Sampaio JLM, Sommaggio LRD, Mazzeo DEC, Marin-Morales MA, Marson FAL, Levy CE. The applicability of gene sequencing and MALDI-TOF to identify less common gram-negative rods (Advenella, Castellaniella, Kaistia, Pusillimonas and Sphingobacterium) from environmental isolates. Antonie van Leeuwenhoek 2019; 113:233-252. [PMID: 31560092 DOI: 10.1007/s10482-019-01333-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/13/2019] [Indexed: 11/26/2022]
Abstract
Our aim was to identify less common non-fermenting gram-negative rods during the bioremediation process. Five genera were found: Advenella, Castellaniella, Kaistia, Pusillimonas and Sphingobacterium, for a total of 15 isolates. Therefore, we evaluated the applicability of four methods currently available for bacteria identification: (1) conventional biochemical methods, (2) the VITEK®-2 system, (3) MALDI-TOF mass spectrometry and (4) 16S rRNA gene sequencing. The biochemical methods and the VITEK®-2 system were reliable only for the Sphingobacterium isolate and solely at the genus level. Both MALDI-TOF mass spectrometry platforms (Bruker and VITEK® MS) did not achieve reliable identification results for any of these genera. 16S rRNA gene sequencing identified eight isolates to the species level but not to the subspecies level, when applicable. The remaining seven isolates were reliably identified through 16S rRNA gene sequencing to the genus level only. Our findings suggest that the detection and identification of less common genera (and species) that appeared at certain moments during the bioremediation process can be a challenge to microbiologists considering the most used techniques. In addition, more studies are required to confirm our results.
Collapse
Affiliation(s)
- Débora Sant' Anna
- Microbiology Laboratory, Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil.
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, Barretos, São Paulo, Brazil.
| | - Jorge Luiz Mello Sampaio
- Microbiology Section, Fleury-Centers for Diagnostic Medicine, Av. General Waldomiro de Lima 508, São Paulo, 04344-070, Brazil
- Clinical Analysis and Toxicology Department, School of Pharmacy, University of São Paulo, Av. Professor Lineu Prestes, 580, Butantã, São Paulo, 05508-000, Brazil
| | - Lais Roberta Deroldo Sommaggio
- Department of Biology, Institute of Biosciences, São Paulo State University - Rio Claro, Av. 24 A, 1515, Bela Vista, Rio Claro, São Paulo, 13506-900, Brazil
| | - Dânia Elisa Christofoletti Mazzeo
- Department of Analytical Chemistry, Institute of Chemistry, São Paulo State University - Araraquara, Rua Professor Francisco Degni, 55, Araraquara, São Paulo, 14800-060, Brazil
| | - Maria Aparecida Marin-Morales
- Department of Biology, Institute of Biosciences, São Paulo State University - Rio Claro, Av. 24 A, 1515, Bela Vista, Rio Claro, São Paulo, 13506-900, Brazil
| | - Fernando Augusto Lima Marson
- Department of Pediatrics, Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil.
- Laboratory of Pulmonary Physiology, Center for Pediatrics Investigation, Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil.
- Department of Medical Genetics and Genomic Medicine, Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil.
- Post-Graduate Program in Health Science, São Francisco University, Avenida São Francisco de Assis, 218, Cidade Universitária, Bragança Paulista, São Paulo, 12916-400, Brazil.
| | - Carlos Emílio Levy
- Microbiology Laboratory, Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil.
- Department of Pediatrics, Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil.
| |
Collapse
|
17
|
Isler Ceyhan D, Celekli A, Can C. Relationship between soil composition, diversity and antifungal properties of Bacillus spp. isolated from southeastern Anatolia. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1559095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Derya Isler Ceyhan
- Biology Department, Science and Letter Faculty, University of Gaziantep, Gaziantep, Turkey
| | - Abuzer Celekli
- Biology Department, Science and Letter Faculty, University of Gaziantep, Gaziantep, Turkey
| | - Canan Can
- Biology Department, Science and Letter Faculty, University of Gaziantep, Gaziantep, Turkey
| |
Collapse
|
18
|
Ghorbannezhad H, Moghimi H, Dastgheib SMM. Evaluation of heavy petroleum degradation using bacterial-fungal mixed cultures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:434-439. [PMID: 30144703 DOI: 10.1016/j.ecoenv.2018.08.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/11/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
The use of potent microbial mixed cultures is a promising method for the bioremediation of recalcitrant compounds. In this study, eight molds, three yeasts, and four bacterial isolates were screened from an aged oil-polluted area. An oil degradation assay with various combinations including Bacterial Mixed Culture (BMC), Fungal Mixed Culture (FMC), Fungal-Bacterial Mixed Culture (TMC), and Sequential Fungal-Bacterial Mixed Culture (SMC) was investigated. The results indicated that the SMC culture had the highest yield of degradation (65.96%) in comparison with the degradation yields of TMC, FMC and BMC, which were 59.04%, 56.64%, and 47.56%, respectively. The degradation of saturates, aromatics, resins, and asphaltenes in the crude oil found using the Iatroscan system were, as follows: 64.21%, and 67.63% for aromatics, 72.90%, and 73.59% for saturates, and 53.88% and 58.25% for resins with respect to the TMC and SMC cultures as the superior mixed cultures. The growth rates of yeasts, molds, and bacteria in the TMC and SMC cultures were compared for further evaluation of the role of each microorganism in the degradation. Our findings support the use of mixed cultures in the bioremediation of recalcitrant petroleum pollution.
Collapse
Affiliation(s)
- Hassan Ghorbannezhad
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | | |
Collapse
|
19
|
Cloning and Expression of the Chitinase Encoded by ChiKJ406136 from Streptomyces Sampsonii (Millard & Burr) Waksman KJ40 and Its Antifungal Effect. FORESTS 2018. [DOI: 10.3390/f9110699] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The present study demonstrated that the chitinase gene ChiKJ406136 of Streptomyces sampsonii (Millard & Burr) Waksman KJ40 could be cloned using a PCR protocol and expressed in Escherichia coli (Migula) Castellani & Chalmers BL21 (DE3), and the recombinant protein had antifungal effect on four forest pathogens (Cylindrocladium scoparium Morgan, Cryphonectria parasitica (Murrill) Barr, Neofusicoccum parvum Crous, and Fusarium oxysporum Schl.) and also had the biological control effects on Eucalyptus robusta Smith leaf blight, Castanea mollissima BL. blight, Juglans regia L. blight and J. regia root rot. The results showed that ChiKJ406136 was efficiently expressed and a 48 kilodalton (kDa) recombinant protein was obtained. No significant change in protein production was observed in the presence of different concentrations of IPTG (isopropyl-b-D-thio-galactoside). The purified protein yield was greatest in the 150 mmol/L imidazole elution fraction, and the chitinase activities of the crude protein and purified protein solutions were 0.045 and 0.033 U/mL, respectively. The antifungal effects indicated that mycelial cells of the four fungi were disrupted, and the control effects of the chitinase on four forest diseases showed significant differences among the undiluted 10- and 20-fold dilutions and the control. The undiluted solution exhibited best effect. The results of this study provide a foundation for the use of S. sampsonii as a biocontrol agent and provides a new source for the chitinase gene, providing a theoretical basis for its application.
Collapse
|
20
|
Dlamini BS, Montso PK, Kumar A, Ateba CN. Distribution of virulence factors, determinants of antibiotic resistance and molecular fingerprinting of Salmonella species isolated from cattle and beef samples: suggestive evidence of animal-to-meat contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32694-32708. [PMID: 30244441 DOI: 10.1007/s11356-018-3231-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
In this study, three hundred presumptive Salmonella strains isolated from cattle faeces and raw beef samples were subjected to both preliminary and confirmatory tests specific for Salmonella. PCR assays revealed that 100%, 20% and 26.7% of the isolates were positive for 16S rRNA, fliC and fljB gene fragments, respectively. Large proportions (62.4 to 94.3%) of these isolates were multiple antibiotic resistant (MAR) strains that were resistant to three or more antibiotics belonging to different classes. MAR phenotypes Ab1, Ab2, Ab3, Ab7, Ab8, Ab9, Ab26 and Ab27 were dominant among the isolates. Cluster analysis of antibiotic inhibition zone diameter data revealed two major clusters (clusters 1 and 2), and each cluster contained two sub-clusters (1A, 1B, 2A and 2B). PCR data revealed that 27.1% and 30.7% of the isolates possessed the spvC and invA virulent genes, respectively. There was a significant correlation between the possession of MAR phenotypes and virulent gene determinants. Analysis of restriction fragment length polymorphism (RFLP) of 16S rRNA gene fragments using EcoRI and HaeIII showed that large proportions of isolates from beef and cattle faeces produced similar genetic fingerprints. From these results, it is suggested that Salmonella species in cattle are transmitted to beef and, therefore, the consumption of undercooked beef could pose severe health complications on consumers. These findings provide baseline data that could be of great epidemiological importance and, thus, the need to utilise more sensitive typing tools in determining the genetic relatedness of isolates from different sources.
Collapse
Affiliation(s)
- Beauty Sicelo Dlamini
- Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Peter Kotsoana Montso
- Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ajay Kumar
- Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Collins Njie Ateba
- Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
21
|
Galaviz-Silva L, Iracheta-Villarreal JM, Molina-Garza ZJ. Bacillus and Virgibacillus strains isolated from three Mexican coasts antagonize Staphylococcus aureus and Vibrio parahaemolyticus. FEMS Microbiol Lett 2018; 365:5075581. [DOI: 10.1093/femsle/fny202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Lucio Galaviz-Silva
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas. Laboratorio de Patología Molecular y Experimental. Facultad de Ciencias Biológicas, Unidad B, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - Jesús Mario Iracheta-Villarreal
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas. Laboratorio de Patología Molecular y Experimental. Facultad de Ciencias Biológicas, Unidad B, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - Zinnia Judith Molina-Garza
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas. Laboratorio de Patología Molecular y Experimental. Facultad de Ciencias Biológicas, Unidad B, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| |
Collapse
|
22
|
Gunzer F, Rudolph WW, Bunk B, Schober I, Peters S, Müller T, Oberheitmann B, Schröttner P. Whole-genome sequencing of a large collection of Myroides odoratimimus and Myroides odoratus isolates and antimicrobial susceptibility studies. Emerg Microbes Infect 2018; 7:61. [PMID: 29618738 PMCID: PMC5884818 DOI: 10.1038/s41426-018-0061-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 02/16/2018] [Accepted: 02/25/2018] [Indexed: 12/04/2022]
Abstract
The genus Myroides comprises several species of Gram-negative, non-motile, and non-fermenting bacteria, which have been regarded as non-pathogenic for decades. Multiple recent reports, however, underscore the pathogenic potential that Myroides sp. possesses for humans. These bacteria seem to be resistant to a wide range of antibiotics (including ß-lactams and aminoglycosides). Therefore, treatment options are limited. Knowledge of antimicrobial resistance, however, is based on only one meaningful comprehensive study and on data published from case reports. This lack of data motivated us to test 59 strains from our Myroides collection (43 M. odoratimimus and 16 M. odoratus) for resistance against 20 commonly used antibiotics. We also performed molecular analyses to reveal whether our bacteria harbor the genus-specific M. odoratimimus metallo-ß-lactamase (MUS-1) or the M. odoratus metallo ß-lactamase (TUS-1), and other ß-lactamases, which may provide an explanation for the extended antimicrobial resistance.
Collapse
Affiliation(s)
- Florian Gunzer
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Wolfram W Rudolph
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Boyke Bunk
- Leibniz-Institut DSMZ-Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - Isabel Schober
- Leibniz-Institut DSMZ-Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - Sonja Peters
- Leibniz-Zentrum für Marine Tropenforschung (ZMT), Fahrenheitstrasse 6, 28359, Bremen, Germany.,Q-Bioanalytic GmbH, Fischkai 1, 27572, Bremerhaven, Germany
| | - Theres Müller
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | | | - Percy Schröttner
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
23
|
Dutta J, Thakur D. Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling, India. PLoS One 2017; 12:e0182302. [PMID: 28771547 PMCID: PMC5542436 DOI: 10.1371/journal.pone.0182302] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 07/16/2017] [Indexed: 11/24/2022] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) are studied in different agricultural crops but the interaction of PGPR of tea crop is not yet studied well. In the present study, the indigenous tea rhizobacteria were isolated from seven tea estates of Darjeeling located in West Bengal, India. A total of 150 rhizobacterial isolates were screened for antagonistic activity against six different fungal pathogens i.e. Nigrospora sphaerica (KJ767520), Pestalotiopsis theae (ITCC 6599), Curvularia eragostidis (ITCC 6429), Glomerella cingulata (MTCC 2033), Rhizoctonia Solani (MTCC 4633) and Fusarium oxysporum (MTCC 284), out of which 48 isolates were antagonist to at least one fungal pathogen used. These 48 isolates exhibited multifarious antifungal properties like the production of siderophore, chitinase, protease and cellulase and also plant growth promoting (PGP) traits like IAA production, phosphate solubilization, ammonia and ACC deaminase production. Amplified ribosomal DNA restriction analysis (ARDRA) and BOX-PCR analysis based genotyping clustered the isolates into different groups. Finally, four isolates were selected for plant growth promotion study in two tea commercial cultivars TV-1 and Teenali-17 in nursery conditions. The plant growth promotion study showed that the inoculation of consortia of these four PGPR isolates significantly increased the growth of tea plant in nursery conditions. Thus this study underlines the commercial potential of these selected PGPR isolates for sustainable tea cultivation.
Collapse
Affiliation(s)
- Jintu Dutta
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| |
Collapse
|
24
|
Niu J, Chao J, Xiao Y, Chen W, Zhang C, Liu X, Rang Z, Yin H, Dai L. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate. J Basic Microbiol 2017; 57:3-11. [PMID: 27643917 DOI: 10.1002/jobm.201600222] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/06/2016] [Indexed: 01/01/2023]
Abstract
Rotation is an effective strategy to control crop disease and improve plant health. However, the effects of crop rotation on soil bacterial community composition and structure, and crop health remain unclear. In this study, using 16S rRNA gene sequencing, we explored the soil bacterial communities under four different cropping systems, continuous tobacco cropping (control group), tobacco-maize rotation, tobacco-lily rotation, and tobacco-turnip rotation. Results of detrended correspondence analysis and dissimilarity tests showed that soil bacterial community composition and structure changed significantly among the four groups, such that Acidobacteria and Actinobacteria were more abundant in the maize rotation group (16.6 and 11.5%, respectively) than in the control (8.5 and 7.1%, respectively). Compared with the control group (57.78%), maize and lily were effective rotation crops in controlling tobacco bacterial wilt (about 23.54 and 48.67%). On the other hand, tobacco bacterial wilt rate was increased in the turnip rotation (59.62%) relative to the control. Further study revealed that the abundances of several bacterial populations were directly correlated with tobacco bacterial wilt. For example, Acidobacteria and Actinobacteria were significantly negatively correlated to the tobacco bacterial wilt rate, so they may be probiotic bacteria. Canonical correspondence analysis showed that soil pH and calcium content were key factors in determining soil bacterial communities. In conclusion, our study revealed the composition and structure of bacterial communities under four different cropping systems and may unveil molecular mechanisms for the interactions between soil microorganisms and crop health.
Collapse
Affiliation(s)
- Jiaojiao Niu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Jin Chao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Tobacco Monopoly Bureau of Xiangxi Autonomous Prefecture, Jishou, 416000, China
| | - Yunhua Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Wu Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Chao Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Zhongwen Rang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Linjian Dai
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
25
|
Niu J, Rang Z, Zhang C, Chen W, Tian F, Yin H, Dai L. The succession pattern of soil microbial communities and its relationship with tobacco bacterial wilt. BMC Microbiol 2016; 16:233. [PMID: 27716043 PMCID: PMC5054579 DOI: 10.1186/s12866-016-0845-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The interaction mechanism between crop and soil microbial communities is a key issue in both agriculture and soil ecology. However, how soil microbial communities respond to crop planting and ultimately affect crop health still remain unclear. In this research, we explored how soil microbial communities shifted during tobacco cultivation under different rotation systems (control, maize rotation, lily rotation and turnip rotation). RESULTS Our analyses showed that soil microbial communities had a general response pattern to tobacco planting, as the abundances of Proteobacteria and Planctomycetes increased while Acidobacteria and Verrucomicrobia decreased during tobacco cultivation, no matter which rotation system was adopted. Notably, tobacco decreased the diversity and co-occurrence of soil microorganisms, but maize rotation might suppress tobacco bacterial wilt by alleviating the decrease in biodiversity and co-occurrence. Molecular ecological network analysis indicated that there was stronger competition between potential disease suppressive (e.g., Acidobacteria) and inducible bacteria (e.g., Chloroflexi) in maize rotation systems. Both soil properties (e.g., pH, Ca content) and microbial communities of tobacco mature period depended on their counterparts of fallow period, and all these factors shaped tobacco disease comprehensively. CONCLUSIONS Both soil microbial communities of fallow stage and tobacco selection shaped the communities of tobacco mature stage. And effective rotation crop (maize) could decrease the incidence of tobacco bacterial wilt by alleviating the decrease in diversity and co-occurrences of microbial populations. This study would deepen our understanding about succession mechanism of soil microbial communities during crop cultivation and their relationship with crop health.
Collapse
Affiliation(s)
- Jiaojiao Niu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 China
- Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083 China
| | - Zhongwen Rang
- College of agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Chao Zhang
- College of agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Wu Chen
- College of agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Feng Tian
- Tobacco monopoly bureau of Xiangxi Autonomous Prefecture, Hunan Jishou, 416000 China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 China
- Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083 China
| | - Linjian Dai
- College of agronomy, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
26
|
Nwinyi OC, Ajayi OO, Amund OO. Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas. Braz J Microbiol 2016; 47:551-62. [PMID: 27245129 PMCID: PMC4927684 DOI: 10.1016/j.bjm.2016.04.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 12/22/2015] [Indexed: 11/19/2022] Open
Abstract
The goal of this investigation was to isolate competent polynuclear aromatic hydrocarbons degraders that can utilize polynuclear aromatic hydrocarbons of former industrial sites at McDoel Switchyard in Bloomington, Indiana. Using conventional enrichment method based on soil slurry, we isolated, screened and purified two bacterial species strains PB1 and PB2. Applying the ribotyping technique using the 16S rRNA gene analysis, the strains were assigned to the genus Pseudomonas (Pseudomonas plecoglossicida strain PB1 and Pseudomonas sp. PB2). Both isolates showed promising metabolic capacity on pyrene sprayed MS agar plates during the preliminary investigations. Using time course studies in the liquid cultures at calculated concentrations 123, 64, 97 and 94ppm for naphthalene, chrysene, fluroanthene and pyrene, P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 showed partial utilization of the polynuclear aromatic hydrocarbons. Naphthalene was degraded between 26% and 40%, chrysene 14% and 16%, fluroanthene 5% and 7%; pyrene 8% and 13% by P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 respectively. Based on their growth profile, we developed a model R(2)=1 to predict the degradation rate of slow polynuclear aromatic hydrocarbon-degraders where all the necessary parameters are constant. From this investigation, we confirm that the former industrial site soil microbial communities may be explored for the biorestoration of the industrial site.
Collapse
Affiliation(s)
- Obinna C Nwinyi
- Department of Biological Sciences, School of Natural and Applied Sciences, College of Science and Technology, Covenant University, Canaan Land, Ota, Ogun State, Nigeria; Department of Biotechnology and Food technology, University of Johannesburg, Doornfontein, Johannesburg, South Africa.
| | - Oluseyi O Ajayi
- Department of Mechanical Engineering, College of Science and Technology, Covenant University, Canaan Land, Ota, Ogun State, Nigeria
| | | |
Collapse
|
27
|
Draft Genome Sequence of Brevibacillus brevis DZQ7, a Plant Growth-Promoting Rhizobacterium with Broad-Spectrum Antimicrobial Activity. GENOME ANNOUNCEMENTS 2015; 3:3/4/e00831-15. [PMID: 26294619 PMCID: PMC4543497 DOI: 10.1128/genomea.00831-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brevibacillus brevis DZQ7 is a plant growth-promoting rhizobacterium (PGPR) isolated from tobacco rhizosphere. Here, we report the draft genome sequence of B. brevis DZQ7. Several functional genes related to antimicrobial activity were identified in the genome.
Collapse
|
28
|
Draft Genome Sequence of Delftia tsuruhatensis MTQ3, a Strain of Plant Growth-Promoting Rhizobacterium with Antimicrobial Activity. GENOME ANNOUNCEMENTS 2015; 3:3/4/e00822-15. [PMID: 26251486 PMCID: PMC4541264 DOI: 10.1128/genomea.00822-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Delftia tsuruhatensis MTQ3 is a plant growth-promoting rhizobacterium (PGPR) isolated from tobacco rhizosphere. Here, we report the draft genome sequence of D. tsuruhatensis MTQ3. Several functional genes related to antimicrobial activity and environment adaption have been found in the genome. This is the first genome sequence of D. tsuruhatensis related to PGPR.
Collapse
|
29
|
Sato Y, Yamagishi J, Yamashita R, Shinozaki N, Ye B, Yamada T, Yamamoto M, Nagasaki M, Tsuboi A. Inter-Individual Differences in the Oral Bacteriome Are Greater than Intra-Day Fluctuations in Individuals. PLoS One 2015; 10:e0131607. [PMID: 26121551 PMCID: PMC4487993 DOI: 10.1371/journal.pone.0131607] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/03/2015] [Indexed: 01/15/2023] Open
Abstract
Given the advent of massively parallel DNA sequencing, human microbiome is analyzed comprehensively by metagenomic approaches. However, the inter- and intra-individual variability and stability of the human microbiome remain poorly characterized, particularly at the intra-day level. This issue is of crucial importance for studies examining the effects of microbiome on human health. Here, we focused on bacteriome of oral plaques, for which repeated, time-controlled sampling is feasible. Eighty-one supragingival plaque subjects were collected from healthy individuals, examining multiple sites within the mouth at three time points (forenoon, evening, and night) over the course of 3 days. Bacterial composition was estimated by 16S rRNA sequencing and species-level profiling, resulting in identification of a total of 162 known bacterial species. We found that species compositions and their relative abundances were similar within individuals, and not between sampling time or tooth type. This suggests that species-level oral bacterial composition differs significantly between individuals, although the number of subjects is limited and the intra-individual variation also occurs. The majority of detected bacterial species (98.2%; 159/162), however, did not fluctuate over the course of the day, implying a largely stable oral microbiome on an intra-day time scale. In fact, the stability of this data set enabled us to estimate potential interactions between rare bacteria, with 40 co-occurrences supported by the existing literature. In summary, the present study provides a valuable basis for studies of the human microbiome, with significant implications in terms of biological and clinical outcomes.
Collapse
Affiliation(s)
- Yukuto Sato
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2–1, Seiryo-machi, Aoba-ku, Sendai, 980–8573, Japan
| | - Junya Yamagishi
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2–1, Seiryo-machi, Aoba-ku, Sendai, 980–8573, Japan
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido, 001–0020, Japan
- Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido, 001–0020, Japan
| | - Riu Yamashita
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2–1, Seiryo-machi, Aoba-ku, Sendai, 980–8573, Japan
| | - Natsuko Shinozaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2–1, Seiryo-machi, Aoba-ku, Sendai, 980–8573, Japan
| | - Bin Ye
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2–1, Seiryo-machi, Aoba-ku, Sendai, 980–8573, Japan
| | - Takuji Yamada
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2–1, Seiryo-machi, Aoba-ku, Sendai, 980–8573, Japan
- Department of Bioinformation, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midoriku, Yokohama, Kanagawa, 226–8501, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku Medical Megabank Organization, Tohoku University, 2–1, Seiryo-machi, Aoba-ku, Sendai, 980–8573, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2–1, Seiryo-machi, Aoba-ku, Sendai, 980–8573, Japan
- * E-mail: (MN); (AT)
| | - Akito Tsuboi
- Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, 2–1, Seiryo-machi, Aoba-ku, Sendai, 980–8573, Japan
- * E-mail: (MN); (AT)
| |
Collapse
|
30
|
Fuente MDL, Miranda CD, Jopia P, González-Rocha G, Guiliani N, Sossa K, Urrutia H. Growth inhibition of bacterial fish pathogens and quorum-sensing blocking by bacteria recovered from chilean salmonid farms. JOURNAL OF AQUATIC ANIMAL HEALTH 2015; 27:112-122. [PMID: 26000731 DOI: 10.1080/08997659.2014.1001534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The main goal of this study was to find bacterial isolates with the ability to inhibit the growth of the fish pathogens Aeromonas hydrophila, Vibrio anguillarum, and Flavobacterium psychrophilum and to inhibit the blockage of the quorum-sensing (QS) system. A total of 80 gram-negative strains isolated from various freshwater Chilean salmonid farms were studied. We determined that 10 strains belonging to the genus Pseudomonas inhibited at least one of the assayed fish pathogens. Of these, nine strains were able to produce siderophores and two strains were able to inhibit the growth of all assayed pathogenic species. When the 80 strains were examined for QS-blocking activity, only the strains Pseudomonas sp. FF16 and Raoultella planticola R5B1 were identified as QS blockers. When the QS-blocker strains were analyzed for their ability to produce homoserine lactone (HSL) molecules, thin-layer chromatography analysis showed that both strains were able to produce C6-HSL- and C8-HSL-type molecules. Strain R5B1 did not show growth inhibition properties, but strain FF16 also led to inhibition of growth in A. hydrophila and F. psychrophilum as well as to siderophore production. Pseudomonas sp. FF16 exhibited potentially useful antagonistic properties and could be a probiotic candidate for the salmon farming industry.
Collapse
Affiliation(s)
- Mery de la Fuente
- a Laboratorio de Biotecnología e Ingeniería Acuícola, Departamento de Ingeniería Ambiental y Recursos Naturales, Facultad de Ingeniería , Universidad Católica de la Santísima Concepción , Alonso de Ribera 2850, Concepción , Chile
| | | | | | | | | | | | | |
Collapse
|
31
|
Berg G, Martinez JL. Friends or foes: can we make a distinction between beneficial and harmful strains of the Stenotrophomonas maltophilia complex? Front Microbiol 2015; 6:241. [PMID: 25873912 PMCID: PMC4379930 DOI: 10.3389/fmicb.2015.00241] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 03/12/2015] [Indexed: 11/21/2022] Open
Abstract
Stenotrophomonas maltophilia is an emerging multi-drug-resistant global opportunistic pathogen of environmental, mainly plant-associated origin. It is also used as a biocontrol or stress protecting agent for crops in sustainable agricultural as well as in bioremediation strategies. In order to establish effective protocols to distinguish harmless from harmful strains, our discussion must take into consideration the current data available surrounding the ecology, evolution and pathogenicity of the species complex. The mutation rate was identified as one of several possible criteria for strain plasticity, but it is currently impossible to distinguish beneficial from harmful S. maltophilia strains. This may compromise the possibility of the release and application for environmental biotechnology of this bacterial species. The close relative S. rhizophila, which can be clearly differentiated from S. maltophilia, provides a harmless alternative for biotechnological applications without human health risks. This is mainly because it is unable to growth at the human body temperature, 37∘C due to the absence of heat shock genes and a potentially temperature-regulated suicide mechanism.
Collapse
Affiliation(s)
- Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz Austria
| | - Jose L Martinez
- Centro Nacional de Biotecnologia - Consejo Superior de Investigaciones Científicas, Madrid Spain
| |
Collapse
|
32
|
Wübbeler JH, Hiessl S, Schuldes J, Thürmer A, Daniel R, Steinbüchel A. Unravelling the complete genome sequence of Advenella mimigardefordensis strain DPN7T and novel insights in the catabolism of the xenobiotic polythioester precursor 3,3'-dithiodipropionate. MICROBIOLOGY-SGM 2014; 160:1401-1416. [PMID: 24739217 DOI: 10.1099/mic.0.078279-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advenella mimigardefordensis strain DPN7(T) is a remarkable betaproteobacterium because of its extraordinary ability to use the synthetic disulfide 3,3'-dithiodipropionic acid (DTDP) as the sole carbon source and electron donor for aerobic growth. One application of DTDP is as a precursor substrate for biotechnically synthesized polythioesters (PTEs), which are interesting non-degradable biopolymers applicable for plastics materials. Metabolic engineering for optimization of PTE production requires an understanding of DTDP conversion. The genome of A. mimigardefordensis strain DPN7(T) was sequenced and annotated. The circular chromosome was found to be composed of 4,740,516 bp and 4112 predicted ORFs, whereas the circular plasmid consisted of 23,610 bp and 24 predicted ORFs. The genes participating in DTDP catabolism had been characterized in detail previously, but knowing the complete genome sequence and with support of Tn5: :mob-induced mutants, putatively involved transporter proteins and a transcriptional regulator were also identified. Most probably, DTDP is transported into the cell by a specific tripartite tricarboxylate transport system and is then cleaved by the disulfide reductase LpdA, sulfoxygenated by the 3-mercaptopropionate dioxygenase Mdo, activated by the CoA ligase SucCD and desulfinated by the acyl-CoA dehydrogenase-like desulfinase AcdA. Regulation of this pathway is presumably performed by a transcriptional regulator of the xenobiotic response element family. The excessive sulfate that is inevitably produced is secreted by the cells by a unique sulfate exporter of the CPA (cation : proton antiporter) superfamily.
Collapse
Affiliation(s)
- Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Sebastian Hiessl
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Jörg Schuldes
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Andrea Thürmer
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Alexander Steinbüchel
- Faculty of Biology, King Abdulaziz University, Jeddah, Saudi Arabia.,Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
33
|
Singh VK, Kavita K, Prabhakaran R, Jha B. Cis-9-octadecenoic acid from the rhizospheric bacterium Stenotrophomonas maltophilia BJ01 shows quorum quenching and anti-biofilm activities. BIOFOULING 2013; 29:855-867. [PMID: 23844805 DOI: 10.1080/08927014.2013.807914] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Quorum quenching (QQ) is an effective approach for the prevention of bacterial infections involving biofilms. This study reports the QQ and anti-biofilm activities of a rhizospheric bacterium identified as Stenotrophomonas maltophilia BJ01. The QQ activity was demonstrated using Chromobacterium violaceum CV026 as a biosensor. A maximum of 95% reduction in violacein production, a quorum sensing-regulated behavior, was observed. Gas chromatography-mass spectroscopy of the extract showed that the active compound was cis-9-octadecenoic acid, which was confirmed by electronspray ionization-mass spectroscopy data. The extract also inhibited biofilm formation of Pseudomonas aeruginosa ATCC 9027 without affecting its growth. Scanning electron and atomic force microscopy showed architectural disruption of the biofilm when treated with the extract. This is the first report of the QQ and anti-biofilm activities of cis-9-octadecenoic acid isolated from any bacterium. It may have the potential to combat detrimental infections with P. aeruginosa. Further validation is required for any possible medical application.
Collapse
Affiliation(s)
- Vijay Kumar Singh
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | | | | | | |
Collapse
|
34
|
De la Fuente M, Vidal JM, Miranda CD, González G, Urrutia H. Inhibition of Flavobacterium psychrophilum biofilm formation using a biofilm of the antagonist Pseudomonas fluorescens FF48. SPRINGERPLUS 2013; 2:176. [PMID: 23667820 PMCID: PMC3650236 DOI: 10.1186/2193-1801-2-176] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/02/2013] [Indexed: 12/02/2022]
Abstract
The most important bacterial pathology currently occurring in Chilean freshwater salmon farming is the cold-water disease produced by the psychrotrophic bacteria Flavobacterium psychrophilum. The main aim of this study was to characterize the inhibitory activity of an antagonist strain on the formation of biofilms of a F. psychrophilum strain. The antagonistic strain Pseudomonas fluorescens FF48 was isolated from the sediment beneath the salmon cages of a freshwater Chilean salmon farm and was identified by using the 16S rRNA gene sequence analysis. The production of siderophores, mainly during the stationary phase of growth of the antagonist strain was demonstrated using the Chrome Azurol S method and through F. psychrophilum inhibition under iron saturation conditions. Subsequently, the effect of the antagonist supernatant on the formation of F. psychrophilum biofilm was tested using the crystal violet staining method observing an inhibition of the growth of F. psychrophilum, but no effect was observed when iron saturation concentrations were used. Furthermore, when the antagonist strain was previously deposited on the support, it completely inhibited the formation of F. psychrophilum biofilms, but when both bacteria were inoculated simultaneously no inhibitory effect was detected. In conclusion, it was demonstrated that FF48 strain is able to inhibit the formation of F. psychrophilum biofilms in vitro probably mediated by the siderophore production, suggesting its potential use as a biocontrol biofilm in freshwater fish rearing systems to prevent the persistence of biofilms of the fish pathogenic species F. psychrophilum.
Collapse
Affiliation(s)
- Mery De la Fuente
- Biofilms and Environmental Microbiology Laboratory, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | | | | | | | | |
Collapse
|
35
|
Zindel R, Ofek M, Minz D, Palevsky E, Zchori‐Fein E, Aebi A. The role of the bacterial community in the nutritional ecology of the bulb mite
Rhizoglyphus robini
(Acari: Astigmata: Acaridae). FASEB J 2013; 27:1488-97. [DOI: 10.1096/fj.12-216242] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Renate Zindel
- Agroscope Reckenholz‐Tänikon, Research Station ARTZürichSwitzerland
| | - Maya Ofek
- Institute of Soil, Water, and Environmental Sciences, Agricultural Research OrganizationBet DaganIsrael
| | - Dror Minz
- Institute of Soil, Water, and Environmental Sciences, Agricultural Research OrganizationBet DaganIsrael
| | - Eric Palevsky
- Department of EntomologyNewe Ya'ar Research CenterAgricultural Research OrganizationRamat YishayIsrael
| | - Einat Zchori‐Fein
- Department of EntomologyNewe Ya'ar Research CenterAgricultural Research OrganizationRamat YishayIsrael
| | - Alexandre Aebi
- Agroscope Reckenholz‐Tänikon, Research Station ARTZürichSwitzerland
| |
Collapse
|
36
|
Wang H, Li W, Chen Q, Huang Y, Li K, Xia H, Wang M, Cai L, Shang S, Shi J. A rapid microbioassay for discovery of antagonistic bacteria for Phytophthora parasitica var. nicotianae. PHYTOPATHOLOGY 2012; 102:267-71. [PMID: 22046969 DOI: 10.1094/phyto-09-11-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A simple, rapid, small-scale microbioassay for infection of tobacco seedlings by Phytophthora parasitica var. nicotianae was developed here. This assay uses tobacco seedlings cultivated in petri dishes for a standardized method for quantitation of initial zoospore inocula and high-throughput screening of antagonistic bacteria. Zoospore inocula between 10(2) to 10(5) spores per petri dish were inoculated on 14-day-old tobacco seedlings for the susceptibility test. The optimum inocula was established to be ten thousand zoospores. One hundred and fifty pure culture bacteria with different pigments, growth rates, and morphologies were isolated from rhizosphere soil of tobacco and screened for protective ability against tobacco black shank. Fifteen bacteria presented high activity against P. parasitica on tobacco seedlings. They were identified by Biolog GEN III MicroPlate and distributed as Bacillus amyloliquefaciens, B. licheniformis, Paenibacillus pabuli, B. atrophaeus, B. subtilis, B. pumilus, and B. endophyticus, respectively. Four antagonists chosen randomly from the 15 bacteria all exhibited the same 100% protective activity in planta as that in the petri dishes. This microassay proved to be a rapid, reproducible, and efficient method for screening of potential biological agents or microorganisms and may be useful for studying mechanisms of infection and control of Phytophthora spp. under hydroponic conditions.
Collapse
Affiliation(s)
- Hancheng Wang
- Guizhou Tobacco Science Institute, Guiyang 550091, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jin XB, Sun RJ, Zhu JQ, Xu ZJ, Liu Z, Wang Q, Ye XY. Isolation and Identification of Bacillus altitudinis ZJ 186 from Marine Soil Samples and its Antifungal Activity Against Magnaporthe oryzae. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/crb.2012.13.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|