1
|
Senapati PK, Mahapatra KK, Singh A, Bhutia SK. mTOR inhibitors in targeting autophagy and autophagy-associated signaling for cancer cell death and therapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189342. [PMID: 40339669 DOI: 10.1016/j.bbcan.2025.189342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
The mechanistic target of rapamycin (mTOR) is a protein kinase that plays a central regulatory switch to control multifaceted cellular processes, including autophagy. As a nutrient sensor, mTOR inhibits autophagy by phosphorylating and inactivating key regulators, including ULK1, Beclin-1, UVRAG, and TFEB, preventing autophagy initiation and lysosomal biogenesis. It also suppresses autophagy-related protein expression, prioritizing growth over cellular recycling. Under nutrient deprivation, mTORC1 activity decreases, allowing autophagy to restore cellular homeostasis. Hyperautophagic activities lead to autophagic cell death; sometime after the point of no return, the cell goes for non-apoptotic, non-necrotic cell death i.e., Autosis. In cancer, the crosstalk between autophagy and mTOR is context-dependent, driving either cell survival or autophagy-dependent cell death. Using mTOR inhibitors, autophagic cell death can be induced to regulate cell growth, and proliferation is a potential therapeutic option for cancer treatment. mTOR inhibitors are broadly categorized into two types, i.e., natural and synthetic mTOR inhibitors. Although several studies in preclinical and clinical trials of various synthetic mTOR inhibitors are now in focus for cancer therapies, limited work has been done to explore autophagic cell death-inducing mTOR inhibitors. In addition, many natural mTOR inhibitors display better efficacy over synthetic mTOR inhibitors due to their lower toxicity, biocompatibility, and potential to overcome drug resistance in inducing autophagic cell death for cancer treatment.
Collapse
Affiliation(s)
- Prakash Kumar Senapati
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Kewal Kumar Mahapatra
- Department of Agriculture and Allied Sciences (Zoology), C. V. Raman Global University Bhubaneswar, Odisha-752054, India
| | - Amruta Singh
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
2
|
Jalali P, Shahmoradi A, Samii A, Mazloomnejad R, Hatamnejad MR, Saeed A, Namdar A, Salehi Z. The role of autophagy in cancer: from molecular mechanism to therapeutic window. Front Immunol 2025; 16:1528230. [PMID: 40248706 PMCID: PMC12003146 DOI: 10.3389/fimmu.2025.1528230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Autophagy is a cellular degradation process that plays a crucial role in maintaining metabolic homeostasis under conditions of stress or nutrient deprivation. This process involves sequestering, breaking down, and recycling intracellular components such as proteins, organelles, and cytoplasmic materials. Autophagy also serves as a mechanism for eliminating pathogens and engulfing apoptotic cells. In the absence of stress, baseline autophagy activity is essential for degrading damaged cellular components and recycling nutrients to maintain cellular vitality. The relationship between autophagy and cancer is well-established; however, the biphasic nature of autophagy, acting as either a tumor growth inhibitor or promoter, has raised concerns regarding the regulation of tumorigenesis without inadvertently activating harmful aspects of autophagy. Consequently, elucidating the mechanisms by which autophagy contributes to cancer pathogenesis and the factors determining its pro- or anti-tumor effects is vital for devising effective therapeutic strategies. Furthermore, precision medicine approaches that tailor interventions to individual patients may enhance the efficacy of autophagy-related cancer treatments. To this end, interventions aimed at modulating the fate of tumor cells by controlling or inducing autophagy substrates necessitate meticulous monitoring of these mediators' functions within the tumor microenvironment to make informed decisions regarding their activation or inactivation. This review provides an updated perspective on the roles of autophagy in cancer, and discusses the potential challenges associated with autophagy-related cancer treatment. The article also highlights currently available strategies and identifies questions that require further investigation in the future.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arvin Shahmoradi
- Department of Laboratory Medicine, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Samii
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Radman Mazloomnejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hatamnejad
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Afshin Namdar
- Program in Cell Biology, The Hospital for Sick Children Peter Gilgan Centre for Research and Learning, Toronto, ON, United States
| | - Zahra Salehi
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Liu X, Du RC, Xu JY, Hu YX, Xie X, Lan QY, Hu L. Analyzing research trends in the relationship between immunosuppressants and cancer following organ transplantation: a bibliometric study from 2001 to 2023. Discov Oncol 2025; 16:366. [PMID: 40111721 PMCID: PMC11926317 DOI: 10.1007/s12672-025-02101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Recently, there has been an increasing interest in investigating the potential benefits or risks associated with using immunosuppressants for treating specific tumors post organ transplantation, with a focus on selecting appropriate drugs, doses, and treatment protocols. This study used bibliometric analysis to evaluate research trends and hotspots in this field. MATERIALS AND METHODS A systematic search was conducted on the Web of Science to identify studies focusing immunosuppressants and cancer following organ transplantation from 2001 to 2023. The search strategy utilized a variety of the keywords including "immunosuppressants", "cancer" and "transplant". Data extraction involved recording various parameters such as title, author, institution, country, publication, citation, H-index, immunosuppressant, and type of transplantation. RESULTS The analysis encompassed a total of 94 studies. The findings revealed that the period from 2005 to 2010 emerged as the most influential timeframe within this research. The United States ranked highest in the number of publications, with Vivarelli M identified as the most productive author, and the University of Bologna recognized as the most productive institute. "Immunosuppression", "rapamycin" and "kidney" were identified as the key hotspots within this field. Notably, rapamycin was identified as the predominant immunosuppressant and kidney transplantation emerged as the most prominent type of transplantation. CONCLUSIONS While immunosuppressants have been extensively utilized in organ transplant procedures, certain associated cancer risks have not been well addressed. Further long-term monitoring studies are required for numerous immunosuppressants to elucidate precise applications and potential implications for solid-organ transplant recipients.
Collapse
Affiliation(s)
- Xing Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Honggutan District, No.566 Xuefu Road, 330036, Nanchang, Jiangxi Province, China
- Huankui Academy, Nanchang University, Nanchang, Jiangxi Province, China
| | - Ren-Chun Du
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Honggutan District, No.566 Xuefu Road, 330036, Nanchang, Jiangxi Province, China
- Huankui Academy, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jing-Yuan Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Honggutan District, No.566 Xuefu Road, 330036, Nanchang, Jiangxi Province, China
- Huankui Academy, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Xin Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Honggutan District, No.566 Xuefu Road, 330036, Nanchang, Jiangxi Province, China
- The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xun Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Honggutan District, No.566 Xuefu Road, 330036, Nanchang, Jiangxi Province, China
- School of Nursing, Nanchang University, Nanchang, Jiangxi Province, China
| | - Qing-Yang Lan
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Honggutan District, No.566 Xuefu Road, 330036, Nanchang, Jiangxi Province, China
- The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Liaoliao Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Honggutan District, No.566 Xuefu Road, 330036, Nanchang, Jiangxi Province, China.
| |
Collapse
|
4
|
Singaravelan N, Tollefsbol TO. Polyphenol-Based Prevention and Treatment of Cancer Through Epigenetic and Combinatorial Mechanisms. Nutrients 2025; 17:616. [PMID: 40004944 PMCID: PMC11858336 DOI: 10.3390/nu17040616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Polyphenols have been shown to be utilized as an effective treatment for cancer by acting as a DNMT or HDAC inhibitor, reducing inflammatory processes, and causing cell cycle arrest. While there have been many studies demonstrating the anti-cancerous potential of individual polyphenols, there are limited studies on the combinatorial effects of polyphenols. This review focuses on how combinations of different polyphenols can be used as a chemotherapeutic treatment option for patients. Specifically, we examine the combinatorial effects of three commonly used polyphenols: curcumin, resveratrol, and epigallocatechin gallate. These combinations have been shown to induce apoptosis, prevent colony formation and migration, increase tumor suppression, reduce cell viability and angiogenesis, and create several epigenetic modifications. In addition, these anti-cancerous effects were synergistic and additive. Thus, these findings suggest that using different combinations of polyphenols at the appropriate concentrations can be used as a better and more efficacious treatment against cancer as compared to using polyphenols individually.
Collapse
Affiliation(s)
- Neha Singaravelan
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Trygve O. Tollefsbol
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Liu Y, Dong X, Wu B, Cheng Z, Zhang J, Wang J. Promising Pharmacological Interventions for Posterior Capsule Opacification: A Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400181. [PMID: 39679290 PMCID: PMC11637782 DOI: 10.1002/gch2.202400181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/18/2024] [Indexed: 12/17/2024]
Abstract
Phacoemulsification combined with intraocular lens implantation is the primary treatment for cataract. Although this treatment strategy benefits patients with cataracts, posterior capsule opacification (PCO) remains a common complication that impairs vision and affects treatment outcomes. The pathogenesis of PCO is associated with the proliferation, migration, and fibrogenesis activity of residual lens epithelial cells, with epithelial-mesenchymal transition (EMT) serving as a key mechanism underlying the condition. Transforming growth factor-beta 2 (TGF-β2) is a major promotor of EMT, thereby driving PCO development. Most studies have shown that drugs and miRNAs mitigate EMT by inhibiting, clearing, or eliminating LECs. In addition, targeting EMT-related signaling pathways in TGF-β2-stimulated LECs has garnered attention as a research focus. This review highlights potential treatments for PCO and details the mechanisms by which drugs and miRNAs counter EMT.
Collapse
Affiliation(s)
- Yuxuan Liu
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
| | - Xiaoming Dong
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
| | - Bin Wu
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Shenyang Aier Excellent Eye HospitalShenyangLiaoning Province110000China
| | - Zhigang Cheng
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Chaoyang Aier Eye HospitalChaoyangLiaoning Province122000China
| | - Jinsong Zhang
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
- Shenyang Aier Excellent Eye HospitalShenyangLiaoning Province110000China
| | - Jing Wang
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
- Shenyang Aier Excellent Eye HospitalShenyangLiaoning Province110000China
- Aier Academy of OphthalmologyCentral South UniversityNo. 188, Furong South Road, Tianxin DistrictChangshaHunan410004P. R. China
| |
Collapse
|
6
|
Wang X, Hua P, He C, Chen M. Non-apoptotic cell death-based cancer therapy: Molecular mechanism, pharmacological modulators, and nanomedicine. Acta Pharm Sin B 2022; 12:3567-3593. [PMID: 36176912 PMCID: PMC9513500 DOI: 10.1016/j.apsb.2022.03.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/25/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
As an emerging cancer therapeutic target, non-apoptotic cell death such as ferroptosis, necroptosis and pyroptosis, etc., has revealed significant potential in cancer treatment for bypassing apoptosis to enhance the undermined therapeutic efficacy triggered by apoptosis resistance. A variety of anticancer drugs, synthesized compounds and natural products have been proven recently to induce non-apoptotic cell death and exhibit excellent anti-tumor effects. Moreover, the convergence of nanotechnology with functional materials and biomedicine science has provided tremendous opportunities to construct non-apoptotic cell death-based nanomedicine for innovative cancer therapy. Nanocarriers are not only employed in targeted delivery of non-apoptotic inducers, but also used as therapeutic components to induce non-apoptotic cell death to achieve efficient tumor treatment. This review first introduces the main characteristics, the mechanism and various pharmacological modulators of different non-apoptotic cell death forms, including ferroptosis, necroptosis, pyroptosis, autophagy, paraptosis, lysosomal-dependent cell death, and oncosis. Second, we comprehensively review the latest progresses of nanomedicine that induces various forms of non-apoptotic cell death and focus on the nanomedicine targeting different pathways and components. Furthermore, the combination therapies of non-apoptotic cell death with photothermal therapy, photodynamic therapy, immunotherapy and other modalities are summarized. Finally, the challenges and future perspectives in this regard are also discussed.
Collapse
|
7
|
Li J, Chen X, Kang R, Zeh H, Klionsky DJ, Tang D. Regulation and function of autophagy in pancreatic cancer. Autophagy 2021; 17:3275-3296. [PMID: 33161807 PMCID: PMC8632104 DOI: 10.1080/15548627.2020.1847462] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Oncogenic KRAS mutation-driven pancreatic ductal adenocarcinoma is currently the fourth-leading cause of cancer-related deaths in the United States. Macroautophagy (hereafter "autophagy") is one of the lysosome-dependent degradation systems that can remove abnormal proteins, damaged organelles, or invading pathogens by activating dynamic membrane structures (e.g., phagophores, autophagosomes, and autolysosomes). Impaired autophagy (including excessive activation and defects) is a pathological feature of human diseases, including pancreatic cancer. However, dysfunctional autophagy has many types and plays a complex role in pancreatic tumor biology, depending on various factors, such as tumor stage, microenvironment, immunometabolic state, and death signals. As a modulator connecting various cellular events, pharmacological targeting of nonselective autophagy may lead to both good and bad therapeutic effects. In contrast, targeting selective autophagy could reduce potential side effects of the drugs used. In this review, we describe the advances and challenges of autophagy in the development and therapy of pancreatic cancer.Abbreviations: AMPK: AMP-activated protein kinase; CQ: chloroquine; csc: cancer stem cells; DAMP: danger/damage-associated molecular pattern; EMT: epithelial-mesenchymal transition; lncRNA: long noncoding RNA; MIR: microRNA; PanIN: pancreatic intraepithelial neoplasia; PDAC: pancreatic ductal adenocarcinoma; PtdIns3K: phosphatidylinositol 3-kinase; SNARE: soluble NSF attachment protein receptor; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Jingbo Li
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xin Chen
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Herbert Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Nandi U, Onyesom I, Douroumis D. An in vitro evaluation of antitumor activity of sirolimus-encapsulated liposomes in breast cancer cells. J Pharm Pharmacol 2021; 73:300-309. [PMID: 33793879 DOI: 10.1093/jpp/rgaa061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/28/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Design and examine the effect of sirolimus-PEGylated (Stealth) liposomes for breast cancer treatment. In this study, we developed conventional and Stealth liposome nanoparticles comprising of distearoylphosphatidylcholine (DSPC) or dipalmitoyl-phosphatidylcholine (DPPC) and DSPE-MPEG-2000 lipids loaded with sirolimus as an anticancer agent. The effect of lipid grade, drug loading and incubation times were evaluated. METHODS Particle size distribution, encapsulation efficiency of conventional and Stealth liposomes were studied followed by cytotoxicity evaluation. The cellular uptake and internal localisation of liposome formulations were investigated using confocal microscopy. KEY FINDINGS The designed Stealth liposome formulations loaded with sirolimus demonstrated an effective in vitro anticancer therapy compared with conventional liposomes while the length of the acyl chain affected the cell viability. Anticancer activity was found to be related on the drug loading amounts and incubation times. Cell internalization was observed after 5 h while significant cellular uptake of liposome was detected after 24 h with liposome particles been located in the cytoplasm round the cell nucleus. Sirolimus Stealth liposomes induced cell apoptosis. CONCLUSIONS The design and evaluation of sirolimus-loaded PEGylated liposome nanoparticles demonstrated their capacity as drug delivery carrier for the treatment of breast cancer tumours.
Collapse
Affiliation(s)
- Uttom Nandi
- Medway School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, UK
| | - Ichioma Onyesom
- Medway School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, UK
| | - Dennis Douroumis
- Medway School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, UK
| |
Collapse
|
9
|
The Dual Role of Autophagy in Cancer Development and a Therapeutic Strategy for Cancer by Targeting Autophagy. Int J Mol Sci 2020; 22:ijms22010179. [PMID: 33375363 PMCID: PMC7795059 DOI: 10.3390/ijms22010179] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a delicate intracellular degradation process that occurs due to diverse stressful conditions, including the accumulation of damaged proteins and organelles as well as nutrient deprivation. The mechanism of autophagy is initiated by the creation of autophagosomes, which capture and encapsulate abnormal components. Afterward, autophagosomes assemble with lysosomes to recycle or remove degradative cargo. The regulation of autophagy has bipolar roles in cancer suppression and promotion in diverse cancers. Furthermore, autophagy modulates the features of tumorigenesis, cancer metastasis, cancer stem cells, and drug resistance against anticancer agents. Some autophagy regulators are used to modulate autophagy for anticancer therapy but the dual roles of autophagy limit their application in anticancer therapy, and present as the main reason for therapy failure. In this review, we summarize the mechanisms of autophagy, tumorigenesis, metastasis, cancer stem cells, and resistance against anticancer agents. Finally, we discuss whether targeting autophagy is a promising and effective therapeutic strategy in anticancer therapy.
Collapse
|
10
|
Massaro C, Thomas J, Ikhlef H, Dinara S, Cronk S, Moots H, Phanstiel O. Serendipitous Discovery of Leucine and Methionine Depletion Agents during the Search for Polyamine Transport Inhibitors. J Med Chem 2020; 63:2814-2832. [PMID: 32069402 DOI: 10.1021/acs.jmedchem.9b00568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeting polyamine metabolism is a proven anticancer strategy. Cancers often escape the polyamine biosynthesis inhibitors by increased polyamine import. Therefore, there is much interest in identifying polyamine transport inhibitors (PTIs) to be used in combination therapies. In a search for new PTIs, we serendipitously discovered a LAT-1 efflux agonist, which induces intracellular depletion of methionine, leucine, spermidine, and spermine, but not putrescine. Because S-adenosylmethioninamine is made from methionine, a loss of intracellular methionine leads to an inability to biosynthesize spermidine, and spermine. Importantly, we found that this methionine-depletion approach to polyamine depletion could not be rescued by exogenous polyamines, thereby obviating the need for a PTI. Using 3H-leucine (the gold standard for LAT-1 transport studies) and JPH-203 (a specific LAT-1 inhibitor), we showed that the efflux agonist did not inhibit the uptake of extracellular leucine but instead facilitated the efflux of intracellular leucine pools.
Collapse
Affiliation(s)
- Chelsea Massaro
- College of Medicine, University of Central Florida 12722 Research Parkway Orlando, Florida 32827, United States
| | - Jenna Thomas
- College of Medicine, University of Central Florida 12722 Research Parkway Orlando, Florida 32827, United States
| | - Houssine Ikhlef
- College of Medicine, University of Central Florida 12722 Research Parkway Orlando, Florida 32827, United States
| | - Sharifa Dinara
- College of Medicine, University of Central Florida 12722 Research Parkway Orlando, Florida 32827, United States
| | - Sara Cronk
- College of Medicine, University of Central Florida 12722 Research Parkway Orlando, Florida 32827, United States
| | - Holly Moots
- College of Medicine, University of Central Florida 12722 Research Parkway Orlando, Florida 32827, United States
| | - Otto Phanstiel
- College of Medicine, University of Central Florida 12722 Research Parkway Orlando, Florida 32827, United States
| |
Collapse
|
11
|
Old wine in new bottles: Drug repurposing in oncology. Eur J Pharmacol 2020; 866:172784. [DOI: 10.1016/j.ejphar.2019.172784] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
|
12
|
Liang ZG, Lin GX, Yu BB, Su F, Li L, Qu S, Zhu XD. The role of autophagy in the radiosensitivity of the radioresistant human nasopharyngeal carcinoma cell line CNE-2R. Cancer Manag Res 2018; 10:4125-4134. [PMID: 30323668 PMCID: PMC6174314 DOI: 10.2147/cmar.s176536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose The present study aimed to study the role of autophagy in the radiosensitivity of the radioresistant human nasopharyngeal carcinoma cell line CNE-2R. Methods Before being irradiated, CNE-2R cells were treated with the autophagy inhibitor chloroquine diphosphate (CDP) or the autophagy inducer rapamycin (RAPA). Microtubule-associated protein light chain 3 (LC3-II) and p62 were assessed using Western blotting analysis 48 hours after CNE-2R cells were irradiated. The percentage of apoptotic cells was assessed via flow cytometry. CNE-2R cell viability was evaluated using the Cell Counting Kit-8 (CCK8). The radiosensitivity of cells was assessed via clone formation analysis. Results The level of autophagy in CNE-2R cells improved as the radiation dose increased, reaching the maximum at a dose of 10 Gy. Autophagy was most significantly inhibited by 60 µmol/L CDP in CNE-2R cells, but was obviously enhanced by 100 nmol/L RAPA. Compared with the irradiation (IR) alone group, in the IR + CDP group, autophagy was significantly inhibited, viability was low, the rate of radiation-induced apoptosis was increased, and radiosensitivity was upregulated. In contrast, cells of the IR + RAPA group exhibited greater autophagy, higher viability, a lower rate of radiation-induced apoptosis, and downregulated radiosensitivity. Conclusion The autophagy level is negatively correlated with radiosensitivity for the radio-resistant human nasopharyngeal carcinoma cell line CNE-2R.
Collapse
Affiliation(s)
- Zhong-Guo Liang
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Guo-Xiang Lin
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Bin-Bin Yu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Fang Su
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Ling Li
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Song Qu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| |
Collapse
|
13
|
Regulation of Autophagy Affects the Prognosis of Mice with Severe Acute Pancreatitis. Dig Dis Sci 2018; 63:2639-2650. [PMID: 29629491 DOI: 10.1007/s10620-018-5053-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 03/31/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) is a common inflammatory disease that may develop to severe AP (SAP), resulting in life-threatening complications. Impaired autophagic flux is a characteristic of early AP, and its accumulation could activate oxidative stress and nuclear factor κB (NF-κB) pathways, which aggravate the disease process. AIM To explore the therapeutic effects of regulating autophagy after the onset of AP. METHODS In this study, intraperitoneal injections of 3-methyladenine (3-MA) and rapamycin (RAPA) in the L-arginine or cerulein plus lipopolysaccharide (LPS) Balb/C mouse model. At 24 h after the last injection, pulmonary, intestinal, renal and pancreatic tissues were analyzed. RESULTS We found that 3-MA ameliorated systemic organ injury in two SAP models. 3-MA treatment impaired autophagic flux and alleviated inflammatory activation by modulating the NF-κB signaling pathway and the caspase-1-IL-1β pathway, thus decreasing the injuries to the organs and the levels of inflammatory cytokines. CONCLUSION Our study found that the regulation of autophagy could alter the progression of AP induced by L-arginine or cerulein plus LPS in mice.
Collapse
|
14
|
Zheng T, Li D, He Z, Feng S, Zhao S. Prognostic and clinicopathological significance of Beclin-1 in non-small-cell lung cancer: a meta-analysis. Onco Targets Ther 2018; 11:4167-4175. [PMID: 30050308 PMCID: PMC6056151 DOI: 10.2147/ott.s164987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Autophagy plays a key role in the development of non-small-cell lung cancer (NSCLC). Beclin-1 is essential for the initiation and regulation of autophagy. Accumulated studies have investigated the prognostic role of Beclin-1 in NSCLC, but conclusions remain controversial. Therefore, we conducted this meta-analysis to assess the potential significance of Beclin-1 in NSCLC. Materials and methods PubMed and Embase databases were searched for eligible studies published before December 31, 2017. Odds ratio (OR) was pooled to evaluate the clinicopathological significance of Beclin-1 in NSCLC. Hazard ratio (HR) was adopted to assess the association of Beclin-1 with overall survival (OS). Results Eight studies involving 1,159 patients were included in this meta-analysis. The pooled results showed that high Beclin-1 expression was significantly correlated with earlier tumor grade (OR=0.54, 95% CI: 0.36-0.81, P=0.003), less nodal involvement (OR=0.56, 95% CI: 0.37-0.86, P=0.007), earlier TNM stage (OR=0.62, 95% CI: 0.43-0.89, P=0.010), smaller tumor size (OR=0.54, 95% CI: 0.36-0.81, P=0.003), better differentiation (OR=0.48, 95% CI: 0.36-0.64, P<0.001), and less recurrence (OR=0.24, 95% CI: 0.14-0.41, P<0.001). Moreover, high level of Beclin-1 was significantly associated with better OS in NSCLC (HR=0.41, 95% CI: 0.26-0.64, P<0.001). Conclusion Our meta-analysis suggests that high Beclin-1 expression predicts a better clinicopathological status and a better prognosis in NSCLC. Beclin-1 might act as a promising prognostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Tianliang Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University,
| | - Deping Li
- Department of Pain Management, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhanfeng He
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University,
| | - Shuaibing Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University,
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University,
| |
Collapse
|
15
|
Russo M, Russo GL. Autophagy inducers in cancer. Biochem Pharmacol 2018; 153:51-61. [PMID: 29438677 DOI: 10.1016/j.bcp.2018.02.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/07/2018] [Indexed: 12/19/2022]
Abstract
Autophagy is a complex, physiological process devoted to degrade and recycle cellular components. Proteins and organelles are first phagocytized by autophagosomes, then digested in lysosomes, and finally recycled to be utilized again during cellular metabolism. Moreover, autophagy holds an important role in the physiopathology of several diseases. In cancer, excellent works demonstrated the dual functions of autophagy in tumour biology: autophagy activation can promote cancer cells survival (protective autophagy), or contribute to cancer cell death (cytotoxic/nonprotective autophagy). A better understanding of the dichotomy roles of autophagy in cancer biology can help to identify or design new drugs able to induce/enhance (or block) autophagic flux. These features will necessary be tissue-dependent and confined to a specific time of treatment. The intent of this review is to focus on the different potentialities of autophagy inducers in cancer prevention versus therapy in order to elicit a desirable clinical response. Few promising synthetic and natural compounds have been identified and the pros and cons of their role in autophagy regulation is reviewed here. In the complex framework of autophagy modulation, "connecting the dots" is not a simple work and the lack of clinical studies further complicates the scenario, but the final goal to obtain clinically relevant autophagy inducers can reveal an unexpected landscape.
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| |
Collapse
|
16
|
Fan YL, Hou HW, Tay HM, Guo WM, Berggren PO, Loo SCJ. Preservation of Anticancer and Immunosuppressive Properties of Rapamycin Achieved Through Controlled Releasing Particles. AAPS PharmSciTech 2017; 18:2648-2657. [PMID: 28251512 DOI: 10.1208/s12249-017-0745-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/14/2017] [Indexed: 12/24/2022] Open
Abstract
Rapamycin is commonly used in chemotherapy and posttransplantation rejection suppression, where sustained release is preferred. Conventionally, rapamycin has to be administered in excess due to its poor solubility, and this often leads to cytotoxicity and undesirable side effects. In addition, rapamycin has been shown to be hydrolytically unstable, losing its bioactivity within a few hours. The use of drug delivery systems is hypothesized to preserve the bioactivity of rapamycin, while providing controlled release of this otherwise potent drug. This paper reports on the use of microparticles (MP) as a means to tune and sustain the delivery of bioactive rapamycin for up to 30 days. Rapamycin was encapsulated (100% efficiency) in poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), or a mixture of both via an emulsion method. The use of different polymer types and mixture was shown to achieve a variety of release kinetics and profile. Released rapamycin was subsequently evaluated against breast cancer cell (MCF-7) and human lymphocyte cell (Jurkat). Inhibition of cell proliferation was in good agreement with in vitro release profiles, which confirmed the intact bioactivity of rapamycin. For Jurkat cells, the suppression of cell growth was proven to be effective up to 20 days, a duration significantly longer than free rapamycin. Taken together, these results demonstrate the ability to tune, sustain, and preserve the bioactivity of rapamycin using MP formulations. The sustained delivery of rapamycin could lead to better therapeutic effects than bolus dosage, at the same time improving patient compliance due to its long-acting duration.
Collapse
|
17
|
Jiang Y, Jiao Y, Wang Z, Li T, Liu Y, Li Y, Zhao X, Wang D. Sinomenine Hydrochloride Inhibits Human Glioblastoma Cell Growth through Reactive Oxygen Species Generation and Autophagy-Lysosome Pathway Activation: An In Vitro and In Vivo Study. Int J Mol Sci 2017; 18:E1945. [PMID: 28891980 PMCID: PMC5618594 DOI: 10.3390/ijms18091945] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor, and it is one of the causes of cancer fatality in both adult and pediatric populations. Patients with glioblastoma require chemotherapy after surgical resection and radiotherapy. Therefore, chemotherapy constitutes a viable approach for the eradication of glioblastoma cells. In this study, the anti-tumor activity of sinomenine hydrochloride (SH) was evaluated in U87 and SF767 cells in vitro and in vivo. The results showed that SH potently inhibited U87 and SF767 cell viability and did not cause caspase-dependent cell death, as demonstrated by the absence of significant early apoptosis and caspase-3 cleavage. Instead, SH activated an autophagy-mediated cell death pathway, as indicated by the accumulated microtubule-associated protein light chain 3B (LC3B)-II, triggered autophagic flux and enhanced cell viability after pretreatment with autophagy inhibitors. SH-mediated autophagy in the two cell lines was implicated in reactive oxygen species (ROS) generation, protein kinase B (Akt)-mammalian target of rapamycin (mTOR) pathway suppression and c-Jun NH2-terminal kinase (JNK) pathway activation. The ROS antioxidant N-acetylcysteine (NAC), the Akt-specific activator insulin-like growth factor-1 (IGF-1) and the JNK-specific inhibitor SP600125 attenuated SH-induced autophagy. Moreover, ROS activated autophagy via the Akt-mTOR and JNK pathways. Additionally, SH treatment may promote lysosome biogenesis through activating transcription factor EB (TFEB). The in vivo study found that SH effectively suppressed glioblastoma growth without exhibiting significant toxicity. In conclusion, our findings reveal a novel mechanism of action of SH in cancer cells via the induction of autophagy through ROS generation and autophagy-lysosome pathway activation; these findings also supply a new potential therapeutic agent for the treatment of human glioblastoma.
Collapse
Affiliation(s)
- Yumao Jiang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Yue Jiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Zhiguo Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Tao Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Yang Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Yujuan Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Xiaoliang Zhao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Danqiao Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| |
Collapse
|
18
|
Zhi X, Xue F, Chen W, Liang C, Liu H, Ma T, Xia X, Hu L, Bai X, Liang T. OSI-027 modulates acute graft-versus-host disease after liver transplantation in a rat model. Liver Transpl 2017; 23:1186-1198. [PMID: 28590550 DOI: 10.1002/lt.24797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 05/01/2017] [Accepted: 05/29/2017] [Indexed: 01/13/2023]
Abstract
Despite its rarity (1%-2%), acute graft-versus-host disease after liver transplantation (LT-aGVHD) has a high mortality rate (85%). A gradual decrease in regulatory T cells (Tregs) correlates with disease progression in a rat LT-GVHD model, and treatments which increase Tregs exert therapeutic effects on LT-aGVHD. In this study, LT-aGVHD model rats were treated with rapamycin (RAPA), OSI-027, or an equal quantity of vehicle. Rats treated with OSI-027 survived longer (>100 days) than those in the RAPA (70 ± 8 days) or control (24 ± 3 days) groups. Flow cytometric analysis showed that the Treg ratios in peripheral blood mononuclear cells in the OSI-027 group were higher than those in the RAPA or control groups. The proportions of donor-derived lymphocytes in the OSI-027 group were lower than those in the RAPA or control groups. Hematoxylin-eosin staining of skin tissue demonstrated less severe lymphocyte infiltration in the OSI-027 group than that in the RAPA or control groups. In vitro, OSI-027 induced differentiation of CD4+ CD25- T cells into CD4+ CD25+ forkhead box P3+ Tregs. Furthermore, injection of OSI-027-induced donor-derived CD4+ CD25+ T cells into the peripheral blood of LT-aGVHD model rats prevented LT-aGVHD. Thus, OSI-027 is implicated as a novel method for the treatment of LT-aGVHD. Liver Transplantation 23 1186-1198 2017 AASLD.
Collapse
Affiliation(s)
- Xiao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou, People's Republic of China
| | - Fei Xue
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou, People's Republic of China
| | - Chao Liang
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou, People's Republic of China
| | - Hao Liu
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou, People's Republic of China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou, People's Republic of China
| | - Xuefeng Xia
- Deparment of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Liqiang Hu
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou, People's Republic of China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou, People's Republic of China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou, People's Republic of China
- Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
19
|
Nowak M, Tardivel S, Nguyen-Khoa T, Abreu S, Allaoui F, Fournier N, Chaminade P, Paul JL, Lacour B. Mycophenolate Mofetil and Rapamycin Induce Apoptosis in the Human Monocytic U937 Cell Line Through Two Different Pathways. J Cell Biochem 2017; 118:3480-3487. [PMID: 28345768 DOI: 10.1002/jcb.26007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022]
Abstract
Transplant vasculopathy may be considered as an accelerated form of atherosclerosis resulting in chronic rejection of vascularized allografts. After organ transplantation, a diffuse intimal thickening is observed, leading to the development of an atherosclerosis plaque due to a significant monocyte infiltration. This results from a chronic inflammatory process induced by the immune response. In this study, we investigated the impact of two immunosuppressive drugs used in therapy initiated after organ transplantation, mycophenolate mofetil, and rapamycin, on the apoptotic response of monocytes induced or not by oxidized LDL. Here we show the pro-apoptotic effect of these two drugs through two distinct signaling pathways and we highlight a synergistic effect of rapamycin on apoptosis induced by oxidized LDL. In conclusion, since immunosuppressive therapy using mycophenolate mofetil or rapamycin can increase the cell death in a monocyte cell line, this treatment could exert similar effects on human monocytes in transplant patients, and thus, prevent transplant vasculopathy, atherosclerosis development, and chronic allograft rejection. J. Cell. Biochem. 118: 3480-3487, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maxime Nowak
- Lip(Sys)2-Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Sylviane Tardivel
- Lip(Sys)2-Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France.,Ecole Pratique des Hautes Etudes, Laboratoire nutrition lipidique et apoptose dans le système vasculaire-Faculté de Pharmacie, 92290 Châtenay-Malabry, France
| | - Thao Nguyen-Khoa
- Laboratoire de Biochimie générale-AP-HP (Assistance publique-Hôpitaux de Paris)-Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Sonia Abreu
- Lip(Sys)2-Chimie Analytique Pharmaceutique, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Fatima Allaoui
- Lip(Sys)2-Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Natalie Fournier
- Lip(Sys)2-Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France.,Laboratoire de Biochimie-AP-HP (Assistance publique-Hôpitaux de Paris)-Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Pierre Chaminade
- Lip(Sys)2-Chimie Analytique Pharmaceutique, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Jean-Louis Paul
- Lip(Sys)2-Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France.,Laboratoire de Biochimie-AP-HP (Assistance publique-Hôpitaux de Paris)-Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Bernard Lacour
- Lip(Sys)2-Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France.,Ecole Pratique des Hautes Etudes, Laboratoire nutrition lipidique et apoptose dans le système vasculaire-Faculté de Pharmacie, 92290 Châtenay-Malabry, France.,Laboratoire de Biochimie générale-AP-HP (Assistance publique-Hôpitaux de Paris)-Hôpital Necker Enfants Malades, 75015 Paris, France
| |
Collapse
|
20
|
Totti S, Vernardis SI, Meira L, Pérez-Mancera PA, Costello E, Greenhalf W, Palmer D, Neoptolemos J, Mantalaris A, Velliou EG. Designing a bio-inspired biomimetic in vitro system for the optimization of ex vivo studies of pancreatic cancer. Drug Discov Today 2017; 22:690-701. [PMID: 28153670 DOI: 10.1016/j.drudis.2017.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is one of the most aggressive and lethal human malignancies. Drug therapies and radiotherapy are used for treatment as adjuvants to surgery, but outcomes remain disappointing. Advances in tissue engineering suggest that 3D cultures can reflect the in vivo tumor microenvironment and can guarantee a physiological distribution of oxygen, nutrients, and drugs, making them promising low-cost tools for therapy development. Here, we review crucial structural and environmental elements that should be considered for an accurate design of an ex vivo platform for studies of pancreatic cancer. Furthermore, we propose environmental stress response biomarkers as platform readouts for the efficient control and further prediction of the pancreatic cancer response to the environmental and treatment input.
Collapse
Affiliation(s)
- Stella Totti
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Spyros I Vernardis
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London, SW7 2AZ London, UK
| | - Lisiane Meira
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Pedro A Pérez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK; NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK
| | - William Greenhalf
- NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK
| | - Daniel Palmer
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK
| | - John Neoptolemos
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK; NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London, SW7 2AZ London, UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
21
|
da Silva EFG, Krause GC, Lima KG, Haute GV, Pedrazza L, Mesquita FC, Basso BS, Velasquez AC, Nunes FB, de Oliveira JR. Rapamycin and fructose-1,6-bisphosphate reduce the HEPG2 cell proliferation via increase of free radicals and apoptosis. Oncol Rep 2016; 36:2647-2652. [PMID: 27665945 DOI: 10.3892/or.2016.5111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/21/2016] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma is the most prevalent type of tumor among primary tumors affecting the liver. Rapamycin is currently used as a basis for chemotherapy in the treatment of cancers, including the liver. Because it shows several adverse effects, minimizing these effects without compromising efficacy is important. In this sense other drugs may be used concomitantly. One of these drugs is fructose-1,6-bisphosphate (FBP), which has shown therapeutic effect in various pathological situations, having antioxidant and anti-inflammatory proprieties. The objective of the present study was to evaluate the activity of rapamycin in combination with the FBP in HepG2 cell proliferation and the mechanisms involved. HepG2 cells were analyzed after 72 h of treatment with both drugs. Cell proliferation, cytotoxicity, cytokines, apoptosis, senescence, autophagy and oxidative stress were accessed. Ιt was demonstrated that the combination is more efficient than the single use of substances, because subtherapeutic doses of rapamycin, when associated to FBP become effective, reducing cell proliferation, through a significant increase in the production of tiobarbituric acid reactive substances (TBARS), suggesting that this might be the cause of death by apoptosis. According to these results, we believe that the association of both drugs may be a promising choice for the treatment of hepatocarcinoma.
Collapse
Affiliation(s)
- Elisa Feller Gonçalves da Silva
- Laboratory of Cellular Biophysics and Inflammation, Department of Cellular and Molecular Biology, School of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, CEP 90619‑900, Brazil
| | - Gabriele Catyana Krause
- Laboratory of Cellular Biophysics and Inflammation, Department of Cellular and Molecular Biology, School of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, CEP 90619‑900, Brazil
| | - Kelly Goulart Lima
- Laboratory of Cellular Biophysics and Inflammation, Department of Cellular and Molecular Biology, School of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, CEP 90619‑900, Brazil
| | - Gabriela Viegas Haute
- Laboratory of Cellular Biophysics and Inflammation, Department of Cellular and Molecular Biology, School of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, CEP 90619‑900, Brazil
| | - Leonardo Pedrazza
- Laboratory of Cellular Biophysics and Inflammation, Department of Cellular and Molecular Biology, School of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, CEP 90619‑900, Brazil
| | - Fernanda Cristina Mesquita
- Laboratory of Cellular Biophysics and Inflammation, Department of Cellular and Molecular Biology, School of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, CEP 90619‑900, Brazil
| | - Bruno Souza Basso
- Laboratory of Cellular Biophysics and Inflammation, Department of Cellular and Molecular Biology, School of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, CEP 90619‑900, Brazil
| | - Anderson Catarina Velasquez
- Laboratory of Cellular Biophysics and Inflammation, Department of Cellular and Molecular Biology, School of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, CEP 90619‑900, Brazil
| | - Fernanda Bordignon Nunes
- Laboratory of Cellular Biophysics and Inflammation, Department of Cellular and Molecular Biology, School of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, CEP 90619‑900, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation, Department of Cellular and Molecular Biology, School of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, CEP 90619‑900, Brazil
| |
Collapse
|
22
|
Zhao Y, Diao Y, Wang X, Lin S, Wang M, Kang H, Yang P, Dai C, Liu X, Liu K, Li S, Zhu Y, Dai Z. Impacts of the mTOR gene polymorphisms rs2536 and rs2295080 on breast cancer risk in the Chinese population. Oncotarget 2016; 7:58174-58180. [PMID: 27533457 PMCID: PMC5295422 DOI: 10.18632/oncotarget.11272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/29/2016] [Indexed: 12/26/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) gene polymorphisms exert the major effects on the regulation of transcriptional activity and miRNA binding or splicing, which may be associated with cancer risk by affecting mTOR gene expression. However, inconsistent results have been previously reported. The present study evaluated the correlation between mTOR rs2536/rs2295080 polymorphisms and breast cancer risk. This case-control study was performed with 560 breast cancer patients and 583 healthy controls from the northwest of China. mTOR polymorphisms (rs2536 and rs2295080) were genotyped by Sequenom MassARRAY. We assessed the associations with odds ratios (ORs) and 95% confidence intervals (95% CIs). The association between mTOR rs2536 polymorphism and breast cancer risk was undetectable in our study (P > 0.05). In parallel, the significant effects were observed between mTOR rs2295080 polymorphism and breast cancer risk in the allele, codominant, and recessive models (P < 0.05). We detected no significant correlations between rs2536 polymorphism and the clinical parameters of breast cancer patients, while rs2295080 polymorphism was associated with lymph node (LN) metastasis. The Crs2536Grs2295080 haplotype was correlated with a significantly decreased risk of breast cancer (P < 0.05). In sum, the findings suggested that mTOR rs2295080 had a protective role on breast cancer susceptibility among Chinese population, while rs2536 polymorphism had no association with breast cancer risk.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Yan Diao
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - XiJing Wang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Shuai Lin
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Meng Wang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - HuaFeng Kang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - PengTao Yang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Cong Dai
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - XingHan Liu
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Kang Liu
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - ShanLi Li
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - YuYao Zhu
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - ZhiJun Dai
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| |
Collapse
|
23
|
Kalantar H, Sabetkasaei M, Shahriari A, Haj Molla Hoseini M, Mansouri S, Kalantar M, Kalantari A, Khazaei Poul Y, Labibi F, Moini-Zanjani T. The Effect of Rapamycin on Oxidative Stress in MCF-7 and MDA MB-231 Human Breast Cancer Cell Lines. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-38177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
24
|
Differential influence of tacrolimus and sirolimus on mitochondrial-dependent signaling for apoptosis in pancreatic cells. Mol Cell Biochem 2016; 418:91-102. [PMID: 27344165 DOI: 10.1007/s11010-016-2736-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/15/2016] [Indexed: 01/21/2023]
Abstract
To examine and compare the mitochondria-related cellular mechanisms by which tacrolimus (TAC) or sirolimus (SIR) immunosuppressive drugs alter the pancreatic exocrine and endocrine β-cell fate. Human exocrine PANC-1 and rat endocrine insulin-secreting RIN-m5F cells and isolated rat islets were submitted to 1-100 nM TAC or SIR. In cultures, insulin secretion was measured as endocrine cell function marker. Apoptosis was quantified by annexin 5 and propidium iodide staining. Cleaved caspase-3, Bax apoptosis indicators, and p53, p21 cell cycle regulators were detected by Western blot. Cell cycle and mitochondrial membrane potential (ΔΨm) were analyzed by flow cytometry and SA-beta-galactosidase (SA-β-gal) activity by fluorescence microscopy. Only TAC reduced insulin secretion by RIN-m5F after 24 h. TAC and SIR promoted moderate apoptosis in both PANC-1 and RIN-m5F after 24 h. Apoptosis was associated with up-regulated Bax (threefold) and cleaved caspase-3 (fivefold) but only in PANC-1, while p53 and p21 were up-regulated (twofold) in both cell lines. ΔΨm was impaired only in PANC-1 by TAC and SIR. Only SIR prompted cell cycle arrest in both cell lines. The induction of a premature senescence-like phenotype was confirmed in isolated islets by SA-β-gal activity. TAC and SIR are early inducers of pancreatic cell dysfunction and apoptosis but differentially alter endocrine and exocrine cells via mitochondrial-driven pathways. In rat islets, TAC and SIR prompt a senescence-like phenotype.
Collapse
|
25
|
Pinto-Leite R, Arantes-Rodrigues R, Sousa N, Oliveira PA, Santos L. mTOR inhibitors in urinary bladder cancer. Tumour Biol 2016; 37:11541-11551. [PMID: 27235118 DOI: 10.1007/s13277-016-5083-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/15/2016] [Indexed: 02/07/2023] Open
Abstract
Despite the great scientific advances that have been made in cancer treatment, there is still much to do, particularly with regard to urinary bladder cancer. Some of the drugs used in urinary bladder cancer treatment have been in use for more than 30 years and show reduced effectiveness and high recurrence rates. There have been several attempts to find new and more effective drugs, to be used alone or in combination with the drugs already in use, in order to overcome this situation.The biologically important mammalian target of rapamycin (mTOR) pathway is altered in cancer and mTOR inhibitors have raised many expectations as potentially important anticancer drugs. In this article, the authors will review the mTOR pathway and present their experiences of the use of some mTOR inhibitors, sirolimus, everolimus and temsirolimus, in isolation and in conjunction with non-mTOR inhibitors cisplatin and gemcitabine, on urinary bladder tumour cell lines. The non-muscle-invasive cell line, 5637, is the only one that exhibits a small alteration in the mTOR and AKT phosphorylation after rapalogs exposure. Also, there was a small inhibition of cell proliferation. With gemcitabine plus everolimus or temsirolimus, the results were encouraging as a more effective response was noticed with both combinations, especially in the 5637 and T24 cell lines. Cisplatin associated with everolimus or temsirolimus also gave promising results, as an antiproliferative effect was observed when the drugs were associated, in particular on the 5637 and HT1376 cell lines. Everolimus or temsirolimus in conjunction with gemcitabine or cisplatin could have an important role to play in urinary bladder cancer treatment, depending on the tumour grading.
Collapse
Affiliation(s)
- R Pinto-Leite
- Genetic Service, Cytogenetic Laboratory, Hospital Center of Trás-os-Montes and Alto Douro, Vila Real, Portugal. .,Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.
| | - R Arantes-Rodrigues
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,Institute for Research and Innovation in Health (I3S), Porto, Portugal
| | - Nuno Sousa
- Health School, University Fernando Pessoa, Porto, Portugal
| | - P A Oliveira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - L Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Health School, University Fernando Pessoa, Porto, Portugal.,Medical Oncology Department, Portuguese Institute of Oncology, Porto, Portugal
| |
Collapse
|
26
|
Liu J, Su H, Qu QM. Carnosic Acid Prevents Beta-Amyloid-Induced Injury in Human Neuroblastoma SH-SY5Y Cells via the Induction of Autophagy. Neurochem Res 2016; 41:2311-23. [DOI: 10.1007/s11064-016-1945-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 12/15/2022]
|
27
|
Qin L, Xu T, Xia L, Wang X, Zhang X, Zhang X, Zhu Z, Zhong S, Wang C, Shen Z. Chloroquine enhances the efficacy of cisplatin by suppressing autophagy in human adrenocortical carcinoma treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1035-45. [PMID: 27022243 PMCID: PMC4789846 DOI: 10.2147/dddt.s101701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND It has been demonstrated that chloroquine (CQ) enhances the efficacy of chemotherapy. However, little is known about whether CQ could enhance the efficacy of cisplatin (DDP) in the treatment of adrenocortical carcinoma (ACC). In this study, we explore the efficacy and mechanism by which CQ affects DDP sensitivity in human ACC in vitro and in vivo. METHODS The autophagic gene Beclin-1 expression was detected by immunohistochemistry, and the protein levels were analyzed using immunoblotting assays of ACC tissues and normal adrenal cortex tissues. The ACC SW13 cells were treated with DDP and/or CQ. The cell viability assay was performed using the MTT method. Qualitative autophagy detection was performed by monodansylcadaverine staining of autophagic vacuoles. Annexin V-fluorescein isothiocyanate/propidium iodide double staining was used to count cell apoptosis by flow cytometry. The autophagy-related protein (Beclin-1, LC3, and p62) and apoptosis relative protein (Bax and Bcl-2) levels were evaluated with Western blot analysis. Furthermore, a murine model of nude BALB/c mice bearing SW13 cell xenografts was established to evaluate the efficacy of concomitant therapy. RESULTS The expression of the autophagic gene Beclin-1 was significantly downregulated in ACC tissues compared to normal adrenal cortex tissues. The Beclin-1 protein level in ACC tissues was lower than that in normal adrenal cortex tissues (P<0.05). In vitro concomitant therapy (DDP and CQ) was more effective in restraining SW13 cell proliferation. DDP could promote cell apoptosis and induce autophagy in SW13 cells. Concomitant therapy further promoted cell apoptosis by inhibiting autophagy. In vivo, we found that concomitant therapy was more potent than DDP monotherapy in inhibiting the growth of xenografted tumors and prolonging the survival of tumor-bearing mice. CONCLUSION The antitumor ability of DDP was related to autophagy activity, and the concomitant therapy (DDP and CQ) could be an optimal strategy for treating ACC.
Collapse
Affiliation(s)
- Liang Qin
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tianyuan Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Leilei Xia
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xianjin Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiang Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaohua Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhaowei Zhu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shan Zhong
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chuandong Wang
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhoujun Shen
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
28
|
Baines A, Martin P, Rorie C. Current and Emerging Targeting Strategies for Treatment of Pancreatic Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:277-320. [DOI: 10.1016/bs.pmbts.2016.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Zhi X, Chen W, Xue F, Liang C, Chen BW, Zhou Y, Wen L, Hu L, Shen J, Bai X, Liang T. OSI-027 inhibits pancreatic ductal adenocarcinoma cell proliferation and enhances the therapeutic effect of gemcitabine both in vitro and in vivo. Oncotarget 2015; 6:26230-26241. [PMID: 26213847 PMCID: PMC4694897 DOI: 10.18632/oncotarget.4579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/10/2015] [Indexed: 02/06/2023] Open
Abstract
Despite its relative rarity, pancreatic ductal adenocarcinoma (PDAC) accounts for a large percentage of cancer deaths. In this study, we investigated the in vitro efficacy of OSI-027, a selective inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2, to treat PDAC cell lines alone, and in combination with gemcitabine (GEM). Similarly, we tested the efficacy of these two compounds in a xenograft mouse model of PDAC. OSI-027 significantly arrested cell cycle in G0/G1 phase, inhibited the proliferation of Panc-1, BxPC-3, and CFPAC-1 cells, and downregulated mTORC1, mTORC2, phospho-Akt, phospho-p70S6K, phospho-4E-BP1, cyclin D1, and cyclin-dependent kinase 4 (CDK4) in these cells. Moreover, OSI-027 also downregulated multidrug resistance (MDR)-1, which has been implicated in chemotherapy resistance in PDAC cells and enhanced apoptosis induced by GEM in the three PDAC cell lines. When combined, OSI-027 with GEM showed synergistic cytotoxic effects both in vitro and in vivo. This is the first evidence of the efficacy of OSI-027 in PDAC and may provide the groundwork for a new clinical PDAC therapy.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Cycle Checkpoints
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Dose-Response Relationship, Drug
- Drug Synergism
- Gene Expression Regulation, Neoplastic
- Humans
- Imidazoles/pharmacology
- Inhibitory Concentration 50
- Mechanistic Target of Rapamycin Complex 1
- Mechanistic Target of Rapamycin Complex 2
- Mice, Inbred BALB C
- Mice, Nude
- Multiprotein Complexes/antagonists & inhibitors
- Multiprotein Complexes/genetics
- Multiprotein Complexes/metabolism
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Protein Kinase Inhibitors/pharmacology
- RNA Interference
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Time Factors
- Transfection
- Triazines/pharmacology
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
- Gemcitabine
Collapse
Affiliation(s)
- Xiao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Fei Xue
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Chao Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Bryan Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Yue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Liang Wen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Liqiang Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Jian Shen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
- Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R.China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
- Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R.China
- Collaborative Innovation Center for Cancer Medicine, Zhejiang University, Hangzhou, P.R.China
| |
Collapse
|
30
|
|
31
|
Tian F, Dong L, Zhou Y, Shao Y, Li W, Zhang H, Wang F. Rapamycin-Induced apoptosis in HGF-stimulated lens epithelial cells by AKT/mTOR, ERK and JAK2/STAT3 pathways. Int J Mol Sci 2014; 15:13833-48. [PMID: 25116684 PMCID: PMC4159827 DOI: 10.3390/ijms150813833] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/25/2014] [Accepted: 07/26/2014] [Indexed: 01/19/2023] Open
Abstract
Hepatocyte growth factor (HGF) induced the proliferation of lens epithelial cells (LECs) and may be a major cause of posterior capsule opacification (PCO), which is the most frequent postoperative complication of cataract surgery. To date, several agents that can block LECs proliferation have been studied, but none have been used in clinic. Recently, accumulating evidence has suggested rapamycin, the inhibitor of mTOR (mammalian target of Rapamycin), was associated with the induction of apoptosis in LECs. The purpose of our study was to investigate the potential effects of rapamycin on HGF-induced LECs and the underlying mechanisms by which rapamycin exerted its actions. Using cell proliferation, cell viability and flow cytometric apoptosis assays, we found that rapamycin potently not only suppressed proliferation but also induced the apoptosis of LECs in a dose-dependent manner under HGF administration. Further investigation of the underlying mechanism using siRNA transfection revealed that rapamycin could promote apoptosis of LECs via inhibiting HGF-induced phosphorylation of AKT/mTOR, ERK and JAK2/STAT3 signaling molecules. Moreover, the forced expression of AKT, ERK and STAT3 could induce a significant suppression of apoptosis in these cells after treatment of rapamycin. Together, these findings suggested that rapamycin-induced apoptosis in HGF-stimulated LECs is accompanied by inhibition of AKT/mTOR, ERK and JAK2/STAT3 pathways, which supports its use to inhibit PCO in preclinical studies and provides theoretical foundation for future possible practice.
Collapse
Affiliation(s)
- Fang Tian
- Tianjin Medical University Eye Hospital& Eye Institute, No. 251, Fu Kang Road, Nan Kai District, Tianjin 300384, China.
| | - Lijie Dong
- Tianjin Medical University Eye Hospital& Eye Institute, No. 251, Fu Kang Road, Nan Kai District, Tianjin 300384, China.
| | - Yu Zhou
- Tianjin Medical University Eye Hospital& Eye Institute, No. 251, Fu Kang Road, Nan Kai District, Tianjin 300384, China.
| | - Yan Shao
- Tianjin Medical University Eye Hospital& Eye Institute, No. 251, Fu Kang Road, Nan Kai District, Tianjin 300384, China.
| | - Wenbo Li
- Tianjin Medical University Eye Hospital& Eye Institute, No. 251, Fu Kang Road, Nan Kai District, Tianjin 300384, China.
| | - Hong Zhang
- Tianjin Medical University Eye Hospital& Eye Institute, No. 251, Fu Kang Road, Nan Kai District, Tianjin 300384, China.
| | - Fei Wang
- Tianjin Medical University Eye Hospital& Eye Institute, No. 251, Fu Kang Road, Nan Kai District, Tianjin 300384, China.
| |
Collapse
|
32
|
Kaewpiboon C, Surapinit S, Malilas W, Moon J, Phuwapraisirisan P, Tip-Pyang S, Johnston RN, Koh SS, Assavalapsakul W, Chung YH. Feroniellin A-induced autophagy causes apoptosis in multidrug-resistant human A549 lung cancer cells. Int J Oncol 2014; 44:1233-42. [PMID: 24535083 DOI: 10.3892/ijo.2014.2297] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/30/2014] [Indexed: 11/06/2022] Open
Abstract
During the screening of natural chemicals that can reverse multidrug resistance in human A549 lung cancer cells resistant to etoposide (A549RT-eto), we discovered that Feroniellin A (FERO), a novel furanocoumarin, shows toxicity toward A549RT-eto cells in a dose- and time-dependent manner. FERO reduced the expression of NF-κB, leading to downregulation of P-glycoprotein (P-gp), encoded by MDR1, which eventually sensitized A549RT-eto cells to apoptosis. FERO specifically diminished transcription and promoter activity of MDR1 but did not inhibit the expression of other multidrug resistance genes MRP2 and BCRP. Moreover, co-administration of FERO with Bay11-7802, an inhibitor of NF-κB, accelerated apoptosis of A549RT-eto cells through decreased expression of P-gp, indicating that NF-κB is involved in multidrug resistance. Conversely, addition of Z-VAD, a pan-caspase inhibitor, blocked FERO-induced apoptosis in A549RT-eto cells but did not block downregulation of P-gp, indicating that a decrease in P-gp expression is necessary but not sufficient for FERO-induced apoptosis. Interestingly, we found that FERO also induces autophagy, which is characterized by the conversion of LC3 I to LC3 II, induction of GFP-LC3 puncta, enhanced expression of Beclin-1 and ATG5, and inactivation of mTOR. Furthermore, suppression of Beclin-1 by siRNA reduced FERO-induced apoptosis in A549RT-eto cells and activation of autophagy by rapamycin accelerated FERO-induced apoptosis, suggesting that autophagy plays an active role in FERO-induced apoptosis. Herein, we report that FERO reverses multidrug resistance in A549RT-eto cells and exerts its cytotoxic effect by induction of both autophagy and apoptosis, which suggests that FERO can be a useful anticancer drug for multidrug-resistant lung cancer.
Collapse
Affiliation(s)
- Chutima Kaewpiboon
- Program in Biotechnology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Serm Surapinit
- Program in Biotechnology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waraporn Malilas
- BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Jeong Moon
- BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Preecha Phuwapraisirisan
- Natural Products Research Unit, Department of Chemistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Santi Tip-Pyang
- Natural Products Research Unit, Department of Chemistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Randal N Johnston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Sang Seok Koh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, and Department of Functional Genomics, University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Young-Hwa Chung
- BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
33
|
Muilenburg D, Parsons C, Coates J, Virudachalam S, Bold RJ. Role of autophagy in apoptotic regulation by Akt in pancreatic cancer. Anticancer Res 2014; 34:631-637. [PMID: 24510992 PMCID: PMC4565513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND/AIM The Akt signaling pathway mediates a potent anti-apoptotic signal in pancreatic cancer and inhibition of this pathway has become an attractive mechanism to increase the efficacy of traditional chemotherapies. Autophagy is a lysosomal catabolic pathway by which eukaryotic cells recycle macromolecules and organelles. Although autophagy may function as a survival mechanism under metabolic stress conditions, it also serves as an alternate route to programmed cell death distinct from apoptosis. In the present study, we examined the role of autophagy in Akt-mediated regulation of cell death in pancreatic cancer. MATERIALS AND METHODS Mia-PaCa-2 and PANC-1 human pancreatic cancer cell lines were used in our experiments. The small-molecule inhibitor A-443654 was used to inhibit Akt, and rapamycin was used to inhibit mTOR. Autophagy was inhibited with Chloroquine and 3-methyladenine. Autophagy was assessed by immunoblotting for light chain-3 (LC-3) processing as well as fluorescence microscopy for autophagosome formation following transfection with a LC-3/GFP construct. Cell death was determined by fluorescence-activated cell sorting (FACS) with quantitation of the sub-G0 content. RESULTS Inhibition of either Akt or mTOR induced autophagy; inhibition of Akt but not of mTOR led to traditional caspase-mediated apoptosis. When autophagy was inhibited, cell death was abrogated following Akt, but not mTOR, inhibition. CONCLUSION The Akt signaling pathway regulates both autophagy and apoptosis through divergent pathways; mTOR mediates autophagy signaling but appears to be un-involved in cell death. Autophagy appears to play a role in the regulation of cell survival by Akt, but only when proximal signaling pathways not involving mTOR are simultaneously activated.
Collapse
Affiliation(s)
- Diego Muilenburg
- Division of Surgical Oncology, Suite 3010, UC Davis Cancer Center, 4501 X Street, Sacramento, CA 95817, U.S.A.
| | | | | | | | | |
Collapse
|
34
|
Utomo WK, Narayanan V, Biermann K, van Eijck CHJ, Bruno MJ, Peppelenbosch MP, Braat H. mTOR is a promising therapeutical target in a subpopulation of pancreatic adenocarcinoma. Cancer Lett 2014; 346:309-17. [PMID: 24467966 DOI: 10.1016/j.canlet.2014.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 12/30/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal disease, unusually resistant against therapy. It is generally felt that stratification of patients for personalized medicine is the way forward. Here, we report that a subpopulation of PDACs shows strong activation of the mTOR signaling cassette. Moreover, we show that inhibition of mTOR in pancreatic cancer cell lines showing high levels of mTOR signaling is associated with cancer cell death. Finally, we show using fine needle biopsies the existence of a subpopulation of PDAC patients with high activation of the mTOR signaling cassette and provide evidence that inhibition of mTOR might be clinically useful for this group. Thus, our results define an unrecognized subpopulation of PDACs, characterized by high activation of mTOR and show that identification of this specific patient group in the early phase of diagnosis is feasible.
Collapse
Affiliation(s)
- Wesley K Utomo
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | - Vilvapathy Narayanan
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Henri Braat
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
35
|
Zhan JK, Wang YJ, Wang Y, Wang S, Tan P, Huang W, Liu YS. The mammalian target of rapamycin signalling pathway is involved in osteoblastic differentiation of vascular smooth muscle cells. Can J Cardiol 2013; 30:568-75. [PMID: 24518659 DOI: 10.1016/j.cjca.2013.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/20/2013] [Accepted: 11/04/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Vascular calcification is a major risk factor for cardiovascular diseases. Osteoblastic differentiation of vascular smooth muscle cells (VSMCs) is a key step in vascular calcification, but the molecular mechanisms driving the differentiation remain elusive. In this study, the involvement of mammalian target of rapamycin (mTOR) signalling in osteoblastic differentiation of VSMCs is investigated. METHODS Calcification of VSMCs was induced in vitro using β-glycerophosphate (β-GP). Real-time polymerase chain reaction was used to measure messenger RNA (mRNA) expression, and Western blot was used to detect protein expression. Inhibition of mTOR expression was established by small interfering RNA (siRNA) and mTOR inhibitors. RESULTS The model for osteoblastic differentiation of VSMCs was established in vitro by treating mouse VSMCs with 10 mM β-GP for 3-15 days. Overexpression of mTOR was observed in differentiated VSMCs. Downregulation of mTOR by siRNA or rapamycin significantly inhibited osteoblastic differentiation of VSMCs and decreased the expression and phosphorylation of mTOR and P70 ribosomal S6 kinase in a time- and concentration-dependent manner. Furthermore, adiponectin inhibited the mRNA and protein expression of mTOR in β-GP-treated VSMCs in a time- and concentration-dependent manner. CONCLUSIONS mTOR signalling plays a crucial role in the osteoblastic differentiation of VSMCs. Rapamycin and adiponectin might inhibit vascular calcification through regulation of the mTOR pathway.
Collapse
Affiliation(s)
- Jun-Kun Zhan
- Department of Geriatrics, Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan, P.R. China
| | - Yan-Jiao Wang
- Department of Geriatrics, Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan, P.R. China
| | - Yi Wang
- Department of Geriatrics, Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan, P.R. China
| | - Sha Wang
- Department of Geriatrics, Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan, P.R. China
| | - Pan Tan
- Department of Geriatrics, Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan, P.R. China
| | - Wu Huang
- Department of Geriatrics, Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan, P.R. China
| | - You-Shuo Liu
- Department of Geriatrics, Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan, P.R. China.
| |
Collapse
|
36
|
Schlossmann J. Editorial of the special issue: signaling molecules and signal transduction in cells. Int J Mol Sci 2013; 14:11438-43. [PMID: 23759992 PMCID: PMC3709741 DOI: 10.3390/ijms140611438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022] Open
Abstract
In the special issue “Signaling Molecules and Signal Transduction in Cells” authors were invited to submit papers regarding important and novel aspects of extra- and intracellular signaling which have implications on physiological and pathophysiological processes. These aspects included compounds which are involved in these processes, elucidation of signaling pathways, as well as novel techniques for the analysis of signaling pathways. In response, various novel and important topics are elucidated in this special issue.
Collapse
Affiliation(s)
- Jens Schlossmann
- Pharmacology and Toxicology, Institute of Pharmacy, University Regensburg, Universitätsstr, 31, D-93040 Regensburg, Germany.
| |
Collapse
|
37
|
Kang HF, Dai ZJ, Bai HP, Lu WF, Ma XB, Bao X, Lin S, Wang XJ. RUNX3 gene promoter demethylation by 5-Aza-CdR induces apoptosis in breast cancer MCF-7 cell line. Onco Targets Ther 2013; 6:411-417. [PMID: 23723708 PMCID: PMC3665559 DOI: 10.2147/ott.s43744] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Runt-related transcription factor 3 (RUNX3) is a tumor suppressor gene, its inactivation due to hypermethylation related to carcinogenesis. The aim of this study was to investigate the effects of 5-aza-2'-deoxycytidine (5-Aza-CdR) on cell proliferation and apoptosis by demethylation of the promoter region and restoring the expression of RUNX3 in the breast cancer MCF-7 cell line. MCF-7 cells were cultured with different concentrations (0.4-102.4 μmol/L) of 5-Aza-CdR in vitro. MTT assay was used to determine the proliferation of MCF-7 cells. Flow cytometry and Hoechst staining were used for analyzing cell apoptosis. The methylation status and expression of RUNX3 in mRNA and protein levels were measured by methylation-specific polymerase chain reaction (PCR [MSP]), reverse transcription (RT)-PCR, and Western blot. It was shown that the RUNX3 gene downregulated and hypermethylated in MCF-7 cells. 5-Aza-CdR induced demethylation, upregulated the expression of RUNX3 on both mRNA and protein levels in cancer cells, and induced growth suppression and apoptosis in vitro in a dose- and time-dependent manner. The results demonstrate that RUNX3 downregulation in breast cancer is frequently due to hypermethylation, and that 5-Aza-CdR can inhibit cell proliferation and induce apoptosis by eliminating the methylation status of RUNX3 promoter and restoring its expression.
Collapse
Affiliation(s)
- Hua-Feng Kang
- Department of Oncology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Zhi-Jun Dai
- Department of Oncology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - He-Ping Bai
- Department of Oncology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Wang-Feng Lu
- Department of Oncology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xiao-Bin Ma
- Department of Oncology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xing Bao
- Department of Oncology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Shuai Lin
- Department of Oncology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xi-Jing Wang
- Department of Oncology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
38
|
Dai ZJ, Gao J, Kang HF, Ma YG, Ma XB, Lu WF, Lin S, Ma HB, Wang XJ, Wu WY. Targeted inhibition of mammalian target of rapamycin (mTOR) enhances radiosensitivity in pancreatic carcinoma cells. Drug Des Devel Ther 2013; 7:149-159. [PMID: 23662044 PMCID: PMC3610438 DOI: 10.2147/dddt.s42390] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that regulates protein translation, cell growth, and apoptosis. Rapamycin (RPM), a specific inhibitor of mTOR, exhibits potent and broad in vitro and in vivo antitumor activity against leukemia, breast cancer, and melanoma. Recent studies showing that RPM sensitizes cancers to chemotherapy and radiation therapy have attracted considerable attention. This study aimed to examine the radiosensitizing effect of RPM in vitro, as well as its mechanism of action. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and colony formation assay showed that 10 nmol/L to 15 nmol/L of RPM had a radiosensitizing effects on pancreatic carcinoma cells in vitro. Furthermore, a low dose of RPM induced autophagy and reduced the number of S-phase cells. When radiation treatment was combined with RPM, the PC-2 cell cycle arrested in the G2/M phase of the cell cycle. Complementary DNA (cDNA) microarray and reverse transcription polymerase chain reaction (RT-PCR) revealed that the expression of DDB1, RAD51, and XRCC5 were downregulated, whereas the expression of PCNA and ABCC4 were upregulated in PC-2 cells. The results demonstrated that RPM effectively enhanced the radiosensitivity of pancreatic carcinoma cells.
Collapse
Affiliation(s)
- Zhi-Jun Dai
- Department of Oncology, Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jie Gao
- Department of Nephrology, Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Hua-Feng Kang
- Department of Oncology, Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yu-Guang Ma
- Department of Oncology, Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xiao-Bin Ma
- Department of Oncology, Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Wang-Feng Lu
- Department of Oncology, Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Shuai Lin
- Department of Oncology, Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Hong-Bing Ma
- Department of Oncology, Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xi-Jing Wang
- Department of Oncology, Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Wen-Ying Wu
- Department of Pharmacology, Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|