1
|
Choi JY, Ha NG, Lee WJ, Boo YC. Synthetic and Natural Agents Targeting Advanced Glycation End-Products for Skin Anti-Aging: A Comprehensive Review of Experimental and Clinical Studies. Antioxidants (Basel) 2025; 14:498. [PMID: 40298870 PMCID: PMC12024170 DOI: 10.3390/antiox14040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
Advanced glycation end-products (AGEs) cause blood vessel damage and induce diabetic complications in various organs, such as the eyes, kidneys, nerves, and skin. As glycation stress causes aesthetic, physical, and functional changes in the skin, glycation-targeting skin anti-aging strategies are attracting attention in cosmetology and dermatology. The primary goal of this review is to understand the significance of glycation-induced skin aging and to examine the therapeutic potential of glycation-targeting strategies. This study covers experimental and clinical studies exploring various interventions to attenuate glycation-induced skin aging. Glycation stress decreases the viability of cells in culture media, the cell-mediated contraction of collagen lattices in reconstructed skin models, and the expression of fibrillin-1 at the dermo-epidermal junction in the skin explants. It also increases cross-links in tail tendon collagen in animals, prolonging its breakdown time. However, these changes are attenuated by several synthetic and natural agents. Animal and clinical studies have shown that dietary or topical administration of agents with antiglycation or antioxidant activity can attenuate changes in AGE levels (measured by skin autofluorescence) and skin aging parameters (e.g., skin color, wrinkles, elasticity, hydration, dermal density) induced by chronological aging, diabetes, high-carbohydrate diets, ultraviolet radiation, or oxidative stress. Therefore, the accumulating experimental and clinical evidence supports that dietary supplements or topical formulations containing one or more synthetic and natural antiglycation agents may help mitigate skin aging induced by AGEs.
Collapse
Affiliation(s)
- Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Nam Gyoung Ha
- Department of Dermatology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; (N.G.H.); (W.J.L.)
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Weon Ju Lee
- Department of Dermatology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; (N.G.H.); (W.J.L.)
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
2
|
Sun C, Shen J, Fang R, Huang H, Lai Y, Hu Y, Zheng J. The impact of environmental and dietary exposure on gestational diabetes mellitus: a comprehensive review emphasizing the role of oxidative stress. Front Endocrinol (Lausanne) 2025; 16:1393883. [PMID: 40241987 PMCID: PMC11999853 DOI: 10.3389/fendo.2025.1393883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 02/27/2025] [Indexed: 04/18/2025] Open
Abstract
Gestational diabetes mellitus (GDM) is a common pregnancy complication closely associated with maternal oxidative and antioxidant imbalance, known as oxidative stress. Environmental and dietary exposure plays an important role in inducing oxidative stress during pregnancy. This review aims to provide an in-depth analysis of the role of oxidative stress induced by environmental and dietary exposure in GDM while incorporating current research frontiers. Environmental pollution, smoking, excessive nutrition, and unhealthy eating habits such as a high-fat diet and vitamin deficiency, may contribute to the generation and accumulation of reactive oxygen species (ROS), leading to oxidative stress. Within the pathway of oxidative stress in GDM, the production and clearance mechanisms of ROS play a pivotal role. Relevant studies have demonstrated that ROS production is closely linked to insulin resistance, adipose tissue accumulation, inflammation, and other pathological processes. Antioxidant substances like vitamins C and E or glutathione can mitigate oxidative stress damage on pregnant women and fetuses by scavenging ROS. Currently, there remain several cutting-edge issues regarding the involvement of the oxidative stress pathway in GDM pathogenesis as well as its relationship with environmental and dietary factors, for instance: how to reduce maternal oxidative stress levels through dietary adjustments or lifestyle modifications; how antioxidant substances can be utilized for intervention treatment; and accurate assessment methods for maternal oxidative stress status along with its association with GDM risk. In conclusion, environmental and dietary factors exert significant influence on GDM pathogenesis while highlighting increasing attention toward understanding the role played by the oxidative stress pathway within this context. In-depth research endeavors within this field are anticipated to offer novel insights into prevention strategies as well as therapeutic approaches for GDM.
Collapse
Affiliation(s)
- Congcong Sun
- Department of Scientific Research Center, The Third Clinical Institute Affiliated of Wenzhou Medical University, The Third Affiliated of Shanghai University, Wenzhou People’s Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Jiaying Shen
- Department of Obstetrics and Gynecology, Wenzhou People’s Hospital, Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, China
| | - Rujing Fang
- Department of Obstetrics and Gynecology, Wenzhou People’s Hospital, Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, China
| | - Huiya Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanan Lai
- Department of Reproduction and Genetics, The Third Clinical Institute Affiliated of Wenzhou Medical Department of Reproduction and Genetics, The Third Clinical Institute Affiliated of Wenzhou Medical University, The Third Affiliated of Shanghai University, Wenzhou People’s Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Yanjun Hu
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated of Wenzhou Medical University, The Third Affiliated of Shanghai University, Wenzhou People’s Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Jianqiong Zheng
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated of Wenzhou Medical University, The Third Affiliated of Shanghai University, Wenzhou People’s Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| |
Collapse
|
3
|
Zhang P, Jin M, Zhang L, Cui Y, Dong X, Yang J, Zhang J, Wu H. Berberine alleviates atherosclerosis by modulating autophagy and inflammation through the RAGE-NF-κB pathway. Front Pharmacol 2025; 16:1540835. [PMID: 40230688 PMCID: PMC11994719 DOI: 10.3389/fphar.2025.1540835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/27/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Lipid accumulation and foam cell formation are significant features that expedite the progression of atherosclerosis (AS). Abnormal autophagy is a key factor in the development of AS. The importance of berberine (BBR) in AS has been well established. However, its exact role in regulating autophagy and alleviating atherosclerotic inflammation remains unclear. Purpose This study was aimed at exploring the role and mechanism of BBR in alleviating AS by activating autophagy and alleviating inflammation. Study design Network pharmacology predicts the potential mechanism of BBR in regulating AS and verifies this mechanism through in vivo and in vitro experiments, thereby providing new thinking for clinical treatment. Methods The potential mechanism through which BBR regulates AS was predicted by network pharmacology. Total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein (HDL-C) were measured by administering BBR (100 mg/kg) via the stomach. Hematoxylin and eosin (HE) and oil red O staining were used for histological analysis. Expression levels of the RAGE and p-NF-κB pathways and autophagy-associated proteins were evaluated by immunofluorescence. The ApoE-/- mouse model was established with a high-fat diet (HFD) to verify the effect and mechanism of BBR in vivo. Results Functional and pathway enrichment analysis demonstrated that BBR significantly modulated the inflammation-related signaling pathways of AS. Additionally, in vivo experiments indicated that BBR reduced aortic lipid deposition and reduced the atherosclerotic plaque area. BBR decreased the expression levels of RAGE, p-NF-κB, TNF-α, and P62 in the aorta, and upregulated the expression levels of IL-10, CD31, VEGF, LC3B, and Beclin1. Similar results were obtained in vitro experiments, further supporting the in vivo findings. Notably, NF-κΒ activator 1 attenuated the effect of BBR. Conclusion In summary, BBR alleviated the disease progression of AS by regulating the expression of RAGE and p-NF-κB and activating autophagy.
Collapse
Affiliation(s)
- Peng Zhang
- College of traditional Chinese medicine, Binzhou Medical University, Yantai, China
| | - Meiying Jin
- Department of Geriatrics, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, China
| | - Lei Zhang
- Department of Cardiovascular, Affifiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanjun Cui
- Department of Ultrasound, Affifiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaokang Dong
- Department of Cardiovascular, Affifiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yang
- Department of Cardiovascular, Affifiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayu Zhang
- College of traditional Chinese medicine, Binzhou Medical University, Yantai, China
| | - Haopeng Wu
- Department of Cardiovascular, Affifiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Han H, Peng X, Huang M, Zhao W, Yang S, Lan Z, Cai S, Zhao H. PM2.5 Exposure Aggravates Inflammatory Response and Mucus Production in 16HBE Cells through Inducing Oxidative Stress and RAGE Expression. Cell Biochem Biophys 2025; 83:941-951. [PMID: 39294419 DOI: 10.1007/s12013-024-01526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 09/20/2024]
Abstract
Particulate matter 2.5 (PM2.5)-induced oxidative stress has been extensively proposed as a pivotal event in lung diseases. Receptor for advanced glycation end-products (RAGE) is a receptor of pro-inflammatory ligands that has been supported to be implied in the progression of multiple lung diseases. This study attempts to delineate the specific effects of PM2.5 on human bronchial epithelial 16HBE cells in vitro and figure out whether PM2.5 functions via mediating oxidative stress and RAGE. In PM2.5-challenged 16HBE cells, MTT assay detected cell viability. ELISA estimated inflammatory levels. Flow cytometry analysis measured ROS activity and related assay kits examined oxidative stress levels. Western blot tested nuclear factor E2-related factor 2 (Nrf2), RAGE, β-catenin, and mucin 5AC (MUC5AC) expression. Immunofluorescence staining evaluated nuclear translocation of β-catenin. It was noticed that PM2.5 exposure exacerbated inflammatory response, oxidative stress, and mucus production. Additionally, PM2.5 elevated RAGE expression while declined Nrf2 expression as well as stimulated the nuclear translocation of β-catenin. Furthermore, RAGE inhibition or nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor VAS2870 mitigated inflammatory response, oxidative stress, and mucus generation in PM2.5-exposed 16HBE cells. In addition, RAGE inhibition or VAS2870 raised Nrf2 expression, reduced RAGE expression, and hampered β-catenin nuclear translocation. Briefly, PM2.5 might act as a leading driver of inflammatory response and mucus production in lung injury, the mechanism of which might be related to the activation of oxidative stress and the up-regulation of RAGE.
Collapse
Affiliation(s)
- Huishan Han
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of General Practice, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xianru Peng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minyu Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuluan Yang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihan Lan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Menon RG, Yepuri G, Martel D, Quadri N, Hasan SN, Manigrasso MB, Shekhtman A, Schmidt AM, Ramasamy R, Regatte RR. Assessment of cardiac and skeletal muscle metabolites using 1H-MRS and chemical-shift encoded magnetic resonance imaging: Impact of diabetes, RAGE, and DIAPH1. NMR IN BIOMEDICINE 2025; 38:e5275. [PMID: 39468867 DOI: 10.1002/nbm.5275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Diabetes affects metabolism and metabolite concentrations in multiple organs. Previous preclinical studies have shown that receptor for advanced glycation end products (RAGE, gene symbol Ager) and its cytoplasmic domain binding partner, Diaphanous-1 (DIAPH1), are key mediators of diabetic micro- and macro-vascular complications. In this study, we used 1H-Magnetic Resonance Spectroscopy (MRS) and chemical shift encoded (CSE) Magnetic Resonance Imaging (MRI) to investigate the metabolite and water-fat fraction in the heart and hind limb muscle in a murine model of type 1 diabetes (T1D) and to determine if the metabolite changes in the heart and hind limb are influenced by (a) deletion of Ager or Diaph1 and (b) pharmacological blockade of RAGE-DIAPH1 interaction in mice. Nine cohorts of male mice, with six mice per cohort, were used: wild type non-diabetic control mice (WT-NDM), WT-diabetic (WT-DM) mice, Ager knockout non-diabetic (RKO-NDM) and diabetic mice (RKO-DM), Diaph1 knockout non-diabetic (DKO-NDM), and diabetic mice (DKO-DM), WT-NDM mice treated with vehicle, WT-DM mice treated with vehicle, and WT-DM mice treated with RAGE229 (antagonist of RAGE-DIAPH1 interaction). A Point Resolved Spectroscopy (PRESS) sequence for 1H-MRS, and multi-echo gradient recalled echo (GRE) for CSE were employed. Triglycerides, and free fatty acids in the heart and hind limb obtained from MRS and MRI were compared to those measured using biochemical assays. Two-sided t-test, non-parametric Kruskal-Wallis Test, and one-way ANOVA were employed for statistical analysis. We report that the results were well-correlated with significant differences using MRI and biochemical assays between WT-NDM and WT-DM, as well as within the non-diabetic groups, and within the diabetic groups. Deletion of Ager or Diaph1, or treatment with RAGE229 attenuated diabetes-associated increases in triglycerides in the heart and hind limb in mice. These results suggest that the employment of 1H-MRS/MRI is a feasible non-invasive modality to monitor metabolic dysfunction in T1D and the metabolic consequences of interventions that block RAGE and DIAPH1.
Collapse
Affiliation(s)
- Rajiv G Menon
- Department of Radiology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Gautham Yepuri
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Dimitri Martel
- Department of Radiology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Nosirudeen Quadri
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Syed Nurul Hasan
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Michaele B Manigrasso
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Ravinder R Regatte
- Department of Radiology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
6
|
Papakonstantinou I, Tsioufis K, Katsi V. Spotlight on the Mechanism of Action of Semaglutide. Curr Issues Mol Biol 2024; 46:14514-14541. [PMID: 39728000 DOI: 10.3390/cimb46120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
Initially intended to control blood glucose levels in patients with type 2 diabetes, semaglutide, a potent glucagon-like peptide 1 analogue, has been established as an effective weight loss treatment by controlling appetite. Integrating the latest clinical trials, semaglutide in patients with or without diabetes presents significant therapeutic efficacy in ameliorating cardiometabolic risk factors and physical functioning, independent of body weight reduction. Semaglutide may modulate adipose tissue browning, which enhances human metabolism and exhibits possible benefits in skeletal muscle degeneration, accelerated by obesity and ageing. This may be attributed to anti-inflammatory, mitochondrial biogenesis, antioxidant and autophagy-regulating effects. However, most of the supporting evidence on the mechanistic actions of semaglutide is preclinical, demonstrated in rodents and not actually confirmed in humans, therefore warranting caution in the interpretation. This article aims to explore potential innovative molecular mechanisms of semaglutide action in restoring the balance of several interlinking aspects of metabolism, pointing to distinct functions in inflammation and oxidative stress in insulin-sensitive musculoskeletal and adipose tissues. Moreover, possible applications in protection from infections and anti-aging properties are discussed. Semaglutide enhancement of the core molecular mechanisms involved in the progress of obesity and diabetes, although mostly preclinical, may provide a framework for future research applications in human diseases overall.
Collapse
Affiliation(s)
- Ilias Papakonstantinou
- 4th Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Vasiliki Katsi
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| |
Collapse
|
7
|
Semchyshyn H. Fructose-mediated AGE-RAGE axis: approaches for mild modulation. Front Nutr 2024; 11:1500375. [PMID: 39698244 PMCID: PMC11652219 DOI: 10.3389/fnut.2024.1500375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Fructose is a valuable and healthy nutrient when consumed at normal levels (≤50 g/day). However, long-term consumption of excessive fructose and elevated endogenous production can have detrimental health impacts. Fructose-initiated nonenzymatic glycation (fructation) is considered as one of the most likely mechanisms leading to the generation of reactive species and the propagation of nonenzymatic processes. In the later stages of glycation, poorly degraded advanced glycation products (AGEs) are irreversibly produced and accumulated in the organism in an age- and disease-dependent manner. Fructose, along with various glycation products-especially AGEs-are present in relatively high concentrations in our daily diet. Both endogenous and exogenous AGEs exhibit a wide range of biological effects, mechanisms of which can be associated with following: (1) AGEs are efficient sources of reactive species in vivo, and therefore can propagate nonenzymatic vicious cycles and amplify glycation; and (2) AGEs contribute to upregulation of the specific receptor for AGEs (RAGE), amplifying RAGE-mediated signaling related to inflammation, metabolic disorders, chronic diseases, and aging. Therefore, downregulation of the AGE-RAGE axis appears to be a promising approach for attenuating disease conditions associated with RAGE-mediated inflammation. Importantly, RAGE is not specific only to AGEs; it can bind multiple ligands, initiating a complex RAGE signaling network that is not fully understood. Maintaining an appropriate balance between various RAGE isoforms with different functions is also crucial. In this context, mild approaches related to lifestyle-such as diet optimization, consuming functional foods, intake of probiotics, and regular moderate physical activity-are valuable due to their beneficial effects and their ability to mildly modulate the fructose-mediated AGE-RAGE axis.
Collapse
Affiliation(s)
- Halyna Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
8
|
Zhang M, Gao J, Kulyar MF, Luo W, Zhang G, Yang X, Zhang T, Gao H, Peng Y, Zhang J, Altaf M, Algharib SA, Zhou D, He J. Antioxidant and renal protective effects of Nano-selenium on adenine-induced acute renal failure in canines. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117274. [PMID: 39536559 DOI: 10.1016/j.ecoenv.2024.117274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Acute renal failure is a common clinical disease in canines, affecting antioxidant levels and decreasing the body's resistance. This study aims to explore the therapeutic mechanism of Nano-selenium in acute renal failure. The histopathological and imaging changes of kidney tissue were observed with the gene and protein expression levels of Keap1, Nrf2, HO-1, and NQO1 in the kidney. According to our findings, adding nano-selenium can effectively reduce the concentration of CRE and BUN in blood and kidney tissues. It increased the activity of GSH-PX and SOD by an effective reduction of MDA. Through pathological and imaging observations, it was found that adding nano-selenium could improve the kidney tissue structure of acute renal failure. The results of the RT-qPCR experiment showed that after the addition of nano-selenium, the mRNA expression of the Keap1 gene decreased significantly. In contrast, the mRNA expression of the Nrf2, HO-1, and NQO1 genes increased significantly. The experimental results were further verified by western blot and immunohistochemical analysis. Hence, the nano-selenium intervention improved kidney function and increased antioxidant levels in canines suffering from acute renal failure with the involvement of the Keap1-Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Mengdi Zhang
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control/College of Animal Science, Tarim University, Alar, Xinjiang 843300, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jindong Gao
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control/College of Animal Science, Tarim University, Alar, Xinjiang 843300, China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control/College of Animal Science, Tarim University, Alar, Xinjiang 843300, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guodong Zhang
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control/College of Animal Science, Tarim University, Alar, Xinjiang 843300, China
| | - Xiaoqi Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tianguang Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Haihang Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuxuan Peng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiabin Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Muhammad Altaf
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Samah Attia Algharib
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, QG 13736, Egypt
| | - Donghai Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jianzhong He
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control/College of Animal Science, Tarim University, Alar, Xinjiang 843300, China.
| |
Collapse
|
9
|
Sroga GE, Vashishth D. In vivo glycation-interplay between oxidant and carbonyl stress in bone. JBMR Plus 2024; 8:ziae110. [PMID: 39386996 PMCID: PMC11458925 DOI: 10.1093/jbmrpl/ziae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/18/2024] [Accepted: 07/28/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic syndromes (eg, obesity, type 2 diabetes (T2D), atherosclerosis, and neurodegenerative diseases) and aging, they all have a strong component of carbonyl and reductive-oxidative (redox) stress. Reactive carbonyl (RCS) and oxidant (ROS) stress species are commonly generated as products or byproducts of cellular metabolism or are derived from the environment. RCS and ROS can play a dual role in living organisms. Some RCS and ROS function as signaling molecules, which control cellular defenses against biological and environmental assaults. However, due to their high reactivity, RCS and ROS inadvertently interact with different cellular and extracellular components, which can lead to the formation of undesired posttranslational modifications of bone matrix proteins. These are advanced glycation (AGEs) and glycoxidation (AGOEs) end products generated in vivo by non-enzymatic amino-carbonyl reactions. In this review, metabolic processes involved in generation of AGEs and AGOEs within and on protein surfaces including extracellular bone matrix are discussed from the perspective of cellular metabolism and biochemistry of certain metabolic syndromes. The impact of AGEs and AGOEs on some characteristics of mineral is also discussed. Different therapeutic approaches with the potential to prevent the formation of RCS, ROS, and the resulting formation of AGEs and AGOEs driven by these chemicals are also briefly reviewed. These are antioxidants, scavenging agents of reactive species, and newly emerging technologies for the development of synthetic detoxifying systems. Further research in the area of in vivo glycation and glycoxidation should lead to the development of diverse new strategies for halting the progression of metabolic complications before irreversible damage to body tissues materializes.
Collapse
Affiliation(s)
- Grażyna E Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Engineering and Precision Medicine, Rensselaer-Icahn School of Medicine at Mount Sinai, 619 West 54th Street, New York, NY 10019, United States
| |
Collapse
|
10
|
Detopoulou P, Voulgaridou G, Seva V, Kounetakis O, Desli II, Tsoumana D, Dedes V, Papachristou E, Papadopoulou S, Panoutsopoulos G. Dietary Restriction of Advanced Glycation End-Products (AGEs) in Patients with Diabetes: A Systematic Review of Randomized Controlled Trials. Int J Mol Sci 2024; 25:11407. [PMID: 39518960 PMCID: PMC11546279 DOI: 10.3390/ijms252111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Advanced Glycation End Products (AGEs) are formed through non-enzymatic reactions between reducing sugars and proteins, nucleic acids or lipids (for example through hyperoxidation). In diabetes, elevated glucose levels provide more substrate for AGEs formation. AGEs can also be ingested through the diet from foods cooked at high temperatures, or containing much sugar. The present work aimed to review all published randomized controlled trials (RCT) on low-dietary AGE (L-dAGEs) interventions in patients with diabetes. Pubmed, Scopus and Cochrane databases were searched (until 29 February 2024) with appropriate keywords (inclusion criteria: RCT, patients with diabetes, age > 18 years, outcomes related to inflammation, glucose, and lipids; exclusion criteria: non-RCTs, case-series, case reports and Letter to the Editor, or animal studies). The present review was registered to the Open Science Framework (OSF). From 7091 studies, seven were ultimately included. Bias was assessed with the updated Cochrane Risk of Bias tool. A reduction in circulating AGEs was documented in 3/3 studies. No particular differences were documented in glycemic parameters after a L-dAGEs diet. Reductions in glucose levels were observed in one out of six studies (1/6), while HbA1c and HOMA did not change in any study (0/6 and 0/3, correspondingly). Lipid profile also changed in one out of four studies (1/4). More consistent results were observed for oxidative stress (beneficial effects in 3/3 studies) and inflammatory markers (beneficial effects in 4/4 studies). Other athero-protective effects, such as adiponectin increases, were reported. Limitations included the small sample size and the fact that dietary and physical activity habits were not considered in most studies. In conclusion, a L-dAGEs pattern may minimize AGEs accumulation and have beneficial effects on oxidative stress and inflammation indices, while its effects on glycemic and lipemic parameters are inconsistent and modest in patients with diabetes.
Collapse
Affiliation(s)
- Paraskevi Detopoulou
- Department of Nutritional Sciences and Dietetics, University of the Peloponnese, 24100 Kalamata, Greece
- Department of Clinical Nutrition, General Hospital Korgialenio Benakio, 11526 Athens, Greece
| | - Gavriela Voulgaridou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - Vasiliki Seva
- Department of Clinical Nutrition, General Hospital Korgialenio Benakio, 11526 Athens, Greece
| | - Odysseas Kounetakis
- Department of Clinical Nutrition, General Hospital Korgialenio Benakio, 11526 Athens, Greece
| | - Ios-Ioanna Desli
- Department of Nutritional Sciences and Dietetics, University of the Peloponnese, 24100 Kalamata, Greece
| | - Despoina Tsoumana
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - Vasilios Dedes
- Department of Nutritional Sciences and Dietetics, University of the Peloponnese, 24100 Kalamata, Greece
| | - Evridiki Papachristou
- Department of Clinical Nutrition, General Hospital Korgialenio Benakio, 11526 Athens, Greece
| | - Sousana Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - George Panoutsopoulos
- Department of Nutritional Sciences and Dietetics, University of the Peloponnese, 24100 Kalamata, Greece
| |
Collapse
|
11
|
Pedreañez A, Mosquera-Sulbaran JA, Tene D. Role of the receptor for advanced glycation end products in the severity of SARS-CoV-2 infection in diabetic patients. Diabetol Int 2024; 15:732-744. [PMID: 39469543 PMCID: PMC11512988 DOI: 10.1007/s13340-024-00746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/17/2024] [Indexed: 10/30/2024]
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is a severe disease in older adults and in individuals with associated comorbidities such as diabetes mellitus. Patients with diabetes infected with SARS-CoV-2 are more likely to develop severe pneumonia, hospitalization, and mortality compared with infected non-diabetic patients. During diabetes, hyperglycemia contributes to the maintenance of a low-grade inflammatory state which has been implicated in the microvascular and macrovascular complications associated with this pathology. The receptor for advanced glycation end products (RAGE) is a multi-ligand pattern recognition receptor, expressed on a wide variety of cells, which participates as an important mediator of inflammatory responses in many diseases, including lung diseases. This review highlights the role of RAGE in the pathophysiology of COVID-19 with special emphasis on diabetic patients. These data could explain the severity of the disease, positioning it as a key therapeutic target in the clinical management of this infection.
Collapse
Affiliation(s)
- Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Apartado Postal: 23, Maracaibo 4001-A, Maracaibo, Zulia Venezuela
| | - Jesús A. Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas “Dr. Américo Negrette”, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Diego Tene
- Universidad Nacional del Chimborazo, Facultad de Ciencias de la Salud, Riobamba, Ecuador
| |
Collapse
|
12
|
Zglejc-Waszak K, Jozwik M, Thoene M, Wojtkiewicz J. Role of Receptor for Advanced Glycation End-Products in Endometrial Cancer: A Review. Cancers (Basel) 2024; 16:3192. [PMID: 39335163 PMCID: PMC11430655 DOI: 10.3390/cancers16183192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy. EC is associated with metabolic disorders that may promote non-enzymatic glycation and activate the receptor for advanced glycation end-products (RAGE) signaling pathways. Thus, we assumed that RAGE and its ligands may contribute to EC. Of particular interest is the interaction between diaphanous-related formin 1 (Diaph1) and RAGE during the progression of human cancers. Diaph1 is engaged in the proper organization of actin cytoskeletal dynamics, which is crucial in cancer invasion, metastasis, angiogenesis, and axonogenesis. However, the detailed molecular role of RAGE in EC remains uncertain. In this review, we discuss epigenetic factors that may play a key role in the RAGE-dependent endometrial pathology. We propose that DNA methylation may regulate the activity of the RAGE pathway in the uterus. The accumulation of negative external factors, such as hyperglycemia, inflammation, and oxidative stress, may interfere with the DNA methylation process. Therefore, further research should take into account the role of epigenetic mechanisms in EC progression.
Collapse
Affiliation(s)
- Kamila Zglejc-Waszak
- Department of Anatomy, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland
| | - Michael Thoene
- Department of Medical Biology, Faculty of Health Sciences, University of Warmia and Mazury in Olsztyn, Żołnierska 14C Str., 10-561 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
13
|
Apte M, Zambre S, Pisar P, Roy B, Tupe R. Decoding the role of aldosterone in glycation-induced diabetic complications. Biochem Biophys Res Commun 2024; 721:150107. [PMID: 38781658 DOI: 10.1016/j.bbrc.2024.150107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Diabetes-mediated development of micro and macro-vascular complications is a global concern. One of the factors is hyperglycemia induced the non-enzymatic formation of advanced glycation end products (AGEs). Accumulated AGEs bind with receptor of AGEs (RAGE) causing inflammation, oxidative stress and extracellular matrix proteins (ECM) modifications responsible for fibrosis, cell damage and tissue remodeling. Moreover, during hyperglycemia, aldosterone (Aldo) secretion increases, and its interaction with mineralocorticoid receptor (MR) through genomic and non-genomic pathways leads to inflammation and fibrosis. Extensive research on individual involvement of AGEs-RAGE and Aldo-MR pathways in the development of diabetic nephropathy (DN), cardiovascular diseases (CVDs), and impaired immune system has led to the discovery of therapeutic drugs. Despite mutual repercussions, the cross-talk between AGEs-RAGE and Aldo-MR pathways remains unresolved. Hence, this review focuses on the possible interaction of Aldo and glycation in DN and CVDs, considering the clinical significance of mutual molecular targets.
Collapse
Affiliation(s)
- Mayura Apte
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Saee Zambre
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Pratiksha Pisar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Rashmi Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
14
|
Haase S, Kuhbandner K, Mühleck F, Gisevius B, Freudenstein D, Hirschberg S, Lee DH, Kuerten S, Gold R, Haghikia A, Linker RA. Dietary galactose exacerbates autoimmune neuroinflammation via advanced glycation end product-mediated neurodegeneration. Front Immunol 2024; 15:1367819. [PMID: 39185426 PMCID: PMC11341352 DOI: 10.3389/fimmu.2024.1367819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Background Recent studies provide increasing evidence for a relevant role of lifestyle factors including diet in the pathogenesis of neuroinflammatory diseases such as multiple sclerosis (MS). While the intake of saturated fatty acids and elevated salt worsen the disease outcome in the experimental model of MS by enhanced inflammatory but diminished regulatory immunological processes, sugars as additional prominent components in our daily diet have only scarcely been investigated so far. Apart from glucose and fructose, galactose is a common sugar in the so-called Western diet. Methods We investigated the effect of a galactose-rich diet during neuroinflammation using myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (MOG-EAE) as a model disease. We investigated peripheral immune reactions and inflammatory infiltration by ex vivo flow cytometry analysis and performed histological staining of the spinal cord to analyze effects of galactose in the central nervous system (CNS). We analyzed the formation of advanced glycation end products (AGEs) by fluorescence measurements and investigated galactose as well as galactose-induced AGEs in oligodendroglial cell cultures and induced pluripotent stem cell-derived primary neurons (iPNs). Results Young mice fed a galactose-rich diet displayed exacerbated disease symptoms in the acute phase of EAE as well as impaired recovery in the chronic phase. Galactose did not affect peripheral immune reactions or inflammatory infiltration into the CNS, but resulted in increased demyelination, oligodendrocyte loss and enhanced neuro-axonal damage. Ex vivo analysis revealed an increased apoptosis of oligodendrocytes isolated from mice adapted on a galactose-rich diet. In vitro, treatment of cells with galactose neither impaired the maturation nor survival of oligodendroglial cells or iPNs. However, incubation of proteins with galactose in vitro led to the formation AGEs, that were increased in the spinal cord of EAE-diseased mice fed a galactose-rich diet. In oligodendroglial and neuronal cultures, treatment with galactose-induced AGEs promoted enhanced cell death compared to control treatment. Conclusion These results imply that galactose-induced oligodendrocyte and myelin damage during neuroinflammation may be mediated by AGEs, thereby identifying galactose and its reactive products as potential dietary risk factors for neuroinflammatory diseases such as MS.
Collapse
MESH Headings
- Animals
- Galactose/administration & dosage
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Mice
- Glycation End Products, Advanced/metabolism
- Glycation End Products, Advanced/administration & dosage
- Neuroinflammatory Diseases/immunology
- Neuroinflammatory Diseases/pathology
- Neuroinflammatory Diseases/metabolism
- Neuroinflammatory Diseases/etiology
- Mice, Inbred C57BL
- Female
- Oligodendroglia/metabolism
- Oligodendroglia/pathology
- Oligodendroglia/immunology
- Disease Models, Animal
Collapse
Affiliation(s)
- Stefanie Haase
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Kristina Kuhbandner
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Florian Mühleck
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Barbara Gisevius
- Department of Neurology, St. Josef-Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| | - David Freudenstein
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Sarah Hirschberg
- Department of Neurology, St. Josef-Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| | - De-Hyung Lee
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Aiden Haghikia
- Department of Neurology, University Medicine Magdeburg, Magdeburg, Germany
| | - Ralf A. Linker
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Khan H, Rafi Z, Khan MY, Maarfi F, Rehman S, Kaur K, Ahmad MK, Shahab U, Ahmad N, Ahmad S. Epigenetic contributions to cancer: Exploring the role of glycation reactions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:143-193. [PMID: 39179346 DOI: 10.1016/bs.ircmb.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Advanced Glycation End-products (AGEs), with their prolonged half-life in the human body, are emerging as potent diagnostic indicators. Early intervention studies, focusing on AGE cross-link breakers, have shown encouraging results in heart failure patients, paving the way for disease progression monitoring and therapy effectiveness evaluation. AGEs are the byproducts of a non-enzymatic reaction where sugars interact with proteins, lipids, and nucleic acids. These compounds possess the power to alter numerous biological processes, ranging from disrupting molecular conformation and promoting cross-linking to modifying enzyme activity, reducing clearance, and impairing receptor recognition. The damage inflicted by AGEs through the stimulation of intracellular signaling pathways is associated with the onset of chronic diseases across various organ systems. This review consolidates the characteristics of AGEs and the challenges posed by their expression in diverse physiological and pathological states. Furthermore, it highlights the clinical relevance of AGEs and the latest research breakthroughs aimed at reducing AGE accumulation.
Collapse
Affiliation(s)
- Hamda Khan
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Zeeshan Rafi
- Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Yasir Khan
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | - Farah Maarfi
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | | | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | | | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| | - Naved Ahmad
- Department of Computer Science and Information System, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia.
| |
Collapse
|
16
|
Peyret H, Konecki C, Terryn C, Dubuisson F, Millart H, Feliu C, Djerada Z. Methylglyoxal induces cardiac dysfunction through mechanisms involving altered intracellular calcium handling in the rat heart. Chem Biol Interact 2024; 394:110949. [PMID: 38555048 DOI: 10.1016/j.cbi.2024.110949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/19/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Methylglyoxal (MGO) is an endogenous, highly reactive dicarbonyl metabolite generated under hyperglycaemic conditions. MGO plays a role in developing pathophysiological conditions, including diabetic cardiomyopathy. However, the mechanisms involved and the molecular targets of MGO in the heart have not been elucidated. In this work, we studied the exposure-related effects of MGO on cardiac function in an isolated perfused rat heart ex vivo model. The effect of MGO on calcium homeostasis in cardiomyocytes was studied in vitro by the fluorescence indicator of intracellular calcium Fluo-4. We demonstrated that MGO induced cardiac dysfunction, both in contractility and diastolic function. In rat heart, the effects of MGO treatment were significantly limited by aminoguanidine, a scavenger of MGO, ruthenium red, a general cation channel blocker, and verapamil, an L-type voltage-dependent calcium channel blocker, demonstrating that this dysfunction involved alteration of calcium regulation. MGO induced a significant concentration-dependent increase of intracellular calcium in neonatal rat cardiomyocytes, which was limited by aminoguanidine and verapamil. These results suggest that the functionality of various calcium channels is altered by MGO, particularly the L-type calcium channel, thus explaining its cardiac toxicity. Therefore, MGO could participate in the development of diabetic cardiomyopathy through its impact on calcium homeostasis in cardiac cells.
Collapse
Affiliation(s)
- Hélène Peyret
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France
| | - Céline Konecki
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France; Centre Hospitalier Universitaire de Reims, Service Pharmacologie-Toxicologie, Pôle de Biologie Territoriale, Reims, 51100, France
| | - Christine Terryn
- Université de Reims Champagne Ardenne, PICT, Reims, 51100, France
| | - Florine Dubuisson
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France
| | - Hervé Millart
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France
| | - Catherine Feliu
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France; Centre Hospitalier Universitaire de Reims, Service Pharmacologie-Toxicologie, Pôle de Biologie Territoriale, Reims, 51100, France
| | - Zoubir Djerada
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France; Centre Hospitalier Universitaire de Reims, Service Pharmacologie-Toxicologie, Pôle de Biologie Territoriale, Reims, 51100, France.
| |
Collapse
|
17
|
Бондаренко ОН, Ярославцева МВ, Галстян ГР, Мокрышева НГ. [Arterial mediacalcinosis in patients with diabetes mellitus: etiopathogenetic and histopathological aspects]. PROBLEMY ENDOKRINOLOGII 2024; 71:50-59. [PMID: 40089885 PMCID: PMC11931468 DOI: 10.14341/probl13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/24/2024] [Indexed: 03/17/2025]
Abstract
In a review of the generalized results of foreign and domestic studies on the development mechanism and pathogenesis of vascular calcification. The etiopathogenetic, pathophysiological and histomorphological features of mediacalcinosis, which reveal changes in the vascular bed in patients with DM, are considered. The role of risk factors for diseases, such as increased glycemia, changes in insulin levels, impaired lipid metabolism, obesity, arterial hypertension, CKD and aging, is indicated. The role of procalcifying and anticalcifying factors in colonic vascular remodeling is discussed. Identification of informative molecular markers and factors of CS will allow in the future to develop effective strategies for drug management of the risk of their progression and individual prevention programs to improve the quality and life expectancy in patients with cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Г. Р. Галстян
- Национальный медицинский исследовательский центр эндокринологии
| | - Н. Г. Мокрышева
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
18
|
Rojas A, Lindner C, Schneider I, Gonzalez I, Uribarri J. The RAGE Axis: A Relevant Inflammatory Hub in Human Diseases. Biomolecules 2024; 14:412. [PMID: 38672429 PMCID: PMC11048448 DOI: 10.3390/biom14040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
In 1992, a transcendental report suggested that the receptor of advanced glycation end-products (RAGE) functions as a cell surface receptor for a wide and diverse group of compounds, commonly referred to as advanced glycation end-products (AGEs), resulting from the non-enzymatic glycation of lipids and proteins in response to hyperglycemia. The interaction of these compounds with RAGE represents an essential element in triggering the cellular response to proteins or lipids that become glycated. Although initially demonstrated for diabetes complications, a growing body of evidence clearly supports RAGE's role in human diseases. Moreover, the recognizing capacities of this receptor have been extended to a plethora of structurally diverse ligands. As a result, it has been acknowledged as a pattern recognition receptor (PRR) and functionally categorized as the RAGE axis. The ligation to RAGE leads the initiation of a complex signaling cascade and thus triggering crucial cellular events in the pathophysiology of many human diseases. In the present review, we intend to summarize basic features of the RAGE axis biology as well as its contribution to some relevant human diseases such as metabolic diseases, neurodegenerative, cardiovascular, autoimmune, and chronic airways diseases, and cancer as a result of exposure to AGEs, as well as many other ligands.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile; (A.R.); (I.G.)
| | - Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile;
| | - Ivan Schneider
- Centre of Primary Attention, South Metropolitan Health Service, Santiago 3830000, Chile;
| | - Ileana Gonzalez
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile; (A.R.); (I.G.)
| | - Jaime Uribarri
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| |
Collapse
|
19
|
Verma VK, Malik S, Mutneja E, Sahu AK, Prajapati V, Mishra P, Bhatia J, Arya DS. Morin ameliorates myocardial injury in diabetic rats via modulation of inflammatory pathways. Lab Anim Res 2024; 40:3. [PMID: 38331877 PMCID: PMC10854036 DOI: 10.1186/s42826-024-00190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND High blood glucose levels in diabetes lead to vascular inflammation which accelerates atherosclerosis. Herein, Morin was orally administered in male Wistar rats, at the dose of 40 mg/kg for 28 days, and on the 27th and 28th day, ISO was administered to designate groups at the dose of 85 mg/kg s.c., to induce myocardial infarction. RESULTS Free radical generation, including ROS, in diabetes following ISO administration, leads to the activation of both intrinsic and extrinsic pathways of apoptosis. Morin significantly (p ≤ 0.05) reduced oxidative stress (GSH, MDA, SOD), cardiac injury markers (CK-MB, LDH), inflammation (TNF, IL-6), and apoptosis (Bax, BCl2, Caspase-3). In addition, it also reduced insulin and blood glucose levels. Akt/eNOS, Nrf2/HO-1, MAPK signaling pathways, and Insulin signal transduction pathways were positively modulated by morin pre-treatment. CONCLUSIONS Morin attenuated oxidative stress and inflammation and also modified the activity of various molecular pathways to mitigate cardiomyocyte damage during ISO-induced MI in diabetic rats.
Collapse
Affiliation(s)
- Vipin Kumar Verma
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Salma Malik
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ekta Mutneja
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Anil Kumar Sahu
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vaishali Prajapati
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prashant Mishra
- Department of Pharmacology, Armed Force Medical College, Pune, Maharastra, 411040, India
| | - Jagriti Bhatia
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Dharamveer Singh Arya
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
20
|
Wang X, Wang Z, He J. Similarities and Differences of Vascular Calcification in Diabetes and Chronic Kidney Disease. Diabetes Metab Syndr Obes 2024; 17:165-192. [PMID: 38222032 PMCID: PMC10788067 DOI: 10.2147/dmso.s438618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Presently, the mechanism of occurrence and development of vascular calcification (VC) is not fully understood; a range of evidence suggests a positive association between diabetes mellitus (DM) and VC. Furthermore, the increasing burden of central vascular disease in patients with chronic kidney disease (CKD) may be due, at least in part, to VC. In this review, we will review recent advances in the mechanisms of VC in the context of CKD and diabetes. The study further unveiled that VC is induced through the stimulation of pro-inflammatory factors, which in turn impairs endothelial function and triggers similar mechanisms in both disease contexts. Notably, hyperglycemia was identified as the distinctive mechanism driving calcification in DM. Conversely, in CKD, calcification is facilitated by mechanisms including mineral metabolism imbalance and the presence of uremic toxins. Additionally, we underscore the significance of investigating vascular alterations and newly identified molecular pathways as potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiabo Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| |
Collapse
|
21
|
Zhang Y, Zhou X, Chen S, Sun X, Zhou C. Immune mechanisms of group B coxsackievirus induced viral myocarditis. Virulence 2023; 14:2180951. [PMID: 36827455 PMCID: PMC9980623 DOI: 10.1080/21505594.2023.2180951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Viral myocarditis is known to be a primary cause of dilated cardiomyopathy (DCM) that can lead to heart failure and sudden cardiac death and is invariably caused by myocardial viral infection following active inflammatory destruction of the myocardium. Although acute viral myocarditis frequently recovers on its own, current chronic myocarditis therapies are unsatisfactory, where the persistence of viral or immunological insults to the heart may play a role. Cellular and mouse experimental models that utilized the most prevalent Coxsackievirus group B type 3 (CVB3) virus infection causing myocarditis have illustrated the pathophysiology of viral myocarditis. In this review, immunological insights into the different stages of development of viral myocarditis were discussed, concentrating on the mechanisms of innate and adaptive immunity in the development of CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Yue Zhang
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China,School of public health, Nantong University, Nantong, China
| | - Xiaobin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Shuyi Chen
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Xinchen Sun
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Chenglin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China,CONTACT Chenglin Zhou Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
22
|
Carr KD, Weiner SP, Vasquez C, Schmidt AM. Involvement of the Receptor for Advanced Glycation End Products (RAGE) in high fat-high sugar diet-induced anhedonia in rats. Physiol Behav 2023; 271:114337. [PMID: 37625475 PMCID: PMC10592025 DOI: 10.1016/j.physbeh.2023.114337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Clinical and basic science investigation indicates a link between insulin resistance and anhedonia. Previous results of this laboratory point to impaired nucleus accumbens (NAc) insulin signaling as an underpinning of diet-induced anhedonia, based on use of a glucose lick microstructure assay. The present study evaluated whether advanced glycation end products (AGEs) and their receptor (RAGE), known to mediate obesogenic diet-induced inflammation and pathological metabolic conditions, are involved in this behavioral change. Six weeks maintenance of male and female rats on a high fat-high sugar liquid diet (chocolate Ensure) increased body weight gain, and markedly increased circulating insulin and leptin, but induced anhedonia (decreased first minute lick rate and lick burst size) in males only. In these subjects, anhedonia correlated with plasma concentrations of insulin. Although the diet did not alter plasma or NAc AGEs, or the expression of RAGE in the NAc, marginally significant correlations were seen between anhedonia and plasma content of several AGEs and NAc RAGE. Importantly, a small molecule RAGE antagonist, RAGE229, administered twice daily by oral gavage, prevented diet-induced anhedonia. This beneficial effect was associated with improved adipose function, reflected in the adiponectin/leptin ratio, and increased pCREB/total CREB in the NAc, and a shift in the pCREB correlation with pThr34-DARPP-32 from near-zero to strongly positive, such that both phospho-proteins correlated with the rescued hedonic response. This set of findings suggests that the receptor/signaling pathway and cell type underlying the RAGE229-mediated increase in pCREB may mediate anhedonia and its prevention. The possible role of adipose tissue as a locus of diet-induced RAGE signaling, and source of circulating factors that target NAc to modify hedonic reactivity are discussed.
Collapse
Affiliation(s)
- Kenneth D Carr
- Departments of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States; Departments of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States.
| | - Sydney P Weiner
- Departments of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Carolina Vasquez
- Departments of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States; Departments of Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Ann Marie Schmidt
- Departments of Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| |
Collapse
|
23
|
He J, Wei L, Tan S, Liang B, Liu J, Lu L, Wang T, Wang J, Huang Y, Chen Z, Li H, Zhang L, Zhou Z, Cao Y, Ye X, Yang Z, Xian S, Wang L. Macrophage RAGE deficiency prevents myocardial fibrosis by repressing autophagy-mediated macrophage alternative activation. FASEB J 2023; 37:e23259. [PMID: 37855749 DOI: 10.1096/fj.202300173rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
Myocardial fibrosis (MF) is the characteristic pathological feature of various cardiovascular diseases that lead to heart failure (HF) or even fatal outcomes. Alternatively, activated macrophages are involved in the development of fibrosis and tissue remodeling. Although the receptor for advanced glycation end products (RAGE) is involved in MF, its potential role in regulating macrophage function in cardiac fibrosis has not been fully investigated. We aimed to determine the role of macrophage RAGE in transverse aortic constriction (TAC)-induced MF. In this study, we found that RAGE expression was markedly increased in the infiltrated alternatively activated macrophages within mice hearts after TAC. RAGE knockout mice showed less infiltration of alternatively activated macrophages and attenuated cardiac hypertrophy and fibrosis compared to the wild-type mice. Our data suggest that mice with macrophage-specific genetic deletion of RAGE were protected from interstitial fibrosis and cardiac dysfunction when subjected to pressure overload, which led to a decreased proportion of alternatively activated macrophages in heart tissues. Our in vitro experiments demonstrated that RAGE deficiency inhibited the differentiation into alternatively activated macrophages by suppressing autophagy activation. In the co-culture system, in vitro polarization of RAW264.7 macrophages toward an alternatively activated phenotype stimulated the expression of α-smooth muscle actin and collagen in cardiac fibroblasts. However, the knockdown of RAGE and inhibition of autophagy in macrophages showed reduced fibroblast-to-myofibroblast transition (FMT). Collectively, our results suggest that RAGE plays an important role in the recruitment and activation of alternatively activated macrophages by regulating autophagy, which contributes to MF. Thus, blockage of RAGE signaling may be an attractive therapeutic target for the treatment of hypertensive heart disease.
Collapse
Affiliation(s)
- Jiaqi He
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Lan Wei
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Shengan Tan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Birong Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Jing Liu
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Lu Lu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Ting Wang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Yusheng Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Zixin Chen
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Huan Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Lu Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Zheng Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhong Cao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Xiaohan Ye
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqi Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Shaoxiang Xian
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Lingjun Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Siwecka N, Saramowicz K, Galita G, Rozpędek-Kamińska W, Majsterek I. Inhibition of Protein Aggregation and Endoplasmic Reticulum Stress as a Targeted Therapy for α-Synucleinopathy. Pharmaceutics 2023; 15:2051. [PMID: 37631265 PMCID: PMC10459316 DOI: 10.3390/pharmaceutics15082051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
α-synuclein (α-syn) is an intrinsically disordered protein abundant in the central nervous system. Physiologically, the protein regulates vesicle trafficking and neurotransmitter release in the presynaptic terminals. Pathologies related to misfolding and aggregation of α-syn are referred to as α-synucleinopathies, and they constitute a frequent cause of neurodegeneration. The most common α-synucleinopathy, Parkinson's disease (PD), is caused by abnormal accumulation of α-syn in the dopaminergic neurons of the midbrain. This results in protein overload, activation of endoplasmic reticulum (ER) stress, and, ultimately, neural cell apoptosis and neurodegeneration. To date, the available treatment options for PD are only symptomatic and rely on dopamine replacement therapy or palliative surgery. As the prevalence of PD has skyrocketed in recent years, there is a pending issue for development of new disease-modifying strategies. These include anti-aggregative agents that target α-syn directly (gene therapy, small molecules and immunization), indirectly (modulators of ER stress, oxidative stress and clearance pathways) or combine both actions (natural compounds). Herein, we provide an overview on the characteristic features of the structure and pathogenic mechanisms of α-syn that could be targeted with novel molecular-based therapies.
Collapse
Affiliation(s)
| | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (N.S.); (K.S.); (G.G.); (W.R.-K.)
| |
Collapse
|
25
|
Jogula RMR, Row AT, Siddiqui AH. The Effect of Treatment With Aminoguanidine, an Advanced Glycation End Product Inhibitor, on Streptozotocin-Induced Diabetic Rats and Its Effects on Physiological and Renal Functions. Cureus 2023; 15:e42426. [PMID: 37637592 PMCID: PMC10448780 DOI: 10.7759/cureus.42426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND/AIM Diabetes is a multifactorial syndrome that affects the functioning of the renin-angiotensin system (RAS). The role of advanced glycation end products (AGEs) in diabetes is well known. In the present study, we hypothesized that the prevention of AGE accumulation or abrogation of AGE synthesis using an AGE inhibitor, aminoguanidine (AG), in streptozotocin (STZ)-induced diabetic animal models would affect the progression of diabetes and its related complications. We determined the effects of aminoguanidine (AG), an AGE inhibitor, in STZ-induced diabetic rats by determining various indices of RAS and renal functions. Additionally, we also investigated the effect of the drug, AG, on various hemodynamic and physiological functions in the body of the animals. METHODS Male Sprague Dawley rats weighing 200-250 g were assigned to four groups (n = 4-6): Vehicle, Vehicle+AG, STZ-induced, and STZ-induced+AG rats. Type 1 diabetes was induced by a single intraperitoneal (IP) injection of streptozotocin (55 mg/kg) dissolved in sodium citrate buffer. The control groups (Vehicle) were injected with buffer. The blood glucose levels were measured after 48 hours, and animals with blood glucose levels > 300 mg/dL were included in the study. Blood glucose levels in the vehicle rats were also determined to ensure non-diabetic conditions. After confirmation, AG was administrated at a dose of 1 g/L in drinking water for two weeks. Urine was collected to measure the glomerular filtration rate (GFR), and the immune reactivity for AT1 and AT2 proteins was analyzed by immunoblotting. Data were expressed as mean ± standard error of the mean (SEM), and a p-value < 0.05 was considered statistically significant. RESULTS Diabetic rats had a significant drop in body weight, accompanied by increased food and water consumption. The diabetic rats exhibited significantly increased urine flow and GFR. These phenotypes were significantly or considerately reversed by AG treatment in the STZ+AG-treated diabetic rats. Aminoguanidine prevented the increase in blood sugar levels compared to STZ-induced diabetic rats alone (295.9 ± 50.69 versus 462.3 ± 18.6 mg/dL (p < 0.05)). However, it did not affect the glomerular filtration rate (GFR) and glomerular damage, as assessed by the renal histopathological studies. The STZ-induced diabetic rats had an increased sodium excretion (3.24 ± 0.40 mmol) and significantly increased expression of the AT2 receptor and that of the AT1 receptor, which was slightly reversed by the treatment with AG. Treatment with AG decreased sodium excretion (2.12 ± 0.63, as compared to the diabetic rats). These rats also had modestly decreased expression of the AT2 receptor (0.99 ± 0.07 versus 1.12 ± 0.08, as compared to the STZ-induced diabetic rats), while the AT1 receptors showed a slight increase in the STZ+AG-treated rats compared to the STZ-induced diabetic rats (1.1 ± 0.19 versus 1.08 ± 0.12). CONCLUSION This study highlights the action of the drug AG in not exacerbating any damage in diabetic rats. Employing AG as a pharmacological intervention to prevent an increase in blood sugar adds a new dimension to controlling increased blood sugar and preventing diabetic complications. The employability and pharmacological intervention of the drug AG, in diabetes, therefore, need a renewed and further investigation.
Collapse
Affiliation(s)
| | - Anupama T Row
- Department of Pathology, University Health Center, University of Hyderabad, Hyderabad, IND
| | - Athar H Siddiqui
- School of Medical Sciences, University of Hyderabad, Hyderabad, IND
| |
Collapse
|
26
|
Stojanovic BS, Stojanovic B, Milovanovic J, Arsenijević A, Dimitrijevic Stojanovic M, Arsenijevic N, Milovanovic M. The Pivotal Role of Galectin-3 in Viral Infection: A Multifaceted Player in Host-Pathogen Interactions. Int J Mol Sci 2023; 24:ijms24119617. [PMID: 37298569 DOI: 10.3390/ijms24119617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Galectin-3 (Gal-3), a beta-galactoside-binding lectin, plays a pivotal role in various cellular processes, including immune responses, inflammation, and cancer progression. This comprehensive review aims to elucidate the multifaceted functions of Gal-3, starting with its crucial involvement in viral entry through facilitating viral attachment and catalyzing internalization. Furthermore, Gal-3 assumes significant roles in modulating immune responses, encompassing the activation and recruitment of immune cells, regulation of immune signaling pathways, and orchestration of cellular processes such as apoptosis and autophagy. The impact of Gal-3 extends to the viral life cycle, encompassing critical phases such as replication, assembly, and release. Notably, Gal-3 also contributes to viral pathogenesis, demonstrating involvement in tissue damage, inflammation, and viral persistence and latency elements. A detailed examination of specific viral diseases, including SARS-CoV-2, HIV, and influenza A, underscores the intricate role of Gal-3 in modulating immune responses and facilitating viral adherence and entry. Moreover, the potential of Gal-3 as a biomarker for disease severity, particularly in COVID-19, is considered. Gaining further insight into the mechanisms and roles of Gal-3 in these infections could pave the way for the development of innovative treatment and prevention options for a wide range of viral diseases.
Collapse
Affiliation(s)
- Bojana S Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Histology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
27
|
Robles-Rivera K, Rivera-Paredez B, Quezada-Sanchéz AD, Velázquez-Cruz R, Salmerón J. Advanced glycation end products are associated with cardiovascular risk in the Mexican population. Nutr Metab Cardiovasc Dis 2023; 33:826-834. [PMID: 36842957 DOI: 10.1016/j.numecd.2022.12.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/07/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Chronic exposure to hyperglycemia is a significant risk factor for cardiovascular disease (CVD). Advanced glycation end products (AGES) result from multiple sugar-dependent reactions interacting with proteins and their receptors, generating endothelial dysfunction and CVD. However, there is little epidemiological data about its impact on CVD risk. We aimed to assess the association between circulating AGES and CVD risk in the Mexican population. METHODS AND RESULTS We used longitudinal data from waves 2004-2006 and 2010-2012 of 1195 participants from the Health Workers Cohort Study. Circulating AGES were assessed by radioimmunoassay, and cardiovascular risk (CVR) was computed with the Framingham risk score. Linear and logistic fixed-effects regression models were used to assess the interest association, adjusting for confounding factors. An increase in 200 μU/ml of AGES was associated with a 0.18% increased risk of CVD (95% CI 0.05-0.31%). After adjusting for physical activity and smoking status, individuals who increased their AGES category had higher odds of middle-high CVR (low to medium AGES: OR 1.83, 95% CI 1.11-3.20; low to high AGES: OR 2.61, 95% CI 1.51-4.50). The associations remained statistically significant when we further adjusted for insulin resistance, dietary intake of AGES, and total daily calorie intake. CONCLUSION Our data show that circulating AGES are associated with the Framingham CVD risk score, independently of other major risk factors for CVD in the Mexican population.
Collapse
Affiliation(s)
- Karina Robles-Rivera
- Research Center in Policy, Population, and Health, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| | - Berenice Rivera-Paredez
- Research Center in Policy, Population, and Health, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| | - Amado D Quezada-Sanchéz
- Center for Evaluation and Surveys Research, National Institute of Public Health, Cuernavaca 62100, Mexico.
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico.
| | - Jorge Salmerón
- Research Center in Policy, Population, and Health, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| |
Collapse
|
28
|
Zhang F, Wu J, Shen Q, Chen Z, Qiao Z. Investigating the mechanism of Tongqiao Huoxue decotion in the treatment of allergic rhinitis based on network pharmacology and molecular docking: A review. Medicine (Baltimore) 2023; 102:e33190. [PMID: 36897696 PMCID: PMC9997813 DOI: 10.1097/md.0000000000033190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Allergic rhinitis is prone to recurrence, and clinical treatments focus on control symptoms; however there is no radical cure. Our aim was to use network pharmacology and molecular docking to reveal the hub genes, biological functions, and signaling pathways of Tongqiao Huoxue decoction against allergic rhinitis. First, the chemical components and target genes of Tongqiao Huoxue decoction were obtained from the Traditional Chinese Medicine Systems Pharmacology database. Similarly, allergic rhinitis targets were screened using online Mendelian Inheritance In Man and GeneCards database. Then, all potential targets of Tongqiao Huoxue decoction in the treatment of allergic rhinitis were identified, the Venn diagram was portrayed using R software, and protein-protein interaction network was built using String. The hub genes were analyzed using enrichment analyses. Finally, molecular docking was used to verify the reliability of the key gene prediction. The core targets for Tongqiao Huoxue decoction to improve allergic rhinitis were AKT1, TP53, IL6, and so on. The enrichment analysis results showed that Tongqiao Huoxue decoction treatment in allergic rhinitis might be involved in the AGE-RAGE signaling pathway and fluid shear stress and atherosclerosis pathway. The molecular docking verification indicated that its ingredients bound well to the core targets of allergic rhinitis, and stigmasterol's docking ability with TNF (-12.73 kcal/mol) is particularly prominent. Based on these findings, it may be deduced that stigmasterol treated allergic rhinitis by acting on TNF targets. But, this conclusion needs to be confirmed by further in vitro and in vivo trials.
Collapse
Affiliation(s)
- Fang Zhang
- The First Clinical Medical College of Zhejiang Chinese Medicine University, Hangzhou, China
| | - Jiani Wu
- Department of Otorhinolaryngology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Qu Shen
- The First Clinical Medical College of Zhejiang Chinese Medicine University, Hangzhou, China
| | - Zhiling Chen
- Department of Otorhinolaryngology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Zukang Qiao
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
29
|
Aging-Accelerated Mouse Prone 8 (SAMP8) Mice Experiment and Network Pharmacological Analysis of Aged Liupao Tea Aqueous Extract in Delaying the Decline Changes of the Body. Antioxidants (Basel) 2023; 12:antiox12030685. [PMID: 36978933 PMCID: PMC10045736 DOI: 10.3390/antiox12030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Aging and metabolic disorders feedback and promote each other and are closely related to the occurrence and development of cardiovascular disease, type 2 diabetes, neurodegeneration and other degenerative diseases. Liupao tea is a geographical indication product of Chinese dark tea, with a “red, concentrated, aged and mellow” flavor quality. In this study, the aqueous extract of aged Liupao tea (ALPT) administered by continuous gavage significantly inhibited the increase of visceral fat and damage to the intestinal–liver–microbial axis in high-fat modeling of SAMP8 (P8+HFD) mice. Its potential mechanism is that ALPT significantly inhibited the inflammation and aggregation formation pathway caused by P8+HFD, increased the abundance of short-chain fatty acid producing bacteria Alistipes, Alloprevotella and Bacteroides, and had a calorie restriction effect. The results of the whole target metabolome network pharmacological analysis showed that there were 139 potential active components in the ALPT aqueous extract, and the core targets of their actions were SRC, TP53, AKT1, MAPK3, VEGFA, EP300, EGFR, HSP90AA1, CASP3, etc. These target genes were mainly enriched in cancer, neurodegenerative diseases, glucose and lipid metabolism and other pathways of degenerative changes. Molecular docking further verified the reliability of network pharmacology. The above results indicate that Liupao tea can effectively delay the body’s degenerative changes through various mechanisms and multi-target effects. This study revealed that dark tea such as Liupao tea has significant drinking value in a modern and aging society.
Collapse
|
30
|
Mason SA, Parker L, van der Pligt P, Wadley GD. Vitamin C supplementation for diabetes management: A comprehensive narrative review. Free Radic Biol Med 2023; 194:255-283. [PMID: 36526243 DOI: 10.1016/j.freeradbiomed.2022.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Growing evidence suggests that vitamin C supplementation may be an effective adjunct therapy in the management of people with diabetes. This paper critically reviews the current evidence on effects of vitamin C supplementation and its potential mechanisms in diabetes management. Evidence from meta-analyses of randomized controlled trials (RCTs) show favourable effects of vitamin C on glycaemic control and blood pressure that may be clinically meaningful, and mixed effects on blood lipids and endothelial function. However, evidence is mostly of low evidence certainty. Emerging evidence is promising for effects of vitamin C supplementation on some diabetes complications, particularly diabetic foot ulcers. However, there is a notable lack of robust and well-designed studies exploring effects of vitamin C as a single compound supplement on diabetes prevention and patient-important outcomes (i.e. prevention and amelioration of diabetes complications). RCTs are also required to investigate potential preventative or ameliorative effects of vitamin C on gestational diabetes outcomes. Oral vitamin C doses of 500-1000 mg per day are potentially effective, safe, and affordable for many individuals with diabetes. However, personalisation of supplementation regimens that consider factors such as vitamin C status, disease status, current glycaemic control, vitamin C intake, redox status, and genotype is important to optimize vitamin C's therapeutic effects safely. Finally, given a high prevalence of vitamin C deficiency in patients with complications, it is recommended that plasma vitamin C concentration be measured and monitored in the clinic setting.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paige van der Pligt
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Nutrition and Dietetics, Western Health, Footscray, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
31
|
Combined Effects of Lycopene and Metformin on Decreasing Oxidative Stress by Triggering Endogenous Antioxidant Defenses in Diet-Induced Obese Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238503. [PMID: 36500596 PMCID: PMC9737677 DOI: 10.3390/molecules27238503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022]
Abstract
Since lycopene has antioxidant activity, its combination with metformin may be useful to contrast diabetic complications related to oxidative stress. This study aimed to investigate the effects of metformin combined with lycopene on high-fat diet (HFD)-induced obese mice. Seventy-two C57BL-6J mice were divided into six groups: C (control diet-fed mice), H (HFD-fed mice for 17 weeks), H-V (HFD-fed mice treated with vehicle), H-M (HFD-fed mice treated with 50 mg/kg metformin), H-L (HFD-fed mice treated with 45 mg/kg lycopene), and H-ML (HFD-fed mice treated with 50 mg/kg metformin + 45 mg/kg lycopene). Treatments were administered for 8 weeks. Glucose tolerance, insulin sensitivity, fluorescent AGEs (advanced glycation end products), TBARS (thiobarbituric acid-reactive substances), and activities of antioxidant enzymes paraoxonase-1 (PON-1; plasma), superoxide dismutase, catalase and glutathione peroxidase (liver and kidneys) were determined. Metformin plus lycopene reduced body weight; improved insulin sensitivity and glucose tolerance; and decreased AGEs and TBARS in plasma, liver and kidneys. Combined therapy significantly increased the activities of antioxidant enzymes, mainly PON-1. Lycopene combined with metformin improved insulin resistance and glucose tolerance, and caused further increases in endogenous antioxidant defenses, arising as a promising therapeutic strategy for combating diabetic complications resulting from glycoxidative stress.
Collapse
|
32
|
D’Haese S, Deluyker D, Bito V. Acute Exposure to Glycated Proteins Impaired in the Endothelium-Dependent Aortic Relaxation: A Matter of Oxidative Stress. Int J Mol Sci 2022; 23:ijms232314916. [PMID: 36499244 PMCID: PMC9740119 DOI: 10.3390/ijms232314916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Chronically increased levels of high molecular weight advanced glycation end products (HMW-AGEs) are known to induce cardiovascular dysfunction. Whether an acute increase in HMW-AGE levels affects vascular function remains unknown. In this study, we examined whether acute exposure to HMW-AGEs disturbs aortic vasomotor function. Aortae were obtained from healthy male rats and were acutely pre-treated with HMW-AGEs in organ baths. Aortic relaxation responses to cumulative doses of acetylcholine (ACh), in the presence or absence of superoxide dismutase (SOD), were measured after precontraction with phenylephrine (PE). Furthermore, levels of 3-nitrotyrosine were evaluated on aortic paraffine sections. In our study, we show that acute exposure to HMW-AGEs significantly decreases the aortic relaxation response to ACh. SOD pre-treatment prevents acute HMW-AGEs-induced impairment by limiting superoxide formation. In conclusion, our data demonstrate that acute exposure to HMW-AGEs causes adverse vascular remodelling, characterised by disturbed vasomotor function due to increased oxidative stress. These results create opportunities for future research regarding the acute role of HMW-AGEs in cardiovascular dysfunction.
Collapse
|
33
|
Pincemail J, Meziane S. On the Potential Role of the Antioxidant Couple Vitamin E/Selenium Taken by the Oral Route in Skin and Hair Health. Antioxidants (Basel) 2022; 11:2270. [PMID: 36421456 PMCID: PMC9686906 DOI: 10.3390/antiox11112270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 09/29/2023] Open
Abstract
The relationship between oxidative stress and skin aging/disorders is well established. Many topical and oral antioxidants (vitamins C and E, carotenoids, polyphenols) have been proposed to protect the skin against the deleterious effect induced by increased reactive oxygen species production, particularly in the context of sun exposure. In this review, we focused on the combination of vitamin E and selenium taken in supplements since both molecules act in synergy either by non-enzymatic and enzymatic pathways to eliminate skin lipids peroxides, which are strongly implicated in skin and hair disorders.
Collapse
Affiliation(s)
- Joël Pincemail
- CHU of Liège, Platform Antioxidant Nutrition and Health, Pathology Tower, 4130, Sart Tilman, 4000 Liège, Belgium
| | - Smail Meziane
- Institut Européen des Antioxydants, 54000 Nancy, France
| |
Collapse
|
34
|
Demirer B, Samur G. Possible effects of dietary advanced glycation end products on maternal and fetal health: a review. Nutr Rev 2022:6762058. [PMID: 36250798 DOI: 10.1093/nutrit/nuac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Excessive accumulation of advanced glycation end products (AGEs) in the body has been associated with many adverse health conditions. The common point of the pathologies associated at this point is oxidative stress and inflammation. Pregnancy is an important period in which many physiological, psychological, and biological changes are experienced. Along with the physiological changes that occur during this period, the mother maintaining an AGE-rich diet may cause an increase in the body's AGE pool and may increase oxidative stress and inflammation, as seen in healthy individuals. Studies have reported the negative effects of maternal AGE levels on maternal and fetal health during pregnancy. Although gestational diabetes, preeclampsia, endothelial dysfunction, and pelvic diseases constitute maternal complications, a number of pathological conditions such as intrauterine growth retardation, premature birth, neural tube defect, neurobehavioral developmental disorders, fetal death, and neonatal asphyxia constitute fetal complications. It is thought that the mechanisms of these complications have not been confirmed yet and more clinical studies are needed on this subject. The possible effects of dietary AGE levels during pregnancy on maternal and fetal health are examined in this review.
Collapse
Affiliation(s)
- Büşra Demirer
- Nutrition and Dietetics, Karabuk University, Karabuk, Turkey
| | - Gülhan Samur
- Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
35
|
Juranek J, Mukherjee K, Kordas B, Załęcki M, Korytko A, Zglejc-Waszak K, Szuszkiewicz J, Banach M. Role of RAGE in the Pathogenesis of Neurological Disorders. Neurosci Bull 2022; 38:1248-1262. [PMID: 35729453 PMCID: PMC9554177 DOI: 10.1007/s12264-022-00878-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
This review reflects upon our own as well as other investigators' studies on the role of receptor for advanced glycation end-products (RAGE), bringing up the latest information on RAGE in physiology and pathology of the nervous system. Over the last ten years, major progress has been made in uncovering many of RAGE-ligand interactions and signaling pathways in nervous tissue; however, the translation of these discoveries into clinical practice has not come to fruition yet. This is likely, in part to be the result of our incomplete understanding of this crucial signaling pathway. Clinical trials examining the therapeutic efficacy of blocking RAGE-external ligand interactions by genetically engineered soluble RAGE or an endogenous RAGE antagonist, has not stood up to its promise; however, other trials with different blocking agents are being considered with hope for therapeutic success in diseases of the nervous system.
Collapse
Affiliation(s)
- Judyta Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland.
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Blacksburg, VA, 24016, USA
| | - Bernard Kordas
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Michał Załęcki
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| | - Agnieszka Korytko
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Jarosław Szuszkiewicz
- Department of Materials and Machines Technology, Faculty of Technical Sciences, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| | - Marta Banach
- Department of Neurology, Collegium Medicum, Jagiellonian University, 31-008, Kraków, Poland.
| |
Collapse
|
36
|
Mahmoudi A, Atkin SL, Nikiforov NG, Sahebkar A. Therapeutic Role of Curcumin in Diabetes: An Analysis Based on Bioinformatic Findings. Nutrients 2022; 14:3244. [PMID: 35956419 PMCID: PMC9370108 DOI: 10.3390/nu14153244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Diabetes is an increasingly prevalent global disease caused by the impairment in insulin production or insulin function. Diabetes in the long term causes both microvascular and macrovascular complications that may result in retinopathy, nephropathy, neuropathy, peripheral arterial disease, atherosclerotic cardiovascular disease, and cerebrovascular disease. Considerable effort has been expended looking at the numerous genes and pathways to explain the mechanisms leading to diabetes-related complications. Curcumin is a traditional medicine with several properties such as being antioxidant, anti-inflammatory, anti-cancer, and anti-microbial, which may have utility for treating diabetes complications. This study, based on the system biology approach, aimed to investigate the effect of curcumin on critical genes and pathways related to diabetes. METHODS We first searched interactions of curcumin in three different databases, including STITCH, TTD, and DGIdb. Subsequently, we investigated the critical curated protein targets for diabetes on the OMIM and DisGeNET databases. To find important clustering groups (MCODE) and critical hub genes in the network of diseases, we created a PPI network for all proteins obtained for diabetes with the aid of a string database and Cytoscape software. Next, we investigated the possible interactions of curcumin on diabetes-related genes using Venn diagrams. Furthermore, the impact of curcumin on the top scores of modular clusters was analysed. Finally, we conducted biological process and pathway enrichment analysis using Gene Ontology (GO) and KEGG based on the enrichR web server. RESULTS We acquired 417 genes associated with diabetes, and their constructed PPI network contained 298 nodes and 1651 edges. Next, the analysis of centralities in the PPI network indicated 15 genes with the highest centralities. Additionally, MCODE analysis identified three modular clusters, which highest score cluster (MCODE 1) comprises 19 nodes and 92 edges with 10.22 scores. Screening curcumin interactions in the databases identified 158 protein targets. A Venn diagram of genes related to diabetes and the protein targets of curcumin showed 35 shared proteins, which observed that curcumin could strongly interact with ten of the hub genes. Moreover, we demonstrated that curcumin has the highest interaction with MCODE1 among all MCODs. Several significant biological pathways in KEGG enrichment associated with 35 shared included the AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, PI3K-Akt signaling pathway, TNF signaling, and JAK-STAT signaling pathway. The biological processes of GO analysis were involved with the cellular response to cytokine stimulus, the cytokine-mediated signaling pathway, positive regulation of intracellular signal transduction and cytokine production in the inflammatory response. CONCLUSION Curcumin targeted several important genes involved in diabetes, supporting the previous research suggesting that it may have utility as a therapeutic agent in diabetes.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Stephen L. Atkin
- School of Postgraduate Studies and Research, RCSI Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Nikita G. Nikiforov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Aftermath of AGE-RAGE Cascade in the pathophysiology of cardiovascular ailments. Life Sci 2022; 307:120860. [PMID: 35940220 DOI: 10.1016/j.lfs.2022.120860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022]
|
38
|
Pro-oxidative priming but maintained cardiac function in a broad spectrum of murine models of chronic kidney disease. Redox Biol 2022; 56:102459. [PMID: 36099852 PMCID: PMC9482130 DOI: 10.1016/j.redox.2022.102459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Aims Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular events and exhibit myocardial changes including left ventricular (LV) hypertrophy and fibrosis, overall referred to as ‘uremic cardiomyopathy’. Although different CKD animal models have been studied for cardiac effects, lack of consistent reporting on cardiac function and pathology complicates clear comparison of these models. Therefore, this study aimed at a systematic and comprehensive comparison of cardiac function and cardiac pathophysiological characteristics in eight different CKD models and mouse strains, with a main focus on adenine-induced CKD. Methods and results CKD of different severity and duration was induced by subtotal nephrectomy or adenine-rich diet in various strains (C57BL/6J, C57BL/6 N, hyperlipidemic C57BL/6J ApoE−/−, 129/Sv), followed by the analysis of kidney function and morphology, blood pressure, cardiac function, cardiac hypertrophy, fibrosis, myocardial calcification and inflammation using functional, histological and molecular techniques, including cardiac gene expression profiling supplemented by oxidative stress analysis. Intriguingly, despite uremia of variable degree, neither cardiac dysfunction, hypertrophy nor interstitial fibrosis were observed. However, already moderate CKD altered cardiac oxidative stress responses and enhanced oxidative stress markers in each mouse strain, with cardiac RNA sequencing revealing activation of oxidative stress signaling as well as anti-inflammatory feedback responses. Conclusion This study considerably expands the knowledge on strain- and protocol-specific differences in the field of cardiorenal research and reveals that several weeks of at least moderate experimental CKD increase oxidative stress responses in the heart in a broad spectrum of mouse models. However, this was insufficient to induce relevant systolic or diastolic dysfunction, suggesting that additional “hits” are required to induce uremic cardiomyopathy. Translational perspective Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular adverse events and exhibit myocardial changes, overall referred to as ‘uremic cardiomyopathy’. We revealed that CKD increases cardiac oxidative stress responses in the heart. Nonetheless, several weeks of at least moderate experimental CKD do not necessarily trigger cardiac dysfunction and remodeling, suggesting that additional “hits” are required to induce uremic cardiomyopathy in the clinical setting. Whether the altered cardiac oxidative stress balance in CKD may increase the risk and extent of cardiovascular damage upon additional cardiovascular risk factors and/or events will be addressed in future studies. Development of a CKD mouse model with a clear cardiac functional or morphological phenotype is challenging. Cardiac oxidative stress response as well as oxidative stress markers are increased in a broad spectrum of CKD mouse models. Our findings suggest need of additional cardiovascular hits to clearly induce uremic cardiomyopathy as observed in patients.
Collapse
|
39
|
Mikhalchik EV, Ivanov VA, Borodina IV, Pobeguts OV, Smirnov IP, Gorudko IV, Grigorieva DV, Boychenko OP, Moskalets AP, Klinov DV, Panasenko OM, Filatova LY, Kirzhanova EA, Balabushevich NG. Neutrophil Activation by Mineral Microparticles Coated with Methylglyoxal-Glycated Albumin. Int J Mol Sci 2022; 23:ijms23147840. [PMID: 35887188 PMCID: PMC9321525 DOI: 10.3390/ijms23147840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperglycemia-induced protein glycation and formation of advanced glycation end-products (AGEs) plays an important role in the pathogenesis of diabetic complications and pathological biomineralization. Receptors for AGEs (RAGEs) mediate the generation of reactive oxygen species (ROS) via activation of NADPH-oxidase. It is conceivable that binding of glycated proteins with biomineral particles composed mainly of calcium carbonate and/or phosphate enhances their neutrophil-activating capacity and hence their proinflammatory properties. Our research managed to confirm this hypothesis. Human serum albumin (HSA) was glycated with methylglyoxal (MG), and HSA-MG was adsorbed onto mineral microparticles composed of calcium carbonate nanocrystals (vaterite polymorph, CC) or hydroxyapatite nanowires (CP). As scopoletin fluorescence has shown, H2O2 generation by neutrophils stimulated with HSA-MG was inhibited with diphenyleneiodonium chloride, wortmannin, genistein and EDTA, indicating a key role for NADPH-oxidase, protein tyrosine kinase, phosphatidylinositol 3-kinase and divalent ions (presumably Ca2+) in HSA-MG-induced neutrophil respiratory burst. Superoxide anion generation assessed by lucigenin-enhanced chemiluminescence (Luc-CL) was significantly enhanced by free HSA-MG and by both CC-HSA-MG and CP-HSA-MG microparticles. Comparing the concentrations of CC-bound and free HSA-MG, one could see that adsorption enhanced the neutrophil-activating capacity of HSA-MG.
Collapse
Affiliation(s)
- Elena V. Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Correspondence: ; Tel.: +7-499-2464352
| | - Victor A. Ivanov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Irina V. Borodina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Olga V. Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Igor P. Smirnov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Irina V. Gorudko
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus; (I.V.G.); (D.V.G.)
| | - Daria V. Grigorieva
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus; (I.V.G.); (D.V.G.)
| | - Olga P. Boychenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| | - Alexander P. Moskalets
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Dmitry V. Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Oleg M. Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Luboff Y. Filatova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| | - Ekaterina A. Kirzhanova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| | - Nadezhda G. Balabushevich
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| |
Collapse
|
40
|
Molinari P, Caldiroli L, Dozio E, Rigolini R, Giubbilini P, Corsi Romanelli MM, Castellano G, Vettoretti S. Association between Advanced Glycation End-Products and Sarcopenia in Patients with Chronic Kidney Disease. Biomedicines 2022; 10:biomedicines10071489. [PMID: 35884793 PMCID: PMC9313160 DOI: 10.3390/biomedicines10071489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: In patients with chronic kidney disease (CKD), there is an overproduction and accumulation of advanced glycation end-products (AGEs). Since AGEs may have detrimental effects on muscular trophism and performance, we evaluated whether they may contribute to the onset of sarcopenia in CKD patients. Methods: We enrolled 117 patients. The AGEs were quantified by fluorescence intensity using a fluorescence spectrophotometer and soluble receptor for AGE (sRAGE) isoforms by ELISA. As for the sarcopenia definition, we used the European Working Group on Sarcopenia in Older People (EWGSOP2) criteria. Results: The average age was 80 ± 11 years, 70% were males, and the mean eGFR was 25 + 11 mL/min/1.73 m2. Sarcopenia was diagnosed in 26 patients (with a prevalence of 22%). The sarcopenic patients had higher levels of circulating AGEs (3405 ± 951 vs. 2912 ± 722 A.U., p = 0.005). AGEs were higher in subjects with a lower midarm muscle circumference (MAMC) (3322 ± 919 vs. 2883 ± 700 A.U., respectively; p = 0.005) and were directly correlated with the gait test time (r = 0.180, p = 0.049). The total sRAGE and its different isoforms (esRAGE and cRAGE) did not differ in patients with or without sarcopenia. Conclusions: In older CKD patients, AGEs, but not sRAGE, are associated with the presence of sarcopenia. Therefore, AGEs may contribute to the complex pathophysiology leading to the development of sarcopenia in CKD patients.
Collapse
Affiliation(s)
- Paolo Molinari
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (P.M.); (L.C.); (G.C.)
| | - Lara Caldiroli
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (P.M.); (L.C.); (G.C.)
| | - Elena Dozio
- Department of Biomedical Science for Health, Laboratory of Clinical Pathology, Università degli Studi di Milano, 20133 Milan, Italy; (E.D.); (M.M.C.R.)
| | - Roberta Rigolini
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (R.R.); (P.G.)
| | - Paola Giubbilini
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (R.R.); (P.G.)
| | - Massimiliano M. Corsi Romanelli
- Department of Biomedical Science for Health, Laboratory of Clinical Pathology, Università degli Studi di Milano, 20133 Milan, Italy; (E.D.); (M.M.C.R.)
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (R.R.); (P.G.)
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (P.M.); (L.C.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Simone Vettoretti
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (P.M.); (L.C.); (G.C.)
- Correspondence: ; Tel.: +02-55-03-45-52; Fax: +02-55-03-45-50
| |
Collapse
|
41
|
Suppression of COX-2/PGE2 levels by carbazole-linked triazoles via modulating methylglyoxal-AGEs and glucose-AGEs – Induced ROS/NF-κB signaling in monocytes. Cell Signal 2022; 97:110372. [DOI: 10.1016/j.cellsig.2022.110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022]
|
42
|
Oxidative stress and inflammatory markers in patients with COVID-19: Potential role of RAGE, HMGB1, GFAP and COX-2 in disease severity. Int Immunopharmacol 2022; 104:108502. [PMID: 35063743 PMCID: PMC8730710 DOI: 10.1016/j.intimp.2021.108502] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023]
Abstract
Background SARS-CoV-2 infection can lead to the abnormal induction of cytokines and a dysregulated hyperinflammatory state that is implicated in disease severity and risk of death. There are several molecules present in blood associated with immune cellular response, inflammation, and oxidative stress that could be used as severity markers in respiratory viral infections such as COVID-19. However, there is a lack of clinical studies evaluating the role of oxidative stress-related molecules including glial fibrillary acidic protein (GFAP), the receptor for advanced glycation end products (RAGE), high mobility group box-1 protein (HMGB1) and cyclo-oxygenase-2 (COX-2) in COVID-19 pathogenesis. Aim To evaluate the role of oxidative stress-related molecules in COVID-19. Method An observational study with 93 Brazilian participants from September 2020 to April 2021, comprising 23 patients with COVID-19 admitted to intensive care unit (ICU), 19 outpatients with COVID-19 with mild to moderate symptoms, 17 individuals reporting a COVID-19 history, and 34 healthy controls. Blood samples were taken from all participants and western blot assay was used to determine the RAGE, HMGB1, GFAP, and COX-2 immunocontent. Results We found that GFAP levels were higher in patients with severe or critical COVID-19 compared to outpatients (p = 0.030) and controls (p < 0.001). A significant increase in immunocontents of RAGE (p < 0.001) and HMGB1 (p < 0.001) were also found among patients admitted to the ICU compared to healthy controls, as well as an overexpression of the inducible COX-2 (p < 0.001). In addition, we found a moderate to strong correlation between RAGE, GFAP and HMGB1 proteins. Conclusion SARS-CoV-2 infection induces the upregulation of GFAP, RAGE, HMGB1, and COX-2 in patients with the most severe forms of COVID-19.
Collapse
|
43
|
Zarei S, Taghian F, Sharifi G, Abedi H. Novel prevention insights into depletion of oxidative stress status through regular exercise and grape seed effective substance in heart ischemia rat model. Food Sci Nutr 2022; 10:833-845. [PMID: 35311161 PMCID: PMC8907746 DOI: 10.1002/fsn3.2714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
Myocardial ischemia (MI) is recognized as the most frequent cardiovascular disease which is the dominant cause of global morbidity and mortality. Artificial intelligence tools and integrative data analysis revealed superoxide dismutase, catalase, glutathione peroxidase, gap junction protein α, myosin heavy chains, and zinc finger transcription factor GATA4 are engaged in oxidative stress and in cardiomyopathy. Network analysis indicated that MAPK3 might be the highest distribution property and cut point in this network, which could be a potential candidate for preventing and treating oxidative stress in heart tissue. Among antioxidant agents, grape seed extract (GSE) is an effective substance that altered antioxidant status in heart tissue. Considering drug discovery methods, we illustrated that GSE might target the MAPK3 protein with sufficient binding affinity. Moreover, we found that low- and moderate-intensity training might prevent the depletion of antioxidants after MI. GSE consumption altered the levels of superoxide dismutase, glutathione peroxidase, and catalase after 14 weeks. Therefore, the interaction of low- and moderate-intensity training and GSE had a synergistic effect on the antioxidant status and relative expression of the Mapk3. Moreover, the interaction of high-intensity training and GSE had a compensatory mechanism that could scavenge reactive oxygen species and improve endogenous antioxidants and modulate the Mapk3 level in MI rats. Consequently, we displayed positive influence and synergic effects of simultaneous GSE prescription and regular physical activity for 14 weeks to prevent acute and chronic heart ischemia cardioprotective phenomenon. Furthermore, the capacitation oxidative stress and relative expression of the Mapk3 was significantly increased by GSE and regular exercise.
Collapse
Affiliation(s)
- Safar Zarei
- Department of Sports PhysiologyFaculty of sports sciencesIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Farzaneh Taghian
- Department of Sports PhysiologyFaculty of sports sciencesIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Gholamreza Sharifi
- Department of Sports PhysiologyFaculty of sports sciencesIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Hassanali Abedi
- Research Center for Noncommunicable DiseasesFaculty of MedicineJahrom University of Medical SciencesJahromIran
| |
Collapse
|
44
|
Diabetes, heart damage, and angiotensin II. What is the relationship link between them? A minireview. Endocr Regul 2022; 56:55-65. [PMID: 35180818 DOI: 10.2478/enr-2022-0007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular complications are the main cause of mortality and morbidity in the diabetic patients, in whom changes in myocardial structure and function have been described. Numerous molecular mechanisms have been proposed that could contribute to the development of a cardiac damage. In this regard, angiotensin II (Ang II), a proinflammatory peptide that constitutes the main effector of the renin-angiotensin system (RAS) has taken a relevant role. The aim of this review was to analyze the role of Ang II in the different biochemical pathways that could be involved in the development of cardiovascular damage during diabetes. We performed an exhaustive review in the main databases, using the following terms: angiotensin II, cardiovascular damage, renin angiotensin system, inflammation, and diabetes mellitus. Classically, the RAS has been defined as a complex system of enzymes, receptors, and peptides that help control the blood pressure and the fluid homeostasis. However, in recent years, this concept has undergone substantial changes. Although this system has been known for decades, recent discoveries in cellular and molecular biology, as well as cardiovascular physiology, have introduced a better understanding of its function and relationship to the development of the diabetic cardiomyopathy.
Collapse
|
45
|
Jahan H, Siddiqui NN, Iqbal S, Basha FZ, Khan MA, Aslam T, Choudhary MI. Indole-linked 1,2,3-triazole derivatives efficiently modulate COX-2 protein and PGE 2 levels in human THP-1 monocytes by suppressing AGE-ROS-NF-kβ nexus. Life Sci 2022; 291:120282. [PMID: 34990649 DOI: 10.1016/j.lfs.2021.120282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 12/25/2022]
Abstract
AIMS AGEs augment inflammatory responses by activating inflammatory cascade in monocytes, and hence lead to vascular dysfunction. The current study aims to study a plausible role and mechanism of a new library of indole-tethered 1,2,3-triazoles 2-13 in AGEs-induced inflammation. MATERIAL AND METHODS Initially, the analogs 2-13 were synthesized by cycloaddition reaction between prop-2-yn-1-yl-2-(1H-indol-3-yl) acetate (1) and azidoacetophenone (1a). In vitro glycation, and metabolic assays were employed to investigate antiglycation and cytotoxicity activities of new indole-triazoles. DCFH-DA, immunostaining, Western blotting, and ELISA techniques were used to study the reactive oxygen species (ROS), and pro-inflammatory mediators levels. KEY FINDINGS Among all the synthesized indole-triazoles, compounds 1-3, and 9-13, and their precursor molecule 1 were found to be active against AGEs production in in vitro glucose- and methylglyoxal (MGO)-BSA models. Compounds 1-2, and 11-13 were also found to be nontoxic against HEPG2, and THP-1 cells. Our results show that pretreatment of THP-1 monocytes with selected lead compounds 1-2, and 11-13, particularly compounds 12, and 13, reduced glucose- and MGO-derived AGEs-mediated ROS production (P < 0.001), as compared to standards, PDTC, rutin, and quercetin. They also significantly (P < 0.001) suppressed NF-ĸB translocation in THP-1 monocytes. Moreover, compounds 12, and 13 attenuated the AGEs-induced COX-2 protein levels (P < 0.001), and PGE2 production (P < 0.001) in THP-1 monocytes. SIGNIFICANCE Our data revealed that the indole-triazoles 12, and 13 can significantly attenuate the AGEs-induced proinflammatory COX-2 levels, and associated PGE2 production by suppressing AGE-ROS-NF-Kβ nexus in THP-1 monocytes. These compounds can thus serve as leads for further evaluation as treatment to delay early onset of diabetic complications.
Collapse
Affiliation(s)
- Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Nimra Naz Siddiqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shazia Iqbal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Fatima Z Basha
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Maria Aqeel Khan
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Tooba Aslam
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C, Jl. Mulyorejo, Surabaya 60115, Indonesia.
| |
Collapse
|
46
|
Yulianti E, Sunarti, Wahyuningsih MSH. The effect of Kappaphycus alvarezii active fraction on oxidative stress and inflammation in streptozotocin and nicotinamide-induced diabetic rats. BMC Complement Med Ther 2022; 22:15. [PMID: 35027069 PMCID: PMC8759202 DOI: 10.1186/s12906-021-03496-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High glucose concentration increases the glycation process which leads to oxidative stress and inflammation, that can cause complications in diabetes. Several medicinal plants have been used in the treatment of diabetes and its complications. One of them is Kappaphycus alvarezii, an algae that has known antidiabetic abilities. This study aimed to examine the effect of K. alvarezii active fraction on plasma hydrogen peroxide (H2O2) and Tumor Necrosis Factor α (TNFα) levels, renal NADPH oxidase 4 (NOX4) and Nuclear Factor κ B (NFκB) gene expressions. METHODS Active fraction was obtained from bioassay-guided fractionation with antiglycation ability. In vivo study was performed on twenty Wistar male rats. The level of H2O2 was measured using H2O2 Assay Kit, the Optical Density value measured using spectrophotometer at a wavelength of 405 nm. Plasma TNFα level was measured using ELISA. Renal NOX4 and NFκB gene expression was analyzed using qPCR. RESULTS Active fraction significantly reduced plasma H2O2 but not TNFα levels. Furthermore, renal NOX4 gene expression was lower in the diabetic rat group treated with active fraction compared to the untreated group but not NFκB gene expression. CONCLUSIONS K. alvarezii active fraction has an activity to reduce plasma H2O2 as well as renal NOX4 gene expression. Therefore, this fraction could be developed as a potential candidate for diabetes treatment through oxidative stress mechanisms.
Collapse
Affiliation(s)
- Evy Yulianti
- Department of Biology Education, Faculty of Mathematics and Science, Universitas Negeri Yogyakarta, Yogyakarta, Indonesia
| | - Sunarti
- Department of Biochemistry, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mae Sri Hartati Wahyuningsih
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
- Herbal Medical Center, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
47
|
KAYAALTI M, BOSTANCI V, DOGAN H. THE EFFECT OF MENOPAUSE ON NADPH OXIDASE LEVELS AFTER NON-SURGICAL PERIODONTAL TREATMENTS ON PATIENTS WITH PERIODONTITIS. CUMHURIYET DENTAL JOURNAL 2022. [DOI: 10.7126/cumudj.1000295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
48
|
Qing G, Zhiyuan W, Jinge Y, Yuqing M, Zuoguan C, Yongpeng D, Jinfeng Y, Junnan J, Yijia G, Weimin L, Yongjun L. Single-Cell RNA Sequencing Revealed CD14 + Monocytes Increased in Patients With Takayasu's Arteritis Requiring Surgical Management. Front Cell Dev Biol 2021; 9:761300. [PMID: 34671607 PMCID: PMC8521054 DOI: 10.3389/fcell.2021.761300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
Objectives: Takayasu Arteritis (TA) is a highly specific vascular inflammation and poses threat to patients’ health. Although some patients have accepted medical treatment, their culprit lesions require surgical management (TARSM). This study aimed at dissecting the transcriptomes of peripheral blood mononuclear cells (PBMCs) in these patients and to explore potential clinical markers for TA development and progression. Methods: Peripheral blood were collected from four TA patients requiring surgical management and four age-sex matched healthy donors. Single cell RNA sequencing (scRNA-seq) was adopted to explore the transcriptomic diversity and function of their PBMCs. ELISA, qPCR, and FACS were conducted to validate the results of the analysis. Results: A total of 29918 qualified cells were included for downstream analysis. Nine major cell types were confirmed, including CD14+ monocytes, CD8+ T cells, NK cells, CD4+ T cells, B cells, CD16+ monocytes, megakaryocytes, dendritic cells and plasmacytoid dendritic cells. CD14+ monocytes (50.0 vs. 39.3%, p < 0.05) increased in TA patients, as validated by FACS results. TXNIP, AREG, THBS1, and CD163 increased in TA patients. ILs like IL-6, IL-6STP1, IL-6ST, IL-15, and IL-15RA increased in TA group. Conclusion: Transcriptome heterogeneities of PBMCs in TA patients requiring surgical management were revealed in the present study. In the patients with TA, CD14+ monocytes and gene expressions involved in oxidative stress were increased, indicating a new treatment and research direction in this field.
Collapse
Affiliation(s)
- Gao Qing
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.,Department of Vascular Surgery, National Centre of Gerontology, Beijing Hospital, Beijing, China.,National Tuberculosis Clinical Lab of China, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory in Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Wu Zhiyuan
- Department of Vascular Surgery, National Centre of Gerontology, Beijing Hospital, Beijing, China
| | - Yu Jinge
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Miao Yuqing
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.,Department of Vascular Surgery, National Centre of Gerontology, Beijing Hospital, Beijing, China
| | - Chen Zuoguan
- Department of Vascular Surgery, National Centre of Gerontology, Beijing Hospital, Beijing, China
| | - Diao Yongpeng
- Department of Vascular Surgery, National Centre of Gerontology, Beijing Hospital, Beijing, China
| | - Yin Jinfeng
- National Tuberculosis Clinical Lab of China, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory in Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jia Junnan
- Beijing Key Laboratory in Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Guo Yijia
- National Tuberculosis Clinical Lab of China, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory in Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Li Weimin
- National Tuberculosis Clinical Lab of China, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory in Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Li Yongjun
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.,Department of Vascular Surgery, National Centre of Gerontology, Beijing Hospital, Beijing, China
| |
Collapse
|
49
|
Monroe TB, Anderson EJ. A Catecholaldehyde Metabolite of Norepinephrine Induces Myofibroblast Activation and Toxicity via the Receptor for Advanced Glycation Endproducts: Mitigating Role of l-Carnosine. Chem Res Toxicol 2021; 34:2194-2201. [PMID: 34609854 PMCID: PMC8527521 DOI: 10.1021/acs.chemrestox.1c00262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 01/12/2023]
Abstract
Monoamine oxidase (MAO) is rapidly gaining appreciation for its pathophysiologic role in cardiac injury and failure. Oxidative deamination of norepinephrine by MAO generates H2O2 and the catecholaldehyde 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL), the latter of which is a highly potent and reactive electrophile that has been linked to cardiotoxicity. However, many questions remain as to whether catecholaldehydes regulate basic physiological processes in the myocardium and the pathways involved. Here, we examined the role of MAO-derived oxidative metabolites in mediating the activation of cardiac fibroblasts in response to norepinephrine. In neonatal murine cardiac fibroblasts, norepinephrine increased reactive oxygen species (ROS), accumulation of catechol-modified protein adducts, expression and secretion of collagens I/III, and other markers of profibrotic activation including STAT3 phosphorylation. These effects were attenuated with MAO inhibitors, the aldehyde-scavenging dipeptide l-carnosine, and FPS-ZM1, an antagonist for the receptor for advanced glycation endproducts (RAGE). Interestingly, treatment of cardiac fibroblasts with a low dose (1 μM) of DOPEGAL-modified albumin phenocopied many of the effects of norepinephrine and also induced an increase in RAGE expression. Higher doses (>10 μM) of DOPEGAL-modified albumin were determined to be toxic to cardiac fibroblasts in a RAGE-dependent manner, which was mitigated by l-carnosine. Collectively, these findings suggest that norepinephrine may influence extracellular matrix remodeling via an adrenergic-independent redox pathway in cardiac fibroblasts involving the MAO-mediated generation of ROS, catecholaldehydes, and RAGE. Furthermore, since elevations in the catecholaminergic tone and oxidative stress in heart disease are linked with cardiac fibrosis, this study illustrates novel drug targets that could potentially mitigate this serious disorder.
Collapse
Affiliation(s)
- T. Blake Monroe
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ethan J. Anderson
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
50
|
Sellegounder D, Zafari P, Rajabinejad M, Taghadosi M, Kapahi P. Advanced glycation end products (AGEs) and its receptor, RAGE, modulate age-dependent COVID-19 morbidity and mortality. A review and hypothesis. Int Immunopharmacol 2021; 98:107806. [PMID: 34352471 PMCID: PMC8141786 DOI: 10.1016/j.intimp.2021.107806] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus Disease 2019 (COVID-19), caused by the novel virus SARS-CoV-2, is often more severe in older adults. Besides age, other underlying conditions such as obesity, diabetes, high blood pressure, and malignancies, which are also associated with aging, have been considered risk factors for COVID-19 mortality. A rapidly expanding body of evidence has brought up various scenarios for these observations and hyperinflammatory reactions associated with COVID-19 pathogenesis. Advanced glycation end products (AGEs) generated upon glycation of proteins, DNA, or lipids play a crucial role in the pathogenesis of age-related diseases and all of the above-mentioned COVID-19 risk factors. Interestingly, the receptor for AGEs (RAGE) is mainly expressed by type 2 epithelial cells in the alveolar sac, which has a critical role in SARS-CoV-2-associated hyper inflammation and lung injury. Here we discuss our hypothesis that AGEs, through their interaction with RAGE amongst other molecules, modulates COVID-19 pathogenesis and related comorbidities, especially in the elderly.
Collapse
Affiliation(s)
- Durai Sellegounder
- (BuckInstitute for Researchon Aging), (Novato), (CA 94945), (United States)
| | - Parisa Zafari
- (Departmentof Immunology), (School of Medicine), (Mazandaran University of Medical Sciences), (Sari), (Iran)
| | - Misagh Rajabinejad
- (Departmentof Immunology), (School of Medicine), (Mazandaran University of Medical Sciences), (Sari), (Iran); (StudentResearch Committee), (Mazandaran University of Medical Sciences), (Iran)
| | - Mahdi Taghadosi
- (Departmentof Immunology), (School of Medicine), (Kermanshah University of Medical Sciences), (Kermanshah), (Iran).
| | - Pankaj Kapahi
- (BuckInstitute for Researchon Aging), (Novato), (CA 94945), (United States).
| |
Collapse
|