1
|
Rab SO, Zwamel AH, Oghenemaro EF, Chandra M, Kaur I, Rani B, Abbot V, Kumar MR, Ullah MI, Kumar A. Cell death-associated lncRNAs in cancer immunopathogenesis: An exploration of molecular mechanisms and signaling pathways. Exp Cell Res 2025; 446:114439. [PMID: 39947388 DOI: 10.1016/j.yexcr.2025.114439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/07/2024] [Accepted: 02/10/2025] [Indexed: 02/19/2025]
Abstract
Cancer remains one of the foremost causes of mortality worldwide, highlighting the urgent need for novel therapeutic targets due to the insufficient efficacy and adverse side effects associated with existing cancer treatments. Long non-coding RNAs (lncRNAs), defined as RNA transcripts longer than 200 nucleotides, have emerged as pivotal regulators in the initiation and progression of various malignancies. In oncology, programmed cell death (PCD) serves as the primary mechanism for tumor cell elimination, comprising processes such as apoptosis, pyroptosis, autophagy, and ferroptosis. Recent studies have elucidated a substantial relationship between lncRNAs and these PCD pathways, indicating that lncRNAs can modulate the apoptotic and non-apoptotic death mechanisms. This regulation may influence not only the dynamics of cancer progression but also the therapeutic response to clinical interventions. This review delves into the intricate role of lncRNAs within the context of PCD in cancer, unveiling the underlying pathogenic mechanisms while proposing innovative strategies for cancer therapy. Additionally, it discusses the potential therapeutic implications of targeting lncRNAs in PCD and related signaling pathways, aiming to enhance treatment outcomes for patients facing cancer.
Collapse
Affiliation(s)
- Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, PMB 1 Abraka, Delta State, Nigeria
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India.
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Vikrant Abbot
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Aljouf, Saudi Arabia
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia; Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| |
Collapse
|
2
|
Wu Y, Wen X, Xia Y, Yu X, Lou Y. LncRNAs and regulated cell death in tumor cells. Front Oncol 2023; 13:1170336. [PMID: 37313458 PMCID: PMC10258353 DOI: 10.3389/fonc.2023.1170336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
Regulated Cell Death (RCD) is a mode of cell death that occurs through drug or genetic intervention. The regulation of RCDs is one of the significant reasons for the long survival time of tumor cells and poor prognosis of patients. Long non-coding RNAs (lncRNAs) which are involved in the regulation of tumor biological processes, including RCDs occurring on tumor cells, are closely related to tumor progression. In this review, we describe the mechanisms of eight different RCDs which contain apoptosis, necroptosis, pyroptosis, NETosis, entosis, ferroptosis, autosis and cuproptosis. Meanwhile, their respective roles in the tumor are aggregated. In addition, we outline the literature that is related to the regulatory relationships between lncRNAs and RCDs in tumor cells, which is expected to provide new ideas for tumor diagnosis and treatment.
Collapse
|
3
|
Si L, Zhang L, Xing S, Fang P, Tian X, Liu X, Xv X. Curcumin as a therapeutic agent in cancer therapy: Focusing on its modulatory effects on circular RNAs. Phytother Res 2023. [PMID: 37200228 DOI: 10.1002/ptr.7863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023]
Abstract
Curcumin, a natural polyphenol compound, has been identified as an effective therapeutic agent against cancer that exerts its anti-tumor activities by up/downregulating signaling mediators and modulating various cellular processes, including angiogenesis, autophagy, apoptosis, metastasis, and epithelial-mesenchymal transition (EMT). Since almost 98% of genomic transcriptional production is noncoding RNAs in humans, there is evidence that curcumin exerts therapeutic effects through the alterations of noncoding RNAs in various types of cancers. Circular RNAs (circRNAs) are formed by the back-splicing of immature mRNAs and have several functions, including functioning as miRNA sponges. It has been shown that curcumin modulated various circRNAs, including circ-HN1, circ-PRKCA, circPLEKHM3, circZNF83, circFNDC3B, circ_KIAA1199, circRUNX1, circ_0078710, and circ_0056618. The modulation of these circRNAs targeted the expression of mRNAs and modified various signaling pathways and hallmarks of cancer. In this article, we reviewed the pharmacokinetics of curcumin, its anti-cancer activities, as well as the biology and structure of circRNAs. Our main focus was on how curcumin exerts anti-cancer functions by modulating circRNAs and their target mRNAs and pathways.
Collapse
Affiliation(s)
- Lihui Si
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Lina Zhang
- Research and Development Department, Jilin Zhongke Bio-engineering Joint Stock Co., Ltd, Changchun, People's Republic of China
| | - Shaoliang Xing
- Research and Development Department, Jilin Zhongke Bio-engineering Joint Stock Co., Ltd, Changchun, People's Republic of China
| | - Panke Fang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiu Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaoyan Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaohong Xv
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
4
|
Hojjatipour T, Sohani M, Maali A, Rostami S, Azad M. Aberrant DNA Methylation Status and mRNA Expression Level of SMG1 Gene in Chronic Myeloid Leukemia: A Case-Control Study. CELL JOURNAL 2022; 24. [PMID: 36527348 PMCID: PMC9790066 DOI: 10.22074/cellj.2022.8526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
UNLABELLED OObjective: Chronic myeloid leukemia (CML) is a myeloproliferative malignancy with different stages. Aberrant epigenetic modifications, such as DNA methylation, have been introduced as a signature for diverse cancers which also plays a crucial role in CML pathogenesis and development. Suppressor with morphogenetic effect on genitalia (SMG1) gene recently has been brought to the spotlight as a potent tumor suppressor gene that can be suppressed by tumors for further progress. The present study aims to investigate SMG1 status in CML patients. MATERIALS AND METHODS In this case-control study, peripheral blood from 30 patients with different phases of CML [new case (N)=10, complete molecular remission (CMR)=10, blastic phase (BP)=10] and 10 healthy subjects were collected. Methylation status and expression level of SMG1 gene promoter was assessed by methylation-specific polymerase chain reaction (MSP) and quantitative reverse-transcription PCR, respectively. RESULTS MSP results of SMG1 gene promotor in the new case group were methylated (60% methylated, 30% hemimethylated and 10% unmethylated). All CMR and control group patients were unmethylated in the SMG1 gene promoter. In the BP group, methylated SMG1 promoter was seen (50% of patients had a methylated status and 50% had hemimethylated status). In comparison with the healthy subjects, expression level of SMG1 in the new case group was decreased (P<0.01); in the CMR group and BP-CML groups, it was increased (P<0.05). No significant correlation between patients' hematological features and SMG1 methylation was seen. CONCLUSION Our results demonstrated that aberrant methylation of SMG1 occurred in CML patients and it had a significant association with SMG1 expression. SMG1 gene promoter showed diverse methylated status and subsequent expression levels in different phases of CML. These findings suggested possible participation of SMG1 suppression in the CML pathogenesis.
Collapse
Affiliation(s)
- Tahereh Hojjatipour
- Department of Hematology and Blood Transfusion, Students Research Center, School of Allied Medicine, Tehran University of Medical
Sciences, Tehran, Iran
| | - Mahsa Sohani
- Department of Hematology and Blood Transfusion, Students Research Center, School of Allied Medicine, Tehran University of Medical
Sciences, Tehran, Iran
| | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, School of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shahrbano Rostami
- Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran,P.O.Box: 3419915315Hematologic Malignancies Research CenterTehran University of Medical SciencesTehranIranP.O.Box: 1416634793Department of Medical Laboratory SciencesSchool of ParamedicineQazvin University of Medical SciencesQazvinIran
Emails:,
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, School of Paramedicine, Qazvin University of Medical Sciences, Qazvin, Iran,P.O.Box: 3419915315Hematologic Malignancies Research CenterTehran University of Medical SciencesTehranIranP.O.Box: 1416634793Department of Medical Laboratory SciencesSchool of ParamedicineQazvin University of Medical SciencesQazvinIran
Emails:,
| |
Collapse
|
5
|
Bonczek O, Wang L, Gnanasundram SV, Chen S, Haronikova L, Zavadil-Kokas F, Vojtesek B. DNA and RNA Binding Proteins: From Motifs to Roles in Cancer. Int J Mol Sci 2022; 23:ijms23169329. [PMID: 36012592 PMCID: PMC9408909 DOI: 10.3390/ijms23169329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
DNA and RNA binding proteins (DRBPs) are a broad class of molecules that regulate numerous cellular processes across all living organisms, creating intricate dynamic multilevel networks to control nucleotide metabolism and gene expression. These interactions are highly regulated, and dysregulation contributes to the development of a variety of diseases, including cancer. An increasing number of proteins with DNA and/or RNA binding activities have been identified in recent years, and it is important to understand how their activities are related to the molecular mechanisms of cancer. In addition, many of these proteins have overlapping functions, and it is therefore essential to analyze not only the loss of function of individual factors, but also to group abnormalities into specific types of activities in regard to particular cancer types. In this review, we summarize the classes of DNA-binding, RNA-binding, and DRBPs, drawing particular attention to the similarities and differences between these protein classes. We also perform a cross-search analysis of relevant protein databases, together with our own pipeline, to identify DRBPs involved in cancer. We discuss the most common DRBPs and how they are related to specific cancers, reviewing their biochemical, molecular biological, and cellular properties to highlight their functions and potential as targets for treatment.
Collapse
Affiliation(s)
- Ondrej Bonczek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
- Correspondence: (O.B.); (B.V.)
| | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | - Lucia Haronikova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Correspondence: (O.B.); (B.V.)
| |
Collapse
|
6
|
Karami N, Ahmadi MH, Mohammadi S, Maali A, Alizadeh A, Pishkhan Dibazar S, Azad M. Methylation and Expression Status of The CpG-Island of SMG1 Promoter in Acute Myeloid Leukemia: A Follow-Up Study in Patients. CELL JOURNAL 2022; 24:163-169. [PMID: 35674018 PMCID: PMC9124448 DOI: 10.22074/cellj.2022.7798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/23/2021] [Indexed: 11/21/2022]
Abstract
Objective Aberrant alterations in DNA methylation are known as one of the hallmarks of oncogenesis and play a vital role in the progression of acute myeloid leukemia (AML). SMG1 is a member of the Phosphoinositide 3-kinases family, acting as a tumor suppressor gene. The aim of this study was the evaluation of the expression level and methylation status of SMG1 in AML. Materials and Methods In this follow-up study on AML patients admitted to Shariati Hospital, Tehran, Iran, the methylation status of SMG1 [performed by methylation-specific polymerase chain reaction (PCR)] and its expression level (performed by qRT-PCR) were evaluated in three phases: newly diagnosed, under treatment and complete remission. The correlation of the methylation status of SMG1, its expression level, and clinical/paraclinical data was analyzed by SPSS ver.25. Results This study on 18 patients and five control individuals showed that the CpG-islands of the SMG1 promoter in newly diagnosed cases is hypomethylated compared to the normal group (P=0.002) The fold change of SMG1 expression levels in new cases is 0.464 ± 0.468, while the fold change of SMG1 expression levels in under-treatment and in-remission patients is 0.973 ± 1.159 and 0.685 ± 0.885, respectively. In under-treatment patients, white blood cell (WBC) count decreases 114176.36 cell/μl with each unit of increase in fold change of SMG1 (P<0.0001), and Hb unit increases 2.062 g/dl with each unit of increase in fold change (P<0.0001). Also, in the remission phase, the Hb unit increases 1.395 g/dl with each unit increase in fold change (P=0.019). Conclusion The robust results of our study suggest that the methylation and expression of have a high impact on the pathogenesis of AML. Also, the methylation and expression of SMG1 can play a prognostic role in AML.
Collapse
Affiliation(s)
- Neda Karami
- Department of Medicine Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Mohammad Hossein Ahmadi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Saeed Mohammadi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Shariati Hospital of Tehran, Tehran, Iran
| | - Amirhosein Maali
- Department of Medicine Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Science, Qazvin, Iran,Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Ahad Alizadeh
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical
Sciences, Qazvin, Iran
| | | | - Mehdi Azad
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran ,P.O.Box: 34197-59811Department of Medical Laboratory SciencesFaculty of Allied MedicineQazvin University of
Medical SciencesQazvinIran
| |
Collapse
|
7
|
Bagaria J, Kim KO, Bagyinszky E, An SSA, Baek JH. Discriminating Potential Genetic Markers for Complete Response and Non-Complete Response Patients to Neoadjuvant Chemotherapy with Locally Advanced Rectal Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074008. [PMID: 35409691 PMCID: PMC8997875 DOI: 10.3390/ijerph19074008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
Background: Neoadjuvant chemoradiotherapy (nCRT) prior to surgery is considered standard therapy for locally advanced rectal cancer. Unfortunately, most patients with rectal cancer are resistant to radiotherapy. This might be a genetic cause. The role of certain rectal cancer-causing genes has not been completely elucidated. This study aims to investigate the genes responsible for locally advanced rectal cancer patients not reacting to radiotherapy. Methods: Whole exome sequencing of the DNA samples was performed on the samples. Bioinformatic analysis on the subjects was established. Individual genetic information was screened to identify differently expressed genes that more frequently appeared in non-complete response (NCR) compared to complete response (CR) patients after nCRT. All variations were verified by Sanger sequencing. Results: Genotyping information and pathway analyses of the samples indicated genes such as FLCN, CALML5, and ANTXR1 to be commonly mutated in CR group, whereas genes such as GALNTL14, CNKSR1, ACD, and CUL3 were more commonly mutated in the NCR group. Chi-square test revealed some significant variants (<0.05) such as rs3744124 (FLCN), rs28365986 (ANTXR1), rs10904516 (CALML5), rs3738952 (CUL3), rs13394 and rs2293013 (PIH1D1), rs2274531 (GPA33), rs4963048 (BRSK2), rs17883366 (IL3RA), rs2297575 (PSMD5), rs2288101 (GALNT14), and rs11954652 (DCTN4). Conclusion: Identifying an array of genes that separate NCRs from CRs would lead to finding genetic biomarkers for early detection of rectal cancer patients that are resistant to nCRT. A further investigation to validate the significance of genetic biomarkers to segregate NCRs from CRs should be performed with a larger CRC dataset. Protein expression levels, as well as transcriptomic analysis, would also help us understand the mechanism of how these genes could play a role in preventing radiation therapy to patients. This would be essential to prevent redundant radiation therapy.
Collapse
Affiliation(s)
- Jaya Bagaria
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Korea; (J.B.); (E.B.)
| | - Kyung-Ok Kim
- Gachon Medical Research Institute, Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Eva Bagyinszky
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Korea; (J.B.); (E.B.)
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Korea; (J.B.); (E.B.)
- Correspondence: (S.S.A.A.); (J.-H.B.); Tel.: +82-10-4344-9633 (S.S.A.A.); +82-10-5248-6656 (J.-H.B.)
| | - Jeong-Heum Baek
- Division of Colon and Rectal Surgery, Department of Surgery, Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: (S.S.A.A.); (J.-H.B.); Tel.: +82-10-4344-9633 (S.S.A.A.); +82-10-5248-6656 (J.-H.B.)
| |
Collapse
|
8
|
Sun S, Fang H. Curcumin inhibits ovarian cancer progression by regulating circ-PLEKHM3/miR-320a/SMG1 axis. J Ovarian Res 2021; 14:158. [PMID: 34784955 PMCID: PMC8594156 DOI: 10.1186/s13048-021-00916-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Curcumin has a potential therapeutic role in ovarian cancer. However, whether curcumin plays anti-cancer role in ovarian cancer by mediating the circular RNA (circRNA)/microRNA (miRNA)/mRNA network is still unclear. METHODS The expression of circ-PLEKHM3, miR-320a, and suppressor of morphogenesis in genitalia 1 (SMG1) was detected via qRT-PCR. Cell viability, colony-formation ability and apoptosis were analyzed via cell counting kit-8 assay, colony formation analysis, and flow cytometry. Protein expression was measured using western blot. The in vivo experiments were performed using a xenograft model. Target association was evaluated via dual-luciferase reporter analysis and RIP assay. RESULTS Curcumin suppressed ovarian cancer cell proliferation and promoted apoptosis. Circ-PLEKHM3 was downregulated in ovarian cancer, and its expression could be promoted by curcumin treatment. Circ-PLEKHM3 overexpression exacerbated the effect of curcumin on ovarian cancer cell proliferation and apoptosis, as well as anti-tumor effect. MiR-320a was targeted by circ-PLEKHM3. The inhibition effect of circ-PLEKHM3 overexpression on cell proliferation and the enhancing effect on cell apoptosis could be reversed by miR-320a mimic. SMG1 was targeted by miR-320a, and its knockdown also reversed the regulation of miR-320a inhibitor on the proliferation and apoptosis of ovarian cancer cells. In addition, circ-PLEKHM3 could upregulate SMG1 expression via sponging miR-320a. CONCLUSION Curcumin restrained proliferation and facilitated apoptosis in ovarian cancer by regulating the circ-PLEKHM3/miR-320a/SMG1 axis.
Collapse
Affiliation(s)
- Sifan Sun
- Department of Rehabilitation, The Second Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Hailiang Fang
- Department of Traditional Chinese Medicine, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning Province, China.
| |
Collapse
|
9
|
Wang F, Zhang Y, Zhou X, Chen X, Xiang J, Fan M, Yu Y, Cai Y, Wu H, Huang S, He N, Hu Z, Ding G, Jin X. Circular RNA CircPPP1CB Suppresses Tumorigenesis by Interacting With the MiR-1307-3p/SMG1 Axis in Human Bladder Cancer. Front Cell Dev Biol 2021; 9:704683. [PMID: 34595165 PMCID: PMC8476764 DOI: 10.3389/fcell.2021.704683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Circular RNA (circRNA) is a newly discovered endogenous non-coding RNA (ncRNA), which is characterized with a closed circular structure. A growing body of evidence has verified the vital roles of circRNAs in human cancer. In this research, we selected circPPP1CB as a study object by circRNA sequencing and quantitative real-time PCR (qRT-PCR) validation in human bladder cancer (BC). CircPPP1CB is downregulated in BC and is negatively correlated with clinical stages and histological grades. Functionally, circPPP1CB modulated cell growth, metastasis, and epithelial-to-mesenchymal transition (EMT) process in vitro and in vivo. Mechanically, we performed various experiments to verify the circPPP1CB/miR-1307-3p/SMG1 regulatory axis. Taken together, our results demonstrated that circPPP1CB participates in tumor growth, metastasis, and EMT process by interacting with the miR-1307-3p/SMG1 axis, and that circPPP1CB might be a novel therapeutic target and diagnostic biomarker in human BC.
Collapse
Affiliation(s)
- Feifan Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejian Zhou
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianwu Chen
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiayong Xiang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengjing Fan
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanlan Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueshu Cai
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongshen Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shihan Huang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning He
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenghui Hu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoqing Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodong Jin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Lau CI, Rowell J, Yanez DC, Solanki A, Ross S, Ono M, Crompton T. The pioneer transcription factors Foxa1 and Foxa2 regulate alternative RNA splicing during thymocyte positive selection. Development 2021; 148:dev199754. [PMID: 34323272 PMCID: PMC8353164 DOI: 10.1242/dev.199754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 02/02/2023]
Abstract
During positive selection at the transition from CD4+CD8+ double-positive (DP) to single-positive (SP) thymocyte, TCR signalling results in appropriate MHC restriction and signals for survival and progression. We show that the pioneer transcription factors Foxa1 and Foxa2 are required to regulate RNA splicing during positive selection of mouse T cells and that Foxa1 and Foxa2 have overlapping/compensatory roles. Conditional deletion of both Foxa1 and Foxa2 from DP thymocytes reduced positive selection and development of CD4SP, CD8SP and peripheral naïve CD4+ T cells. Foxa1 and Foxa2 regulated the expression of many genes encoding splicing factors and regulators, including Mbnl1, H1f0, Sf3b1, Hnrnpa1, Rnpc3, Prpf4b, Prpf40b and Snrpd3. Within the positively selecting CD69+DP cells, alternative RNA splicing was dysregulated in the double Foxa1/Foxa2 conditional knockout, leading to >850 differentially used exons. Many genes important for this stage of T-cell development (Ikzf1-3, Ptprc, Stat5a, Stat5b, Cd28, Tcf7) and splicing factors (Hnrnpab, Hnrnpa2b1, Hnrnpu, Hnrnpul1, Prpf8) showed multiple differentially used exons. Thus, Foxa1 and Foxa2 are required during positive selection to regulate alternative splicing of genes essential for T-cell development, and, by also regulating splicing of splicing factors, they exert widespread control of alternative splicing.
Collapse
Affiliation(s)
- Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Jasmine Rowell
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Diana C. Yanez
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Anisha Solanki
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Susan Ross
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
11
|
Li L, Lin X, Xu P, Jiao Y, Fu P. LncRNA GAS5
sponges
miR
‐362‐5p to promote sensitivity of thyroid cancer cells to
131
I
by upregulating
SMG1. IUBMB Life 2020; 72:2420-2431. [PMID: 32856394 DOI: 10.1002/iub.2365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Li Li
- Department of Nuclear Medicine the First Affiliated Hospital of Harbin Medical University Harbin Heilongjiang China
| | - Xiaozong Lin
- Department of Orthopedics the Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang China
| | - Peng Xu
- Department of Nuclear Medicine the First Affiliated Hospital of Harbin Medical University Harbin Heilongjiang China
| | - Yuying Jiao
- Department of Nuclear Medicine the First Affiliated Hospital of Harbin Medical University Harbin Heilongjiang China
| | - Peng Fu
- Department of Nuclear Medicine the First Affiliated Hospital of Harbin Medical University Harbin Heilongjiang China
| |
Collapse
|
12
|
Shi Y, Sun CF, Ge WH, Du YP, Hu NB. Circular RNA VMA21 ameliorates sepsis-associated acute kidney injury by regulating miR-9-3p/SMG1/inflammation axis and oxidative stress. J Cell Mol Med 2020; 24:11397-11408. [PMID: 32827242 PMCID: PMC7576305 DOI: 10.1111/jcmm.15741] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/06/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence suggests that circular RNAs have the abilities to regulate gene expression during the progression of sepsis‐associated acute kidney injury. Circular RNA VMA21 (circVMA21), a recent identified circular RNA, could reduce apoptosis to alleviate intervertebral disc degeneration in rats and protect WI‐38 cells from lipopolysaccharide‐induced injury. However, the role of circVMA21 in sepsis‐associated acute kidney injury (sepsis‐associated AKI) is unknown. In this study, we first demonstrated that circVMA21 alleviated sepsis‐associated AKI by reducing apoptosis and inflammation in rats and HK‐2 cells. Additionally, to explore the molecule mechanism underlying the amelioration, after the bioinformatics analysis, we confirmed that miR‐9‐3p directly bound to circVMA21 by luciferase and RNA immunoprecipitation assay, and the effector protein of miR‐9‐3p was SMG1. Furthermore, the oxidative stress caused by sepsis‐associated AKI was down‐regulated by circVMA21. In conclusion, circVMA21 plays an important role in the regulating sepsis‐associated AKI via adjusting miR‐9‐39/SMG1/inflammation axis and oxidative stress.
Collapse
Affiliation(s)
- Yan Shi
- Department of Emergency, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Chuan-Fu Sun
- Department of Emergency, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Wen-Han Ge
- Department of Emergency, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Ye-Ping Du
- Department of Emergency, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Nan-Bin Hu
- Department of Intensive Care Unit, Lian Shui People's Hospital, Lian Shui, Jiangsu, China
| |
Collapse
|
13
|
Zeng S, Liu S, Feng J, Gao J, Xue F. MicroRNA-32 promotes ovarian cancer cell proliferation and motility by targeting SMG1. Oncol Lett 2020; 20:733-741. [PMID: 32565999 PMCID: PMC7285996 DOI: 10.3892/ol.2020.11624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy and one of the leading causes of cancer-related deaths among women. Metastasis is the main cause of poor prognosis in OC. MicroRNA (miRNA/miR) has been shown to play an important role in tumorigenesis and metastasis in various cancer types by affecting the expression of its targets. In the present study, the role of miR-32 (miR-32-5p) in OC was explored. Reverse transcription-quantitative PCR results showed that miR-32 expression was significantly upregulated in both OC tissues and cell lines. Inhibition of miR-32 by transfection with miR-32 inhibitor in OC cells markedly suppressed cell proliferation, migration and invasion. In addition, a luciferase assay showed that suppressor of morphogenesis in genitalia 1 (SMG1) is a direct target of miR-32, and interference in SMG1 expression with transfection of SMG1 small hairpin RNA restored miR-32-mediated OC cell proliferation, migration and invasion. Taken together, these results indicate that miR-32 may promote OC cell growth and motility by targeting SMG1. The data of the present study suggest that miR-32 may serve as a potential therapeutic target for OC treatment in the future.
Collapse
Affiliation(s)
- Saitian Zeng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Department of Gynecology and Obstetrics, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Shikai Liu
- Department of Gynecology and Obstetrics, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Jing Feng
- Department of Gynecology and Obstetrics, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Jiefan Gao
- Department of Gynecology and Obstetrics, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
14
|
Keenan MM, Huang L, Jordan NJ, Wong E, Cheng Y, Valley HC, Mahiou J, Liang F, Bihler H, Mense M, Guo S, Monia BP. Nonsense-mediated RNA Decay Pathway Inhibition Restores Expression and Function of W1282X CFTR. Am J Respir Cell Mol Biol 2020; 61:290-300. [PMID: 30836009 DOI: 10.1165/rcmb.2018-0316oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The recessive genetic disease cystic fibrosis (CF) is caused by loss-of-function mutations in the CFTR (CF transmembrane conductance regulator) gene. Approximately 10% of patients with CF have at least one allele with a nonsense mutation in CFTR. Nonsense mutations generate premature termination codons that can subject mRNA transcripts to rapid degradation through the nonsense-mediated mRNA decay (NMD) pathway. Currently, there are no approved therapies that specifically target nonsense mutations in CFTR. Here, we identified antisense oligonucleotides (ASOs) that target the NMD factor SMG1 to inhibit the NMD pathway, and determined their effects on the W1282X CFTR mutation. First, we developed and validated two in vitro models of the W1282X CFTR mutation. Next, we treated these cells with antisense oligonucleotides to inhibit NMD and measured the effects of these treatments on W1282X expression and function. SMG1-ASO-mediated NMD inhibition upregulated the RNA, protein, and surface-localized protein expression of the truncated W1282X gene product. Additionally, these ASOs increased the CFTR chloride channel function in cells homozygous for the W1282X mutation. Our approach suggests a new therapeutic strategy for patients harboring nonsense mutations and may be beneficial as a single agent in patients with CF and the W1282X mutation.
Collapse
Affiliation(s)
| | - Lulu Huang
- Ionis Pharmaceuticals, Carlsbad, California; and
| | - Nikole J Jordan
- Cystic Fibrosis Foundation Therapeutics Lab, Cystic Fibrosis Foundation, Lexington, Massachusetts
| | - Eric Wong
- Cystic Fibrosis Foundation Therapeutics Lab, Cystic Fibrosis Foundation, Lexington, Massachusetts
| | - Yi Cheng
- Cystic Fibrosis Foundation Therapeutics Lab, Cystic Fibrosis Foundation, Lexington, Massachusetts
| | - Hillary C Valley
- Cystic Fibrosis Foundation Therapeutics Lab, Cystic Fibrosis Foundation, Lexington, Massachusetts
| | - Jerome Mahiou
- Cystic Fibrosis Foundation Therapeutics Lab, Cystic Fibrosis Foundation, Lexington, Massachusetts
| | - Feng Liang
- Cystic Fibrosis Foundation Therapeutics Lab, Cystic Fibrosis Foundation, Lexington, Massachusetts
| | - Hermann Bihler
- Cystic Fibrosis Foundation Therapeutics Lab, Cystic Fibrosis Foundation, Lexington, Massachusetts
| | - Martin Mense
- Cystic Fibrosis Foundation Therapeutics Lab, Cystic Fibrosis Foundation, Lexington, Massachusetts
| | - Shuling Guo
- Ionis Pharmaceuticals, Carlsbad, California; and
| | | |
Collapse
|
15
|
Wang J, He N, Wang R, Tian T, Han F, Zhong C, Zhang C, Hua M, Ji C, Ma D. Analysis of TET2 and EZH2 gene functions in chromosome instability in acute myeloid leukemia. Sci Rep 2020; 10:2706. [PMID: 32066746 PMCID: PMC7026035 DOI: 10.1038/s41598-020-59365-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022] Open
Abstract
TET2 and EZH2 play important roles in the epigenetic regulation in many cancers. However, their specific roles in acute myeloid leukemia (AML) pathogenesis remain unknown. Here, the expression, methylation or mutation of EZH2 and TET2 was determined and further correlated with the levels of the chromosome instability (CIN) genes MAD2 and CDC20. We down-regulated EZH2 and TET2 in AML cell lines and assessed the effect on CIN using fluorescence in situ hybridization (FISH). Our results showed that TET2, EZH2, MAD2 and CDC20 were aberrantly expressed in AML patients. The expression level of MAD2 or CDC20 was positively correlated with that of TET2 or EZH2. Hypermethylation of the TET2 gene down-regulated its transcription. Down-regulation of EZH2 or TET2 expression inhibited apoptosis, affected MAD2 and CDC20 expression, and promoted CIN in AML cells. Decitabine treatment restored TET2 methylation and EZH2 transcription and ameliorated CIN in AML. Therefore, TET2 and EZH2 play a tumor-inhibiting role in AML that affects CIN via MAD2 and CDC20.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China.,Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, P.R. China
| | - Na He
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Tian Tian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fengjiao Han
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Chaoqin Zhong
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Chen Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Mingqiang Hua
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|
16
|
Mai S, Xiao R, Shi L, Zhou X, Yang T, Zhang M, Weng N, Zhao X, Wang R, Liu J, Sun R, Qin H, Wang H. MicroRNA-18a promotes cancer progression through SMG1 suppression and mTOR pathway activation in nasopharyngeal carcinoma. Cell Death Dis 2019; 10:819. [PMID: 31659158 PMCID: PMC6817863 DOI: 10.1038/s41419-019-2060-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/17/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
miR-18a has been reported to be upregulated in nasopharyngeal carcinoma (NPC) tissues by microarray assays. However, the roles and the underlying mechanisms of miR-18a in NPC remain poorly understood. Here we demonstrated by real-time RT-PCR that miR-18a expression is upregulated in NPC tissues, and positively correlated with tumor size and TNM stage. Moreover, miR-18a expression could be upregulated by NF-κB activation or Epstein-Barr virus encoded latent membrane protein 1 expression. The ectopic expression of miR-18a promoted NPC cell proliferation, migration and invasion, while the repression of miR-18a had opposite effects. Candidate genes under regulation by miR-18a were screened out through a whole-genome microarray assay, further identified by a reporter assay and verified in clinical samples. SMG1, a member of the phosphoinositide 3-kinase-related kinases family and an mTOR antagonist, was identified as functional target of miR-18a. Our results confirmed that miR-18a exerts its oncogenic role through suppression of SMG1 and activation of mTOR pathway in NPC cells. Importantly, in vivo xenograft tumor growth in nude mice was effectively inhibited by intratumor injection of miR-18a antagomir. Our data support an oncogenic role of miR-18a through a novel miR-18a/SMG1/mTOR axis and suggest that the antitumor effects of antagomir-18a may make it suitable for NPC therapy.
Collapse
Affiliation(s)
- ShiJuan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - RuoWen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lu Shi
- Department of thoracic oncology, the cancer center of the fifth affiliated hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - XiaoMin Zhou
- ZhouKou Hospital of Traditional Chinese Medicine, Zhoukou, 466000, China
| | - Te Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - MeiYin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - NuoQing Weng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - XinGe Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - RuiQi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ji Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - HaiDe Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - HuiYun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
17
|
Ho U, Luff J, James A, Lee CS, Quek H, Lai HC, Apte S, Lim YC, Lavin MF, Roberts TL. SMG1 heterozygosity exacerbates haematopoietic cancer development in Atm null mice by increasing persistent DNA damage and oxidative stress. J Cell Mol Med 2019; 23:8151-8160. [PMID: 31565865 PMCID: PMC6850945 DOI: 10.1111/jcmm.14685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/25/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022] Open
Abstract
Suppressor of morphogenesis in genitalia 1 (SMG1) and ataxia telangiectasia mutated (ATM) are members of the PI3‐kinase like–kinase (PIKK) family of proteins. ATM is a well‐established tumour suppressor. Loss of one or both alleles of ATM results in an increased risk of cancer development, particularly haematopoietic cancer and breast cancer in both humans and mouse models. In mice, total loss of SMG1 is embryonic lethal and loss of a single allele results in an increased rate of cancer development, particularly haematopoietic cancers and lung cancer. In this study, we generated mice deficient in Atm and lacking one allele of Smg1, Atm−/−Smg1gt/+ mice. These mice developed cancers more rapidly than either of the parental genotypes, and all cancers were haematopoietic in origin. The combined loss of Smg1 and Atm resulted in a higher level of basal DNA damage and oxidative stress in tissues than loss of either gene alone. Furthermore, Atm−/−Smg1gt/+ mice displayed increased cytokine levels in haematopoietic tissues compared with wild‐type animals indicating the development of low‐level inflammation and a pro‐tumour microenvironment. Overall, our data demonstrated that combined loss of Atm expression and decreased Smg1 expression increases haematopoietic cancer development.
Collapse
Affiliation(s)
- Uda Ho
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, Qld, Australia
| | - John Luff
- UQCCR, University of Queensland, Brisbane, Qld, Australia
| | - Alexander James
- The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia
| | - Cheok Soon Lee
- The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia.,South West Sydney Clinical School, UNSW Sydney, Liverpool, NSW, Australia.,Department of Anatomical Pathology, Molecular Pathology Laboratory, Liverpool Hospital, Liverpool, NSW, Australia
| | - Hazel Quek
- UQCCR, University of Queensland, Brisbane, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Hui-Chi Lai
- The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia.,South West Sydney Clinical School, UNSW Sydney, Liverpool, NSW, Australia
| | - Simon Apte
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Yi Chieh Lim
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia.,Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Martin F Lavin
- UQCCR, University of Queensland, Brisbane, Qld, Australia
| | - Tara L Roberts
- UQCCR, University of Queensland, Brisbane, Qld, Australia.,The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia.,South West Sydney Clinical School, UNSW Sydney, Liverpool, NSW, Australia
| |
Collapse
|
18
|
Yin Z, Ma T, Yan J, Shi N, Zhang C, Lu X, Hou B, Jian Z. LncRNA MAGI2-AS3 inhibits hepatocellular carcinoma cell proliferation and migration by targeting the miR-374b-5p/SMG1 signaling pathway. J Cell Physiol 2019; 234:18825-18836. [PMID: 30924168 DOI: 10.1002/jcp.28521] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been proven to play critical roles in cancer progression. Recently, lncRNA MAGI2-AS3 has been revealed to be a tumor suppressor and inhibit cell growth by targeting the Fas/FasL signalling pathway in breast cancer. However, the role and underlying mechanism of MAGI2-AS3 in hepatocellular carcinoma (HCC) remain largely unknown. In the current study, we found that MAGI2-AS3 expression is downregulated in HCC tissues and closely associated with some clinical characteristics (tumor size, lymph node metastasis, and TNM stage) and poor overall survival. Overexpression of MAGI2-AS3 inhibits HCC cell proliferation and migration in vitro, while impedes tumor growth in vivo accordantly. In addition, our data suggest that MAGI2-AS3 could function as an endogenous sponge of miR-374b-5p by directly binding to it and suppressing its expression. Furthermore, miR-374b-5p upregulation could restore the inhibitory effect of MAGI2-AS3 on HCC cells processes. Moreover, suppressor with morphogenetic effect on genitalia family member 1 (SMG1) is positively regulated by MAGI2-AS3 via absorbing miR-374b-5p in HCC cells. More important, SMG1 knockdown reverses the suppressive function of MAGI2-AS3 in HCC cell processes. Taken together, we reveal a functional MAGI2-AS3/miR-374b-5p/SMG1 axis that suppresses HCC progression, potently suggesting a new road for HCC treatment.
Collapse
Affiliation(s)
- Zi Yin
- General Surgery Department, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China
| | - Tingting Ma
- Department of Gynaecology and Obstetrics, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Jinhai Yan
- Pathology Department, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China
| | - Ning Shi
- General Surgery Department, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China
| | - Chuanzhao Zhang
- General Surgery Department, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China
| | - Xin Lu
- General Surgery Department, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China
| | - Baohua Hou
- General Surgery Department, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China
| | - Zhixiang Jian
- General Surgery Department, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Brenner AK, Aasebø E, Hernandez-Valladares M, Selheim F, Berven F, Grønningsæter IS, Bartaula-Brevik S, Bruserud Ø. The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome. Cancers (Basel) 2019; 11:cancers11010073. [PMID: 30634713 PMCID: PMC6356272 DOI: 10.3390/cancers11010073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy, which is highly heterogeneous with regard to chemosensitivity and biological features. The AML cell population is organized in a hierarchy that is reflected in the in vitro growth characteristics, with only a minority of cells being able to proliferate for more than two weeks. In this study, we investigated the ability of AML stem cells to survive and proliferate in suspension cultures in the presence of exogenous mediators but without supporting non-leukemic cells. We saw that a high number of maintained stem cells (i.e., a large number of clonogenic cells after five weeks of culture) was associated with decreased overall survival for patients receiving intensive chemotherapy; this prognostic impact was also detected in the multivariate/adjusted analysis. Furthermore, the patients with many clonogenic cells presented more frequently with mutations in transcription-related genes, and also showed a higher abundance of proteins involved in transcription at the time of diagnosis. In conclusion, the growth characteristics of the long-term proliferating leukemic stem cells seem to have an independent prognostic impact in human AML, and these characteristics appear to be reflected by the mutational landscape and the proteome of the patients at the time of diagnosis.
Collapse
Affiliation(s)
- Annette K Brenner
- Department of Medicine, Haukeland University Hospital; 5021 Bergen, Norwa.
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Elise Aasebø
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Maria Hernandez-Valladares
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Frode Selheim
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Frode Berven
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Ida-Sofie Grønningsæter
- Department of Medicine, Haukeland University Hospital; 5021 Bergen, Norwa.
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Sushma Bartaula-Brevik
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Øystein Bruserud
- Department of Medicine, Haukeland University Hospital; 5021 Bergen, Norwa.
- Section for Hematology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|
20
|
Duggimpudi S, Kloetgen A, Maney SK, Münch PC, Hezaveh K, Shaykhalishahi H, Hoyer W, McHardy AC, Lang PA, Borkhardt A, Hoell JI. Transcriptome-wide analysis uncovers the targets of the RNA-binding protein MSI2 and effects of MSI2's RNA-binding activity on IL-6 signaling. J Biol Chem 2018; 293:15359-15369. [PMID: 30126842 DOI: 10.1074/jbc.ra118.002243] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/23/2018] [Indexed: 12/14/2022] Open
Abstract
The RNA-binding protein Musashi 2 (MSI2) has emerged as an important regulator in cancer initiation, progression, and drug resistance. Translocations and deregulation of the MSI2 gene are diagnostic of certain cancers, including chronic myeloid leukemia (CML) with translocation t(7;17), acute myeloid leukemia (AML) with translocation t(10;17), and some cases of B-precursor acute lymphoblastic leukemia (pB-ALL). To better understand the function of MSI2 in leukemia, the mRNA targets that are bound and regulated by MSI2 and their MSI2-binding motifs need to be identified. To this end, using photoactivatable ribonucleoside cross-linking and immunoprecipitation (PAR-CLIP) and the multiple EM for motif elicitation (MEME) analysis tool, here we identified MSI2's mRNA targets and the consensus RNA-recognition element (RRE) motif recognized by MSI2 (UUAG). Of note, MSI2 knockdown altered the expression of several genes with roles in eukaryotic initiation factor 2 (eIF2), hepatocyte growth factor (HGF), and epidermal growth factor (EGF) signaling pathways. We also show that MSI2 regulates classic interleukin-6 (IL-6) signaling by promoting the degradation of the mRNA of IL-6 signal transducer (IL6ST or GP130), which, in turn, affected the phosphorylation statuses of signal transducer and activator of transcription 3 (STAT3) and the mitogen-activated protein kinase ERK. In summary, we have identified multiple MSI2-regulated mRNAs and provided evidence that MSI2 controls IL6ST activity that control oncogenic signaling networks. Our findings may help inform strategies for unraveling the role of MSI2 in leukemia to pave the way for the development of targeted therapies.
Collapse
Affiliation(s)
- Sujitha Duggimpudi
- From the Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Andreas Kloetgen
- From the Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany.,Department of Algorithmic Bioinformatics, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Computational Biology of Infection Research, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany, and
| | - Sathish Kumar Maney
- Department of Molecular Medicine II, Heinrich Heine University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Philipp C Münch
- Department of Algorithmic Bioinformatics, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Computational Biology of Infection Research, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany, and
| | - Kebria Hezaveh
- From the Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Hamed Shaykhalishahi
- Institute of Physical Biology, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institute of Physical Biology, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Alice C McHardy
- Department of Algorithmic Bioinformatics, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Computational Biology of Infection Research, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany, and
| | - Philipp A Lang
- Department of Molecular Medicine II, Heinrich Heine University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Arndt Borkhardt
- From the Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jessica I Hoell
- From the Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany,
| |
Collapse
|
21
|
Zhang X, Peng Y, Huang Y, Yang M, Yan R, Zhao Y, Cheng Y, Liu X, Deng S, Feng X, Lin H, Yu H, Chen S, Zhao Z, Li S, Li K, Wang L, Wei Y, He Z, Fan X, Meltzer SJ, Li S, Jin Z. SMG-1 inhibition by miR-192/-215 causes epithelial-mesenchymal transition in gastric carcinogenesis via activation of Wnt signaling. Cancer Med 2017; 7:146-156. [PMID: 29239144 PMCID: PMC5773975 DOI: 10.1002/cam4.1237] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/20/2017] [Indexed: 12/18/2022] Open
Abstract
SMG‐1,a member of the phosphoinositide kinase‐like kinase family, functioned as a tumor suppressor gene. However, the role of SMG‐1 in GC remain uncharacterized. In this study, regulation of SMG‐1 by miR‐192 and‐215, along with the biological effects of this modulation, were studied in GC. We used gene microarrays to screening and luciferase reporter assays were to verify the potential targets of miR‐192 and‐215. Tissue microarrays analyses were applied to measure the levels of SMG‐1 in GC tissues. Western blot assays were used to assess the signaling pathway of SMG‐1 regulated by miR‐192 and‐215 in GC. SMG‐1 was significantly downregulated in GC tissues.The proliferative and invasive properties of GC cells were decreased by inhibition of miR‐192 and‐215, whereas an SMG‐1siRNA rescued the inhibitory effects. Finally, SMG‐1 inhibition by miR‐192 and‐215 primed Wnt signaling and induced EMT. Wnt signaling pathway proteins were decreased markedly by inhibitors of miR‐192 and‐215, while SMG‐1 siRNA reversed the inhibition apparently. Meanwhile, miR‐192 and‐215 inhitibtors increased E‐cadherin expression and decreased N‐cadherin and cotransfection of SMG‐1 siRNA reversed these effects. In summary, these findings illustrate that SMG‐1 is suppressed by miR‐192 and‐215 and functions as a tumor suppressor in GC by inactivating Wnt signaling and suppressing EMT.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China.,Shenzhen Key Laboratory of Micromolecule Innovatal Drugs, Shenzhen Key Laboratory of translational Medicine of Tumor, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong, China
| | - Yin Peng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China.,Department of Pathology, Wuhan University School of Basic Medical Sciences, Hubei, China
| | - Yong Huang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Mengting Yang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Ruibin Yan
- Laboratory of Chemical Genomics, The Shenzhen Graduate School of Peking University, Shenzhen, Guangdong, China
| | - Yanqiu Zhao
- Laboratory of Chemical Genomics, The Shenzhen Graduate School of Peking University, Shenzhen, Guangdong, China
| | - Yulan Cheng
- Department of Medicine/GI Division, Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Xi Liu
- Department of Medicine/GI Division, Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Shiqi Deng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Xianling Feng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Huijuan Lin
- Department of Pathology and Pathophysiology, The Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huimin Yu
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Si Chen
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Zhenfu Zhao
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Shanni Li
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Kuan Li
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Liang Wang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China.,Shenzhen Key Laboratory of Micromolecule Innovatal Drugs, Shenzhen Key Laboratory of translational Medicine of Tumor, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yanjie Wei
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong, China
| | - Zhendan He
- Guangdong Province Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong, China
| | - Xinmin Fan
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Stephen J Meltzer
- Department of Medicine/GI Division, Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Song Li
- Laboratory of Chemical Genomics, The Shenzhen Graduate School of Peking University, Shenzhen, Guangdong, China
| | - Zhe Jin
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China.,Shenzhen Key Laboratory of Micromolecule Innovatal Drugs, Shenzhen Key Laboratory of translational Medicine of Tumor, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
22
|
Qiu Z, Sun W, Gao S, Zhou H, Tan W, Cao M, Huang W. A 16-gene signature predicting prognosis of patients with oral tongue squamous cell carcinoma. PeerJ 2017; 5:e4062. [PMID: 29158988 PMCID: PMC5695251 DOI: 10.7717/peerj.4062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/29/2017] [Indexed: 12/25/2022] Open
Abstract
Background Oral tongue squamous cell carcinoma (OTSCC) is the most common subtype of oral cancer. A predictive gene signature is necessary for prognosis of OTSCC. Methods Five microarray data sets of OTSCC from the Gene Expression Omnibus (GEO) and one data set from The Cancer Genome Atlas (TCGA) were obtained. Differentially expressed genes (DEGs) of GEO data sets were identified by integrated analysis. The DEGs associated with prognosis were screened in the TCGA data set by univariate survival analysis to obtain a gene signature. A risk score was calculated as the summation of weighted expression levels with coefficients by Cox analysis. The signature was used to distinguish carcinoma, estimated by receiver operator characteristic curves and the area under the curve (AUC). All were validated in the GEO and TCGA data sets. Results Integrated analysis of GEO data sets revealed 300 DEGs. A 16-gene signature and a risk score were developed after survival analysis. The risk score was effective to stratify patients into high-risk and low-risk groups in the TCGA data set (P < 0.001). The 16-gene signature was valid to distinguish the carcinoma from normal samples (AUC 0.872, P < 0.001). Discussion We identified a useful 16-gene signature for prognosis of OTSCC patients, which could be applied to clinical practice. Further studies were needed to prove the findings.
Collapse
Affiliation(s)
- Zeting Qiu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wei Sun
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shaowei Gao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Huaqiang Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wulin Tan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Minghui Cao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
23
|
Fan MJ, Yeh PH, Lin JP, Huang AC, Lien JC, Lin HY, Chung JG. Anthocyanins from black rice ( Oryza sativa) promote immune responses in leukemia through enhancing phagocytosis of macrophages in vivo. Exp Ther Med 2017; 14:59-64. [PMID: 28672893 PMCID: PMC5488472 DOI: 10.3892/etm.2017.4467] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/26/2017] [Indexed: 12/26/2022] Open
Abstract
Rice is a staple food in numerous countries around the world. Anthocyanins found in black rice have been reported to reduce the risk of certain diseases, but the effects of crude extract of anthocyanins from Asia University-selected purple glutinous indica rice (AUPGA) on immune responses have not yet been demonstrated. The current study aimed to investigate whether AUPGA treatment could affect immune responses in murine leukemia cells in vivo. Murine acute myelomonocytic leukemia WEHI-3 cells were intraperitoneally injected into normal BALB/c mice to generate leukemia mice. A total of 50 mice were randomly divided into five groups (n=10 in each group) and were fed a diet supplemented with AUPGA at 0, 20, 50 or 100 mg/kg for three weeks. All mice were weighed and the blood, liver and spleen were collected for further experiments. The results indicated that AUPGA did not significantly affect animal body weight, but significantly increased spleen weight (P<0.05) and decreased liver weight (P<0.05) when compared with the control group. AUPGA significantly increased the T cell (CD3) population at treatments of 20 and 100 mg/kg (P<0.05). However, it only significantly increased the B cell (CD19) population at a treatment of 20 mg/kg (P<0.05). Furthermore, AUPGA at 50 and 100 mg/kg significantly increased the monocyte (CD11b) population and the level of macrophages (Mac-3; P<0.05 for both). AUPGA at 50 and 100 mg/kg significantly promoted macrophage phagocytosis in peripheral blood mononuclear cells (P<0.05), and all doses of AUPGA treatment significantly promoted macrophage phagocytotic activity in the peritoneum (P<0.05). AUPGA treatment significantly decreased natural killer cell activity from splenocytes (P<0.05). Finally, AUPGA treatment at 20 mg/kg treatment significantly promoted T cell proliferation (P<0.05), and treatment at 50 and 100 mg/kg significantly decreased B cell proliferation compared with the control group (P<0.05).
Collapse
Affiliation(s)
- Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
| | - Ping-Hsuan Yeh
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Jing-Pin Lin
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - An-Cheng Huang
- Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 266, Taiwan, R.O.C
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Hui-Yi Lin
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C.,Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| |
Collapse
|
24
|
Gentile G, Ceccarelli M, Micheli L, Tirone F, Cavallaro S. Functional Genomics Identifies Tis21-Dependent Mechanisms and Putative Cancer Drug Targets Underlying Medulloblastoma Shh-Type Development. Front Pharmacol 2016; 7:449. [PMID: 27965576 PMCID: PMC5127835 DOI: 10.3389/fphar.2016.00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022] Open
Abstract
We have recently generated a novel medulloblastoma (MB) mouse model with activation of the Shh pathway and lacking the MB suppressor Tis21 (Patched1+/-/Tis21KO ). Its main phenotype is a defect of migration of the cerebellar granule precursor cells (GCPs). By genomic analysis of GCPs in vivo, we identified as drug target and major responsible of this defect the down-regulation of the promigratory chemokine Cxcl3. Consequently, the GCPs remain longer in the cerebellum proliferative area, and the MB frequency is enhanced. Here, we further analyzed the genes deregulated in a Tis21-dependent manner (Patched1+/-/Tis21 wild-type vs. Ptch1+/-/Tis21 knockout), among which are a number of down-regulated tumor inhibitors and up-regulated tumor facilitators, focusing on pathways potentially involved in the tumorigenesis and on putative new drug targets. The data analysis using bioinformatic tools revealed: (i) a link between the Shh signaling and the Tis21-dependent impairment of the GCPs migration, through a Shh-dependent deregulation of the clathrin-mediated chemotaxis operating in the primary cilium through the Cxcl3-Cxcr2 axis; (ii) a possible lineage shift of Shh-type GCPs toward retinal precursor phenotype, i.e., the neural cell type involved in group 3 MB; (iii) the identification of a subset of putative drug targets for MB, involved, among the others, in the regulation of Hippo signaling and centrosome assembly. Finally, our findings define also the role of Tis21 in the regulation of gene expression, through epigenetic and RNA processing mechanisms, influencing the fate of the GCPs.
Collapse
Affiliation(s)
- Giulia Gentile
- Institute of Neurological Sciences, National Research Council Catania, Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | - Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | | |
Collapse
|