1
|
Tsilo PH, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RV. Applications of silver nanoparticles synthesized from Pichia kudriavzevii bioflocculant isolated from Kombucha tea SCOBY. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2025; 6:106-116. [PMID: 40129952 PMCID: PMC11930702 DOI: 10.1016/j.biotno.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/26/2025]
Abstract
Studying the utilization of natural products in the biosynthesis of silver nanoparticles (AgNPs) recently appears to be a fascinating area of research within nanotechnology. These nanoparticles exhibit biocompatibility and inherent stability, making them highly suitable for various industrial applications. The utilization of bioflocculant-synthesized Ag nanoparticles was investigated in this study for the purpose of eliminating diverse pollutants and dyes from wastewater and solutions. In this study, Ag nanoparticles were successfully synthesized through a green method utilizing a bioflocculant derived from Pichia kudriavzevii isolated from Kombucha tea SCOBY as a stabilizing agent. The resulting nanoparticles were then evaluated for their flocculation and antimicrobial properties. Different characterization techniques including SEM, EDX, FT-IR, TGA, and TEM were investigated from the synthesized nanoparticles. Furthermore, the cytotoxicity of the Ag nanoparticles was assessed on human embryonic kidney (HEK 293) cells. The EDX analysis showed elemental Ag constituted 61.93 wt% of the prepared AgNPs. SEM revealed particles with average size of 15.8 nm and were spherical in shape. Thermo-gravimetric analysis (TGA) demonstrated that AgNPs exhibited enhanced thermal stability, retaining over 85 % of their mass at elevated temperatures. In a concentration-dependent manner, the spherical biosynthesized nanoparticles exhibited notable cytotoxic effects on HEK 293 cell lines with over 68 % cell viability at 25 mg/mL concentration. The biosynthesized Ag nanoparticles displayed robust antimicrobial efficacy against both Gram-positive and Gram-negative pathogenic bacteria, though Gram-negative were more susceptible with MIC of 3.125 mg/mL concentration. The nanoparticles showcased a dye removal efficiency exceeding 78 % for all the tested dyes with highest removal efficiency of 96 % for methylene blue at a dosage concentration of 0.2 mg/mL of AgNPs. The Ag nanoparticles exhibited exceptional efficiencies in removing a wide range of pollutants present in wastewater. Compared to traditional flocculants, the biosynthesized Ag nanoparticles demonstrated significant potential in effectively removing both biological oxygen demand (BOD) (92 % removal efficiency) and chemical oxygen demand (COD) (86 % removal efficiency). Thus, the biosynthesized Ag nanoparticles show great potential as a substitute for chemical flocculants in the treatment of industrial wastewater, offering im-proved purification capabilities.
Collapse
Affiliation(s)
- Phakamani H. Tsilo
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa, 3886, South Africa
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa, 3886, South Africa
| | - Zuzingcebo G. Ntombela
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa, 3886, South Africa
| | - Nkosinathi G. Dlamini
- Writing Centre: Teaching and Learning Centre, University of Zululand, P/Bag X1001, KwaDlangezwa, 3886, South Africa
| | - Rajasekhar V.S.R. Pullabhotla
- Department of Chemistry, Faculty of Science, Agriculture and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
2
|
Elleuch J, Drira M, Ghribi I, Hadjkacem F, Pierre G, Causserand C, Khemakhem H, Michaud P, Fendri I, Abdelkafi S. Amphora coffeiformis extracellular polymeric substances and their potential applications in lead removal. Antonie Van Leeuwenhoek 2025; 118:51. [PMID: 39899145 DOI: 10.1007/s10482-024-02057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/15/2024] [Indexed: 02/04/2025]
Abstract
Microorganisms producing extracellular polymeric substances (EPS) are of great potential in numerous environmental applications. The present study explores the production and properties of extracellular polymeric substances (EPS) from Amphora coffeiformis diatom strain and their potential applications in environmental remediation. EPS were composed of a complex mixture of polysaccharides, proteins, humic substances and nucleic acids, with polyanionic characteristics as revealed by FTIR, Raman and zeta potential analyses. EPS showed high flocculation efficiency against kaolin clay at low dosages (5 mg/L) through a charge neutralization mechanism involving both polysaccharides and proteins. EPS also exhibited strong emulsification activity for various nonpolar substrates, mainly olive oil, corn oil, soybean oil, essence and diesel, with emulsification indexes above 80%. The emulsions were stable for 72 h under different NaCl concentrations (1-10% w/v). Moreover, EPS demonstrated remarkable adsorption capacity for lead, reaching a maximum of 1699.33 ± 89.61 mg/g under optimized conditions using Box-Behnken design. The adsorption mechanism involved multiple functional groups such as hydroxyl, carbonyl, carboxyl, phosphoric and sulfhydryl. Therefore, EPS from A. coffeiformis are a promising candidate for restoring environments contaminated by heavy metals.
Collapse
Affiliation(s)
- Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Marwa Drira
- Laboratoire de Protection et Amélioration des Plantes, Centre de Biotechnologie de Sfax, Université de Sfax, B.P. 1177, 3018, Sfax, Tunisia
| | - Imtinen Ghribi
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Farah Hadjkacem
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Guillaume Pierre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000, Clermont-Ferrand, France
| | - Christel Causserand
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Hamadi Khemakhem
- Laboratory of Multifunctional Materials and Applications (LaMMA), (LR16ES18), Faculty of Sciences of Sfax, University of Sfax, B.P. 1171, 3000, Sfax, Tunisia
| | - Philippe Michaud
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000, Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| |
Collapse
|
3
|
Harinisri K, Prathiviraj R, Thamarai Selvi B. Screening, characterization, and production of Bacillus cereus (S55) bioflocculant isolated from soil for application in wastewater treatment. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:151-164. [PMID: 39633682 PMCID: PMC11615589 DOI: 10.1016/j.biotno.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
This research evaluated a bacterial strain, Bacillus cereus (S55), isolated from the soil for its bioflocculant production capabilities. The strain was identified through morphological and 16s rRNA gene sequencing. The optimization of culture conditions, using One-factor-at-a-time method, significantly enhanced bioflocculant production with glucose and urea. FTIR analysis showed the presence of hydroxyl, amine and carboxylate functional groups, with polysaccharides as predominant components. Scanning electron microscopy and X-ray diffraction confirmed the crystalline nature of the bioflocculant. The strain studied showed potential in treating household wastewater and was effective at removing dyes, suggesting alternatives for wastewater management.
Collapse
Affiliation(s)
- Karthikeyan Harinisri
- Department of Microbiology, Sri Ramakrishna College of Arts & Science for Women, Coimbatore, 641044, Tamil Nadu, India
| | | | | |
Collapse
|
4
|
Zafar S, Ashraf A, Hayat S, Siddique MH, Waseem M, Hassan M, Qaisar H, Muzammil S. Isolation and characterization of novel cadmium-resistant Escherichia fergusonii ZSF-15 from industrial effluent for flocculant production and antioxidant enzyme activity. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:412. [PMID: 38565815 DOI: 10.1007/s10661-024-12545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Cadmium (Cd) is a highly toxic metal that frequently contaminates our environment. In this study, the bioflocculant-producing, cadmium-resistant Escherichia fergusonii ZSF-15 was characterized from Paharang drain, Bawa Chak, Faisalabad, Pakistan. The Cd-resistant E. fergusonii was used to determine the bioflocculant production using yeast-peptone-glycerol medium (pH 6.5) supplemented with 50 mg L-1 of Cd. The culture was incubated for 3 days at 37 °C in a rotary shaker at 120 rpm. The fermentation broth was centrifuged at 4000 g for 10 min after the incubation period. The maximum flocculating activity by isolate ZSF-15 was found to be 71.4% after 48 h of incubation. According to the Fourier transform infrared spectroscopy analysis, the bioflocculant produced by strain ZSF-15 was comprised of typical polysaccharide and protein, i.e. hydroxyl, carboxyl, and amino groups. The strain ZSF-15 exhibited bioflocculant activity at range of pH (6-8) and temperature (35-50℃). Maximum flocculation activity (i.e. 71%) was observed at 47℃, whereas 63% flocculation production was observed at pH 8. In the present study, antioxidant enzyme profile of ZSF-15 was also evaluated under cadmium stress. A significant increase in antioxidant enzymes including superoxide dismutase (118%) and ascorbate peroxidase (28%) was observed, whereas contents of catalase (86%), glutathione transferase (13%), and peroxidase (8%) were decreased as compared to control.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Sumreen Hayat
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Hussnain Siddique
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Mudassir Hassan
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Hira Qaisar
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Saima Muzammil
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan.
| |
Collapse
|
5
|
Davies-Coleman MT, McPhail KL, Parker-Nance S. A Quarter Century of Marine Biodiscovery in Algoa Bay, South Africa. JOURNAL OF NATURAL PRODUCTS 2023; 86:638-652. [PMID: 36853972 DOI: 10.1021/acs.jnatprod.2c00987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Algoa Bay, the largest crenulate bay on the southeastern coast of South Africa, is currently one of the most well-studied marine ecosystems in southern Africa. A plethora of endemic marine invertebrates inhabits the benthic reefs on the western edge of the Bay in close proximity to South Africa's sixth largest city. Over the past 25 years, South African marine natural products chemists, together with international collaborators from the US National Cancer Institute and other US institutions, have focused their attention on Algoa Bay's benthic marine invertebrates as a potential source of new anticancer compounds. This review commemorates a quarter of a century of marine biodiscovery in Algoa Bay and presents the structures and bioactivities of 49 new and 36 known specialized metabolites isolated from two molluscs, eight ascidians, and six sponges. Thirty-nine of these compounds were cytotoxic to cancer cells in vitro with 20 exhibiting moderate to potent cytotoxicity. Six other compounds exhibited antimicrobial activity. Foremost among the potential anticancer compounds is mandelalide A (38) from the Algoa Bay ascidian Lissoclinum species.
Collapse
Affiliation(s)
- Michael T Davies-Coleman
- Department of Chemistry, University of the Western Cape, Bellville, 7535, South Africa and Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregaon 97331, United States
| | - Shirley Parker-Nance
- South African Environmental Observation Network, Elwandle Coastal Node, Nelson Mandela University, Ocean Sciences Campus, Summerstrand, Gqeberha, 6001, South Africa
| |
Collapse
|
6
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Maliehe TS, Pullabhotla RVSR. Production and characterization of a bioflocculant produced by Proteus mirabilis AB 932526.1 and its application in wastewater treatment and dye removal. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2022-1002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Abstract
Microbial flocculants affect the aggregation of suspended solutes in solutions, thus, they are a viable alternative to inorganic and organic synthetic flocculants which are associated with deleterious health problems. Moreover, a potential solution for wastewater treatment. The study aimed to produce and characterize a bioflocculant from Proteus mirabilis AB 932526.1 and apply it in domestic wastewater treatment and dye removal. The bioflocculant was extracted using butanol and chloroform (5:2 v/v). Carbohydrates, proteins, and uronic acid were identified using phenol-sulphuric acid, Bradford, and Carbazole essays. The morphology, crystallinity and elemental composition of the purified bioflocculant were determined using a Scanning electron microscope (SEM), X-ray diffraction analysis and SEM energy dispersive elemental detector (SEM-EDX). The antimicrobial properties and dye removal efficiencies were evaluated. About 3.8 g/L yields of the purified bioflocculant were attained. Chemical composition analysis revealed the presence of 65 % carbohydrates, 10 % proteins, and 24 % uronic acids. The bioflocculant displayed an amorphous and crystalline structure. Bioflocculant further shows some remarkable properties as they can be able to inhibit the growth of both Gram-positive and Gram-negative microorganisms. The removal efficiencies of 85 % (COD), 82 % (BOD), and 81 % (SO4
2−) in domestic wastewater were achieved. Moreover, the high removal efficiency of staining dyes such as methylene blue (71 %), carbol fuchsin (81 %), safranin (83 %), methylene orange (90 %), and Congo red (90 %) were found. The produced bioflocculant can imply industrial applicability.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Department of Biochemistry and Microbiology , Faculty of Science, Agriculture and Engineering, University of Zululand , P/Bag X 1001 , KwaDlangezwa 3886 , South Africa
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology , Faculty of Science, Agriculture and Engineering, University of Zululand , P/Bag X 1001 , KwaDlangezwa 3886 , South Africa
| | - Zuzingcebo G. Ntombela
- Department of Biochemistry and Microbiology , Faculty of Science, Agriculture and Engineering, University of Zululand , P/Bag X 1001 , KwaDlangezwa 3886 , South Africa
| | - Nkosinathi G. Dlamini
- Department of Biochemistry and Microbiology , Faculty of Science, Agriculture and Engineering, University of Zululand , P/Bag X 1001 , KwaDlangezwa 3886 , South Africa
| | - Tsolanku S. Maliehe
- Department of Biochemistry and Microbiology , Faculty of Science, Agriculture and Engineering, University of Zululand , P/Bag X 1001 , KwaDlangezwa 3886 , South Africa
| | - Rajasekhar V. S. R. Pullabhotla
- Department of Chemistry , Faculty of Science, Agriculture and Engineering, University of Zululand , P/Bag X 1001 , KwaDlangezwa 3886 , South Africa
| |
Collapse
|
7
|
Yang L, Chen Z, Zhang Y, Lu F, Liu Y, Cao M, He N. Hyperproduction of extracellular polymeric substance in Pseudomonas fluorescens for efficient chromium (VI) absorption. BIORESOUR BIOPROCESS 2023; 10:17. [PMID: 38647825 PMCID: PMC10992911 DOI: 10.1186/s40643-023-00638-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/13/2023] [Indexed: 04/25/2024] Open
Abstract
A novel extracellular polymeric substance (EPS) with flocculating activity produced by Pseudomonas fluorescein isolated from soil was studied in this paper. Firstly, atmospheric and room temperature plasma (ARTP) was applied to get a mutant of P. fluorescein with higher EPS production. A mutant T4-2 exhibited a 106.48% increase in flocculating activity compared to the original strain. The maximum EPS yield from T4-2 was enhanced up to 6.42 g/L, nearly 10 times higher than the original strain on a 3.6-L bioreactor with optimized fermentation conditions. Moreover, the flocculating activity of the mutant reached 3023.4 U/mL, 10.96-fold higher than that of T4. Further identification showed that EPS from mutant T4-2 was mainly composed of polysaccharide (76.67%) and protein (15.8%) with a molecular weight of 1.17 × 105 Da. The EPS showed excellent adsorption capacities of 80.13 mg/g for chromium (VI), which was much higher than many reported adsorbents such as chitosan and cellulose. The adsorption results were described by Langmuir isotherm and pseudo-second-order kinetic model. The thermodynamic parameters (ΔG0, ΔH0 and ΔS0) revealed that the adsorption process was spontaneous and exothermic. Adsorption mechanisms were speculated to be electrostatic interaction, reduction, and chelation.
Collapse
Affiliation(s)
- Lijie Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Ying Zhang
- Shandong Institute of Commerce and Technology, Jinan, 251000, People's Republic of China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
8
|
Hossain S, Manan H, Shukri ZNA, Othman R, Kamaruzzan AS, Rahim AIA, Khatoon H, Minhaz TM, Islam Z, Kasan NA. Microplastics biodegradation by biofloc-producing bacteria: An inventive biofloc technology approach. Microbiol Res 2023; 266:127239. [DOI: 10.1016/j.micres.2022.127239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/21/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
9
|
Isolation of a Marine Bacterium and Application of Its Bioflocculant in Wastewater Treatment. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bioflocculation has become the method of choice in wastewater treatment because of its effectiveness, environmental friendliness and innocuousness to humans. In this study, the bioflocculant-producing bacterium was isolated and its bioflocculant was used in wastewater treatment. The isolate was identified by 16S rRNA gene sequencing analysis. Its culture conditions (inoculum size, carbon and nitrogen sources, pH, temperature and time) were optimised using the one-factor-at-a-time assay. The cytotoxicity of the bioflocculant was assessed on human colorectal adenocarcinoma cells (Caco2) by tetrazolium-based colorimetric method. The ability of the bioflocculant to reduce biochemical oxygen demand (BOD) and chemical oxygen demand (COD) in wastewater was evaluated using Jar test. The bacterium was identified as Bacillus subtilis CSM5 and the maximum flocculating activity of 92% was observed when fructose and urea were used as nutrients and the culture conditions were adjusted to 30 °C, pH 9, 160 rpm and 72 h of incubation. Caco2 exhibited 90% viability when the highest bioflocculant concentration of 200 µg/µL was used. The reduction of BOD and COD was achieved at 59 ± 3.1 and 75 ± 0.4%, respectively. In conclusion, B. subtilis CSM5 is a good candidate for bioflocculant production and its bioflocculant has good potential for use in wastewater treatment.
Collapse
|
10
|
Bioflocculant produced by Bacillus velezensis and its potential application in brewery wastewater treatment. Sci Rep 2022; 12:10945. [PMID: 35768624 PMCID: PMC9243052 DOI: 10.1038/s41598-022-15193-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
This study was designed to evaluate the potential of bioflocculant producing strains isolated from wastewater sludge. According to the Plackett–Burman design, the response surface revealed glucose, magnesium sulfate, and ammonium sulfate as critical media components of the nutritional source, whereas the central composite design affirmed an optimum concentration of the critical nutritional source as 16.0 g/l (glucose), 3.5 g/l magnesium sulfate heptahydrate (MgSO4.7H2O), and 1.6 g/l ammonium sulfate ( (NH4)2SO4), yielding an optimal flocculation activity of 96.8%. Fourier Transformer Infrared Spectroscopy (FTIR) analysis confirmed the presence of hydroxyl, carboxyl and methoxyl in the structure of the bioflocculant. Additionally, chemical analysis affirmed the presence of mainly a polysaccharide in the main backbone of the purified bioflocculant with no detection of protein. Energy Dispersive X-ray analysis affirmed the presence of chlorine, phosphorous, oxygen and chlorine as representatives of elemental composition. Thermogravimetric (TGA) analysis revealed over 60% weight was retained at a temperature range of 700 °C. The purified bioflocculant remarkably removed chemical oxygen demand, biological oxygen demand and turbidity in brewery wastewater. This study suggested that the bioflocculant might be an alternate candidate for wastewater treatment.
Collapse
|
11
|
Czemierska M, Szcześ A, Jarosz-Wilkołazka A. Physicochemical factors affecting flocculating properties of the proteoglycan isolated from Rhodococcus opacus. Biophys Chem 2021; 277:106656. [PMID: 34274732 DOI: 10.1016/j.bpc.2021.106656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022]
Abstract
The water-soluble fraction of proteoglycan RS-89 isolated from the Rhodococcus opacus FCL89 and composed of 64.6% polysaccharide and 9.44% protein has been studied as regards its flocculating activity. The RS-89 polysaccharide component includes mannose, galactose and glucose at the molar ratio of 2.7: 1.3: 1. The basic factors affecting flocculating activity of the RS-89 have been established. Additionally, the kinetics of kaolin sedimentation without and with the bioflocculant was investigated. The presence of divalent metal ions had a positive effect on the flocculating activity of the RS-89. The addition of Ca2+ increased the RS-89 flocculating activity in comparison to the other studied metals. It was proved that the proteoglycan RS-89 achieved the highest flocculating activity at the concentration equal to 2 mg/L and in the presence of 10 mmol/L of Ca2+. The zeta potential values are less negative when there is an interaction between the kaolin particles and metal ions without the RS-89 in the tested systems. Therefore, the proposed mechanism to describe the proteoglycan interaction with kaolin particles in the presence of divalent ions includes charge neutralization and a bridging mechanism.
Collapse
Affiliation(s)
- Magdalena Czemierska
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Aleksandra Szcześ
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Maria Curie-Sklodowska University, M. Curie-Sklodowska sq. 3, 20-031 Lublin, Poland.
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
12
|
Liu C, Sun D, Liu J, Zhu J, Liu W. Recent advances and perspectives in efforts to reduce the production and application cost of microbial flocculants. BIORESOUR BIOPROCESS 2021; 8:51. [PMID: 38650196 PMCID: PMC10992557 DOI: 10.1186/s40643-021-00405-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023] Open
Abstract
Microbial flocculants are macromolecular substances produced by microorganisms. Due to its non-toxic, harmless, and biodegradable advantages, microbial flocculants have been widely used in various industrial fields, such as wastewater treatment, microalgae harvest, activated sludge dewatering, heavy metal ion adsorption, and nanoparticle synthesis, especially in the post-treatment process of fermentation with high safety requirement. However, compared with the traditional inorganic flocculants and organic polymeric flocculants, the high production cost is the main bottleneck that restricts the large-scale production and application of microbial flocculants. To reduce the production cost of microbial flocculant, a series of efforts have been carried out and some exciting research progresses have been achieved. This paper summarized the research advances in the last decade, including the screening of high-yield strains and the construction of genetically engineered strains, search of cheap alternative medium, the extraction and preservation methods, microbial flocculants production as an incidental product of other biological processes, combined use of traditional flocculant and microbial flocculant, and the production of microbial flocculant promoted by inducer. Moreover, this paper prospects the future research directions to further reduce the production cost of microbial flocculants, thereby promoting the industrial production and large-scale application of microbial flocculants.
Collapse
Affiliation(s)
- Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
13
|
Abbas SZ, Yong YC, Ali Khan M, Siddiqui MR, Hakami AAH, Alshareef SA, Otero M, Rafatullah M. Bioflocculants Produced by Bacterial Strains Isolated from Palm Oil Mill Effluent for Application in the Removal of Eriochrome Black T Dye from Water. Polymers (Basel) 2020; 12:polym12071545. [PMID: 32668712 PMCID: PMC7408152 DOI: 10.3390/polym12071545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 11/16/2022] Open
Abstract
Four strains of bioflocculant-producing bacteria were isolated from a palm oil mill effluent (POME). The four bacterial strains were identified as Pseudomonas alcaliphila (B1), Pseudomonas oleovorans (B2), Pseudomonas chengduensis (B3), and Bacillus nitratireducens (B4) by molecular identification. Among the four bacterial strains, Bacillus nitratireducens (B4) achieved the highest flocculating activity (49.15%) towards kaolin clay suspension after eight hours of cultivation time and was selected for further studies. The optimum conditions for Eriochrome Black T (EBT) flocculation regarding initial pH, type of cation, and B4 dosage were determined to be pH 2, Ca2⁺ cations, and a dosage of 250 mL/L of nutrient broth containing B4. Under these conditions, above 90% of EBT dye removal was attained. Fourier transform infrared spectroscopic (FT-IR) analysis of the bioflocculant revealed the presence of hydroxyl, alkyl, carboxyl, and amino groups. This bioflocculant was demonstrated to possess a good flocculating activity, being a promissory, low-cost, harmless, and environmentally friendly alternative for the treatment of effluents contaminated with dyes.
Collapse
Affiliation(s)
- Syed Zaghum Abbas
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang 212013, China; (S.Z.A.); (Y.-C.Y.)
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang 212013, China; (S.Z.A.); (Y.-C.Y.)
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.S.); (A.A.H.H.); (S.A.A.)
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.S.); (A.A.H.H.); (S.A.A.)
| | - Afnan Ali Hussain Hakami
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.S.); (A.A.H.H.); (S.A.A.)
| | - Shareefa Ahmed Alshareef
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.S.); (A.A.H.H.); (S.A.A.)
| | - Marta Otero
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
- Correspondence: (M.O.); (M.R.)
| | - Mohd Rafatullah
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Correspondence: (M.O.); (M.R.)
| |
Collapse
|
14
|
Yan Z, Peng L, Deng M, Lin J. Production of a bioflocculant by using activated sludge and its application in Pb(II) removal from aqueous solution. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIn this study, the characteristics of a bioflocculant produced by using activated sludge as raw materials were investigated. The performance of this bioflocculant in the removal of Pb(II) from aqueous solution and the corresponding mechanisms were determined as well. After cultivating a bioflocculant-producing strain in an alkaline thermal pre-treatment sludge for 60 h, approximately 4.45 g of bioflocculant containing a protein backbone was harvested from 1 L of fermentation broth. This bioflocculant can remove 98.5% of Pb(II) from aqueous solutions under optimal conditions, which include a bioflocculant dosage of 6 mg/L and a CaCl2 concentration of 70 mg/L at a pH of 6.5.
Collapse
Affiliation(s)
- Zibo Yan
- Chengdu University of Technology, College of Materials and Chemistry & Chemical Engineering, Chendu610059, China
- Sichuan College of Architectural Technology, Department of Materials Engineering, Deyang61800, China
- Deyang Research Center of Building Materials and Environmental Resource Engineering Technology, Deyang61800, China
| | - Li Peng
- Sichuan College of Architectural Technology, Department of Materials Engineering, Deyang61800, China
- Deyang Research Center of Building Materials and Environmental Resource Engineering Technology, Deyang61800, China
| | - Miao Deng
- Chengdu University of Technology, College of Materials and Chemistry & Chemical Engineering, Chendu610059, China
| | - Jinhui Lin
- Chengdu University of Technology, College of Materials and Chemistry & Chemical Engineering, Chendu610059, China
| |
Collapse
|
15
|
Mohammed JN, Wan Dagang WRZ. Implications for industrial application of bioflocculant demand alternatives to conventional media: waste as a substitute. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1807-1822. [PMID: 32144213 DOI: 10.2166/wst.2020.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The biodegradability and safety of the bioflocculants make them a potential alternative to non-biodegradable chemical flocculants for wastewater treatment. However, low yield and production cost has been reported to be the limiting factor for large scale bioflocculant production. Although the utilization of cheap nutrient sources is generally appealing for large scale bioproduct production, exploration to meet the demand for them is still low. Although much progress has been achieved at laboratory scale, Industrial production and application of bioflocculant is yet to be viable due to cost of the production medium and low yield. Thus, the prospects of bioflocculant application as an alternative to chemical flocculants is linked to evaluation and utilization of cheap alternative and renewable nutrient sources. This review evaluates the latest literature on the utilization of waste/wastewater as an alternative substitute for conventional expensive nutrient sources. It focuses on the mechanisms and metabolic pathways involved in microbial flocculant synthesis, culture conditions and nutrient requirements for bioflocculant production, pre-treatment, and also optimization of waste substrate for bioflocculant synthesis and bioflocculant production from waste and their efficiencies. Utilization of wastes as a microbial nutrient source drastically reduces the cost of bioflocculant production and increases the appeal of bioflocculant as a cost-effective alternative to chemical flocculants.
Collapse
Affiliation(s)
- Jibrin Ndejiko Mohammed
- Department of Microbiology, Ibrahim Badamasi Babangida University, PMB11, Lapai, Niger State, Nigeria; Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor, Malaysia E-mail:
| | | |
Collapse
|
16
|
Evaluation of Fresh Water Actinomycete Bioflocculant and Its Biotechnological Applications in Wastewaters Treatment and Removal of Heavy Metals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183337. [PMID: 31510036 PMCID: PMC6765771 DOI: 10.3390/ijerph16183337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 11/28/2022]
Abstract
This study evaluated the potential of a biopolymeric flocculant produced by Terrabacter sp. isolated from Sterkfontein Dam, South Africa. Microbial flocculants aid the aggregation of suspended solutes in solutions, thus, suggesting its alternative application to inorganic and synthetic organic flocculants, which are associated with health-related problems. The 16S rDNA analysis revealed the bacteria to have 98% similarity to Terrabacter sp. MUSC78T and the sequence was deposited in the Genbank as Terrabacter sp. with accession number KF682157.1. A series of experimental parameters such as bioflocculant dosage, cations concentrations, pH, and application of the purified bioflocculant in wastewaters treatment were investigated. In the presence of glucose as a sole carbon source, Ca2+ as cation at pH 8, the optimal flocculating activity attained was 85%. Optimum bioflocculant dosage of 0.5 mg/mL was able to remove chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solids (SS), nitrate, and turbidity in dairy wastewater. In addition, the tested bioflocculant exhibited higher flocculating efficiency as compared to polyaluminum chloride, polyethylenime, and alum. Inductible coupled plasma optical emission spectroscopy (ICP-OES) analyses confirmed significant removal of 77.7% Fe, 74.8% Al, 61.9% Mn, and 57.6% Zn as representatives of heavy metals from treated dairy wastewater. Fourier transform infrared spectroscopy (FTIR) indicated the presence of carboxyl, hydroxyl, and amino groups in the purified bioflocculant which could be responsible for flocculation. Findings from this study showed the prospect of the studied bioflocculant as an alternative candidate in wastewater treatment and remediating of heavy metals.
Collapse
|
17
|
Ayangbenro AS, Babalola OO, Aremu OS. Bioflocculant production and heavy metal sorption by metal resistant bacterial isolates from gold mining soil. CHEMOSPHERE 2019; 231:113-120. [PMID: 31128345 DOI: 10.1016/j.chemosphere.2019.05.092] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/06/2019] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
Two bioflocculant producing bacterial isolates from mining soil samples were investigated for their application in heavy metal removal. The bacterial isolates were identified as Pseudomonas koreensis and Pantoea sp. using 16S rRNA gene. Cadmium resistant genes cadA and CzcD were detected in Pantoea sp. while P. koreensis harbor CzcD and chrA responsible for Cd and Cr resistance respectively. The isolates showed maximum flocculating activity of 71.3% and 51.7% with glucose and yield of 2.98 g L-1 and 3.26 g L-1 for Pantoea sp. and P. koreensis respectively. The optimum flocculating activity was achieved at pH 7.5 and temperature of 30 °C. Fourier transform infrared analysis of the bioflocculants produced by the two isolates showed the presence of carboxyl, hydroxyl and amino groups characteristic of polysaccharide and protein. Heavy metal sorption by bioflocculant of Pantoea sp. removed 51.2% Cd, 52.5% Cr and 80.5% Pb while that of P. koreensis removed 48.5% Cd, 42.5% Cr and 73.7% Pb. The bioflocculants produced have potential in metal removal from industrial wastes.
Collapse
Affiliation(s)
- Ayansina Segun Ayangbenro
- Food Security and Safety Niche,Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche,Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| | - Oluwole Samuel Aremu
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
18
|
Bisht V, Lal B. Exploration of Performance Kinetics and Mechanism of Action of a Potential Novel Bioflocculant BF-VB2 on Clay and Dye Wastewater Flocculation. Front Microbiol 2019; 10:1288. [PMID: 31231353 PMCID: PMC6568053 DOI: 10.3389/fmicb.2019.01288] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/23/2019] [Indexed: 11/27/2022] Open
Abstract
This study explores production of an efficient bioflocculant; BF-VB2, by strain Bacillus sp. TERI VB2 and proposes its potential application in wastewater treatment. One milligram of BF-VB2 can effectively flocculate 1980.0 mg ± 5.0 mg of kaolin particles leading to 99.0% ± 0.5% enhancement in flocculation activity and 99.6% ± 1.0% reduction in turbidity; in less time. BF-VB2 when applied for treatment of textile dyeing industrial wastewater revealed reduction in dye color (82.78% ± 3.03%), COD (92.54% ± 0.24%), TSS (73.59% ± 0.71%), and chloride ions (81.90% ± 0.716%). The best-fit kinetic model (for both COD removal, and dye decolorization) was pseudo-first order with regression coefficient of 0.98 and 0.95, and rate constant of 4.33 × 10-2 and 1.83 × 102, respectively. Bridging due to presence of surface charges have been proposed as flocculation mechanism. From results obtained during test-tube studies, flocculation in larger volumes (0.01–5.0 L) was also performed to intend taking up BF-VB2 for in situ industrial wastewater treatment. This eco-friendly polysaccharide bioflocculant had longer shelf-life, stability to pH and temperature, cation-independence, and emerged to be more efficient than other flocculants assessed. This study proposed BF-VB2 as a potential natural flocculant candidate for industrial application.
Collapse
Affiliation(s)
- Varsha Bisht
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India.,Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, India Habitat Center, New Delhi, India
| | - Banwari Lal
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, India Habitat Center, New Delhi, India
| |
Collapse
|
19
|
Gouveia JG, Silva ALDS, Santos ECLD, Martins ES, López AMQ. OPTIMIZATION OF BIOFLOCCULANT PRODUCTION BY Bacillus spp. FROM SUGARCANE CROP SOIL OR FROM SLUDGE OF THE AGROINDUSTRIAL EFFLUENT. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190362s20180360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Yang Z, Liu S, Zhang W, Wen Q, Guo Y. Enhancement of coal waste slurry flocculation by CTAB combined with bioflocculant produced by Azotobacter chroococcum. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Ali K, Ahmed B, Khan MS, Musarrat J. Differential surface contact killing of pristine and low EPS Pseudomonas aeruginosa with Aloe vera capped hematite (α-Fe2O3) nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 188:146-158. [DOI: 10.1016/j.jphotobiol.2018.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022]
|
22
|
Xia X, Lan S, Li X, Xie Y, Liang Y, Yan P, Chen Z, Xing Y. Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity drinking water treatment. CHEMOSPHERE 2018; 206:701-708. [PMID: 29783055 DOI: 10.1016/j.chemosphere.2018.04.159] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Klebsiella variicola B16, a microbial bioflocculant (MBF-B16)-producing bacteria, was isolated and identified by its 16S rRNA sequence, biochemical properties, and physiological characteristics. The effects of culture conditions on MBF-B16 production, including carbon source, nitrogen source, C/N ratio, initial pH, and culture temperature, were investigated in this study. Results showed that 6.96 g of MBF-B16 could be extracted from a 1-L culture broth under optimized conditions. Chemical analysis showed that polysaccharide and protein were the main components. The neutral sugar consisted of galactose only, which was proposed in Klebsiella genus for the first time. In addition, a composite flocculant (CF) that contains polyaluminum ferric chloride (PAFC) and MBF-B16 for the removal of turbidity and SS in drinking water was optimized by response surface methodology. CF could reduce PAFC dosage by about 56.2-72%. Charge neutralization and adsorption bridging effect were the primary flocculation mechanisms.
Collapse
Affiliation(s)
- Xiang Xia
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Shuhuan Lan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Yifei Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China.
| | - Yajie Liang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Peihan Yan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Zhengyang Chen
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (SEKL-SW), Chengdu University of Technology State Environmental Protection, Chengdu University of Technology, 610059, Chengdu, PR China
| | - Yunxiao Xing
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Sichuan, PR China
| |
Collapse
|
23
|
Srivastava A, Seo SH, Ko SR, Ahn CY, Oh HM. Bioflocculation in natural and engineered systems: current perspectives. Crit Rev Biotechnol 2018; 38:1176-1194. [DOI: 10.1080/07388551.2018.1451984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ankita Srivastava
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seong-Hyun Seo
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
24
|
Chouchane H, Mahjoubi M, Ettoumi B, Neifar M, Cherif A. A novel thermally stable heteropolysaccharide-based bioflocculant from hydrocarbonoclastic strain Kocuria rosea BU22S and its application in dye removal. ENVIRONMENTAL TECHNOLOGY 2018; 39:859-872. [PMID: 28357896 DOI: 10.1080/09593330.2017.1313886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/27/2017] [Indexed: 06/06/2023]
Abstract
A new bioflocculant named pKr produced by hydrocarbonoclastic strain Kocuria rosea BU22S (KC152976) was investigated. Gas chromatography-flame ionization detector (GC-FID) analysis confirmed the high potential of the strain BU22S in the degradation of n-alkanes. Plackett-Burman experimental design and response surface methodology were carried out to optimize pKr production. Glucose, peptone and incubation time were found to be the most significant factors affecting bioflocculant production. Maximum pKr production was about 4.72 ± 0.02 g/L achieved with 15.61 g/L glucose, 6.45 g/L peptone and 3 days incubation time. Chemical analysis of pKr indicated that it contained 71.62% polysaccharides, 16.36% uronic acid and 2.83% proteins. Thin layer chromatography analysis showed that polysaccharides fraction consisted of galactose and xylose. Fourier transform infrared analysis revealed the presence of many functional groups, hydroxyl, carboxyl, methoxyl, acetyl and amide that likely contribute to flocculation. K. rosea pKr showed high flocculant potential using kaolin clay at different pH (2-11), temperature (0-100°C) and cation concentrations. The bioflocculant was particularly effective in flocculating soluble anionic dyes, Reactive Blue 4 and Acid Yellow, with a decolorization efficiency of 76.4% and 72.6%, respectively. The outstanding flocculating performances suggest that pKr could be useful for bioremediation applications.
Collapse
Affiliation(s)
- Habib Chouchane
- a Univ. Manouba , ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 , Ariana , Tunisia
| | - Mouna Mahjoubi
- a Univ. Manouba , ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 , Ariana , Tunisia
- b Faculty of Science of Bizerte , University of Carthage , Bizerte , Tunisia
| | - Besma Ettoumi
- c Department of Food Environmental and Nutritional Sciences (DeFENS) , University of Milan , Milan , Italy
| | - Mohamed Neifar
- a Univ. Manouba , ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 , Ariana , Tunisia
| | - Ameur Cherif
- a Univ. Manouba , ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 , Ariana , Tunisia
| |
Collapse
|
25
|
Borah D, Nainamalai S, Gopalakrishnan S, Rout J, Alharbi NS, Alharbi SA, Nooruddin T. Biolubricant potential of exopolysaccharides from the cyanobacterium Cyanothece epiphytica. Appl Microbiol Biotechnol 2018. [PMID: 29520599 DOI: 10.1007/s00253-018-8892-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Exopolysaccaharides (EPS) are carbohydrate polymers secreted by microbial cells, as a protective layer termed sheath or capsule. Their composition is variable. Optimisation of nutrient factors and the effect of some simple stresses on the ability of Cyanothece epiphytica to produce EPS were tested. Of the tested stresses, exposure to ozone for 50 s at 0.06 mg/L resulted in a relatively high EPS yield, without any damage to cell structure. EPS was characterised physicochemically. Chemically, it was found to be composed of pentoses arabinose and xylose; hexoses glucose, galactose and mannose; and the deoxyhexose fucose sugars which were sulphated and with different functional groups. EPS from C. epiphytica was found to be a good hydrophobic dispersant, an excellent emulsifier as well as a flocculant. Its potential as a biolubricant with characteristics better than the conventional lubricant 'grease' was revealed through analysis. This study gave the clue for developing a commercial technology to produce a less expensive and more environment-friendly natural lubricant from the cyanobacterium C. epiphytica for tribological applications.
Collapse
Affiliation(s)
- Dharitri Borah
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Sangeetha Nainamalai
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Subramanian Gopalakrishnan
- Central Inter-Disciplinary Research Facility (CIDRF), Mahatma Gandhi Medical College and Research Institute Campus, Puducherry, 607402, India
| | - Jayashree Rout
- Department of Ecology and Environmental Science, Assam University, Silchar, 788011, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Thajuddin Nooruddin
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India. .,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
26
|
Xia X, Liang Y, Lan S, Li X, Xie Y, Yuan W. Production and flocculating properties of a compound biopolymer flocculant from corn ethanol wastewater. BIORESOURCE TECHNOLOGY 2018; 247:924-929. [PMID: 30060431 DOI: 10.1016/j.biortech.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/27/2017] [Accepted: 10/01/2017] [Indexed: 06/08/2023]
Abstract
A compound biopolymer flocculant (CBF) produced using corn ethanol wastewater as substrate was investigated. After optimization of culture conditions, 3.08 g/L of purified CBF was extracted from the culture broth following 48 h of cultivation. The CBF macromolecule is mainly composed of protein (15.9%) and polysaccharide (81.8%). The polysaccharide component includes neutral sugars (28.92%), amino sugars (4.04%) and uronic acid (11.69%), with the neutral sugars being glucose, mannose, and lactose at a molar ratio of 4.1:1.5:1.9. CBF is pH tolerant from 3.0 to 12.0 and thermal tolerant from 20 to 100 °C, allowing for its application over a wide range of conditions. Furthermore, the Langmuir model better describes CBF adsorption on kaolin clay, as compared to the Freundlich model. Charge neutralization and bridging mechanisms are the primary flocculation mechanisms. In addition, CBF shows a high methylene blue removal efficiency. These results indicate that this compound biopolymer flocculant has great potential in dye wastewater treatment.
Collapse
Affiliation(s)
- Xiang Xia
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Yajie Liang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Shuhuan Lan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Yifei Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China.
| | - Wei Yuan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| |
Collapse
|
27
|
Guo J, Chen C. Sludge conditioning using the composite of a bioflocculant and PAC for enhancement in dewaterability. CHEMOSPHERE 2017; 185:277-283. [PMID: 28700956 DOI: 10.1016/j.chemosphere.2017.06.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/08/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the production of a bioflocculant by using rice stover and its potential in sludge dewatering. Production of the bioflocculant was positively associated with cell growth and highest value of 2.37 g L-1 was obtained with main backbone of polysaccharides. The bioflocculant showed good performances in sludge dewatering, after conditioned by this bioflocculant, dry solids (DS) and specific resistance to filtration (SRF) of typical wastewater activated sludge reached 19.3% and 4.8 × 1012 m kg-1, respectively, which were much better than the ones obtained with chemical flocculants. Sludge dewatering was further improved when the bioflocculant and polyaluminum chloride (PAC) were used simultaneously, and the optimized conditioning process by the composite was bioflocculant of 10.5 g kg-1, PAC of 19.4 g kg-1, and pH of 8.1. Under this optimal condition, DS and SRF of the sludge appeared as 24.1% and 3.0 × 1012 m kg-1, respectively.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Cheng Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| |
Collapse
|
28
|
Ntozonke N, Okaiyeto K, Okoli AS, Olaniran AO, Nwodo UU, Okoh AI. A Marine Bacterium, Bacillus sp. Isolated from the Sediment Samples of Algoa Bay in South Africa Produces a Polysaccharide-Bioflocculant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101149. [PMID: 28961180 PMCID: PMC5664650 DOI: 10.3390/ijerph14101149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 11/16/2022]
Abstract
Bioflocculants mediate the removal of suspended particles from solution and the efficiency of flocculation is dependent on the characteristics of the flocculant. Apart from the merits of biodegradability and harmlessness, bioflocculants could be viable as industrially relevant flocculants as they are a renewable resource. Additionally, the shortcomings associated with the conventionally used flocculants such as aluminium salts and acrylamide polymers, which include dementia and cancer, highlight more the need to use bioflocculants as an alternative. Consequently, in this study a marine sediment bacterial isolate was screened for bioflocculant production. Basic local alignment search tools (BLAST) analysis of 16S ribosomal deoxyribonucleic acid (rDNA) sequence of the bacterial isolate showed 98% similarity to Bacillus thuringiensis MR-R1. The bacteria produced bioflocculant optimally with inoculum size (4% v/v) (85%), glucose (85.65%) and mixed nitrogen source (urea, ammonium chloride and yeast extract) (75.9%) and the divalent cation (Ca2+) (62.3%). Under optimal conditions, a maximum flocculating activity of over 85% was attained after 60 h of cultivation. The purified polysaccharide-bioflocculant flocculated optimally at alkaline pH 12 (81%), in the presence of Mn2+ (73%) and Ca2+ (72.8%). The high flocculation activity shown indicates that the bioflocculant may contend favourably as an alternative to the conventionally used flocculants in water treatment.
Collapse
Affiliation(s)
- Ncedo Ntozonke
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Kunle Okaiyeto
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Arinze S Okoli
- GenØK-Centre for Biosafety, Forskningsparken i Breivika, Postboks 6418, 9294 Tromsø, Norway.
| | - Ademola O Olaniran
- Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| |
Collapse
|
29
|
Sajayan A, Seghal Kiran G, Priyadharshini S, Poulose N, Selvin J. Revealing the ability of a novel polysaccharide bioflocculant in bioremediation of heavy metals sensed in a Vibrio bioluminescence reporter assay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:118-127. [PMID: 28527323 DOI: 10.1016/j.envpol.2017.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/02/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
A bioflocculant-producing bacterial strain, designated MSI021, was isolated from the marine sponge Dendrilla nigra and demonstrated 94% flocculation activity in a kaolin clay suspension. MSI021 was identified as Bacillus cereus based on phylogenetic affiliation and biochemical characteristics. The purified extra-cellular bioflocculant was chemically elucidated as a polysaccharide molecule. The polysaccharide bioflocculant was stable under both acidic and alkaline conditions (pH 2.0-10.0) and temperatures up to 100 °C. The purified bioflocculant efficiently nucleated the formation of silver nanoparticles which showed broad spectrum antibacterial activity. The ability of the bioflocculant to remediate heavy metal toxicity was evaluated by measuring the inhibition of bioluminescence expression in Vibrio harveyi. Enrichment of heavy metals such as zinc, mercury and copper at concentrations of 1, 2 and 3 mM in culture media showed significant reduction of bioluminescence in Vibrio, whereas media enriched with heavy metals and bioflocculant showed dose dependent improvement in the expression of bioluminescence. The assay results demonstrated that the polysaccharide bioflocculant effectively mitigates heavy metal toxicity, thereby improving the expression of bioluminescence in Vibrio. This bioluminescence reporter assay can be developed into a high-throughput format to monitor and evaluate of heavy metal toxicity. The findings of this study revealed that a novel polysaccharide bioflocculant produced by a marine B. cereus demonstrated strong flocculating performance and was effective in nucleating the formation antibacterial silver nanoparticles and removing heavy metals. These results suggest that the MSI021 polysaccharide bioflocculant can be used to develop greener waste water treatment systems.
Collapse
Affiliation(s)
- Arya Sajayan
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014, India
| | - G Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014, India.
| | - S Priyadharshini
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014, India
| | - Navya Poulose
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014, India
| | - Joseph Selvin
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
30
|
Guo J, Huang Y, Chen C, Xiao Y, Chen J, Jian B. Enhanced anaerobically digested swine wastewater treatment by the composite of polyaluminum chloride (PAC) and Bacillus megatherium G106 derived EPS. Sci Rep 2017; 7:8605. [PMID: 28819273 PMCID: PMC5561036 DOI: 10.1038/s41598-017-09044-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/20/2017] [Indexed: 11/09/2022] Open
Abstract
A strain was isolated from biological sludge to produce EPS by using anaerobically digested swine wastewater (ADSW). Potential of the EPS in ADSW treatment were discussed. Results showed that the optimal fermentation medium for EPS production was determined as 4 g K2HPO4, 2 g KH2PO4, and 2 g sucrose dissolved in 1 L ADSW. After fermentation for 60 h, 2.98 g EPS with main backbone of polysaccharides can be extracted from 1 L of fermentation broth. The EPS showed good performances in ADSW treatment, after conditioned by this EPS, removal efficiencies of COD, ammonia, and TP reached 70.2%, 76.5% and 82.8%, respectively, which were higher than that obtained when chemicals were selected as conditioning agents. Removal efficiencies were further improved when the EPS and polyaluminum chloride (PAC) were used simultaneously, and finally reached 91.6%, 90.8%, and 92.5%, respectively, under the optimized conditioning process by the composite of EPS of 16 mg/L, PAC of 12 g/L, pH of 7.5, and agitation speed of 200 r/min.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Yang Huang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Cheng Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Yu Xiao
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Jing Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Biyu Jian
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| |
Collapse
|
31
|
Guo J, Chen C. Removal of arsenite by a microbial bioflocculant produced from swine wastewater. CHEMOSPHERE 2017; 181:759-766. [PMID: 28478236 DOI: 10.1016/j.chemosphere.2017.04.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/17/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
This paper focused on the production and characteristics of a bioflocculant by using swine wastewater and its application in removing arsenite from aqueous solution. A series of experimental parameters including bioflocculant dose, calcium ions concentration, and solution pH value on arsenite uptake were evaluated. Results have demonstrated that a bioflocculant of 3.11 g L-1 was achieved as the maximum yield after 60 h fermentation, with a main backbone of polysaccharides. Maximum arsenite removal efficiency of 99.2% can be reached by adding bioflocculant in two stages: 3 × 10-3% (w/w) in the 1.0 min's rapid mixing (180 rpm) and 2 × 10-3% (w/w) after 2.0 min's slow mixing (80 rpm) with pH value fixed at 7. Negative Gibbs free energy change (ΔGo) indicated the spontaneous nature of arsenite removal. Arsenite was removed by the bioflocculant through bridging mechanisms.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Cheng Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| |
Collapse
|
32
|
Ntsangani N, Okaiyeto K, Uchechukwu NU, Olaniran AO, Mabinya LV, Okoh AI. Bioflocculation potentials of a uronic acid-containing glycoprotein produced by Bacillus sp. AEMREG4 isolated from Tyhume River, South Africa. 3 Biotech 2017; 7:78. [PMID: 28500400 PMCID: PMC5429313 DOI: 10.1007/s13205-017-0695-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/15/2017] [Indexed: 12/02/2022] Open
Abstract
Bioflocculants are secondary metabolites produced by microorganisms during their growth which have received attentions due to their biodegradability, innocuousness and lack of secondary pollution from degradation intermediates. This study reports on a bioflocculant produced by Bacillus specie isolated from Thyume River in South Africa. The bacterial isolate was identified through 16S rDNA sequencing and the BLAST analysis of the nucleotide sequences revealed 99% similarity to Bacillus sp. BCT-7112. The sequence was subsequently deposited in the GenBank as Bacillus sp. AEMREG4 with accession number KP406729. The optimum culture conditions for bioflocculant production were an inoculum size 4% (v/v) (80%) and starch (81%) as well as yeast extract (82%) as sole carbon and nitrogen sources, respectively. Addition of Ca2+ greatly enhanced the flocculating activity (76%) of crude bioflocculant over a wide range of pH 4–10 and retained high flocculating activity when heated at 100 °C for 1 h. Chemical analyses of the purified bioflocculant revealed carbohydrate (79% w/w) as a predominant component followed by uronic acid (15% w/w) and protein (5% w/w). Fourier transform infrared spectrum revealed the presence of carboxyl, hydroxyl and methoxyl groups as the functional groups responsible for flocculation and the high flocculation activity achieved portends its industrial applicability.
Collapse
|
33
|
Wei Z, Huang S, Zhang Y, Li H, Zhou S. Characterization of extracellular polymeric substances produced during nitrate removal by a thermophilic bacterium Chelatococcus daeguensis TAD1 in batch cultures. RSC Adv 2017. [DOI: 10.1039/c7ra08147b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Positive correlation was observed between EPS production and nitrate removal efficiency during aerobic denitrification byChelatococcus daeguensisTAD1.
Collapse
Affiliation(s)
- Zhendong Wei
- College of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- PR China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control
| | - Shaobin Huang
- College of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- PR China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control
| | - Yongqing Zhang
- College of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- PR China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control
| | - Han Li
- College of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- PR China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control
| | - Shaofeng Zhou
- College of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- PR China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control
| |
Collapse
|
34
|
Domingues VS, Monteiro AS, Ferreira GF, Santos VL. Solid Flocculation and Emulsifying Activities of the Lipopolysaccharide Produced by Trichosporon mycotoxinivorans CLA2. Appl Biochem Biotechnol 2016; 182:367-381. [DOI: 10.1007/s12010-016-2332-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
|
35
|
Assessment of Bacillus pumilus Isolated from Fresh Water Milieu for Bioflocculant Production. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6080211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
36
|
Okaiyeto K, Nwodo UU, Okoli SA, Mabinya LV, Okoh AI. Implications for public health demands alternatives to inorganic and synthetic flocculants: bioflocculants as important candidates. Microbiologyopen 2016; 5:177-211. [PMID: 26914994 PMCID: PMC4831466 DOI: 10.1002/mbo3.334] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Chemical flocculants are generally used in drinking water and wastewater treatment due to their efficacy and cost effectiveness. However, the question of their toxicity to human health and environmental pollution has been a major concern. In this article, we review the application of some chemical flocculants utilized in water treatment, and bioflocculants as a potential alternative to these chemical flocculants. To the best of our knowledge, there is no report in the literature that provides an up‐to‐date review of the relevant literature on both chemical flocculants and bioflocculants in one paper. As a result, this review paper comprehensively discussed the various chemical flocculants used in water treatment, including their advantages and disadvantages. It also gave insights into bioflocculants production, challenges, various factors influencing their flocculating efficiency and their industrial applications, as well as future research directions including improvement of bioflocculants yields and flocculating activity, and production of cation‐independent bioflocculants. The molecular biology and synthesis of bioflocculants are also discussed.
Collapse
Affiliation(s)
- Kunle Okaiyeto
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Stanley A Okoli
- GenØK - Centre for Biosafety, Science Park, University of Tromsø, Tromsø, 9291, Norway
| | - Leonard V Mabinya
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
37
|
Sun P, Hui C, Bai N, Yang S, Wan L, Zhang Q, Zhao Y. Revealing the characteristics of a novel bioflocculant and its flocculation performance in Microcystis aeruginosa removal. Sci Rep 2015; 5:17465. [PMID: 26626432 PMCID: PMC4667227 DOI: 10.1038/srep17465] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/30/2015] [Indexed: 11/09/2022] Open
Abstract
In the present work, a novel bioflocculant, EPS-1, was prepared and used to flocculate the kaolin suspension and Microcystis aeruginosa. We focused on the characteristics and flocculation performance of EPS-1, especially with regard to its protein components. An important attribute of EPS-1 was its protein content, with 18 protein types identified that occupied a total content of 31.70% in the EPS-1. Moreover, the flocculating activity of these protein components was estimated to be no less than 33.93%. Additionally, polysaccharides that occupied 57.12% of the total EPS-1 content consisted of four monosaccharides: maltose, D-xylose, mannose, and D-fructose. In addition, carbonyl, amino, and hydroxyl groups were identified as the main functional groups. Three main elements, namely C1s, N1s, and O1s, were present in EPS-1 with relative atomic percentages of 62.63%, 24.91%, and 10.5%, respectively. Zeta potential analysis indicated that charge neutralization contributed to kaolin flocculation, but was not involved in M. aeruginosa flocculation. The flocculation conditions of EPS-1 were optimized, and the maximum flocculating efficiencies were 93.34% within 2 min for kaolin suspension and 87.98% within 10 min for M. aeruginosa. These results suggest that EPS-1 could be an alternative to chemical flocculants for treating wastewaters and cyanobacterium-polluted freshwater.
Collapse
Affiliation(s)
- Pengfei Sun
- College of Life Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang, PR China
| | - Cai Hui
- College of Life Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang, PR China
| | - Naling Bai
- College of Life Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang, PR China
| | - Shengmao Yang
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agriculture Science, 310021 Hangzhou, Zhejiang, China
| | - Li Wan
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 37235-1604, Nashville, Tennessee, USA
| | - Qichun Zhang
- College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang, PR China
| | - YuHua Zhao
- College of Life Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang, PR China
| |
Collapse
|