1
|
Yang H, Xia Y, Ma Y, Gao M, Hou S, Xu S, Wang Y. Inhibition of the cGAS-STING pathway: contributing to the treatment of cerebral ischemia-reperfusion injury. Neural Regen Res 2025; 20:1900-1918. [PMID: 38993125 PMCID: PMC11691458 DOI: 10.4103/nrr.nrr-d-24-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024] Open
Abstract
The cGAS-STING pathway plays an important role in ischemia-reperfusion injury in the heart, liver, brain, and kidney, but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed. Here, we outline the components of the cGAS-STING pathway and then analyze its role in autophagy, ferroptosis, cellular pyroptosis, disequilibrium of calcium homeostasis, inflammatory responses, disruption of the blood-brain barrier, microglia transformation, and complement system activation following cerebral ischemia-reperfusion injury. We further analyze the value of cGAS-STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms. Inhibition of the cGAS-STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hang Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yulei Xia
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yue Ma
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Mingtong Gao
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Shuai Hou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shanshan Xu
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
2
|
Akhtar W, Muazzam Khan M, Kumar S, Ahmad U, Husen A, Avirmed S. Pathophysiology of cerebral ischemia-reperfusion injury: An overview of oxidative stress and plant-based therapeutic approaches. Brain Res 2025; 1847:149308. [PMID: 39491664 DOI: 10.1016/j.brainres.2024.149308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Stroke is a debilitating neurological disorder that causes substantial morbidity and mortality on a global scale. Ischemic stroke, the most common type, occurs when the brain's blood supply is interrupted. Oxidative stress is a key factor in stroke pathology, contributing to inflammation and neuronal cell death. As a result, there is increasing interest in the potential of plant extracts, which have been used in traditional medicine for centuries and are generally considered safe, to serve as alternative or complementary treatments for stroke. The plant extracts can target multiple pathological processes, including oxidative stress, offering neuroprotective effects. The development of highly efficient, low-toxicity, and cost-effective natural products is crucial for enhancing stroke treatment options. In this review, we examine 60 plant extracts that have been focused on the studies published from year 2000 to 2024 along with the studies' experimental models, dosages, and results. The plant extracts hold promise in modulating cerebral ischemia-reperfusion injury through counteraction of relevant pathophysiologic processes such as oxidative stress.
Collapse
Affiliation(s)
- Wasim Akhtar
- Hygia Institute of Pharmacy, Lucknow 226013, Uttar Pradesh, India
| | - Mohd Muazzam Khan
- Faculty of Pharmacy, Integral University, Lucknow 226020, Uttar Pradesh, India.
| | - Sanjay Kumar
- Hygia Institute of Pharmacy, Lucknow 226013, Uttar Pradesh, India
| | - Usama Ahmad
- Faculty of Pharmacy, Integral University, Lucknow 226020, Uttar Pradesh, India
| | - Ali Husen
- Hygia Institute of Pharmacy, Lucknow 226013, Uttar Pradesh, India
| | | |
Collapse
|
3
|
Liu J, Han Y, Wu Z, Chen M, Wu W, Zhao Z, Yuan J, Zheng Z, Lin Q, Liu N, Chen H. Perillaldehyde pretreatment alleviates cerebral ischemia-reperfusion injury by improving mitochondrial structure and function via the Nrf2/Keap1/Trx2 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156328. [PMID: 39765034 DOI: 10.1016/j.phymed.2024.156328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 11/18/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Perilladehyde, an extract of perillae in the Labiatae family, can produce significant anti-inflammatory and antioxidant effects. Although literature evidences the favorable effect of perillaldehyde on ischemic stroke, the exact mechanism remains blurred. PURPOSE This study attempted to explore the impact of perillaldehyde on cerebral ischemia-reperfusion injury and the related action mechanism. METHODS The rat tMCAO and neuronal OGD/R models were established to simulate cerebral ischemia-reperfusion injury. Lentiviruses were used to interfere with the expression of Nrf2 and Trx2 in neurons. The effects and action mechanisms of perillaldehyde were explored by various experimental methods, including chromatin immunoprecipitation assay, Western Blot, flow cytometry, dual-luciferase reporter gene assay, transmission electron microscopy, MRI, RNA-seq, and immunofluorescence staining. RESULTS Perillaldehyde pretreatment effectively mitigated the tMCAO-induced brain injury in rats by reducing cerebral infarction, improving neuromotor function, and attenuating cell apoptosis in the ischemic penumbra. In vitro, perillaldehyde pretreatment alleviated cell death and excessive oxidative stress, preserved the mitochondrial membrane integrity, enhanced mitochondrial energy metabolism, and facilitated the restoration of mitochondrial ultrastructure after OGD/R. The mechanism probe revealed that perillaldehyde activated the Nrf2/Keap1/Trx2 signaling axis, thus promoting the transcription of Trx2 and improving mitochondrial structure and function. The aforementioned impacts of perillaldehyde were somewhat counteracted by disrupting the expression of Nrf2 and Trx2, suggesting that the neuroprotection of perillaldehyde partially involves the activation of the Nrf2/Keap1/Trx2 axis. CONCLUSIONS This study firstly demonstrates the existence of the Nrf2/Keap1/Trx2 signaling axis in cerebral ischemia-reperfusion injury and evidences that perillaldehyde pretreatment can promote the restoration of neuronal mitochondrial structure and function by activating the Nrf2/Keap1/Trx2 axis after cerebral ischemia-reperfusion injury. These findings signify that perillaldehyde holds great promises for clinical management of ischemic stroke.
Collapse
Affiliation(s)
- Ji Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Ying Han
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhiyun Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Wenwen Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zijun Zhao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Jinjin Yuan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zhijian Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Qiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| | - Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
4
|
Wu W, Meng F, Zhang H, Tian H, Zhang X. Neutrophil PPIF exacerbates lung ischemia-reperfusion injury after lung transplantation by promoting calcium overload-induced neutrophil extracellular traps formation. Int Immunopharmacol 2024; 142:113051. [PMID: 39236457 DOI: 10.1016/j.intimp.2024.113051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Lung ischemia-reperfusion (I/R) injury is the main risk factor for primary graft dysfunction and patient death after lung transplantation (LTx). It is widely accepted that the main pathological mechanism of lung I/R injury are calcium overload, oxygen free radical explosion and neutrophil-mediated damage, which leading to the lack of effective treatment options. The aim of this study was to further explore the mechanisms of lung I/R injury after LTx and to provide potential therapeutic strategies. Our bioinformatics analysis revealed that the neutrophil extracellular traps (NETs) formation was closely involved in lung I/R injury after LTx, which was accompanied by up-regulation of peptidylprolyl isomerase F (PPIF) and peptidyl arginine deiminase 4 (PADI4). We further established an orthotopic LTx mouse model to simulate lung I/R injury in vivo, and found that PPIF and PADI4 inhibitors effectively reduced neutrophil infiltration, NETs formation, inflammatory response, and lung I/R injury. In the neutrophil model induced by HL-60 cell line in vitro, we found that PPIF inhibitor cyclosporin A (Cys A) better alleviated calcium overload induced inflammatory response, reactive oxygen species content and NETs formation. Further study demonstrated that interfering with neutrophil PPIF protected mitochondrial function by alleviating store-operated calcium entry (SOCE) during calcium overload and played the above positive role. On this basis, we found that the reduction of calcium content in neutrophils was accompanied by the inhibition of calcineurin (CN) and nuclear factor of activated T cells (NFAT). In conclusion, our findings suggested that neutrophil PPIF could serve as a novel biomarker and potential therapeutic target of lung I/R injury after LTx, which provided new clues for its treatment by inhibiting calcium overload-induced NETs formation.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fanqing Meng
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital, Jinan, China
| | - Huiying Zhang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiaojun Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
5
|
Liu D, Yang S, Yu S. Interactions Between Ferroptosis and Oxidative Stress in Ischemic Stroke. Antioxidants (Basel) 2024; 13:1329. [PMID: 39594471 PMCID: PMC11591163 DOI: 10.3390/antiox13111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Ischemic stroke is a devastating condition that occurs due to the interruption of blood flow to the brain, resulting in a range of cellular and molecular changes. In recent years, there has been growing interest in the role of ferroptosis, a newly identified form of regulated cell death, in ischemic stroke. Ferroptosis is driven by the accumulation of lipid peroxides and is characterized by the loss of membrane integrity. Additionally, oxidative stress, which refers to an imbalance between prooxidants and antioxidants, is a hallmark of ischemic stroke and significantly contributes to the pathogenesis of the disease. In this review, we explore the interactions between ferroptosis and oxidative stress in ischemic stroke. We examine the underlying mechanisms through which oxidative stress induces ferroptosis and how ferroptosis, in turn, exacerbates oxidative stress. Furthermore, we discuss potential therapeutic strategies that target both ferroptosis and oxidative stress in the treatment of ischemic stroke. Overall, this review highlights the complex interplay between ferroptosis and oxidative stress in ischemic stroke and underscores the need for further research to identify novel therapeutic targets for this condition.
Collapse
Affiliation(s)
| | - Sha Yang
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Shuguang Yu
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| |
Collapse
|
6
|
Zheng H, Xiao X, Han Y, Wang P, Zang L, Wang L, Zhao Y, Shi P, Yang P, Guo C, Xue J, Zhao X. Research progress of propofol in alleviating cerebral ischemia/reperfusion injury. Pharmacol Rep 2024; 76:962-980. [PMID: 38954373 DOI: 10.1007/s43440-024-00620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Ischemic stroke is a leading cause of adult disability and death worldwide. The primary treatment for cerebral ischemia patients is to restore blood supply to the ischemic region as quickly as possible. However, in most cases, more severe tissue damage occurs, which is known as cerebral ischemia/reperfusion (I/R) injury. The pathological mechanisms of brain I/R injury include mitochondrial dysfunction, oxidative stress, excitotoxicity, calcium overload, neuroinflammation, programmed cell death and others. Propofol (2,6-diisopropylphenol), a short-acting intravenous anesthetic, possesses not only sedative and hypnotic effects but also immunomodulatory and neuroprotective effects. Numerous studies have reported the protective properties of propofol during brain I/R injury. In this review, we summarize the potential protective mechanisms of propofol to provide insights for its better clinical application in alleviating cerebral I/R injury.
Collapse
Affiliation(s)
- Haijing Zheng
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
- Zhengzhou Central Hospital, Zhengzhou, China
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Xian Xiao
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Yiming Han
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Pengwei Wang
- Department of Pharmacy, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, Henan, 453100, China
| | - Lili Zang
- Department of Surgery, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, China
| | - Lilin Wang
- Department of Pediatric Surgery, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, China
| | - Yinuo Zhao
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Peijie Shi
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Pengfei Yang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Chao Guo
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Jintao Xue
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Xinghua Zhao
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| |
Collapse
|
7
|
Lu L, Ning Y, Gu F, Lin Z, Qin Y, Feng L, Tang M, Cao Y. The circular RNA circSLC16A10 alleviates diabetic retinopathy by improving mitochondrial function via the miR-761-5p/MFN2 axis. Cell Signal 2024; 121:111283. [PMID: 38960059 DOI: 10.1016/j.cellsig.2024.111283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
It has been demonstrated that circular RNAs (circRNAs) are associated with the development of diabetic retinopathy (DR). Nevertheless, the function of circSLC16A10 in the development of DR remains unclear. In order to investigate the role of circSLC16A10, we employed cell and animal models of DR. An analysis of a public database revealed that hsa_circSLC16A10 was expressed at lower levels in DR patients than in diabetic patients without DR or healthy controls. Additionally, the level of hsa_circSLC16A10 was lower in high glucose (HG)-exposed ARPE-19 cells and diabetic mice. hsa_circSLC16A10 was observed to be mainly distributed in the cytoplasm. Moreover, overexpression of hsa_circSLC16A10 alleviated HG-induced endoplasmic reticulum stress and cell apoptosis in vitro. Furthermore, overexpression of hsa_circSLC16A10 ameliorated HG-induced mitochondrial dysfunction, as evidenced by improvements in mitochondrial structure and function. hsa_circSLC16A10 acted as a hsa-miR-761-5p sponge to increase MFN2 expression. MFN2 knockdown or hsa-miR-761-5p overexpression partially reversed the protective effect of hsa_circSLC16A10 in vitro. The protective effect of mmu_circSLC16A10 against DR was confirmed in an animal model of DR. These findings indicate that circSLC16A10 may regulate DR progression by improving mitochondrial function via the miR-761-5p/MFN2 axis.
Collapse
Affiliation(s)
- Lu Lu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Yuan Ning
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Feng Gu
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Zhaohong Lin
- Operating Room, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Qin
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Li Feng
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Mengsu Tang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Li L, Wang M, Liu S, Zhang X, Chen J, Tao W, Li S, Qing Z, Tao Q, Liu Y, Huang L, Zhao S. [Soy isoflavones alleviates calcium overload in rats with cerebral ischemia-reperfusion by inhibiting the Wnt/Ca 2+ signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1048-1058. [PMID: 38977334 PMCID: PMC11237289 DOI: 10.12122/j.issn.1673-4254.2024.06.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
OBJECTIVE To explore the mechanism by which soybean isoflavone (SI) reduces calcium overload induced by cerebral ischemia-reperfusion (I/R). METHODS Forty-eight SD rats were randomized into 4 groups to receive sham operation, cerebral middle artery occlusion for 2 h followed by 24 h of reperfusion (I/R model group), or injection of adeno-associated virus carrying Frizzled-2 siRNA or empty viral vector into the lateral cerebral ventricle after modeling.Western blotting was used to examine Frizzled-2 knockdown efficiency and changes in protein expressions in the Wnt/Ca2+ signaling pathway.Calcium levels and pathological changes in the ischemic penumbra (IP) were measured using calcium chromogenic assay and HE staining, respectively.Another 72 SD randomly allocated for sham operation, I/R modeling, or soy isoflavones pretreatment before modeling were examined for regional cerebral blood flow using a Doppler flowmeter, and the cerebral infarct volume was assessed using TTC staining.Pathologies in the IP area were evaluated using HE and Nissl staining, and ROS level, Ca2+ level, cell apoptosis, and intracellular calcium concentration were analyzed using immunofluorescence assay or flow cytometry; the protein expressions of Wnt5a, Frizzled-2, and P-CaMK Ⅱ in the IP were detected with Western blotting and immunohistochemistry. RESULTS In rats with cerebral I/R, Frizzled-2 knockdown significantly lowered calcium concentration (P < 0.001) and the expression levels of Wnt5a, Frizzled-2, and P-CaMK Ⅱ in the IP area.In soy isoflavones-pretreated rats, calcium concentration, ROS and MDA levels, cell apoptosis rate, cerebral infarct volume, and expression levels of Wnt/Ca2+ signaling pathway-related proteins were all significantly lower while SOD level was higher than those in rats in I/R model group. CONCLUSION Soy isoflavones can mitigate calcium overload in rats with cerebral I/R by inhibiting the Wnt/Ca2+ signaling pathway.
Collapse
Affiliation(s)
- L Li
- Department of Pathophysiology, Bengbu Medical University, Bengbu 233000, China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - M Wang
- Department of Pathophysiology, Bengbu Medical University, Bengbu 233000, China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - S Liu
- Department of Pathophysiology, Bengbu Medical University, Bengbu 233000, China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - X Zhang
- Department of Pathophysiology, Bengbu Medical University, Bengbu 233000, China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - J Chen
- Department of Pathophysiology, Bengbu Medical University, Bengbu 233000, China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - W Tao
- Department of Pathophysiology, Bengbu Medical University, Bengbu 233000, China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - S Li
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
- Department of Neurology, Nanjing First Hospital, Nanjing 210000, China
| | - Z Qing
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
- Department of Clinical Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Q Tao
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
- Department of Clinical Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Y Liu
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
- Department of Clinical Medicine, Bengbu Medical University, Bengbu 233000, China
| | - L Huang
- Department of Pathophysiology, Bengbu Medical University, Bengbu 233000, China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - S Zhao
- Department of Pathophysiology, Bengbu Medical University, Bengbu 233000, China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
9
|
Abdel-Hameed SS, El-Daly M, Ahmed ASF, Bekhit AA, Heeba GH. Dapoxetine prevents neuronal damage and improves functional outcomes in a model of ischemic stroke through the modulation of inflammation and oxidative stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:253-266. [PMID: 37417988 PMCID: PMC10771602 DOI: 10.1007/s00210-023-02601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
Stroke is a medical emergency that is associated with substantial mortality and functional disability in adults. The most popular class of antidepressants, selective serotonin reuptake inhibitors SSRIs, have recently been shown in studies to have positive effects on post-stroke motor and cognitive function. Thus, we hypothesized that dapoxetine (DAP), a short-acting SSRI, would be effective against cerebral ischemia/reperfusion injury. Adult male Wister rats (200-250 g) were subjected to a sham operation or bilateral common carotid artery occlusion (BCCAO) for 30 min followed by 24 h of reperfusion to induce global cerebral ischemia/reperfusion (I/R) injury. Rats were treated with vehicle or DAP (30 or 60 mg/kg, i.p.) 1 h before BCCAO. The neurobehavioral performance of rats was assessed. The infarct volume, histopathological changes, oxidative stress parameters, and apoptotic and inflammatory mediators were determined in the brain tissues of euthanized rats. Our results confirmed that DAP significantly ameliorated cerebral I/R-induced neurobehavioral deficits, reduced cerebral infarct volume, and histopathological damage. Moreover, DAP pretreatment reduced lipid peroxidation, caspase-3, and inflammatory mediators (TNF-α and iNOS) compared to I/R-injured rats. Thus, DAP pretreatment potentially improves neurological function, and cerebral damage in cerebral ischemic rats may be partly related to the reduction in the inflammatory response, preservation of oxidative balance, and suppression of cell apoptosis in brain tissues.
Collapse
Affiliation(s)
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Amany A Bekhit
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt.
| |
Collapse
|
10
|
Liao Q, Fu X, Zhuo L, Chen H. An efficient model for predicting human diseases through miRNA based on multiple-types of contrastive learning. Front Microbiol 2023; 14:1325001. [PMID: 38163075 PMCID: PMC10755968 DOI: 10.3389/fmicb.2023.1325001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024] Open
Abstract
Multiple studies have demonstrated that microRNA (miRNA) can be deeply involved in the regulatory mechanism of human microbiota, thereby inducing disease. Developing effective methods to infer potential associations between microRNAs (miRNAs) and diseases can aid early diagnosis and treatment. Recent methods utilize machine learning or deep learning to predict miRNA-disease associations (MDAs), achieving state-of-the-art performance. However, the problem of sparse neighborhoods of nodes due to lack of data has not been well solved. To this end, we propose a new model named MTCL-MDA, which integrates multiple-types of contrastive learning strategies into a graph collaborative filtering model to predict potential MDAs. The model adopts a contrastive learning strategy based on topology, which alleviates the damage to model performance caused by sparse neighborhoods. In addition, the model also adopts a semantic-based contrastive learning strategy, which not only reduces the impact of noise introduced by topology-based contrastive learning, but also enhances the semantic information of nodes. Experimental results show that our model outperforms existing models on all evaluation metrics. Case analysis shows that our model can more accurately identify potential MDA, which is of great significance for the screening and diagnosis of real-life diseases. Our data and code are publicly available at: https://github.com/Lqingquan/MTCL-MDA.
Collapse
Affiliation(s)
- Qingquan Liao
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xiangzheng Fu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Linlin Zhuo
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, China
| | - Hao Chen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| |
Collapse
|
11
|
Jin H, Jiang W, Zheng X, Li L, Fang Y, Yang Y, Hu X, Chu L. MiR-199a-5p enhances neuronal differentiation of neural stem cells and promotes neurogenesis by targeting Cav-1 after cerebral ischemia. CNS Neurosci Ther 2023; 29:3967-3979. [PMID: 37349971 PMCID: PMC10651989 DOI: 10.1111/cns.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
AIMS MicroRNAs (miRs) are involved in endogenous neurogenesis, enhancing of which has been regarded as a potential therapeutic strategy for ischemic stroke treatment; however, whether miR-199a-5p mediates postischemic neurogenesis remains unclear. This study aims to investigate the proneurogenesis effects of miR-199a-5p and its possible mechanism after ischemic stroke. METHODS Neural stem cells (NSCs) were transfected using Lipofectamine 3000 reagent, and the differentiation of NSCs was evaluated by immunofluorescence and Western blotting. Dual-luciferase reporter assay was performed to verify the target gene of miR-199a-5p. MiR-199a-5p agomir/antagomir were injected intracerebroventricularly. The sensorimotor functions were evaluated by neurobehavioral tests, infarct volume was measured by toluidine blue staining, neurogenesis was detected by immunofluorescence assay, and the protein levels of neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), caveolin-1 (Cav-1), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF) were measured by Western blotting. RESULTS MiR-199a-5p mimic enhanced neuronal differentiation and inhibited astrocyte differentiation of NSCs, while a miR-199a-5p inhibitor induced the opposite effects, which can be reversed by Cav-1 siRNA. Cav-1 was through the dual-luciferase reporter assay confirmed as a target gene of miR-199a-5p. miR-199a-5p agomir in rat stroke models manifested multiple benefits, such as improving neurological deficits, reducing infarct volume, promoting neurogenesis, inhibiting Cav-1, and increasing VEGF and BDNF, which was reversed by the miR-199a-5p antagomir. CONCLUSION MiR-199a-5p may target and inhibit Cav-1 to enhance neurogenesis and thus promote functional recovery after cerebral ischemia. These findings indicate that miR-199a-5p is a promising target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hua‐Qian Jin
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Wei‐Feng Jiang
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin‐Tian Zheng
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Lin Li
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Yan Fang
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Yan Yang
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiao‐Wei Hu
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Li‐Sheng Chu
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
12
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
13
|
Li W, Xie L, Wang L, Lin F. CircRIMS promotes cerebral ischemia-reperfusion injury through increasing apoptosis and targeting the miR-96-5p/JAK/STAT1 axis. Brain Inj 2023; 37:1235-1244. [PMID: 37515578 DOI: 10.1080/02699052.2023.2237890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/07/2023] [Accepted: 06/12/2023] [Indexed: 07/31/2023]
Abstract
OBJECTIVE This study aims to explore the function of circRIMS in cerebral ischemia/reperfusion (CIR) and its regulatory mechanism. METHOD The expression of the circRIMS was examined in GEO chip data and validated by qRT-PCR analysis. A middle cerebral artery occlusion/repression (MCAO/R) model was developed using C57BL/6J mice. Starbase and circinteractome were employed to identify the target miRNA and mRNA. The result was confirmed by dual-luciferase reporter assay, and biotinylated RNA-pulldown assay. The cell viability and apoptosis were confirmed through CCK-8 and flow cytometry assay. RESULTS This study revealed that circRIMS expression was upregulated in MCAO mice model and OGD/RX-simulated cell model. Knockdown circRIMS demonstrated the functional of circRIMS in increasing cell viability, reducing apoptosis, LDH activity and inflammatory factors secretion in OGD/RX-simulated CIR injury in vitro. Additionally, miR-96-5p was identified as a target of circRIMS, while the STAT1 gene is a downstream gene of miR-96-5p, and JAK was also considered to be a downstream gene of the JAK-STAT pathway. Furthermore, inhibition of miR-96-5p or overexpression of STAT1 promoted the progression of CIR injury by elevating apoptosis, reducing cell viability, and increasing the secretion of inflammatory cytokines. CONCLUSION CircRIMS contributes to the progression of CIR injury via regulating miR-96-5p/JAK/STAT1 axis.
Collapse
Affiliation(s)
- Wei Li
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Lin Xie
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Lisha Wang
- Department of Neurology Intensive Care Unit, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Faliang Lin
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
14
|
Liu J, Chen J, Zhang J, Fan Y, Zhao S, Wang B, Wang P. Mechanism of Resveratrol Improving Ischemia-Reperfusion Injury by Regulating Microglial Function Through microRNA-450b-5p/KEAP1/Nrf2 Pathway. Mol Biotechnol 2023; 65:1498-1507. [PMID: 36656498 DOI: 10.1007/s12033-022-00646-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023]
Abstract
Alterations in the M1/M2 polarization phenotype significantly affect disease progression. Antioxidant and anti-inflammatory protective effects of resveratrol (Res) have been demonstrated. This paper tested the hypothesis that Res could protect against cerebral ischemia-reperfusion injury (CI/RI) by modulating microglial polarization via the miR-450b-5p/KEAP1/Nrf2 pathway. Rats were first treated with Res and adenovirus that interfered with miR-450b-5p or KEAP1, and then established a middle cerebral artery occlusion-reperfusion model using modified nylon sutures. Rats were then evaluated for neurological and behavioral functions, and markers of M2 microglia were detected by immunofluorescence staining. Additionally, the signature patterns of miR-450b-5p, KEAP1, and Nrf2 were determined. The collected data demonstrated that Res exerted neuroprotective effects in CI/RI by promoting microglial M2 polarization. Additionally, Res could regulate the Nrf2 pathway by targeting KEAP1 by up-regulating miR-450b-5p. Up-regulating miR-450b-5p or down-regulating KEAP1 could further promote the protective effect of Res, while down-regulating miR-450b-5p or up-regulating KEAP1 worked oppositely. Our study demonstrates that Res exerts neuroprotective effects on microglial M2 polarization through the miR-450b-5p/KEAP1/Nrf2 pathway during CI/RI.
Collapse
Affiliation(s)
- JiaHui Liu
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - JinYu Chen
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - JinFeng Zhang
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Yu Fan
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - ShiJun Zhao
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - BaoJun Wang
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Po Wang
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
15
|
Mahdipour R, Ebrahimzadeh-Bideskan A, Hosseini M, Shahba S, Lombardi G, Malvandi AM, Mohammadipour A. The benefits of grape seed extract in neurological disorders and brain aging. Nutr Neurosci 2023; 26:369-383. [PMID: 35343876 DOI: 10.1080/1028415x.2022.2051954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Common neurological disorders, including neurodegenerative diseases, stroke, epilepsy, autism and psychiatric disorders, affect many people worldwide and threaten their lives and health by inducing movement disorders, behavioral disorders, or a combination of both. Oxidative stress and neuroinflammation play a central role in neuronal damage and neurological diseases induction and progression. In addition, protein homeostasis (proteostasis) impairment occurs in many neurodegenerative diseases, which plays a critical role in the progression of the pathology. Grape seed contains several flavonoids and non-flavonoids and exerts potent antioxidant and anti-inflammatory effects. In addition, polyphenols and flavanols can maintain cellular proteostasis. Since impaired proteostasis is closely involved in all amyloid diseases, particularly neurodegenerative diseases, grape seeds extract can be a valuable therapeutic agent. Therefore, this review discusses the protective and therapeutic mechanisms of grape seed against neurological disorders and, in the end, links GSE to microRNAs as future therapeutic developments.
Collapse
Affiliation(s)
- Ramin Mahdipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Shahba
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Liu C, Gu J, Yu Y. Celastrol assuages oxygen-glucose deprivation and reoxygenation-induced damage in human brain microvascular endothelial cells through the circDLGAP4/miR-6085/GDF11 pathway. Metab Brain Dis 2023; 38:255-267. [PMID: 36445630 DOI: 10.1007/s11011-022-01106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022]
Abstract
The effect of Celastrol on cerebral ischemia-reperfusion remains unknown. The study aims to explore the role of circular RNA DLGAP4 (circDLGAP4) in cerebral ischemia-reperfusion and the underlying mechanism. Ischemia-reperfusion (I/R) injury of human brain microvascular endothelial cells (HBMECs) was induced by oxygen-glucose deprivation and reoxygenation (OGD/R). Reverse transcription quantitative real-time PCR (RT-qPCR) and western blotting analysis were performed to detect the expression of circDLGAP4, microRNA-6085 (miR-6085), growth differentiation factor 11 (GDF11), B-cell lymphoma-2 (BCL2) and BCL2-associated x protein (BAX). Cell viability, proliferation, and apoptosis were analyzed by cell counting kit-8, 5-Ethynyl-2'-deoxyuridine and flow cytometry analysis. Oxidative stress was analyzed by evaluating the levels of Malondialdehyde (MDA) and Reactive Oxygen Species (ROS) and the activity of Superoxide Dismutase (SOD). The associations among circDLGAP4, miR-6085 and GDF11 were identified by dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays. Celastrol reduced OGD/R-induced inhibition of circDLGAP4 expression in HBMECs. Celastrol treatment protected HBMECs from OGD/R-induced cell proliferation inhibition and apoptosis and oxidative stress promotion; however, circDLGAP4 depletion attenuated these effects. CircDLGAP4 acted as a sponge for miR-6085, and miR-6085 mimics restored circDLGAP4-mediated effects in OGD/R-stimulated HBMECs. In addition, GDF11 was identified as a targte of miR-6085, and participated in the regulation of miR-6085 to OGD/R-induced HBMEC damage. Further, circDLGAP4 absence inhibited GDF11 expression by interacting with miR-6085 under Celastrol treatment. Celastrol ameliorated OGD/R-induced HBMEC apoptosis and oxidative stress by circDLGAP4/miR-6085/GDF11 pathway, supporting the use of Celastrol as a therapeutic agent for cerebral infarction.
Collapse
Affiliation(s)
- Chunhong Liu
- Department of Traditional Chinese Medicine, Yantai Hospital of Traditional Chinese Medicine, No.39 Xing Fu road in Zhifu District, Yantai, 264013, China
| | - Jiahui Gu
- Department of Pharmacy, Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | - Yingli Yu
- Department of Traditional Chinese Medicine, Yantai Hospital of Traditional Chinese Medicine, No.39 Xing Fu road in Zhifu District, Yantai, 264013, China.
| |
Collapse
|
17
|
Wu Y, Fan X, Chen S, Deng L, Jiang L, Yang S, Dong Z. Geraniol-Mediated Suppression of Endoplasmic Reticulum Stress Protects against Cerebral Ischemia-Reperfusion Injury via the PERK-ATF4-CHOP Pathway. Int J Mol Sci 2022; 24:ijms24010544. [PMID: 36613992 PMCID: PMC9820715 DOI: 10.3390/ijms24010544] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 12/31/2022] Open
Abstract
Endoplasmic reticulum (ER) stress plays an important role in cerebral ischemia-reperfusion injury (CIRI). Geraniol has antioxidant, antibacterial, and anti-inflammatory activities. Studies have shown that geraniol has a protective effect against CIRI in rats, but the exact mechanism is unclear. Purpose: The aim of this study was to investigate the protective mechanism of geraniol against CIRI. We established a middle cerebral artery occlusion reperfusion model in rats and a PC12 cell oxygen-glucose deprivation/reoxygenation (OGD/R) model to observe the neuroprotective effects of geraniol. Neurological scoring, 2,3,5-triphenyltetrazolium chloride staining, and hematoxylin and eosin staining were used to evaluate the neuroprotective effects of geraniol against CIRI. ER-stress-related and apoptosis-related protein expression was detected via Western blotting and immunofluorescence. Apoptosis was also detected via TUNEL assays and flow cytometry. The fluorescent detection of intracellular calcium was achieved using fluorescent calcium-binding dyes, and transmission electron microscopy was used to assess the neuronal ultrastructure. Geraniol effectively attenuated cerebral infarction and pathological injury after CIRI, had a protective effect against CIRI, significantly reduced the expression of the ER-stress-related proteins P-PERK, ATF4, CHOP, and GRP78 and the pro-apoptotic protein BAX, increased the expression of the anti-apoptotic protein BCL-2, and reduced the occurrence of apoptosis. In the OGD/R model in PC12 cells, the protective effect of geraniol was the same as that in vivo. Our results suggest that geraniol has a protective effect against ischemic stroke by a mechanism possibly related to ER stress via the PERK-ATF4-CHOP pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhi Dong
- Correspondence: ; Tel.: +86-135-0839-3231
| |
Collapse
|
18
|
Shan W, Ge H, Chen B, Huang L, Zhu S, Zhou Y. Upregulation of miR-499a-5p Decreases Cerebral Ischemia/Reperfusion Injury by Targeting PDCD4. Cell Mol Neurobiol 2022; 42:2157-2170. [PMID: 33837492 PMCID: PMC11421641 DOI: 10.1007/s10571-021-01085-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
MiR-499a-5p was significantly downregulated in degenerative tissues and correlated with apoptosis. Nonetheless, the biological function of miR-499a-5p in acute ischemic stroke has been still unclear. In this study, we found that the plasma levels of miR-499a-5p were significantly downregulated in 64 ischemic stroke patients and negatively correlated with the National Institutes of Health Stroke Scale score. Then, we constructed cerebral ischemia/reperfusion (I/R) injury in rats after middle cerebral artery occlusion and subsequent reperfusion and oxygen-glucose deprivation and reoxygenation (OGD/R)-treated SH-SY5Y cell model. Transfection with miR-499a-5p mimic was accomplished by intracerebroventricular injection in the in vivo I/R injury model. We further found that miR-499a-5p overexpression decreased infarct volumes and cell apoptosis in the in vivo I/R stroke model using TTC and TUNEL staining. PDCD4 was a direct target of miR-499a-5p by luciferase report assay and Western blotting. Knockdown of PDCD4 reduced the infarct damage and cortical neuron apoptosis caused by I/R injury. MiR-499a-5p exerted neuroprotective roles mainly through inhibiting PDCD4-mediated apoptosis by CCK-8 assay, LDH release assay, and flow cytometry analysis. These findings suggest that miR-499a-5p might represent a novel target that regulates brain injury by inhibiting PDCD4-mediating apoptosis.
Collapse
Affiliation(s)
- Weifeng Shan
- Department of Anesthesiology, The People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Huifeng Ge
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Bingquan Chen
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Linger Huang
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Shaojun Zhu
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yanfeng Zhou
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
19
|
Khan H, Kaur Grewal A, Gurjeet Singh T. Mitochondrial dynamics related neurovascular approaches in cerebral ischemic injury. Mitochondrion 2022; 66:54-66. [DOI: 10.1016/j.mito.2022.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 12/30/2022]
|
20
|
Neag MA, Mitre AO, Burlacu CC, Inceu AI, Mihu C, Melincovici CS, Bichescu M, Buzoianu AD. miRNA Involvement in Cerebral Ischemia-Reperfusion Injury. Front Neurosci 2022; 16:901360. [PMID: 35757539 PMCID: PMC9226476 DOI: 10.3389/fnins.2022.901360] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia reperfusion injury is a debilitating medical condition, currently with only a limited amount of therapies aimed at protecting the cerebral parenchyma. Micro RNAs (miRNAs) are small, non-coding RNA molecules that via the RNA-induced silencing complex either degrade or prevent target messenger RNAs from being translated and thus, can modulate the synthesis of target proteins. In the neurological field, miRNAs have been evaluated as potential regulators in brain development processes and pathological events. Following ischemic hypoxic stress, the cellular and molecular events initiated dysregulate different miRNAs, responsible for long-terming progression and extension of neuronal damage. Because of their ability to regulate the synthesis of target proteins, miRNAs emerge as a possible therapeutic strategy in limiting the neuronal damage following a cerebral ischemic event. This review aims to summarize the recent literature evidence of the miRNAs involved in signaling and modulating cerebral ischemia-reperfusion injuries, thus pointing their potential in limiting neuronal damage and repair mechanisms. An in-depth overview of the molecular pathways involved in ischemia reperfusion injury and the involvement of specific miRNAs, could provide future perspectives in the development of neuroprotective agents targeting these specific miRNAs.
Collapse
Affiliation(s)
- Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carina Mihu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen-Stanca Melincovici
- Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marius Bichescu
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
21
|
Ritiu SA, Rogobete AF, Sandesc D, Bedreag OH, Papurica M, Popovici SE, Toma D, Ivascu RI, Velovan R, Garofil DN, Corneci D, Bratu LM, Pahontu EM, Pistol A. The Impact of General Anesthesia on Redox Stability and Epigenetic Inflammation Pathways: Crosstalk on Perioperative Antioxidant Therapy. Cells 2022; 11:1880. [PMID: 35741011 PMCID: PMC9221536 DOI: 10.3390/cells11121880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
Worldwide, the prevalence of surgery under general anesthesia has significantly increased, both because of modern anesthetic and pain-control techniques and because of better diagnosis and the increased complexity of surgical techniques. Apart from developing new concepts in the surgical field, researchers and clinicians are now working on minimizing the impact of surgical trauma and offering minimal invasive procedures due to the recent discoveries in the field of cellular and molecular mechanisms that have revealed a systemic inflammatory and pro-oxidative impact not only in the perioperative period but also in the long term, contributing to more difficult recovery, increased morbidity and mortality, and a negative financial impact. Detailed molecular and cellular analysis has shown an overproduction of inflammatory and pro-oxidative species, responsible for augmenting the systemic inflammatory status and making postoperative recovery more difficult. Moreover, there are a series of changes in certain epigenetic structures, the most important being the microRNAs. This review describes the most important molecular and cellular mechanisms that impact the surgical patient undergoing general anesthesia, and it presents a series of antioxidant therapies that can reduce systemic inflammation.
Collapse
Affiliation(s)
- Stelian Adrian Ritiu
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Alexandru Florin Rogobete
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
- Anaesthesia and Intensive Care Research Center (CCATITM), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Dorel Sandesc
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
- Anaesthesia and Intensive Care Research Center (CCATITM), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Ovidiu Horea Bedreag
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
- Anaesthesia and Intensive Care Research Center (CCATITM), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Marius Papurica
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
- Anaesthesia and Intensive Care Research Center (CCATITM), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Sonia Elena Popovici
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Daiana Toma
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Robert Iulian Ivascu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.I.I.); (D.C.); (A.P.)
- Clinic of Anaesthesia and Intensive Care, Central Military Emergency Hospital “Dr. Carol Davila”, 010242 Bucharest, Romania
| | - Raluca Velovan
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Dragos Nicolae Garofil
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.I.I.); (D.C.); (A.P.)
| | - Dan Corneci
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.I.I.); (D.C.); (A.P.)
- Clinic of Anaesthesia and Intensive Care, Central Military Emergency Hospital “Dr. Carol Davila”, 010242 Bucharest, Romania
| | - Lavinia Melania Bratu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Elena Mihaela Pahontu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Adriana Pistol
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.I.I.); (D.C.); (A.P.)
| |
Collapse
|
22
|
Wang A, Zhao W, Yan K, Huang P, Zhang H, Ma X. Preclinical Evidence of Paeoniflorin Effectiveness for the Management of Cerebral Ischemia/Reperfusion Injury: A Systematic Review and Meta-Analysis. Front Pharmacol 2022; 13:827770. [PMID: 35462929 PMCID: PMC9032804 DOI: 10.3389/fphar.2022.827770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/24/2022] [Indexed: 01/01/2023] Open
Abstract
Background: Vessel recanalization is the main treatment for ischemic stroke; however, not all patients benefit from it. This lack of treatment benefit is related to the accompanying ischemia-reperfusion (I/R) injury. Therefore, neuroprotective therapy for I/R Injury needs to be further studied. Paeonia lactiflora Pall. is a commonly used for ischemic stroke management in traditional Chinese medicine; its main active ingredient is paeoniflorin (PF). We aimed to determine the PF’s effects and the underlying mechanisms in instances of cerebral I/R injury.Methods: We searched seven databases from their inception to July 2021.SYRCLE’s risk of bias tool was used to assess methodological quality. Review Manager 5.3 and STATA 12.0 software were used for meta-analysis.Results: Thirteen studies, including 282 animals overall, were selected. The meta-analyses showed compared to control treatment, PF significantly reduced neurological severity scores, cerebral infarction size, and brain water content (p = 0.000). In the PF treatment groups, the apoptosis cells and levels of inflammatory factors (IL-1β) decreased compared to those in the control groups (p = 0.000).Conclusion: Our results suggest that PF is a promising therapeutic for cerebral I/R injury management. However, to evaluate the effects and safety of PF in a more accurate manner, additional preclinical studies are necessary.
Collapse
Affiliation(s)
- Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhao
- Yidu Central Hospital of Weifang, Weifang, China
| | - Kaituo Yan
- Yidu Central Hospital of Weifang, Weifang, China
| | - Pingping Huang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- *Correspondence: Xiaochang Ma,
| |
Collapse
|
23
|
Tanga BM, Fang X, Bang S, Seong G, De Zoysa M, Saadeldin IM, Lee S, Cho J. MiRNA-155 inhibition enhances porcine embryo preimplantation developmental competence by upregulating ZEB2 and downregulating ATF4. Theriogenology 2022; 183:90-97. [DOI: 10.1016/j.theriogenology.2022.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/02/2022] [Accepted: 02/20/2022] [Indexed: 12/11/2022]
|
24
|
MiRNA-122 Promotes Ischemia-Reperfusion Injury after Lung Transplantation via the Toll-like Receptor Signaling Pathway. Curr Med Sci 2021; 41:1231-1238. [PMID: 34939145 DOI: 10.1007/s11596-021-2487-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE MiRNAs have been recently implicated in the pathogenesis of ischemia-reperfusion (IR) injury. This study aimed to investigate the miRNA expression profiles in the early stages after lung transplantation (LT) and to study the involvement of the Toll-like receptor (TLR) signaling pathway in lung IR injury following LT. METHODS We established the left LT model in mice and selected the miRNA-122 as a research target. The mice were injected with a miRNA-122-specific inhibitor, following which pathological changes in the lung tissue were studied using different lung injury indicators. In addition, we performed deep sequencing of transplanted lung tissues to identify differentially expressed (DE) miRNAs and their target genes. These target genes were used to further perform gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. RESULTS A total of 12 DE miRNAs were selected, and 2476 target genes were identified. The GO enrichment analysis predicted 6063 terms, and the KEGG analysis predicted 1554 biological pathways. Compared with the control group, inhibiting the expression of miRNA-122 significantly reduced the lung injury and lung wet/dry ratio (P<0.05). In addition, the activity of myeloperoxidase and the expression levels of tumor necrosis factor-alpha and TLR2/4 were decreased (P<0.05); whereas the expression of interleukin-10 was increased (P<0.05). Furthermore, the inhibition of miRNA-122 suppressed the IR injury-induced activation of the TLR signaling pathway. CONCLUSION Our findings showed the differential expression of several miRNAs in the early inflammatory response following LT. Of these, miRNA-122 promoted IR injury following LT, whereas its inhibition prevented IR injury in a TLR-dependent manner.
Collapse
|
25
|
Yao D, Zhang S, Hu Z, Luo H, Mao C, Fan Y, Tang M, Liu F, Shen S, Fan L, Li M, Shi J, Li J, Ma D, Xu Y, Shi C. CHIP ameliorates cerebral ischemia-reperfusion injury by attenuating necroptosis and inflammation. Aging (Albany NY) 2021; 13:25564-25577. [PMID: 34905731 PMCID: PMC8714161 DOI: 10.18632/aging.203774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 01/01/2023]
Abstract
Blood reperfusion of ischemic cerebral tissue may cause cerebral ischemia-reperfusion (CIR) injury. Necroptosis and inflammation have been demonstrated to be involved in the disease-related process of CIR injury. The E3 ubiquitin ligase carboxyl terminus of Hsp70-interacting protein (CHIP) can modulate multiple cellular signaling processes, including necroptosis and inflammation. Numerous studies have demonstrated the neuroprotective effects of CHIP on multiple central nervous system (CNS) diseases. However, the effects of CHIP on CIR injury have not been fully explored. We hypothesize that CHIP can exert neuroprotective effects by attenuating necroptosis and inflammation during CIR injury. In the present study, adult wild-type (WT) C57BL/6 mice and CHIP knock-in (KI) mice with a C57BL/6 background and CHIP overexpression in neural tissue underwent middle cerebral artery occlusion (MCAO) surgery to simulate CIR onset. Our data indicated that CHIP expression in the peri-infarct tissue was markedly increased after MCAO surgery. Compared with WT mice, CHIP KI mice significantly improved neurological deficit scores, decreased cerebral infarct volume, and attenuated brain edema and neuronal damage. Meanwhile, CHIP overexpression attenuated necroptosis and inflammation induced by MCAO surgery. These findings indicated that overexpression of CHIP might exert neuroprotective effects by attenuating necroptosis and inflammation during CIR injury, and increasing CHIP levels may be a potential strategy in cerebrovascular disease therapy.
Collapse
Affiliation(s)
- Dabao Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Fen Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Si Shen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jingjing Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jiadi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Dongrui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou 450000, Henan, China
| |
Collapse
|
26
|
Zhong Y, Luo L. Exosomes from Human Umbilical Vein Endothelial Cells Ameliorate Ischemic Injuries by Suppressing the RNA Component of Mitochondrial RNA-processing Endoribonuclease via the Induction of miR-206/miR-1-3p Levels. Neuroscience 2021; 476:34-44. [PMID: 34481913 DOI: 10.1016/j.neuroscience.2021.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Exosomes might mediate the effects of remote ischemic post-conditioning (RIPostC) treatment on vital organs. The present study aimed to explore the role of RNA component of mitochondrial RNA-processing endoribonuclease (RMRP) in the effects of human umbilical vein endothelial cell (HUVEC)-derived exosomes on ischemic injuries in vitro and in vivo. HUVECs were subjected to oxygen-glucose deprivation (OGD) treatment and exosomes were collected OGD-treated human neural cells were incubated with HUVEC-derived exosomes. Changes in cell viability, apoptosis, and RMRP-mediated PI3K/Akt/mTOR pathway activity were detected. The role of RMRP inhibition in the anti-OGD effects of exosomes was further determined by upregulating RMRP expression in human neural cells. The potential RMRP inhibitory factors in exosomes were explored using microarray detection. The effects of exosomes were validated with MCAO mouse models. In OGD neurons incubated with the exosomes, cell viability was improved and cell apoptosis was suppressed. At molecular level, exosomes on downregulated RMRP, p-PI3K, p-Akt, and p-mTOR, while induced eNOS. After the overexpression of RMRP, the cell protective effects of exosomes were counteracted, which was associated with the re-activation of PI3K/Akt/mTOR pathway. Based on the detection of microarray, the induced levels of miR-206 and miR-1-3p by OGD in HVUECs contributed to the RMPR inhibition. Additionally, injection of exosomes restricted infarction area and suppressed RMRP in MCAO mice. Collectively, exosomes from OGD HUVECs could protect neurons against ischemia-induced injuries, and the effects were associated with the suppression of RMRP in neurons via distance transfer of miR-206 and miR-1-3p.
Collapse
Affiliation(s)
- Yanyan Zhong
- Department of Emergency, The First People's Hospital of Wenling, Wenling 317500, China
| | - Liangyan Luo
- Department of Neurology, The First People's Hospital of Wenling, Wenling 317500, China.
| |
Collapse
|
27
|
Emam AM, Saad MA, Ahmed NA, Zaki HF. Vortioxetine mitigates neuronal damage by restricting PERK/eIF2α/ATF4/CHOP signaling pathway in rats subjected to focal cerebral ischemia-reperfusion. Life Sci 2021; 283:119865. [PMID: 34358549 DOI: 10.1016/j.lfs.2021.119865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
AIMS Stroke has risen to the fifth and third most common causes of death in the United States and the rest of the world, respectively. Vortioxetine (VTX) is a multimodal antidepressant agent that balances 5-HT receptors and represses the serotonin transporter. Our study aimed to examine the neuroprotective impacts of VTX against cerebral ischemia caused by occluding the middle cerebral artery (MCA). MAIN METHODS Until the middle cerebral artery occlusion (MCAO) induction, VTX (10 mg/kg/day) was taken orally for 14 days. Behavioral assessments were carried out 24 h after the MCAO technique. The hippocampal and cortical tissues of the brain were isolated to assess the histological changes and the levels of the biochemical parameters. KEY FINDINGS MCAO damage led to severe neurological deficits and histopathological damage. However, VTX improved MCAO-induced neurological deficits and ameliorated histopathological changes in both hippocampal and cortical tissues of MCAO rats. Western blot analysis showed increments of p-PERK, CHOP, ASK-1, NICD, HES-1, HES-5, and p-eIF2α expression levels in MCAO rats. Moreover, ELISA revealed an increase in the levels of ATF4, IRE1, Apaf-1, and HIF-1α, while VTX administration ameliorated most of these perturbations induced after MCAO injury. SIGNIFICANCE This research suggests that VTX could be a potent neuroprotective agent against ischemic stroke by inhibiting a variety of oxidative, apoptotic, inflammatory, and endoplasmic reticulum stress pathways.
Collapse
Affiliation(s)
- Amr M Emam
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt.
| | - Muhammad A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt; School of Pharmacy, New Giza University, Giza, Egypt
| | - Naglaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| |
Collapse
|
28
|
Asgharzade S, Talaei A, Farkhondeh T, Forouzanfar F. Combining Growth Factor and Stem Cell Therapy for Stroke Rehabilitation, A Review. Curr Drug Targets 2021; 21:781-791. [PMID: 31914912 DOI: 10.2174/1389450121666200107100747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Stroke is a serious, life-threatening condition demanding vigorous search for new therapies. Recent research has focused on stem cell-based therapies as a viable choice following ischemic stroke, based on studies displaying that stem cells transplanted to the brain not only survive but also cause functional recovery. Growth factors defined as polypeptides that regulate the growth and differentiation of many cell types. Many studies have demonstrated that combined use of growth factors may increase results by the stimulation of endogenous neurogenesis, anti-inflammatory, neuroprotection properties, and enhancement of stem cell survival rates and so may be more effective than a single stem cell therapy. This paper reviews and discusses the most promising new stroke recovery research, including combination treatment.
Collapse
Affiliation(s)
- Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Andisheh Talaei
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
MiR-127-3p targeting CISD1 regulates autophagy in hypoxic-ischemic cortex. Cell Death Dis 2021; 12:279. [PMID: 33723216 PMCID: PMC7961148 DOI: 10.1038/s41419-021-03541-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 02/05/2023]
Abstract
Neonatal hypoxic-ischemic (HI) injury derived from asphyxia during perinatal period, is a serious complication of neonatal asphyxia and the main cause of neonatal acute death and chronic neurological injury. Aberrant autophagy occurs in many nervous system diseases, but its role and underlying mechanism in HI injury is largely unknown. Here, we successfully constructed a newborn rat model of HI brain injury, and the knockout-miR-127-3p (KO-miR-127-3p) rats were structured by using CRISPR/Cas9. Subsequently, the in vitro functional experiments, in vivo zea-longa scores, as well as bioinformatics analyses and biological experiments were applied. The expression of autophagy-related proteins, including ATG12, P62, Beclin-1, LC3II in HI cortex with miR-127-3p knockout was significantly decreased, and autophagic vacuoles were disappeared. Moreover, miR-127-3p has a specific regulatory effect on CISD1 expression, another crucial molecule in autophagy process. Accordingly, the overexpression of CISD1 effectively inhibited the autophagic cell death and physiological dysfunction in the brain of HI injury, whereas si-CISD1 reversed the neuroprotective effects of KO-miR-127-3p. Our findings explained the underlying mechanism for HI injury, and miR-127-3p targeting CISD1 signal could be supposed as a new treatment strategy to prevent and treat HI injury.
Collapse
|
30
|
Jia Y, Yi L, Li Q, Liu T, Yang S. LncRNA MALAT1 aggravates oxygen-glucose deprivation/reoxygenation-induced neuronal endoplasmic reticulum stress and apoptosis via the miR-195a-5p/HMGA1 axis. Biol Res 2021; 54:8. [PMID: 33750458 PMCID: PMC7941907 DOI: 10.1186/s40659-021-00331-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND This study aimed to investigate the potential role and molecular mechanism of lncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in cerebral ischemia/reperfusion injury. RESULTS Using an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model, we determined that the expression of MALAT1 was significantly increased during OGD/R. MALAT1 knockdown reversed OGD/R-induced apoptosis and ER stress. Mechanistically, MALAT1 promoted OGD/R-induced neuronal injury through sponging miR-195a-5p to upregulating high mobility group AT-hook1 (HMGA1). CONCLUSIONS Collectively, these data demonstrate the mechanism underlying the invovlvement of MALAT1 in cerebral ischemia/reperfusion injury, thus providing translational evidence that MALAT1 may serve as a novel biomarker and therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Ying Jia
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Lian Yi
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Qianqian Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Tingjiao Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Shanshan Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China.
| |
Collapse
|
31
|
Lou T, Ma J, Xie Y, Yao G, Fan Y, Ma S, Zou X. Nuanxin capsule enhances cardiac function by inhibiting oxidative stress-induced mitochondrial dependent apoptosis through AMPK/JNK signaling pathway. Biomed Pharmacother 2021; 135:111188. [PMID: 33418304 DOI: 10.1016/j.biopha.2020.111188] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Oxidative stress and apoptosis play critical roles in the pathogenesis of heart failure (HF).Nuanxin capsule (NX) is a Chinese medicine that has outstanding protective effects on HF. The present study aimed to elucidate whether NX could protect HF against oxidative stress-induced apoptosis through intrinsic mitochondrial pathway. METHODS In vivo, HF was induced by transverse aortic constriction. NX and Compound C (Comp C) were administered to C57BL/6 J mice for over a 4-week period. Cardiac function was assessed with echocardiography. In vitro, H9c2 cells were exposed to H2O2 in the presence or absence of NX and Compound C. Cell viability, cytotoxicity, reactive oxygen species (ROS) production, apoptosis, mitochondrial membrane potential (ΔΨm) and mitochondrial function by oxygen consumption rate (OCR) were detected. The expressions of cytochrome c, BAX, Bcl-2, cleaved caspase-3, AMPK and JNK were evaluated by western blotting. RESULTS The results indicated that NX significantly improved cardiac function and enhanced the cell viability, ΔΨm and mitochondrial respiration. Also NX treatment reduced cell cytotoxicity and ROS production. Moreover, NX inhibited mitochondrial-mediated apoptosis by upregulating AMPK and downregulating JNK both in vivo and in vitro. The protective effects of NX on cardiac function by reducing oxidative stress-induced mitochondrial dependent apoptosis were reversed by Compound C treatment. CONCLUSIONS These findings demonstrated that NX effectively improved cardiac function in TAC mice by reducing oxidative stress-induced mitochondrial dependent apoptosis by activating AMPK/JNK signaling pathway.
Collapse
Affiliation(s)
- Tiantian Lou
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Jin Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Yanzheng Xie
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Gengzhen Yao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Ye Fan
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Shiyu Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China.
| | - Xu Zou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China; Dongguan Kanghua Hospital, Dongguan, 523080, China.
| |
Collapse
|
32
|
Yang B, Zang L, Cui J, Wei L. Circular RNA TTC3 regulates cerebral ischemia-reperfusion injury and neural stem cells by miR-372-3p/TLR4 axis in cerebral infarction. Stem Cell Res Ther 2021; 12:125. [PMID: 33579365 PMCID: PMC7881478 DOI: 10.1186/s13287-021-02187-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background Stroke serves as a prevalent cerebrovascular disorder with severe cerebral ischemia/reperfusion (CIR) injury, in which neural stem cells (NSCs) play critical roles in the recovery of cerebral function. Circular RNAs (circRNAs) have been widely found to participate in stroke and NSC modulation. However, the role of circRNA TTC3 (circTTC3) in the regulation of CIR injury and NSCs remains elusive. Here, we aimed to explore the impact of circTTC3 on CIR injury and NSCs. Methods The middle cerebral artery occlusion/repression (MCAO/R) model was established in C57BL/6J mice. The primary astrocytes were isolated from the cerebellum from C57BL/6J mice. The primary NSCs were obtained from rat embryos. The effect of circTTC3 on CIR injury and NSCs was analyzed by TTC staining, qPCR, Western blot, LDH colorimetric kits, MTT assays, Annexin V-FITC Apoptosis Detection Kit, luciferase reporter gene assays, and others in the system. Results Significantly, the expression of circTTC3 was elevated in the MCAO/R mice and oxygen and glucose deprivation (OGD)-treated astrocytes. The depletion of circTTC3 attenuated cerebral infarction, neurological score, and brain water content. The OGD treatment induced apoptosis and the levels of lactate dehydrogenase (LDH) in the astrocytes, in which circTTC3 depletion reduced this phenotype in the system. Moreover, the depletion of circTTC3 promoted the proliferation and upregulated the nestin and β-tubulin III expression in NSCs. Mechanically, circTTC3 was able to sponge miR-372-3p, and miR-372-3p can target Toll-like receptor 4 (TLR4) in NSCs. The miR-372-3p inhibitor or TLR4 overexpression could reverse circTTC3 depletion-mediated astrocyte OGD injury and NSC regulation. Conclusion Thus, we conclude that circTTC3 regulates CIR injury and NSCs by the miR-372-3p/TLR4 axis in cerebral infarction. Our finding presents new insight into the mechanism by which circTTC3 modulates CIR injury and NSC dysfunction. CircTTC3, miR-372-3p, and TLR4 may serve as potential targets for the treatment of CIR injury during stroke.
Collapse
Affiliation(s)
- Bo Yang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Li'e Zang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jingwen Cui
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Linlin Wei
- Department of Gynaecology, The First Affiliated Hospital of Jinzhou Medical University, No.2, Section 5, Renmin Street, Jinzhou, Liaoning Province, China.
| |
Collapse
|
33
|
Xing F, Liu Y, Dong R, Cheng Y. miR-374 improves cerebral ischemia reperfusion injury by targeting Wnt5a. Exp Anim 2021; 70:126-136. [PMID: 33116025 PMCID: PMC7887619 DOI: 10.1538/expanim.20-0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral artery occlusion (MCAO) model in rats and then subjected them to reperfusion to explore the role of microRNA-374 (miR-374) in cerebral IR injury. After reperfusion, the endogenous miR-374 level decreased, and the expression of its target gene, Wnt5a, increased in brain tissues. Intracerebral pretreatment of miR-374 agomir attenuated cerebral damage induced by IR, including neurobehavioral deficits, infarction, cerebral edema and blood-brain barrier disruption. Moreover, rats pretreated with miR-374 agomir showed a remarkable decrease in apoptotic neurons, which was further confirmed by reduced BAX expression as well as increased BCL-2 and BCL-XL expression. A dual-luciferase reporter assay substantiated that Wnt5a was the target gene of miR-374. miR-374 might protect against brain injury by downregulating Wnt5a in rats after IR. Thus, our study provided a novel mechanism of cerebral IR injury from the perspective of miRNA regulation.
Collapse
Affiliation(s)
- Fangyuan Xing
- Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People's Republic of China
| | - Yongrong Liu
- Department of Ultrasound, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People's Republic of China
| | - Ruifang Dong
- Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People's Republic of China
| | - Ye Cheng
- Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People's Republic of China
| |
Collapse
|
34
|
Ge X, Meng Q, Wei L, Liu J, Li M, Liang X, Lin F, Zhang Y, Li Y, Liu Z, Fan H, Zhou X. Myocardial ischemia-reperfusion induced cardiac extracellular vesicles harbour proinflammatory features and aggravate heart injury. J Extracell Vesicles 2021; 10:e12072. [PMID: 33664937 PMCID: PMC7902529 DOI: 10.1002/jev2.12072] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/02/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) curb important biological functions. We previously disclosed that ischemia-reperfusion (IR) induces increased release of EVs (IR-EVs) in the heart. However, the role of IR-EVs in IR pathological process remains poorly understood. Here we found that adoptive transfer of IR-EVs aggravated IR induced heart injury, and EV inhibition by GW4869 reduced the IR injury. Our in vivo and in vitro investigations substantiated that IR-EVs facilitated M1-like polarization of macrophages with increased expression of proinflammatory cytokines. Further, we disclosed the miRNA profile in cardiac EVs and confirmed the enrichment of miRNAs, such as miR-155-5p in IR-EVs compared to EVs from the sham heart (S-EVs). In particular, IR-EVs transferred miR-155-5p to macrophages and enhanced the inflammatory response through activating JAK2/STAT1 pathway. Interestingly, IR-EVs not only boosted the local inflammation in the heart, but even triggered systemic inflammation in distant organs. Taken together, we newly identify an IR-EVs-miR-155-5p-M1 polarization axis in the heart post IR. The EVs derived from IR-injured heart contribute to both local and systemic inflammation. Importantly, EV inhibition by GW4869 is supposed to be a promising therapeutic strategy for IR injury.
Collapse
Affiliation(s)
- Xinyu Ge
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
- Department of Cardiothoracic SurgeryShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
| | - Qingshu Meng
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
| | - Lu Wei
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
| | - Jing Liu
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
- Department of Cardiothoracic SurgeryShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
| | - Mimi Li
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
| | - Xiaoting Liang
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
| | - Fang Lin
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
| | - Yuhui Zhang
- Department of UltrasoundShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP.R. China
| | - Yinzhen Li
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Department of Respiratory MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP.R. China
| | - Zhongmin Liu
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
- Department of Cardiothoracic SurgeryShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Department of Heart FailureShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
| | - Huimin Fan
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
- Department of Cardiothoracic SurgeryShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Department of Heart FailureShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
| | - Xiaohui Zhou
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
| |
Collapse
|
35
|
MicroRNA-338-5p alleviates cerebral ischemia/reperfusion injury by targeting connective tissue growth factor through the adenosine 5'-monophosphate-activated protein kinase/mammalian target of rapamycin signaling pathway. Neuroreport 2021; 31:256-264. [PMID: 32032283 DOI: 10.1097/wnr.0000000000001404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia/reperfusion (CIR) injury could lead to the function of brain cell disorder and cerebral infarction. MicroRNAs (miRNAs) have been reported to participate in the progression and protection of CIR injury. Thus, our study aimed to investigate the functional effects of microRNA-338-5p (miR-338-5p) on proliferation, apoptosis, and inflammatory response of CIR injury. According to the results, miR-338-5p was downregulated in the brain of the mice caused by CIR injury, and overexpression of miR-338-5p reduced the neurological deficit and infarct volume of the brain in the mice caused by CIR injury. Meanwhile, miR-338-5p overexpression promoted the proliferation, while suppressed the apoptosis and the inflammatory response of Neuro-2a cells exposed to hypoxia/reoxygenation (H/R). Interestingly, miR-338-5p directly targeted connective tissue growth factor (CTGF) and overexpression of CTGF reversed the functional effects of miR-338-5p on proliferation, apoptosis, and inflammatory response in Neuro-2a cells caused by H/R. More importantly, miR-338-5p affected the adenosine 5¢-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway by regulating CTGF expression in Neuro-2a cells exposed to H/R. Taken together, we concluded that MiR-338-5p promoted the proliferation, while suppressed the apoptosis and the inflammatory response of cells exposed to H/R by targeting CTGF through the AMPK/mTOR signaling pathway.
Collapse
|
36
|
Zhao S, Liu X, Kang J, Sun S, Li Y, Zhang J, Li Q, Ji X. Analysis of microRNA expression in cerebral ischemia/reperfusion after mild therapeutic hypothermia treatment in rats. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:168. [PMID: 33569470 PMCID: PMC7867934 DOI: 10.21037/atm-21-143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background This study aimed to explore the molecular mechanism of mild hypothermia in in the treatment of cerebral ischemia, microRNA (miRNA) microarrays and bioinformatics analysis were employed to examine the miRNA expression profiles of rats with mild therapeutic hypothermia after middle cerebral artery occlusion (MCAO). Methods MCAO was induced in Male Sprague–Dawley rats. Mild hypothermia treatment began from the onset of ischemia and maintained for 3 hours. miRNA expressions following focal cerebral ischemia and mild hypothermia treatment were profiled using microarray technology. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the functions of the target genes in mild therapeutic hypothermia after MCAO. 60 min before MCAO, mimics and inhibitor of miR-291b were injected into the right lateral ventricle respectively, then the infarct volume and neuronal apoptosis were analyzed. Results Six upregulated miRNAs and 6 downregulated miRNAs were detected 4 hours after mild therapeutic hypothermia, and after 24 hours, 41 and 10 miRNAs were upregulated and downregulated, respectively. The target genes of the differentially expressed genes were mainly related with multicellular organism development and the mucin type O-glycan biosynthesis pathway was the most enriched KEGG pathway. Among the differentially expressed miRNAs, miR-291b was selected to assess the effects of mild therapeutic hypothermia in MCAO rats. At 24 hours after mild therapeutic hypothermia, miR-291b overexpression was proved to exhibit neuroprotective effects. Conclusions The results showed that miRNAs might play a pivotal role in mild therapeutic hypothermia in cerebral ischemia/reperfusion injury. Further understanding of the mechanism and function of miRNAs would help to illuminate the mechanism of mild therapeutic hypothermia in cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Shangfeng Zhao
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiangrong Liu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Kang
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Si Sun
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yong Li
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jialiang Zhang
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qi Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Panisello-Roselló A, Roselló-Catafau J, Adam R. New Insights in Molecular Mechanisms and Pathophysiology of Ischemia-Reperfusion Injury 2.0: An Updated Overview. Int J Mol Sci 2020; 22:28. [PMID: 33375111 PMCID: PMC7792921 DOI: 10.3390/ijms22010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is related to different surgical interventions such as organ resection and transplantation, and therefore its prevention is of great interest [...].
Collapse
Affiliation(s)
- Arnau Panisello-Roselló
- Ischemia-Reperfusion Unit, Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB)-IDIBAPS, Spanish Research Council (CSIC), 08036 Barcelona, Catalonia, Spain;
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Paris, France;
| | - Joan Roselló-Catafau
- Ischemia-Reperfusion Unit, Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB)-IDIBAPS, Spanish Research Council (CSIC), 08036 Barcelona, Catalonia, Spain;
| | - René Adam
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Paris, France;
| |
Collapse
|
38
|
Chen Y, Guo S, Tang Y, Mou C, Hu X, Shao F, Yan W, Wu Q. Mitochondrial Fusion and Fission in Neuronal Death Induced by Cerebral Ischemia-Reperfusion and Its Clinical Application: A Mini-Review. Med Sci Monit 2020; 26:e928651. [PMID: 33156817 PMCID: PMC7654336 DOI: 10.12659/msm.928651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are highly dynamic organelles which are joined by mitochondrial fusion and divided by mitochondrial fission. The balance of mitochondrial fusion and fission plays a critical role in maintaining the normal function of neurons, of which the processes are both mediated by several proteins activated by external stimulation. Cerebral ischemia-reperfusion (I/R) injury can disrupt the balance of mitochondrial fusion and fission through regulating the expression and post-translation modification of fusion- and fission-related proteins, thereby destroying homeostasis of the intracellular environment and causing neuronal death. Furthermore, human intervention in fusion- and fission-related proteins can influence the function of neurons and change the outcomes of cerebral I/R injury. In recent years, researchers have found that mitochondrial dysfunction was one of the main factors involved in I/R, and mitochondria is an attractive target in I/R neuroprotection. Therefore, mitochondrial-targeted therapy of the nervous system for I/R gradually started from basic study to clinical application. In the present review, we highlight recent progress in mitochondria fusion and fission in neuronal death induced by cerebral I/R to help understanding the regulatory factors and signaling networks of aberrant mitochondrial fusion and fission contributing to neuronal death during I/R, as well as the potential neuroprotective therapeutics targeting mitochondrial dynamics, which may help clinical treatment and development of relevant dugs.
Collapse
Affiliation(s)
- Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Yajuan Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Chaohui Mou
- Department of Neurosurgery, Taizhou First People's Hospital, Taizhou, Zhejiang, China (mainland)
| | - Xinben Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Fangjie Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Wei Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Qun Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
39
|
Yi S, Zhang C, Li N, Fu Y, Li H, Zhang J. miR-325-3p Protects Neurons from Oxygen-Glucose Deprivation and Reoxygenation Injury via Inhibition of RIP3. Dev Neurosci 2020; 42:83-93. [PMID: 33130681 DOI: 10.1159/000509108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Recent reports have corroborated that micro-RNAs (miRs) are related to the pathological changes of cerebral ischemia-reperfusion (CIR) induced injury. This work aimed to unearth the role and potential mechanism of miR-325-3p in regulating neuronal survival in CIR injury. METHODS To conduct this investigation, we established an in vitro model of CIR injury by subjecting neurons to oxygen-glucose deprivation and reoxygenation (OGD/R). Gain and loss of function of miR-325-3p and receptor-interacting serine-threonine kinase 3 (RIP3) in neurons were performed to observe its effect on cell apoptosis and the release of lactate dehydrogenase. The levels of miR-325-3p and RIP3 in neurons were detected by qRT-PCR. Western blot was employed to inspect the levels of caspase3, Bax, and Bcl-2, as well as p38 and JNK phosphorylation. The relationship between miR-325-3p and RIP3 was detected by TargetScan and validated by dual-luciferase reporter assay. RESULTS Firstly, miR-325-3p expression was obviously downregulated while RIP3 expression was upregulated in neurons following OGD/R treatment. Overexpressed miR-325-3p or downexpressed RIP3 ameliorated OGD/R-induced neuronal injury. Besides, RIP3 was a direct target mRNA of miR-325-3p. Additionally, Western blot revealed the mitogen-activated protein kinase (MAPK) pathway was involved in the regulation of miR-325-3p on OGD/R-induced neuronal injury. Furthermore, miR-325-3p was verified to hinder OGD/R-induced neuronal injury through downregulating RIP3. CONCLUSION This study demonstrated that miR-325-3p targets RIP3 to inactivate the MAPK pathway, thereby protecting neurons against OGD/R-induced injury.
Collapse
Affiliation(s)
- Song Yi
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Chuqin Zhang
- Department of Otorhinolaryngology, The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Na Li
- Department of Stomatology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yajing Fu
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hongkun Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China,
| |
Collapse
|
40
|
Li DH, Su YF, Sun CX, Fan HF, Gao WJ. A Network Pharmacology-Based Identification Study on the Mechanism of Xiao-Xu-Ming Decoction for Cerebral Ischemic Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2507074. [PMID: 33133212 PMCID: PMC7593742 DOI: 10.1155/2020/2507074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/16/2020] [Indexed: 01/26/2023]
Abstract
OBJECTIVE We used the network pharmacological analysis method to explore the mechanism of multicomponent, multitarget, and multiway actions of Xiao-Xu-Ming decoction (XXMD) for cerebral ischemic stroke (CIS), which provided a basis on the research of innovative drugs. METHOD We used the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) to retrieve the active ingredients and targets of 12 herbs of XXMD; we used the Gene Expression Omnibus (GEO) database of the National Center for Biotechnology Information (NCBI) to screen for differentially expressed genes in CIS to obtain the disease targets of CIS and to intersect it with the action targets of XXMD, and then the target drug efficacy is obtained. We used Cytoscape 3.6 software to construct the drug-active ingredient-action target interaction network of XXMD to treat CIS and conduct protein-protein interaction (PPI) network and topology analysis. The action target Gene Ontology (GO) biological processes and metabolic pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG) of XXMD to treat CIS were enrichment analyzed with R software. RESULT We screened out 226 active ingredients and 3646 action targets for XXMD. Among them, XXMD to treat CIS has 144 active ingredients, 12 targets, and proteins in the core network of PPI having STAT3, HIF1A, etc. Pathway enrichment analysis was based on the GO and KEGG biological processes involved in active oxygen metabolism, smooth muscle cell proliferation, cytokine production, angiogenesis, redox coenzyme metabolism, and oxidative stress. The main action processes are significantly associated with CIS signal pathways involved in microRNAs, ovarian steroid hormones, NF-кB signaling pathway, Th17 cell differentiation pathway, HIF-1 signaling pathway, folic acid synthesis pathway, galactose metabolism, and fructose and mannose metabolism. CONCLUSION This study initially clarified the main targets and pathways of XXMD in the treatment of CIS, which can lay the foundation for further research on its pharmacological effects.
Collapse
Affiliation(s)
- De-Hui Li
- Hebei Province Hospital of Chinese Medicine, Affiliated Hospital of Hebei University of TCM, Shijiazhuang 050011, China
| | - Yi-Fan Su
- Hebei Province Hospital of Chinese Medicine, Affiliated Hospital of Hebei University of TCM, Shijiazhuang 050011, China
- Graduate School of Hebei College of Traditional Chinese Medicine, Shijiazhuang 050091, China
| | - Chun-Xia Sun
- Hebei Province Hospital of Chinese Medicine, Affiliated Hospital of Hebei University of TCM, Shijiazhuang 050011, China
| | - Huan-Fang Fan
- Hebei Province Hospital of Chinese Medicine, Affiliated Hospital of Hebei University of TCM, Shijiazhuang 050011, China
| | - Wei-Juan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050011, China
| |
Collapse
|
41
|
The small RNA microRNA-212 regulates sirtuin 2 expression in a cellular model of oxygen-glucose deprivation. Neuroreport 2020; 30:1184-1190. [PMID: 31651707 DOI: 10.1097/wnr.0000000000001339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
MicroRNA-212 has been found to play an important role in several types of diseases, but the functional and potential mechanisms of microRNA-212 in ischemic brain injury are still unclear. The aims of this study were to investigate the potential role of microRNA-212 in ischemic brain injury and to reveal potential molecular mechanisms. The rat oxygen-glucose deprivation and simulated reperfusion model was established to study the role of microRNA-212 in ischemic brain injury. The expression of microRNA-212 in oxygen-glucose deprivation and simulated reperfusion model and its effect on cell proliferation were measured by quantitative reverse transcription PCR and Cell Counting Kit-8 assay, respectively. The relationships between microRNA-212 and sirtuin 2 were confirmed by luciferase-reporter assay. We observed that microRNA-212 was downregulated after oxygen-glucose deprivation and simulated reperfusion treatment. Besides, the cells viabilities were increased/decreased in oxygen-glucose deprivation and simulated reperfusion model after transfection with microRNA-212 agomir (agonist of microRNA-212 action) and microRNA-212 antagomir (inhibitor of microRNA-212 action). In addition, luciferase and western blot experiments showed that microRNA-212 directly regulated sirtuin 2 changes. Furthermore, promotion of neuronal survival by microRNA-212 was blocked by overexpression of sirtuin 2, whereas the neuronal death induced by microRNA-212 inhibition was rescued by sirtuin 2 inhibition. Taken together, our study revealed that the role of miR-212 in the modulation of ischemic brain injury might be achieved by regulating sirtuin 2, which provides potential biomarkers and candidates for the treatment of cerebral ischemia.
Collapse
|
42
|
Zhao J, Li L, Fang G. Salvianolic acid A attenuates cerebral ischemia/reperfusion injury induced rat brain damage, inflammation and apoptosis by regulating miR-499a/DDK1. Am J Transl Res 2020; 12:3288-3301. [PMID: 32774700 PMCID: PMC7407710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVES Salvianolic acid A (SAA) is a main component derived from Salvia miltiorrhiza and has been revealed to protect against cerebral ischemia/reperfusion injury (CIRI). The present study was designed to evaluate the neuroprotective role of SAA in CIRI and explore its underlying mechanism in vivo and in vitro. METHODS To determine the neuroprotective effects of SAA on CIRI in vivo, the middle cerebral artery occlusion (MCAO) rat model was established. Besides, oxygen-glucose deprivation/reperfusion (OGD/R)-induced PC12 cells were used to analysis the effects of SAA on CIRI in vitro. Neurological deficit score, brain water content, cell proliferation, apoptosis and inflammation were measured. In addition, the effects of SAA on miR-449a/DKK1 and Wnt/β-catenin pathway were evaluated. RESULTS The level of miR-449a was decreased in MCAO rat models as well as OGD/R-induced PC-12 cells. SAA could significantly inhibit cell apoptosis and inflammation both in MCAO rat model and OGD/R-induced PC-12 cells. Also, SAA inhibited cerebral edema and promoted PC12 cell proliferation. Besides, we proved that the 3'-UTR of DKK1 mRNA is the target of miR-449a. Furthermore, we demonstrated that SAA could activate Wnt/β-catenin pathway and play the neuroprotective role by regulating miR-499a/DDK1. CONCLUSION Taken together, these results suggest that SAA could increase miR-449a level and then inhibit DDK1 expression to activate Wnt/β-catenin pathway, leading to the alleviation of cerebral ischemia/reperfusion injury in vivo and in vitro.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neurology, Hangzhou Red Cross Hospital Hangzhou 310003, Zhejiang, China
| | - Lei Li
- Department of Neurology, Hangzhou Red Cross Hospital Hangzhou 310003, Zhejiang, China
| | - Gaoli Fang
- Department of Neurology, Hangzhou Red Cross Hospital Hangzhou 310003, Zhejiang, China
| |
Collapse
|
43
|
Dinu AR, Rogobete AF, Bratu T, Popovici SE, Bedreag OH, Papurica M, Bratu LM, Sandesc D. Cannabis Sativa Revisited-Crosstalk between microRNA Expression, Inflammation, Oxidative Stress, and Endocannabinoid Response System in Critically Ill Patients with Sepsis. Cells 2020; 9:E307. [PMID: 32012914 PMCID: PMC7072707 DOI: 10.3390/cells9020307] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Critically ill patients with sepsis require a multidisciplinary approach, as this situation implies multiorgan distress, with most of the bodily biochemical and cellular systems being affected by the condition. Moreover, sepsis is characterized by a multitude of biochemical interactions and by dynamic changes of the immune system. At the moment, there is a gap in our understanding of the cellular, genetic, and molecular mechanisms involved in sepsis. One of the systems intensely studied in recent years is the endocannabinoid signaling pathway, as light was shed over a series of important interactions of cannabinoid receptors with biochemical pathways, specifically for sepsis. Furthermore, a series of important implications on inflammation and the immune system that are induced by the activity of cannabinoid receptors stimulated by the delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) have been noticed. One of the most important is their ability to reduce the biosynthesis of pro-inflammatory mediators and the modulation of immune mechanisms. Different studies have reported that cannabinoids can reduce oxidative stress at mitochondrial and cellular levels. The aim of this review paper was to present, in detail, the important mechanisms modulated by the endocannabinoid signaling pathway, as well as of the molecular and cellular links it has with sepsis. At the same time, we wish to present the possible implications of cannabinoids in the most important biological pathways involved in sepsis, such as inflammation, redox activity, immune system, and epigenetic expression.
Collapse
Affiliation(s)
- Anca Raluca Dinu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
| | - Alexandru Florin Rogobete
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| | - Tiberiu Bratu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
| | - Sonia Elena Popovici
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| | - Ovidiu Horea Bedreag
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| | - Marius Papurica
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| | - Lavinia Melania Bratu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
| | - Dorel Sandesc
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| |
Collapse
|
44
|
Singh S, Singh TG. Role of Nuclear Factor Kappa B (NF-κB) Signalling in Neurodegenerative Diseases: An Mechanistic Approach. Curr Neuropharmacol 2020; 18:918-935. [PMID: 32031074 PMCID: PMC7709146 DOI: 10.2174/1570159x18666200207120949] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
A transcriptional regulatory nuclear factor kappa B (NF-κB) protein is a modulator of cellular biological activity via binding to a promoter region in the nucleus and transcribing various protein genes. The recent research implicated the intensive role of nuclear factor kappa B (NF-κB) in diseases like autoimmune disorder, inflammatory, cardiovascular and neurodegenerative diseases. Therefore, targeting the nuclear factor kappa B (NF-κB) protein offers a new opportunity as a therapeutic approach. Activation of IκB kinase/NF-κB signaling pathway leads to the development of various pathological conditions in human beings, such as neurodegenerative, inflammatory disorders, autoimmune diseases, and cancer. Therefore, the transcriptional activity of IκB kinase/NF- κB is strongly regulated at various cascade pathways. The nuclear factor NF-kB pathway plays a major role in the expression of pro-inflammatory genes, including cytokines, chemokines, and adhesion molecules. In response to the diverse stimuli, the cytosolic sequestered NF-κB in an inactivated form by binding with an inhibitor molecule protein (IkB) gets phosphorylated and translocated into the nucleus further transcribing various genes necessary for modifying various cellular functions. The various researches confirmed the role of different family member proteins of NF-κB implicated in expressing various genes products and mediating various cellular cascades. MicroRNAs, as regulators of NF- κB microRNAs play important roles in the regulation of the inflammatory process. Therefore, the inhibitor of NF-κB and its family members plays a novel therapeutic target in preventing various diseases. Regulation of NF- κB signaling pathway may be a safe and effective treatment strategy for various disorders.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
45
|
Chen Y, Zhang L, Gong X, Gong H, Cheng R, Qiu F, Zhong X, Huang Z. Iridoid glycosides from Radix Scrophulariae attenuates focal cerebral ischemia‑reperfusion injury via inhibiting endoplasmic reticulum stress‑mediated neuronal apoptosis in rats. Mol Med Rep 2019; 21:131-140. [PMID: 31746404 PMCID: PMC6896402 DOI: 10.3892/mmr.2019.10833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Iridoid glycosides of Radix Scrophulariae (IGRS) are a group of the major bioactive components from Radix Scrophulariae with extensive pharmacological activities. The present study investigated the effects of IGRS on cerebral ischemia‑reperfusion injury (CIRI) and explored its potential mechanisms of action. A CIRI model in rats was established by occlusion of the right middle cerebral artery for 90 min, followed by 24 h of reperfusion. Prior to surgery, 30, 60 or 120 mg/kg IGRS was administered to the rats once a day for 7 days. Then, the neurological scores, brain edema and volume of the cerebral infarction were measured. The apoptosis index was determined by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling. The effects of IGRS on the histopathology of the cortex in brain tissues and the endoplasmic reticulum ultrastructure in the hippocampus were analyzed. Finally, the expression of endoplasmic reticulum stress (ERS)‑regulating mediators, endoplasmic reticulum chaperone BiP (GRP78), DNA damage‑inducible transcript 3 protein (CHOP) and caspase‑12, were detected by reverse transcription quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis. The volume of cerebral infarction and brain water content in the IGRS‑treated groups treated at doses of 60 and 120 mg/kg were decreased significantly compared with the Model group. The neurological scores were also significantly decreased in the IGRS‑treated groups. IGRS treatment effectively decreased neuronal apoptosis resulting from CIRI‑induced neuron injury. In addition, the histopathological damage and the endoplasmic reticulum ultrastructure injury were partially improved in CIRI rats following IGRS treatment. RT‑qPCR and western blot analysis data indicated that IGRS significantly decreased the expression levels of GRP78, CHOP and caspase‑12 at both mRNA and protein levels. The results of the present study demonstrated that IGRS exerted a protective effect against CIRI in brain tissue via the inhibition of apoptosis and ERS.
Collapse
Affiliation(s)
- Yanyue Chen
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Lei Zhang
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Xueyuan Gong
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Hengpei Gong
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Rubin Cheng
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Fengmei Qiu
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Xiaoming Zhong
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Zhen Huang
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| |
Collapse
|
46
|
Wang T, Wang F, Yu L, Li Z. Nobiletin alleviates cerebral ischemic-reperfusion injury via MAPK signaling pathway. Am J Transl Res 2019; 11:5967-5977. [PMID: 31632564 PMCID: PMC6789284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Nobiletin (NOB), isolated from Citrus nobilis, has been reported to inhibit cerebral ischemia/reperfusion (I/R) induced cell apoptosis in the brain. The mechanisms and the protective ability of NOB on cerebral I/R rats are unclear. METHODS A middle cerebral artery occlusion (MCAO) rat model was established and treated with different doses of NOB. The neurological deficits, brain water content and brain index were explored after reperfusion, and TTC staining was applied to assess the infarct area. The production of reactive oxygen species (ROS) related enzymes in the ischemic cortex samples from each group was measured. TUNEL staining was performed to evaluate neuronal cell apoptosis in brain tissues. The expression of cell apoptosis related proteins, p-p38 and MAPKAP-2 and the levels of inflammatory factors were examined by western blotting assay and ELISA. RESULTS NOB treatment notably improved the neurological deficits, brain water content and brain index in an MCAO model, accompanied by decreased infarct area in the brain tissue. Apoptosis induced by cerebral I/R was also decreased by NOB administration via upregulating Bcl-2 and downregulating Bax and caspase3. The levels of pro-inflammatory mediators TNF-α, IL-6 were reduced and anti-inflammatory cytokine IL-10 was increased by NOB treatment in MCAO rats. Further, we found that the expression of p-p38 and MAPKAP-2 was reduced by NOB treatment in MCAO rats. CONCLUSION The present results suggest that NOB serves a protective role in I/R-induced cerebral-neuron injury. The mechanisms underlying these effects may be associated with the MAPK signaling pathway.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurology, Wuxi People's Hospital Wuxi 214036, Jiangsu, China
| | - Feng Wang
- Department of Neurology, Wuxi People's Hospital Wuxi 214036, Jiangsu, China
| | - Lu Yu
- Department of Neurology, Wuxi People's Hospital Wuxi 214036, Jiangsu, China
| | - Zaiwang Li
- Department of Neurology, Wuxi People's Hospital Wuxi 214036, Jiangsu, China
| |
Collapse
|
47
|
Wu Q, Yuan X, Bai J, Han R, Li Z, Zhang H, Xiu R. MicroRNA-181a protects against pericyte apoptosis via directly targeting FOXO1: implication for ameliorated cognitive deficits in APP/PS1 mice. Aging (Albany NY) 2019; 11:6120-6133. [PMID: 31467256 PMCID: PMC6738434 DOI: 10.18632/aging.102171] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/05/2019] [Indexed: 01/14/2023]
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators in the pathology of Alzheimer's disease (AD). MiR-181a is associated with hippocampal memory formation and aberrantly expressed in patients with mild cognitive impairment (MCI), however, little is known about its role and underlying mechanism involved in AD. Here, we report that miR-181a expression declines in APP/PS1 mice, synchronous with the increase in amyloid β (Aβ) level, which suggests a reverse correlation between miR-181a level and AD development. Additionally, lentiviral overexpression of miR-181a via intrahippocampal injection ameliorates cognitive deficits and amyloid plaque deposition in APP/PS1 mice, indicating a beneficial role of miR-181a against AD progression. Moreover, miR-181a decelerates pericyte loss and blood-brain barrier breakdown in APP/PS1 mice. Furthermore, miR-181a protects against Aβ accumulation-induced pericyte apoptosis in vitro, which is attributed to the negative regulation of FOXO1 by miR-181a, since FOXO1 restoration abolishes miR-181a protective role against pericyte apoptosis. Altogether, these results may identify miR-181a as a novel regulator of AD pathology, and also implicate that the protection of miR-181a in blood-brain barrier pericytes may underlie its ameliorating effect on APP/PS1 mice.
Collapse
Affiliation(s)
- Qingbin Wu
- Key Laboratory for Microcirculation, Ministry of Health, Institute of Microcirculation, Chinese Academy Medical Sciences and Pecking Union Medical College, Beijing, China
| | - Xiaochen Yuan
- Key Laboratory for Microcirculation, Ministry of Health, Institute of Microcirculation, Chinese Academy Medical Sciences and Pecking Union Medical College, Beijing, China
| | - Jing Bai
- Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruiqin Han
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhigang Li
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Honggang Zhang
- Key Laboratory for Microcirculation, Ministry of Health, Institute of Microcirculation, Chinese Academy Medical Sciences and Pecking Union Medical College, Beijing, China
| | - Ruijuan Xiu
- Key Laboratory for Microcirculation, Ministry of Health, Institute of Microcirculation, Chinese Academy Medical Sciences and Pecking Union Medical College, Beijing, China
| |
Collapse
|
48
|
Suppression of lncRNA RMRP ameliorates oxygen-glucose deprivation/re-oxygenation-induced neural cells injury by inhibiting autophagy and PI3K/Akt/mTOR-mediated apoptosis. Biosci Rep 2019; 39:BSR20181367. [PMID: 30926681 PMCID: PMC6591569 DOI: 10.1042/bsr20181367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 11/17/2022] Open
Abstract
The aberrant expression of lncRNAs has been inferred to be closely related with the progression of neural ischemia/reperfusion (I/R) injury. RMRP is an lncRNA associated with I/R injury. In order to determine the role of RMRP in I/R injury, the effects of RMRP knockdown on oxygen-glucose deprivation/re-oxygenation (OGD/R)-induced injury in SH-SY5Y cells were evaluated. The effect of OGD/R administration on the expression of RMRP and apoptosis in SH-SY5Y cells, and the effect of RMRP suppression by siRNA on the impairments of cells proliferation and mobility potential due to OGD/R administration were assessed in the current study. At the molecular level, the current study detected the expressions of indicators involved in autophagy and PI3K/Akt/mTOR-mediated apoptosis pathways. The OGD/R administration induced the expression of RMRP and apoptosis in SH-SY5Y cells. After RMRP knockdown, the proliferation potential of SH-SY5Y cells was restored, and apoptosis and cell cycle arrest were inhibited. Moreover, RMRP inhibition also increased the invasion and migration of SH-SY5Y cells which were treated with OGD/R. The effects of RMRP suppression on the phenotypes of SH-SY5Y were associated with the inhibition of LC3II, p-PI3K, p-Akt, and p-mTOR as well as the induction of P62 and Bcl-2. Inhibition of RMRP contributed to the improvement of OGD/R-induced neuronal injury, which might be mediated through the inhibition of autophagy and apoptosis pathways.
Collapse
|
49
|
Rao G, Zhang W, Song S. MicroRNA‑217 inhibition relieves cerebral ischemia/reperfusion injury by targeting SIRT1. Mol Med Rep 2019; 20:1221-1229. [PMID: 31173187 PMCID: PMC6625453 DOI: 10.3892/mmr.2019.10317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRs) have been proposed to be involved in the pathological processes of cerebral ischemia/reperfusion (CIR) injury. The present study aimed to investigate the potential role and molecular mechanisms of miR-217 in the regulation of neuronal survival in CIR injury. To perform the investigation, an in vitro cellular model of CIR injury was established by treating neurons with oxygen-glucose deprivation and reoxygenation (OGD/R). miR-217 levels in neurons were detected using reverse transcription-quantitative PCR. The association between miR-217 and sirtuin 1 (SIRT1) was identified using TargetScan and validated in a dual-luciferase reporter assay. Cell viability and apoptosis were measured using a Cell Counting Kit-8 assay and flow cytometry, respectively. The release of lactate dehydrogenase, and the production of proinflammatory factors and oxidative stress biomarkers were analyzed by ELISAs and using specific assay kits. It was revealed that miR-217 was significantly upregulated in OGD/R-treated neurons. SIRT1 was a direct target of miR-217, and was downregulated in neurons following OGD/R treatment. Downregulation of miR-217 significantly ameliorated OGD/R-induced neuronal injury, inflammatory responses and oxidative stress. The effects of miR-217 inhibitor on OGD/R treated neurons were attenuated by SIRT1 knockdown. Additionally, western blotting revealed that the SIRT1/AMP-activated protein kinase-α/NF-κB pathway was partially involved in the regulation of OGD/R-induced neuronal injury by miR-217. In conclusion, the data of the present study indicated that the downregulation of miR-217 protected neurons against OGD/R-induced injury by targeting SIRT1.
Collapse
Affiliation(s)
- Gaofeng Rao
- Department of Rehabilitation Medicine, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang 317500, P.R. China
| | - Wenfu Zhang
- Department of Rehabilitation Medicine, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang 317500, P.R. China
| | - Shegeng Song
- Department of Rehabilitation Medicine, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang 317500, P.R. China
| |
Collapse
|
50
|
Ravindran S, Kurian GA. Eventual analysis of global cerebral ischemia-reperfusion injury in rat brain: a paradigm of a shift in stress and its influence on cognitive functions. Cell Stress Chaperones 2019; 24:581-594. [PMID: 31025239 PMCID: PMC6527675 DOI: 10.1007/s12192-019-00990-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 12/31/2022] Open
Abstract
Cognitive issues in stroke arise as a result of reperfusion of a clogged artery, which is reported to exacerbate the injury in the brain leading to oxidative stress. Through the present work, we try to understand the regional variations across brain regions mainly cortex and striatum associated with the progression of ischemia-reperfusion injury (IRI). In a rat model of IRI, the influence of varying ischemia and reperfusion times on the biochemical phases across the brain regions were monitored. IRI resulted in the blood-brain barrier disruption and developed mild areas of risk. The brain's tolerance towards IRI indicated a progressive trend in the injury and apoptosis from ischemia to reperfusion that was supported by the activities of plasma lactate dehydrogenase and tissue caspase-3. Cognitive impairment in these rats was an implication of cellular oxidative stress (higher lipid peroxidation and lower antioxidant enzyme activity) that persisted by 24-h reperfusion. The oxidative stress was prominent in the cortex than the striatum and was supported by the lower ATP level. Upregulated Mn-SOD expression leading to a preserved mitochondria in the striatum could be attributed to the regional protection. Overall, a progression of IRI was observed from striatum to cortex leading to 5-day cognitive decline.
Collapse
Affiliation(s)
- Sriram Ravindran
- Vascular Biology Laboratory, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401 India
| | - Gino A. Kurian
- Vascular Biology Laboratory, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401 India
| |
Collapse
|