1
|
Esposito S, Palombieri S, Vitale P, Angione G, D'Attilia C, Taranto F, Sestili F, De Vita P. Identification and development of functional markers for purple grain genes in durum wheat (Triticum durum Desf.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:210. [PMID: 39198268 DOI: 10.1007/s00122-024-04710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024]
Abstract
KEY MESSAGE Two allelic variants of Pp-A3 and Pp-B1 were identified in purple durum wheat. Molecular markers at both loci were developed and validated on an independent panel, offering a breakthrough for wheat improvement. Purple wheats are a class of cereals with pigmented kernels of particular interest for their antioxidant and anti-inflammatory properties. Although two complementary loci (Pp-B1 and Pp-A3), responsible for purple pericarp have been pinpointed in bread wheat (Triticum aestivum L.), in durum wheat (Triticum durum Desf.) the causative genes along with functional and non-functional alleles are still unknown. Here, using a quantitative trait loci (QTL) mapping approach on a RIL population derived from purple and non-purple durum wheat genotypes, we identified three major regions on chromosomes 2A, 3A, and 7B explaining the highest phenotypic variation (> 50%). Taking advantage of the Svevo genome, a MYB was reannotated on chromosome 7B and reported as a candidate for Pp-B1. An insertion of ~ 1.6 kb within the first exon led to a non-functional allele (TdPpm1b), whereas the functional allele (TdPpm1a) was characterized and released for the first time in durum wheat. Pp-A3 was instead identified as a duplicated gene, of which only one was functional. The promoter sequencing of the functional allele (TdPpb1a) revealed six 261-bp tandem repeats in purple durum wheat, whereas one unit (TdPpb1b) was found in the yellow once. Functional molecular markers at both loci were developed to precisely discriminate purple and not purple genotypes, representing a valuable resource for selecting superior purple durum lines at early growth stages. Overall, our results expand the understanding of the function of MYB and bHLH activators in durum wheat, paving new ways to explore cis-regulatory elements at the promoter level.
Collapse
Affiliation(s)
- Salvatore Esposito
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), SS 673 Meters 25200, 71122, Foggia, Italy
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Via Università, 133, 80055, Portici, Italy
| | - Samuela Palombieri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via Camillo de Lellis s.n.c., 01100, Viterbo, Italy
| | - Paolo Vitale
- International Maize and Wheat Improvement Center (CIMMYT), Edo. de Mexico, El Batan, Mexico
| | - Giuseppina Angione
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), SS 673 Meters 25200, 71122, Foggia, Italy
- Department of Agriculture, Food, Natural Science, Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Chiara D'Attilia
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via Camillo de Lellis s.n.c., 01100, Viterbo, Italy
| | - Francesca Taranto
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Bari (CNR-IBBR), Via Amendola 165/A, 70126, Bari, Italy
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via Camillo de Lellis s.n.c., 01100, Viterbo, Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), SS 673 Meters 25200, 71122, Foggia, Italy.
| |
Collapse
|
2
|
Saroha M, Arya A, Singh G, Sharma P. Genome-wide expression analysis of novel heat-responsive microRNAs and their targets in contrasting wheat genotypes at reproductive stage under terminal heat stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1328114. [PMID: 38660446 PMCID: PMC11039868 DOI: 10.3389/fpls.2024.1328114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Introduction Heat stress at terminal stage of wheat is critical and leads to huge yield losses worldwide. microRNAs (miRNAs) play significant regulatory roles in gene expression associated with abiotic and biotic stress at the post-transcriptional level. Methods In the present study, we carried out a comparative analysis of miRNAs and their targets in flag leaves as well as developing seeds of heat tolerant (RAJ3765) and heat susceptible (HUW510) wheat genotypes under heat stress and normal conditions using small RNA and degradome sequencing. Results and discussion A total of 84 conserved miRNAs belonging to 35 miRNA families and 93 novel miRNAs were identified in the 8 libraries. Tae-miR9672a-3p, tae-miR9774, tae-miR9669-5p, and tae-miR5048-5p showed the highest expression under heat stress. Tae-miR9775, tae-miR9662b-3p, tae-miR1120a, tae-miR5084, tae-miR1122a, tae-miR5085, tae-miR1118, tae-miR1130a, tae-miR9678-3p, tae-miR7757-5p, tae-miR9668-5p, tae-miR5050, tae-miR9652-5p, and tae-miR9679-5p were expressed only in the tolerant genotype, indicating their role in heat tolerance. Comparison between heat-treated and control groups revealed that 146 known and 57 novel miRNAs were differentially expressed in the various tissues. Eight degradome libraries sequence identified 457 targets of the differentially expressed miRNAs. Functional analysis of the targets indicated their involvement in photosynthesis, spliceosome, biosynthesis of nucleotide sugars and protein processing in the endoplasmic reticulum, arginine and proline metabolism and endocytosis. Conclusion This study increases the number of identified and novel miRNAs along with their roles involved in heat stress response in contrasting genotypes at two developing stages of wheat.
Collapse
Affiliation(s)
- Monika Saroha
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India
| | - Aditi Arya
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India
| | - Gyanendra Singh
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Pradeep Sharma
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| |
Collapse
|
3
|
Mishra S, Spaccarotella K, Gido J, Samanta I, Chowdhary G. Effects of Heat Stress on Plant-Nutrient Relations: An Update on Nutrient Uptake, Transport, and Assimilation. Int J Mol Sci 2023; 24:15670. [PMID: 37958654 PMCID: PMC10649217 DOI: 10.3390/ijms242115670] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
As a consequence of global climate change, the frequency, severity, and duration of heat stress are increasing, impacting plant growth, development, and reproduction. While several studies have focused on the physiological and molecular aspects of heat stress, there is growing concern that crop quality, particularly nutritional content and phytochemicals important for human health, is also negatively impacted. This comprehensive review aims to provide profound insights into the multifaceted effects of heat stress on plant-nutrient relationships, with a particular emphasis on tissue nutrient concentration, the pivotal nutrient-uptake proteins unique to both macro- and micronutrients, and the effects on dietary phytochemicals. Finally, we propose a new approach to investigate the response of plants to heat stress by exploring the possible role of plant peroxisomes in the context of heat stress and nutrient mobilization. Understanding these complex mechanisms is crucial for developing strategies to improve plant nutrition and resilience during heat stress.
Collapse
Affiliation(s)
- Sasmita Mishra
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Kim Spaccarotella
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Jaclyn Gido
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Ishita Samanta
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT—Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India (G.C.)
| | - Gopal Chowdhary
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT—Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India (G.C.)
| |
Collapse
|
4
|
Sunic K, D’Auria JC, Sarkanj B, Spanic V. Metabolic Profiling Identifies Changes in the Winter Wheat Grains Following Fusarium Treatment at Two Locations in Croatia. PLANTS (BASEL, SWITZERLAND) 2023; 12:911. [PMID: 36840259 PMCID: PMC9962043 DOI: 10.3390/plants12040911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Fusarium head blight (FHB) is one of the most dangerous diseases of winter wheat, resulting in reduced grain yield and quality, and production of mycotoxins by the Fusarium fungi. In the present study, changes in the grain metabolomics of winter wheat samples infected with Fusarium spp. and corresponding non-infected samples from two locations in Croatia were investigated by GC-MS. A Mann-Whitney test revealed that 24 metabolites detected were significantly separated between Fusarium-inoculated and non-infected samples during the variety by treatment interactions. The results confirmed that in grains of six FHB-resistant varieties, ten metabolites were identified as possible resistance-related metabolites. These metabolites included heptadecanoic acid, 9-(Z)-hexadecenoic acid, sophorose, and secolaganin in grains of FHB-resistant varieties at the Osijek location, as well as 2-methylaminomethyltartronic acid, maleamic acid, 4-hydroxyphenylacetonitrile, 1,4-lactonearabinonic acid, secolaganin, and alanine in grains of FHB-resistant varieties at the Tovarnik location. Moreover, on the PCA bi-plot, FHB-susceptible wheat varieties were closer to glycyl proline, decanoic acid, and lactic acid dimer that could have affected other metabolites, and thus, suppressed resistance to FHB. Although defense reactions were genetically conditioned and variety specific, resulting metabolomics changes may give insight into defense-related pathways that could be manipulated to engineer plants with improved resistance to the pathogen.
Collapse
Affiliation(s)
- Katarina Sunic
- Department for Breeding and Genetics of Small Cereal Crops, Agricultural Institute Osijek, Juzno Predgradje 17, 31000 Osijek, Croatia
| | - John Charles D’Auria
- Department of Molecular Genetics Leibniz, Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), OT Gatersleben Corrensstraße 3, 06466 Seeland, Germany
| | - Bojan Sarkanj
- Department of Food Technology, University North, Trg dr. Zarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Valentina Spanic
- Department for Breeding and Genetics of Small Cereal Crops, Agricultural Institute Osijek, Juzno Predgradje 17, 31000 Osijek, Croatia
| |
Collapse
|
5
|
Zingale S, Spina A, Ingrao C, Fallico B, Timpanaro G, Anastasi U, Guarnaccia P. Factors Affecting the Nutritional, Health, and Technological Quality of Durum Wheat for Pasta-Making: A Systematic Literature Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:530. [PMID: 36771615 PMCID: PMC9920027 DOI: 10.3390/plants12030530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/30/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Durum wheat is one of the most important food sources in the world, playing a key role in human nutrition, as well as in the economy of the different countries in which its production areas are concentrated. Its grain also represents a staple and highly versatile ingredient in the development of health foods. Nonetheless, the aspects determining durum wheat's health quality and their interactions are many, complex, and not entirely known. Therefore, the present systematic literature review aims at advancing the understanding of the relationships among nutritional, health, and technological properties of durum wheat grain, semolina, and pasta, by evaluating the factors that, either positively or negatively, can affect the quality of the products. Scopus, Science Direct, and Web of Science databases were systematically searched utilising sets of keywords following the PRISMA guidelines, and the relevant results of the definitive 154 eligible studies were presented and discussed. Thus, the review identified the most promising strategies to improve durum wheat quality and highlighted the importance of adopting multidisciplinary approaches for such purposes.
Collapse
Affiliation(s)
- Silvia Zingale
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Alfio Spina
- Agricultural Research Council and Economics (CREA)—Research Centre for Cereal and Industrial Crops, Corso Savoia, 190, 95024 Acireale, Italy
| | - Carlo Ingrao
- Department of Economics, Management and Business Law, University of Bari Aldo Moro, Largo Abbazia Santa Scolastica, 53, 70124 Bari, Italy
| | - Biagio Fallico
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Giuseppe Timpanaro
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Umberto Anastasi
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Paolo Guarnaccia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| |
Collapse
|
6
|
Metabolic and Transcriptional Stress Memory in Sorbus pohuashanensis Suspension Cells Induced by Yeast Extract. Cells 2022; 11:cells11233757. [PMID: 36497017 PMCID: PMC9739749 DOI: 10.3390/cells11233757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
Plant stress memory can provide the benefits of enhanced protection against additional stress exposure. Here, we aimed to explore the responses of recurrent and non-recurrent yeast extract (YE) stresses in Sorbus pohuashanensis suspension cells (SPSCs) at metabolomics and transcriptional levels. Biochemical analyses showed that the cell wall integrity and antioxidation capacity of SPSCs in the pretreated group were evidently improved. Metabolic analysis showed that there were 39 significantly altered metabolites in the pretreated group compared to the non-pretreated group. Based on the transcriptome analysis, 219 differentially expressed genes were obtained, which were highly enriched in plant-pathogen interaction, circadian rhythm-plant, oxidative phosphorylation, and phenylpropanoid biosynthesis. Furthermore, the correlation analysis of the transcriptome and metabolome data revealed that phenylpropanoid biosynthesis involved in the production of biphenyl phytoalexins may play a critical role in the memory response of SPSC to YE, and the key memory genes were also identified, including PAL1, BIS1, and BIS3. Collectively, the above results demonstrated that the memory responses of SPSC to YE were significant in almost all levels, which would be helpful for better understanding the adaptation mechanisms of medicinal plants in response to biotic stress, and laid a biotechnological foundation to accumulate favorable antimicrobial drug candidates from plant suspension cells.
Collapse
|
7
|
Ben-Abu Y, Itsko M. Metabolome dynamics during wheat domestication. Sci Rep 2022; 12:8532. [PMID: 35595776 PMCID: PMC9122938 DOI: 10.1038/s41598-022-11952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
One of the most important crops worldwide is wheat. Wheat domestication took place about 10,000 years ago. Not only that its wild progenitors have been discovered and phenotypically characterized, but their genomes were also sequenced and compared to modern wheat. While comparative genomics is essential to track genes that contribute to improvement in crop yield, comparative analyses of functional biological end-products, such as metabolites, are still lacking. With the advent of rigorous mass-spectrometry technologies, it is now possible to address that problem on a big-data scale. In attempt to reveal classes of metabolites, which are associated with wheat domestication, we analyzed the metabolomes of wheat kernel samples from various wheat lines. These wheat lines represented subspecies of tetraploid wheat along primary and secondary domestications, including wild emmer, domesticated emmer, landraces durum, and modern durum. We detected that the groups of plant metabolites such as plant-defense metabolites, antioxidants and plant hormones underwent significant changes during wheat domestication. Our data suggest that these metabolites may have contributed to the improvement in the agricultural fitness of wheat. Closer evaluation of specific metabolic pathways may result in the future in genetically-engineered high-yield crops.
Collapse
Affiliation(s)
- Yuval Ben-Abu
- Department of Physics and Project Unit, Sapir Academic College, 79165, Sderot, Hof Ashkelon, Israel. .,Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| | - Mark Itsko
- WDS Inc., Contractor to Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30033, USA
| |
Collapse
|
8
|
Osman SOM, Saad ASI, Tadano S, Takeda Y, Konaka T, Yamasaki Y, Tahir ISA, Tsujimoto H, Akashi K. Chemical Fingerprinting of Heat Stress Responses in the Leaves of Common Wheat by Fourier Transform Infrared Spectroscopy. Int J Mol Sci 2022; 23:2842. [PMID: 35269984 PMCID: PMC8911002 DOI: 10.3390/ijms23052842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Wheat (Triticum aestivum L.) is known to be negatively affected by heat stress, and its production is threatened by global warming, particularly in arid regions. Thus, efforts to better understand the molecular responses of wheat to heat stress are required. In the present study, Fourier transform infrared (FTIR) spectroscopy, coupled with chemometrics, was applied to develop a protocol that monitors chemical changes in common wheat under heat stress. Wheat plants at the three-leaf stage were subjected to heat stress at a 42 °C daily maximum temperature for 3 days, and this led to delayed growth in comparison to that of the control. Measurement of FTIR spectra and their principal component analysis showed partially overlapping features between heat-stressed and control leaves. In contrast, supervised machine learning through linear discriminant analysis (LDA) of the spectra demonstrated clear discrimination of heat-stressed leaves from the controls. Analysis of LDA loading suggested that several wavenumbers in the fingerprinting region (400-1800 cm-1) contributed significantly to their discrimination. Novel spectrum-based biomarkers were developed using these discriminative wavenumbers that enabled the successful diagnosis of heat-stressed leaves. Overall, these observations demonstrate the versatility of FTIR-based chemical fingerprints for use in heat-stress profiling in wheat.
Collapse
Affiliation(s)
- Salma O. M. Osman
- United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Cho-Minami, Tottori 680-0945, Japan; (S.O.M.O.); (S.T.); (T.K.)
- Agricultural Research Corporation, Wad Medani P.O. Box 126, Sudan; (A.S.I.S.); (I.S.A.T.)
| | - Abu Sefyan I. Saad
- Agricultural Research Corporation, Wad Medani P.O. Box 126, Sudan; (A.S.I.S.); (I.S.A.T.)
| | - Shota Tadano
- United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Cho-Minami, Tottori 680-0945, Japan; (S.O.M.O.); (S.T.); (T.K.)
| | - Yoshiki Takeda
- Faculty of Agriculture, Tottori University, 4-101 Koyama-Chou-Minami, Tottori 680-0945, Japan;
| | - Takafumi Konaka
- United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Cho-Minami, Tottori 680-0945, Japan; (S.O.M.O.); (S.T.); (T.K.)
| | - Yuji Yamasaki
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; (Y.Y.); (H.T.)
| | - Izzat S. A. Tahir
- Agricultural Research Corporation, Wad Medani P.O. Box 126, Sudan; (A.S.I.S.); (I.S.A.T.)
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; (Y.Y.); (H.T.)
| | - Kinya Akashi
- United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Cho-Minami, Tottori 680-0945, Japan; (S.O.M.O.); (S.T.); (T.K.)
- Faculty of Agriculture, Tottori University, 4-101 Koyama-Chou-Minami, Tottori 680-0945, Japan;
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; (Y.Y.); (H.T.)
| |
Collapse
|
9
|
Marone D, Mastrangelo AM, Borrelli GM, Mores A, Laidò G, Russo MA, Ficco DBM. Specialized metabolites: Physiological and biochemical role in stress resistance, strategies to improve their accumulation, and new applications in crop breeding and management. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:48-55. [PMID: 35030365 DOI: 10.1016/j.plaphy.2021.12.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 05/20/2023]
Abstract
Specialized plant metabolites (SPMs), traditionally referred to as 'secondary metabolites', are chemical compounds involved in a broad range of biological functions, including plant responses to abiotic and biotic stresses. Moreover, some of them have a role in end-product quality with potential health benefits in humans. For this reason, they became an important target of studies focusing on their mechanisms of action and use in crop breeding and management. In this review we summarize the specific role of SPMs in physiological processes and in plant resistance to abiotic and biotic stresses, and the different strategies to enhance their production/accumulation in plant tissues under stress, including genetic approaches (marker-assisted selection and biotechnological tools) and agronomic management (fertilizer applications, cultivation method and beneficial microorganisms). New crop management strategies based on the direct application of the most promising compounds in form of plant residuals or liquid formulations are also described.
Collapse
Affiliation(s)
- Daniela Marone
- Consiglio per la ricerca in Agricoltura e l'Analisi dell'Economia Agraria - Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Anna Maria Mastrangelo
- Consiglio per la ricerca in Agricoltura e l'Analisi dell'Economia Agraria - Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Grazia Maria Borrelli
- Consiglio per la ricerca in Agricoltura e l'Analisi dell'Economia Agraria - Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Antonia Mores
- Consiglio per la ricerca in Agricoltura e l'Analisi dell'Economia Agraria - Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Giovanni Laidò
- Consiglio per la ricerca in Agricoltura e l'Analisi dell'Economia Agraria - Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Maria Anna Russo
- Consiglio per la ricerca in Agricoltura e l'Analisi dell'Economia Agraria - Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Donatella Bianca Maria Ficco
- Consiglio per la ricerca in Agricoltura e l'Analisi dell'Economia Agraria - Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673 km 25.200, 71122, Foggia, Italy.
| |
Collapse
|
10
|
Ahmad S, Chen J, Chen G, Huang J, Zhou Y, Zhao K, Lan S, Liu Z, Peng D. Why Black Flowers? An Extreme Environment and Molecular Perspective of Black Color Accumulation in the Ornamental and Food Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:885176. [PMID: 35498642 PMCID: PMC9047182 DOI: 10.3389/fpls.2022.885176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 05/04/2023]
Abstract
Pollinators are attracted to vibrant flower colors. That is why flower color is the key agent to allow successful fruit set in food or ornamental crops. However, black flower color is the least attractive to pollinators, although a number of plant species produce black flowers. Cyanidin-based anthocyanins are thought to be the key agents to induce black color in the ornamental and fruit crops. R2R3-MYB transcription factors (TFs) play key roles for the tissue-specific accumulation of anthocyanin. MYB1 and MYB11 are the key TFs regulating the expression of anthocyanin biosynthesis genes for black color accumulation. Post-transcriptional silencing of flavone synthase II (FNS) gene is the technological method to stimulate the accumulation of cyanidin-based anthocyanins in black cultivars. Type 1 promoter of DvIVS takes the advantage of FNS silencing to produce large amounts of black anthocyanins. Exogenous ethylene application triggers anthocyanin accumulation in the fruit skin at ripening. Environment cues have been the pivotal regulators to allow differential accumulation of anthocyanins to regulate black color. Heat stress is one of the most important environmental stimulus that regulates concentration gradient of anthocyanins in various plant parts, thereby affecting the color pattern of flowers. Stability of black anthocyanins in the extreme environments can save the damage, especially in fruits, caused by abiotic stress. White flowers without anthocyanin face more damages from abiotic stress than dark color flowers. The intensity and pattern of flower color accumulation determine the overall fruit set, thereby controlling crop yield and human food needs. This review paper presents comprehensive knowledge of black flower regulation as affected by high temperature stress, and the molecular regulators of anthocyanin for black color in ornamental and food crops. It also discusses the black color-pollination interaction pattern affected by heat stress for food and ornamental crops.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinliao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guizhen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhen Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Zhongjian Liu,
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Donghui Peng,
| |
Collapse
|
11
|
Genomics Associated Interventions for Heat Stress Tolerance in Cool Season Adapted Grain Legumes. Int J Mol Sci 2021; 23:ijms23010399. [PMID: 35008831 PMCID: PMC8745526 DOI: 10.3390/ijms23010399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Cool season grain legumes occupy an important place among the agricultural crops and essentially provide multiple benefits including food supply, nutrition security, soil fertility improvement and revenue for farmers all over the world. However, owing to climate change, the average temperature is steadily rising, which negatively affects crop performance and limits their yield. Terminal heat stress that mainly occurred during grain development phases severely harms grain quality and weight in legumes adapted to the cool season, such as lentils, faba beans, chickpeas, field peas, etc. Although, traditional breeding approaches with advanced screening procedures have been employed to identify heat tolerant legume cultivars. Unfortunately, traditional breeding pipelines alone are no longer enough to meet global demands. Genomics-assisted interventions including new-generation sequencing technologies and genotyping platforms have facilitated the development of high-resolution molecular maps, QTL/gene discovery and marker-assisted introgression, thereby improving the efficiency in legumes breeding to develop stress-resilient varieties. Based on the current scenario, we attempted to review the intervention of genomics to decipher different components of tolerance to heat stress and future possibilities of using newly developed genomics-based interventions in cool season adapted grain legumes.
Collapse
|
12
|
Laus MN, De Santis MA, Flagella Z, Soccio M. Changes in Antioxidant Defence System in Durum Wheat under Hyperosmotic Stress: A Concise Overview. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010098. [PMID: 35009101 PMCID: PMC8747421 DOI: 10.3390/plants11010098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 05/09/2023]
Abstract
Durum wheat is one of the most commonly cultivated species in the world and represents a key commodity for many areas worldwide, as its grain is used for production of many foods, such as pasta, bread, couscous, and bourghul. Durum wheat grain has a relevant role in the human diet, providing carbohydrates, proteins, lipids, fibres, vitamins, and minerals, as well as highly valued bioactive compounds contributing to a healthy diet. Durum wheat is largely cultivated in the Mediterranean basin, where it is mainly grown under rain-fed conditions, thus currently undergoing drought stress, as well as soil salinity, which can hamper yield potential and influence the qualitative characteristics of grain. When plants suffer drought and/or salinity stress, a condition known as hyperosmotic stress is established at cellular level. This leads to the accumulation of ROS thus generating in turn an oxidative stress condition, which can ultimately result in the impairment of cellular integrity and functionality. To counteract oxidative damage due to excessive ROS production under stress, plants have evolved a complex array of both enzymatic and non-enzymatic antioxidant mechanisms, working jointly and synergically for maintenance of ROS homeostasis. Enhancement of antioxidant defence system has been demonstrated as an adaptive mechanism associated to an increased tolerance to hyperosmotic stress. In the light of these considerations, this review provides a concise overview on recent advancements regarding the role of the ascorbate-glutathione cycle and the main antioxidant enzymes (superoxide dismutase, catalase, and peroxidases) in durum wheat response to drought and salt stresses that are expected to become more and more frequent due to the ongoing climate changes.
Collapse
|
13
|
Drought and Heat Stress Impacts on Phenolic Acids Accumulation in Durum Wheat Cultivars. Foods 2021; 10:foods10092142. [PMID: 34574252 PMCID: PMC8468590 DOI: 10.3390/foods10092142] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Droughts and high temperatures are the main abiotic constraints hampering durum wheat production. This study investigated the accumulation of phenolic acids (PAs) in the wholemeal flour of six durum wheat cultivars under drought and heat stress. Phenolic acids were extracted from wholemeals and analysed through HPLC-DAD analysis. Ferulic acid was the most represented PA, varying from 390.1 to 785.6 µg/g dry matter across all cultivars and growth conditions, followed by sinapic acids, p-coumaric, vanillic, syringic, and p-hydroxybenzoic acids. Among the cultivars, Cirno had the highest PAs content, especially under severe drought conditions. Heat stress enhanced the accumulation of minor individual PAs, whereas severe drought increased ferulic acid and total PAs. Broad-sense heritability was low (0.23) for p-coumaric acid but ≥0.69 for all other components. Positive correlations occurred between PA content and grain morphology and between test weight and grain yield. Durum wheat genotypes with good yields and high accumulation of PAs across different growing conditions could be significant for durum wheat resilience and health-promoting value.
Collapse
|
14
|
Ben Mariem S, Soba D, Zhou B, Loladze I, Morales F, Aranjuelo I. Climate Change, Crop Yields, and Grain Quality of C 3 Cereals: A Meta-Analysis of [CO 2], Temperature, and Drought Effects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1052. [PMID: 34074065 PMCID: PMC8225050 DOI: 10.3390/plants10061052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Cereal yield and grain quality may be impaired by environmental factors associated with climate change. Major factors, including elevated CO2 concentration ([CO2]), elevated temperature, and drought stress, have been identified as affecting C3 crop production and quality. A meta-analysis of existing literature was performed to study the impact of these three environmental factors on the yield and nutritional traits of C3 cereals. Elevated [CO2] stimulates grain production (through larger grain numbers) and starch accumulation but negatively affects nutritional traits such as protein and mineral content. In contrast to [CO2], increased temperature and drought cause significant grain yield loss, with stronger effects observed from the latter. Elevated temperature decreases grain yield by decreasing the thousand grain weight (TGW). Nutritional quality is also negatively influenced by the changing climate, which will impact human health. Similar to drought, heat stress decreases starch content but increases grain protein and mineral concentrations. Despite the positive effect of elevated [CO2], increases to grain yield seem to be counterbalanced by heat and drought stress. Regarding grain nutritional value and within the three environmental factors, the increase in [CO2] is possibly the more detrimental to face because it will affect cereal quality independently of the region.
Collapse
Affiliation(s)
- Sinda Ben Mariem
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (D.S.); (F.M.)
| | - David Soba
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (D.S.); (F.M.)
| | - Bangwei Zhou
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun 130024, China;
| | - Irakli Loladze
- Bryan Medical Center, Bryan College of Health Sciences, Lincoln, NE 68506, USA;
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (D.S.); (F.M.)
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (D.S.); (F.M.)
| |
Collapse
|
15
|
Ben Mariem S, Soba D, Zhou B, Loladze I, Morales F, Aranjuelo I. Climate Change, Crop Yields, and Grain Quality of C 3 Cereals: A Meta-Analysis of [CO 2], Temperature, and Drought Effects. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10061052. [PMID: 34074065 DOI: 10.3390/plants10061052`] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 05/26/2023]
Abstract
Cereal yield and grain quality may be impaired by environmental factors associated with climate change. Major factors, including elevated CO2 concentration ([CO2]), elevated temperature, and drought stress, have been identified as affecting C3 crop production and quality. A meta-analysis of existing literature was performed to study the impact of these three environmental factors on the yield and nutritional traits of C3 cereals. Elevated [CO2] stimulates grain production (through larger grain numbers) and starch accumulation but negatively affects nutritional traits such as protein and mineral content. In contrast to [CO2], increased temperature and drought cause significant grain yield loss, with stronger effects observed from the latter. Elevated temperature decreases grain yield by decreasing the thousand grain weight (TGW). Nutritional quality is also negatively influenced by the changing climate, which will impact human health. Similar to drought, heat stress decreases starch content but increases grain protein and mineral concentrations. Despite the positive effect of elevated [CO2], increases to grain yield seem to be counterbalanced by heat and drought stress. Regarding grain nutritional value and within the three environmental factors, the increase in [CO2] is possibly the more detrimental to face because it will affect cereal quality independently of the region.
Collapse
Affiliation(s)
- Sinda Ben Mariem
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - David Soba
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Bangwei Zhou
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun 130024, China
| | - Irakli Loladze
- Bryan Medical Center, Bryan College of Health Sciences, Lincoln, NE 68506, USA
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain
| |
Collapse
|
16
|
Tian W, Wilson TL, Chen G, Guttieri MJ, Nelson NO, Fritz A, Smith G, Li Y. Effects of environment, nitrogen, and sulfur on total phenolic content and phenolic acid composition of winter wheat grain. Cereal Chem 2021. [DOI: 10.1002/cche.10432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wenfei Tian
- Department of Grain Science and Industry Kansas State University Manhattan KS USA
| | - Tara L. Wilson
- USDA Agricultural Research ServiceHard Winter Wheat Genetics Research Unit Manhattan KS USA
| | - Gengjun Chen
- Department of Grain Science and Industry Kansas State University Manhattan KS USA
| | - Mary J. Guttieri
- USDA Agricultural Research ServiceHard Winter Wheat Genetics Research Unit Manhattan KS USA
| | | | - Allan Fritz
- Department of Agronomy Kansas State University Manhattan KS USA
| | - Gordon Smith
- Department of Grain Science and Industry Kansas State University Manhattan KS USA
| | - Yonghui Li
- Department of Grain Science and Industry Kansas State University Manhattan KS USA
| |
Collapse
|
17
|
Christensen SA, Santana EA, Alborn HT, Block AK, Chamberlain CA. Metabolomics by UHPLC-HRMS reveals the impact of heat stress on pathogen-elicited immunity in maize. Metabolomics 2021; 17:6. [PMID: 33400019 DOI: 10.1007/s11306-020-01739-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Studies investigating crop resistance to abiotic and biotic stress have largely focused on plant responses to singular forms of stress and individual biochemical pathways that only partially represent stress responses. Thus, combined abiotic and biotic stress treatments and the global assessment of their elicited metabolic expression remains largely unexplored. In this study, we employed targeted and untargeted metabolomics to investigate the molecular responses of maize (Zea mays) to abiotic, biotic, and combinatorial stress. OBJECTIVE We compared the inducible metabolomes of heat-stressed (abiotic) and C. heterostrophus-infected (biotic) maize and examined the effects of heat stress on the ability of maize to defend itself against C. heterostrophus. METHODS Ultra-high-performance liquid chromatography-high-resolution mass spectrometry was performed on plants grown under control conditions (28 °C), heat stress (38 °C), Cochliobolus heterostrophus infection, or combinatorial stress [heat (38 °C) + C. heterostrophus infection]. RESULTS Multivariate analyses revealed differential metabolite expression between heat stress, C. heterostrophus infection, and their respective controls. In combinatorial experiments, treatment with heat stress prior to fungal inoculation negatively impacted maize disease resistance against C. heterostrophus, and distinct metabolome separation between combinatorial stressed plants and the non-heat-stressed infected controls was observed. Targeted analysis revealed inducible primary and secondary metabolite responses to abiotic/biotic stress, and combinatorial experiments indicated that deficiency in the hydroxycinnamic acid, p-coumaric acid, may contribute to the heat-induced susceptibility of maize to C. heterostrophus. CONCLUSION These findings demonstrate that abiotic stress can predispose crops to more severe disease symptoms, underlining the increasing need to investigate defense chemistry in plants under combinatorial stress.
Collapse
Affiliation(s)
- Shawn A Christensen
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA.
| | - E'lysse A Santana
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
| | - Hans T Alborn
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
| | - Anna K Block
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
| | - Casey A Chamberlain
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
18
|
Almeida T, Pinto G, Correia B, Gonçalves S, Meijón M, Escandón M. In-depth analysis of the Quercus suber metabolome under drought stress and recovery reveals potential key metabolic players. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110606. [PMID: 32900444 DOI: 10.1016/j.plantsci.2020.110606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/12/2020] [Accepted: 07/16/2020] [Indexed: 05/08/2023]
Abstract
Cork oak (Quercus suber L.) is a species of ecological, social and economic importance in the Mediterranean region. Given its xerophytic adaptability, the study of cork oak's response to drought stress conditions may provide important data in the global scenario of climate change. The mechanisms behind cork oak's adaptation to drought conditions can inform the design and development of tools to better manage this species under the changing climate patterns. Metabolomics is one of the most promising omics layers to capture a snapshot of a particular physiological state and to identify putative biomarkers of stress tolerance. Drastic changes were observed in the leaf metabolome of Q. suber between the different experimental conditions, namely at the beginning of the drought stress treatment, after one month under drought and post rehydration. All experimental treatments were analyzed through sPLS to inspect for global changes and stress and rehydration responses were analyzed independently for specific alterations. This allowed a more in-depth study and a search for biomarkers specific to a given hydric treatment. The metabolome analyses showed changes in both primary and secondary metabolism, but highlighted the role of secondary metabolism. In addition, a compound-specific response was observed in stress and rehydration. Key compounds such as L-phenylalanine and epigallocatechin 3-gallate were identified in relation to early drought response, terpenoid leonuridine and the flavonoid glycoside (-)-epicatechin-3'-O-glucuronide in long-term drought response, and flavone isoscoparine was identified in relation to the recovery process. The results here obtained provide novel insights into the biology of cork oak, highlighting pathways and metabolites potentially involved in the response of this species during drought and recovery that may be essential for its adaptation to long periods of drought. It is expected that this knowledge can encourage further functional studies in order to validate potential biomarkers of drought and recovery that maybe used to support decision-making in cork oak breeding programs.
Collapse
Affiliation(s)
- Tânia Almeida
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, Beja, Portugal; Centre for Research in Ceramics & Composite Materials (CICECO), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Gloria Pinto
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal..
| | - Barbara Correia
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sónia Gonçalves
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, Beja, Portugal
| | - Mónica Meijón
- Plant Physiology, Department B.O.S., Faculty of Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Mónica Escandón
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal..
| |
Collapse
|
19
|
Phenol Content and Antioxidant and Antiaging Activity of Safflower Seed Oil (Carthamus Tinctorius L.). COSMETICS 2019. [DOI: 10.3390/cosmetics6030055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The phenol content of vegetable oil and its antioxidant activity are of primary interest for human health. Oilseed species are considered important sources of these compounds with medicinal effects on a large scale. Total phenol content (TPC) and antioxidant activity (AA) of safflower oil were previously studied. Nevertheless, there is no report on genotypic differences and antiaging activity of safflower oil. The aim of this study was to determine the TPC, diphenyl-picrylhydrazyl (DPPH), and antiaging activity on three respective accessions from Syria, France, and Algeria of seed oil of safflower grown under semi-arid conditions during 3 consecutive years (2015, 2016, and 2017). The results showed that phenol content as well as antioxidant and antiaging activity varied according to both genotype and years. In 2017, the mean value of TPC in oil seed was two times higher than in 2015 and 2016. Moreover, accessions presented different TPC values depending on the year. The highest antioxidant activity was observed among accessions in 2017 compared to 2015 and 2016. As expected, a positive correlation was found between TPC and antioxidant activity. The inhibition in the collagenase assay was between 47% and 72.1% compared to the positive control (83.1%), while inhibition in the elastase assay of TPC ranged from 32.2% to 70.3%, with the positive control being 75.8%. These results highlight the interest of safflower oil as a source of phenols with valuable antioxidant and antiaging activity, and uses for cosmetics.
Collapse
|
20
|
Nitric Oxide Increases the Physiological and Biochemical Stability of Soybean Plants under High Temperature. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9080412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thermal stress reduces plant growth and development, resulting in considerable economic losses in crops such as soybeans. Nitric oxide (NO) in plants is associated with tolerance to various abiotic stresses. Nevertheless, there are few studies of the range of observed effects of NO in modulating physiological and metabolic functions in soybean plants under high temperature. In the present study, we investigated the effects of sodium nitroprusside (SNP, NO donor), on anatomical, physiological, biochemical, and metabolic processes of soybean plants exposed to high temperature. Soybean plants were grown in soil: sand (2:1) substrate in acclimatized growth chambers. At developmental V3 stage, plants were exposed to two temperatures (25 °C and 40 °C) and SNP (0 and 100 μM), in a randomized block experimental design, with five replicates. After six days, we quantified NO concentration, leaf anatomy, gas exchange, chlorophyll a fluorescence, photosynthetic pigments, lipid peroxidation, antioxidant enzyme activity, and metabolite profiles. Higher NO concentration in soybean plants exposed to high temperature and SNP showed increased effective quantum yields of photosystem II (PSII) and photochemical dissipation, thereby maintaining the photosynthetic rate. Under high temperature, NO also promoted greater activity of ascorbate peroxidase and peroxidase activity, avoiding lipid peroxidation of cell membranes, in addition to regulating amino acid and organic compound levels. These results suggest that NO prevented damage caused by high temperature in soybean plants, illustrating the potential to mitigate thermal stress in cultivated plants.
Collapse
|
21
|
Transcriptomic and Metabolomic Analysis of the Heat-Stress Response of Populus tomentosa Carr. FORESTS 2019. [DOI: 10.3390/f10050383] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plants have evolved mechanisms of stress tolerance responses to heat stress. However, little is known about metabolic responses to heat stress in trees. In this study, we exposed Populus tomentosa Carr. to control (25 °C) and heat stress (45 °C) treatments and analyzed the metabolic and transcriptomic effects. Heat stress increased the cellular concentration of H2O2 and the activities of antioxidant enzymes. The levels of proline, raffinose, and melibiose were increased by heat stress, whereas those of pyruvate, fumarate, and myo-inositol were decreased. The expression levels of most genes (PSB27, PSB28, LHCA5, PETB, and PETC) related to the light-harvesting complexes and photosynthetic electron transport system were downregulated by heat stress. Association analysis between key genes and altered metabolites indicated that glycolysis was enhanced, whereas the tricarboxylic acid (TCA) cycle was suppressed. The inositol phosphate; galactose; valine, leucine, and isoleucine; and arginine and proline metabolic pathways were significantly affected by heat stress. In addition, several transcription factors, including HSFA2, HSFA3, HSFA9, HSF4, MYB27, MYB4R1, and bZIP60 were upregulated, whereas WRKY13 and WRKY50 were downregulated by heat stress. Interestingly, under heat stress, the expression of DREB1, DREB2, DREB2E, and DREB5 was dramatically upregulated at 12 h. Our results suggest that proline, raffinose, melibiose, and several genes (e.g., PSB27, LHCA5, and PETB) and transcription factors (e.g., HSFAs and DREBs) are involved in the response to heat stress in P. tomentosa.
Collapse
|
22
|
Saia S, Fragasso M, De Vita P, Beleggia R. Metabolomics Provides Valuable Insight for the Study of Durum Wheat: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3069-3085. [PMID: 30829031 DOI: 10.1021/acs.jafc.8b07097] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Metabolomics is increasingly being applied in various fields offering a highly informative tool for high-throughput diagnostics. However, in plant sciences, metabolomics is underused, even though plant studies are relatively easy and cheap when compared to those on humans and animals. Despite their importance for human nutrition, cereals, and especially wheat, remain understudied from a metabolomics point of view. The metabolomics of durum wheat has been essentially neglected, although its genetic structure allows the inference of common mechanisms that can be extended to other wheat and cereal species. This review covers the present achievements in durum wheat metabolomics highlighting the connections with the metabolomics of other cereal species (especially bread wheat). We discuss the metabolomics data from various studies and their relationships to other "-omics" sciences, in terms of wheat genetics, abiotic and biotic stresses, beneficial microbes, and the characterization and use of durum wheat as feed, food, and food ingredient.
Collapse
Affiliation(s)
- Sergio Saia
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 11 per Torino , Km 2,5, 13100 Vercelli , Italy
| | - Mariagiovanna Fragasso
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| |
Collapse
|
23
|
Vu LD, Zhu T, Verstraeten I, van de Cotte B, Gevaert K, De Smet I. Temperature-induced changes in the wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4609-4624. [PMID: 29939309 PMCID: PMC6117581 DOI: 10.1093/jxb/ery204] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/16/2018] [Indexed: 05/20/2023]
Abstract
Wheat (Triticum ssp.) is one of the most important human food sources. However, this crop is very sensitive to temperature changes. Specifically, processes during wheat leaf, flower, and seed development and photosynthesis, which all contribute to the yield of this crop, are affected by high temperature. While this has to some extent been investigated on physiological, developmental, and molecular levels, very little is known about early signalling events associated with an increase in temperature. Phosphorylation-mediated signalling mechanisms, which are quick and dynamic, are associated with plant growth and development, also under abiotic stress conditions. Therefore, we probed the impact of a short-term and mild increase in temperature on the wheat leaf and spikelet phosphoproteome. In total, 3822 (containing 5178 phosphosites) and 5581 phosphopeptides (containing 7023 phosphosites) were identified in leaf and spikelet samples, respectively. Following statistical analysis, the resulting data set provides the scientific community with a first large-scale plant phosphoproteome under the control of higher ambient temperature. This community resource on the high temperature-mediated wheat phosphoproteome will be valuable for future studies. Our analyses also revealed a core set of common proteins between leaf and spikelet, suggesting some level of conserved regulatory mechanisms. Furthermore, we observed temperature-regulated interconversion of phosphoforms, which probably impacts protein activity.
Collapse
Affiliation(s)
- Lam Dai Vu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Tingting Zhu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Inge Verstraeten
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Brigitte van de Cotte
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
24
|
Genetic improvement of heat tolerance in wheat: Recent progress in understanding the underlying molecular mechanisms. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.09.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Escandón M, Meijón M, Valledor L, Pascual J, Pinto G, Cañal MJ. Metabolome Integrated Analysis of High-Temperature Response in Pinus radiata. FRONTIERS IN PLANT SCIENCE 2018; 9:485. [PMID: 29719546 PMCID: PMC5914196 DOI: 10.3389/fpls.2018.00485] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/29/2018] [Indexed: 05/19/2023]
Abstract
The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C) in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS) allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata, identifying the existence of a turning point (on day 3) at which P. radiata plants changed from an initial stress response program (shorter-term response) to an acclimation one (longer-term response). Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs), fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata, with zeatin riboside (ZR) and isopentenyl adenosine (iPA) as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata, as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin), crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature.
Collapse
Affiliation(s)
- Mónica Escandón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
- *Correspondence: Mónica Escandón, ; María Jesús Cañal,
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
- Plant Biotechnology Unit, University Institute of Biotechnology of Asturias (IUBA), Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
- Plant Biotechnology Unit, University Institute of Biotechnology of Asturias (IUBA), Oviedo, Spain
| | - Jesús Pascual
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Gloria Pinto
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
- Plant Biotechnology Unit, University Institute of Biotechnology of Asturias (IUBA), Oviedo, Spain
- *Correspondence: Mónica Escandón, ; María Jesús Cañal,
| |
Collapse
|
26
|
Ficco DBM, Saia S, Beleggia R, Fragasso M, Giovanniello V, De Vita P. Milling overrides cultivar, leavening agent and baking mode on chemical and rheological traits and sensory perception of durum wheat breads. Sci Rep 2017; 7:13632. [PMID: 29051605 PMCID: PMC5648824 DOI: 10.1038/s41598-017-14113-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/02/2017] [Indexed: 11/09/2022] Open
Abstract
Smell and aroma are important determinants of consumer acceptance, so gaining deeper insight into bread smell and aroma perception is a research goal. Sixteen combinations of four variables were investigated, to evaluate the contributions of bread chemical and rheological properties and volatile organic compounds (VOCs) towards sensory acceptability of breads: genotypes (landrace vs. modern); types of flour (wholemeal vs. semolina); leavening agents (brewing yeast vs. sourdough starter); and baking modes (gas-fired vs. wood-fired). Milling had the greatest impact over the other treatments for the rheological and chemical properties, including for VOCs, with great impact on the sensory traits of the flours and breads. The processing phases had great impact on smell and aroma, as defined through formation of alcohols, aldehydes, terpenes, and other compounds (e.g., ethylbenzene, 2-pentylfuran, methoxyphenyl oxime). Leavening agent had great impact on sensory perception, although breads from the sourdough starter were perceived as with lower taste and colour than the brewing yeast. Baking mode had no relevant role on sensory perception. These data strongly undermine the belief of a 'better product' that is frequently attributed to old genotypes versus modern cultivars, and indicate that the milling and the bread-making processes determine the quality of the end product.
Collapse
Affiliation(s)
- Donatella Bianca Maria Ficco
- Council for Agricultural Research and Economics - Research Centre for Cereal and Industrial Crops (CREA-CI), S.S. 673 km 25.200, 71122, Foggia, Italy.
| | - Sergio Saia
- Council for Agricultural Research and Economics - Research Centre for Cereal and Industrial Crops (CREA-CI), S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Romina Beleggia
- Council for Agricultural Research and Economics - Research Centre for Cereal and Industrial Crops (CREA-CI), S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Mariagiovanna Fragasso
- Council for Agricultural Research and Economics - Research Centre for Cereal and Industrial Crops (CREA-CI), S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Valentina Giovanniello
- Council for Agricultural Research and Economics - Research Centre for Cereal and Industrial Crops (CREA-CI), S.S. 673 km 25.200, 71122, Foggia, Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics - Research Centre for Cereal and Industrial Crops (CREA-CI), S.S. 673 km 25.200, 71122, Foggia, Italy
| |
Collapse
|
27
|
Paznocht L, Kotíková Z, Šulc M, Lachman J, Orsák M, Eliášová M, Martinek P. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains. Food Chem 2017; 240:670-678. [PMID: 28946328 DOI: 10.1016/j.foodchem.2017.07.151] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 01/16/2023]
Abstract
Carotenoids are important phytonutrients responsible for the yellow endosperm color in cereal grains. Five carotenoids, namely lutein, zeaxanthin, antheraxanthin, α- and β-carotene, were quantified by HPLC-DAD-MS in fourteen genotypes of wheat, barley and tritordeum harvested in Czechia in 2014 and 2015. The highest carotenoid contents were found in yellow-grained tritordeum HT 439 (12.16μg/gDW), followed by blue-grained wheat V1-131-15 (7.46μg/gDW), and yellow-grained wheat TA 4024 (7.04μg/gDW). Comparing carotenoid contents, blue varieties had lower whereas purple ones had the same or higher levels than conventional bread wheat. Lutein was the main carotenoid found in wheat and tritordeum while zeaxanthin dominated in barley. The majority of cereals contained considerable levels of esterified forms (up to 61%) of which lutein esters prevailed. It was assessed that cereal genotype determines the proportion of free and esterified forms. High temperatures and drought during the growing season promoted carotenoid biosynthesis.
Collapse
Affiliation(s)
- Luboš Paznocht
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic.
| | - Zora Kotíková
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic.
| | - Miloslav Šulc
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic.
| | - Jaromír Lachman
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic.
| | - Matyáš Orsák
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic.
| | - Marie Eliášová
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic.
| | - Petr Martinek
- Agrotest Fyto, Ltd., Havlíčkova 2787, 767 01 Kroměříž, Czech Republic.
| |
Collapse
|
28
|
Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Sci Rep 2017; 7:43363. [PMID: 28233811 PMCID: PMC5324167 DOI: 10.1038/srep43363] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/23/2017] [Indexed: 11/08/2022] Open
Abstract
In this study, field-grown wheat (Triticum aestivum L.) was treated with normal (Nn) and excessive (Ne) levels of fertilizer N. Results showed that Ne depressed the activity of superoxide dismutase and peroxidase and increased the accumulation of reactive oxygen species (ROS) and malondialdehyde. The normalized difference vegetation index (NDVI) was higher under Ne at anthesis and medium milk but similar at the early dough stage and significantly lower at the hard dough stage than that under Nn. The metabolomics analysis of the leaf responses to Ne during grain filling showed 99 metabolites that were different between Ne and Nn treatments, including phenolic and flavonoid compounds, amino acids, organic acids and lipids, which are primarily involved in ROS scavenging, N metabolism, heat stress adaptation and disease resistance. Organic carbon (C) and total N contents were affected by the Ne treatment, with lower C/N ratios developing after medium milk. Ultimately, grain yields decreased with Ne. Based on these data, compared with the normal N fertilizer treatment, we concluded that excessive N application decreased the ability to scavenge ROS, increased lipid peroxidation and caused significant metabolic changes disturbing N metabolism, secondary metabolism and lipid metabolism, which led to reduced grain filling in wheat.
Collapse
|
29
|
Kumar RR, Goswami S, Shamim M, Mishra U, Jain M, Singh K, Singh JP, Dubey K, Singh S, Rai GK, Singh GP, Pathak H, Chinnusamy V, Praveen S. Biochemical Defense Response: Characterizing the Plasticity of Source and Sink in Spring Wheat under Terminal Heat Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:1603. [PMID: 28979274 PMCID: PMC5611565 DOI: 10.3389/fpls.2017.01603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/31/2017] [Indexed: 05/11/2023]
Abstract
Wheat is highly prone to terminal heat stress (HS) under late-sown conditions. Delayed- sowing is one of the preferred methods to screen the genotypes for thermotolerance under open field conditions. We investigated the effect of terminal HS on the thermotolerance of four popular genotypes of wheat i.e. WR544, HD2967, HD2932, and HD2285 under field condition. We observed significant variations in the biochemical parameters like protein content, antioxidant activity, proline and total reducing sugar content in leaf, stem, and spike under normal (26 ± 2°C) and terminal HS (36 ± 2°C) conditions. Maximum protein, sugars and proline was observed in HD2967, as compared to other cultivars under terminal HS. Wheat cv. HD2967 showed more adaptability to the terminal HS. Differential protein-profiling in leaves, stem and spike of HD2967 under normal (26 ± 2°C) and terminal HS (36 ± 2°C) showed expression of some unique protein spots. MALDI-TOF/MS analysis showed the DEPs as RuBisCO (Rub), RuBisCO activase (Rca), oxygen evolving enhancer protein (OEEP), hypothetical proteins, etc. Expression analysis of genes associated with photosynthesis (Rub and Rca) and starch biosynthesis pathway (AGPase, SSS and SBE) showed significant variations in the expression under terminal HS. HD2967 showed better performance, as compared to other cultivars under terminal HS. SSS activity observed in HD2967 showed more stability under terminal HS, as compared with other cultivars. Triggering of different biochemical parameters in response to terminal HS was observed to modulate the plasticity of carbon assimilatory pathway. The identified DEPs will enrich the proteomic resources of wheat and will provide a potential biochemical marker for screening wheat germplasm for thermotolerance. The model hypothesized will help the researchers to work in a more focused way to develop terminal heat tolerant wheat without compromising with the quality and quantity of grains.
Collapse
Affiliation(s)
- Ranjeet R. Kumar
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
- *Correspondence: Ranjeet R. Kumar
| | - Suneha Goswami
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Mohammed Shamim
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural UniversityBhagalpur, India
| | - Upama Mishra
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Monika Jain
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Khushboo Singh
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Jyoti P. Singh
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Kavita Dubey
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Shweta Singh
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
| | - Gyanendra K. Rai
- Sher-e-Kashmir University of Agricultural Sciences and TechnologyJammu, India
| | - Gyanendra P. Singh
- Indian Institute of Wheat and Barley Research, Indian Council of Agricultural ResearchKarnal, India
| | | | | | - Shelly Praveen
- Division of Biochemistry, Indian Agricultural Research InstituteNew Delhi, India
- Shelly Praveen
| |
Collapse
|
30
|
Dwivedi SL, Upadhyaya HD, Chung IM, De Vita P, García-Lara S, Guajardo-Flores D, Gutiérrez-Uribe JA, Serna-Saldívar SO, Rajakumar G, Sahrawat KL, Kumar J, Ortiz R. Exploiting Phenylpropanoid Derivatives to Enhance the Nutraceutical Values of Cereals and Legumes. FRONTIERS IN PLANT SCIENCE 2016; 7:763. [PMID: 27375635 PMCID: PMC4891577 DOI: 10.3389/fpls.2016.00763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/17/2016] [Indexed: 05/29/2023]
Abstract
Phenylpropanoids are a diverse chemical class with immense health benefits that are biosynthesized from the aromatic amino acid L-phenylalanine. This article reviews the progress for accessing variation in phenylpropanoids in germplasm collections, the genetic and molecular basis of phenylpropanoid biosynthesis, and the development of cultivars dense in seed-phenylpropanoids. Progress is also reviewed on high-throughput assays, factors that influence phenylpropanoids, the site of phenylpropanoids accumulation in seed, Genotype × Environment interactions, and on consumer attitudes for the acceptance of staple foods rich in phenylpropanoids. A paradigm shift was noted in barley, maize, rice, sorghum, soybean, and wheat, wherein cultivars rich in phenylpropanoids are grown in Europe and North and Central America. Studies have highlighted some biological constraints that need to be addressed for development of high-yielding cultivars that are rich in phenylpropanoids. Genomics-assisted breeding is expected to facilitate rapid introgression into improved genetic backgrounds by minimizing linkage drag. More research is needed to systematically characterize germplasm pools for assessing variation to support crop genetic enhancement, and assess consumer attitudes to foods rich in phenylpropanoids.
Collapse
Affiliation(s)
- Sangam L. Dwivedi
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
- Department of Agronomy, Kansas State UniversityManhattan, KS, USA
- UWA Institute of Agriculture, University of Western AustraliaCrawley, WA, Australia
| | - Ill-Min Chung
- Department of Applied Life Science, College of Life and Environmental Science, Konkuk UniversitySeoul, Korea
| | - Pasquale De Vita
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la CerealicolturaFoggia, Italy
| | - Silverio García-Lara
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Daniel Guajardo-Flores
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Janet A. Gutiérrez-Uribe
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Sergio O. Serna-Saldívar
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Govindasamy Rajakumar
- Department of Applied Life Science, College of Life and Environmental Science, Konkuk UniversitySeoul, Korea
| | - Kanwar L. Sahrawat
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | | | - Rodomiro Ortiz
- Swedish University of Agricultural SciencesAlnarp, Sweden
| |
Collapse
|