1
|
Duan D, Wang M, Han J, Li M, Wang Z, Zhou S, Xin W, Li X. Advances in multi-omics integrated analysis methods based on the gut microbiome and their applications. Front Microbiol 2025; 15:1509117. [PMID: 39831120 PMCID: PMC11739165 DOI: 10.3389/fmicb.2024.1509117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
The gut microbiota actually shares the host's physical space and affects the host's physiological functions and health indicators through a complex network of interactions with the host. However, its role as a determinant of host health and disease is often underestimated. With the emergence of new technologies including next-generation sequencing (NGS) and advanced techniques such as microbial community sequencing, people have begun to explore the interaction mechanisms between microorganisms and hosts at various omics levels such as genomics, transcriptomics, metabolomics, and proteomics. With the enrichment of multi-omics integrated analysis methods based on the microbiome, an increasing number of complex statistical analysis methods have also been proposed. In this review, we summarized the multi-omics research analysis methods currently used to study the interaction between the microbiome and the host. We analyzed the advantages and limitations of various methods and briefly introduced their application progress.
Collapse
Affiliation(s)
- Dongdong Duan
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Mingyu Wang
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jinyi Han
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Mengyu Li
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Zhenyu Wang
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Shenping Zhou
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Wenshui Xin
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Xinjian Li
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Alidoosti F, Giyahchi M, Moien S, Moghimi H. Unlocking the potential of soil microbial communities for bioremediation of emerging organic contaminants: omics-based approaches. Microb Cell Fact 2024; 23:210. [PMID: 39054471 PMCID: PMC11271216 DOI: 10.1186/s12934-024-02485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
The remediation of emerging contaminants presents a pressing environmental challenge, necessitating innovative approaches for effective mitigation. This review article delves into the untapped potential of soil microbial communities in the bioremediation of emerging contaminants. Bioremediation, while a promising method, often proves time-consuming and requires a deep comprehension of microbial intricacies for enhancement. Given the challenges presented by the inability to culture many of these microorganisms, conventional methods are inadequate for achieving this goal. While omics-based methods provide an innovative approach to understanding the fundamental aspects, processes, and connections among microorganisms that are essential for improving bioremediation strategies. By exploring the latest advancements in omics technologies, this review aims to shed light on how these approaches can unlock the hidden capabilities of soil microbial communities, paving the way for more efficient and sustainable remediation solutions.
Collapse
Affiliation(s)
- Fatemeh Alidoosti
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Minoo Giyahchi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Shabnam Moien
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Jasińska A, Walaszczyk A, Paraszkiewicz K. Omics-Based Approaches in Research on Textile Dye Microbial Decolorization. Molecules 2024; 29:2771. [PMID: 38930836 PMCID: PMC11206425 DOI: 10.3390/molecules29122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The development of the textile industry has negative effects on the natural environment. Cotton cultivation, dyeing fabrics, washing, and finishing require a lot of water and energy and use many chemicals. One of the most dangerous pollutants generated by the textile industry is dyes. Most of them are characterized by a complex chemical structure and an unfavorable impact on the environment. Especially azo dyes, whose decomposition by bacteria may lead to the formation of carcinogenic aromatic amines and raise a lot of concern. Using the metabolic potential of microorganisms that biodegrade dyes seems to be a promising solution for their elimination from contaminated environments. The development of omics sciences such as genomics, transcriptomics, proteomics, and metabolomics has allowed for a comprehensive approach to the processes occurring in cells. Especially multi-omics, which combines data from different biomolecular levels, providing an integrative understanding of the whole biodegradation process. Thanks to this, it is possible to elucidate the molecular basis of the mechanisms of dye biodegradation and to develop effective methods of bioremediation of dye-contaminated environments.
Collapse
Affiliation(s)
- Anna Jasińska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Aleksandra Walaszczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland;
| | - Katarzyna Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
4
|
Mohammed MMA, Bruun JA, Pettersen VK. Label-Free Quantitative Proteomics of Oral Microbial Communities. Methods Mol Biol 2024; 2820:155-164. [PMID: 38941022 DOI: 10.1007/978-1-0716-3910-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The oral cavity is a habitat for different microorganisms, of which bacteria are best described. Studying different bacterial taxa and their proteins is crucial to understanding their interactions with the host and other microbes. Also, for bacteria with virulence potential, identifying novel antigenic proteins is essential to finding candidates for the development of vaccines.Here, a workflow for gel-free and label-free protein analysis of oral bacterial species grown in vitro as a biofilm and a planktonic culture is described. Details on cultivation, protein extraction and digestion, peptide cleanup, LC-MS/MS run parameters, and subsequent bioinformatics analysis are included. Challenging steps in the workflow, such as growing different types of bacteria and selecting a suitable protein database, are also discussed. This protocol provides a valuable guide for metaproteomic experiments using multi-species models of oral bacteria.
Collapse
Affiliation(s)
- Marwan Mansoor Ali Mohammed
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| | - Jack-Ansgar Bruun
- Proteomics and Metabolomics Core Facility (PRiME), Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Veronika Kuchařová Pettersen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Pediatric Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Centre for New Antibacterial Strategies, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Moreno-Paz M, dos Santos Severino RS, Sánchez-García L, Manchado JM, García-Villadangos M, Aguirre J, Fernández-Martínez MA, Carrizo D, Kobayashi L, Dave A, Warren-Rhodes K, Davila A, Stoker CR, Glass B, Parro V. Life Detection and Microbial Biomarker Profiling with Signs of Life Detector-Life Detector Chip During a Mars Drilling Simulation Campaign in the Hyperarid Core of the Atacama Desert. ASTROBIOLOGY 2023; 23:1259-1283. [PMID: 37930382 PMCID: PMC10825288 DOI: 10.1089/ast.2021.0174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/02/2023] [Indexed: 11/07/2023]
Abstract
The low organic matter content in the hyperarid core of the Atacama Desert, together with abrupt temperature shifts and high ultraviolet radiation at its surface, makes this region one of the best terrestrial analogs of Mars and one of the best scenarios for testing instrumentation devoted to in situ planetary exploration. We have operated remotely and autonomously the SOLID-LDChip (Signs of Life Detector-Life Detector Chip), an antibody microarray-based sensor instrument, as part of a rover payload during the 2019 NASA Atacama Rover Astrobiology Drilling Studies (ARADS) Mars drilling simulation campaign. A robotic arm collected drilled cuttings down to 80 cm depth and loaded SOLID to process and assay them with LDChip for searching for molecular biomarkers. A remote science team received and analyzed telemetry data and LDChip results. The data revealed the presence of microbial markers from Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Cyanobacteria to be relatively more abundant in the middle layer (40-50 cm). In addition, the detection of several proteins from nitrogen metabolism indicates a pivotal role in the system. These findings were corroborated and complemented on "returned samples" to the lab by a comprehensive analysis that included DNA sequencing, metaproteomics, and a metabolic reconstruction of the sampled area. Altogether, the results describe a relatively complex microbial community with members capable of nitrogen fixation and denitrification, sulfur oxidation and reduction, or triggering oxidative stress responses, among other traits. This remote operation demonstrated the high maturity of SOLID-LDChip as a powerful tool for remote in situ life detection for future missions in the Solar System.
Collapse
Affiliation(s)
- Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Rita Sofia dos Santos Severino
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
- Departament of Física y Matemáticas y de Automática, University of Alcalá de Henares (UAH), Madrid, Spain
| | - Laura Sánchez-García
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Juan Manuel Manchado
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | | | - Jacobo Aguirre
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Miguel Angel Fernández-Martínez
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
- Department of Natural Resource Sciences, McGill University, Québec, Canada
| | - Daniel Carrizo
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Linda Kobayashi
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Arwen Dave
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Kim Warren-Rhodes
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
- Carl Sagan Center, SETI Institute, Mountain View, California, USA
| | - Alfonso Davila
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Carol R. Stoker
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Brian Glass
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| |
Collapse
|
6
|
Mondal T, Choudhury M, Kundu D, Dutta D, Samanta P. Landfill: An eclectic review on structure, reactions and remediation approach. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:127-142. [PMID: 37054538 DOI: 10.1016/j.wasman.2023.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Since the enactment of the Clean Water Act (1972), which was supplemented by increased accountability under Resource Conservation and Recovery Act (RCRA) Subtitle D (1991) and the Clean Air Act Amendments (1996), landfills have indeed been widely used all around the world for treating various wastes. The landfill's biological and biogeochemical processes are believed to be originated about 2 to 4 decades ago. Scopus and web of Science based bibliometric study reveals that there are few papers available in scientific domain. Further, till today not a single paper demonstrated the detailed landfills heterogenicity, chemistry and microbiological processes and their associated dynamics in a combined approach. Accordingly, the paper addresses the recent applications of cutting-edge biogeochemical and biological methods adopted by different countries to sketch an emerging perspective of landfill biological and biogeochemical reactions and dynamics. Additionally, the significance of several regulatory factors controlling the landfill's biogeochemical and biological processes is highlighted. Finally, this article emphasizes the future opportunities for integrating advanced techniques to explain landfill chemistry explicitly. In conclusion, this paper will provide a comprehensive vision of the diverse dimensions of landfill biological and biogeochemical reactions and dynamics to the scientific world and policymakers.
Collapse
Affiliation(s)
- Tridib Mondal
- Department of Chemistry, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri 735210, West Bengal, India
| | - Moharana Choudhury
- Environmental Research and Management Division, Voice of Environment (VoE), Guwahati - 781034, Assam, India.
| | - Debajyoti Kundu
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440 020, India
| | - Deblina Dutta
- Department of Environmental Science and Engineering, SRM University-AP, Amaravati, Andhra Pradesh 522 240, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri 735210, West Bengal, India.
| |
Collapse
|
7
|
de Freitas PNN, Silva CR, Constantin PP, Pileggi SAV, Vicari MR, Pileggi M. Fixing the Damage: The Evolution of Probiotics from Fermented Food to Biotherapeutic Products. A SUSTAINABLE GREEN FUTURE 2023:245-276. [DOI: 10.1007/978-3-031-24942-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Enespa, Chandra P. Tool and techniques study to plant microbiome current understanding and future needs: an overview. Commun Integr Biol 2022; 15:209-225. [PMID: 35967908 PMCID: PMC9367660 DOI: 10.1080/19420889.2022.2082736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Microorganisms are present in the universe and they play role in beneficial and harmful to human life, society, and environments. Plant microbiome is a broad term in which microbes are present in the rhizo, phyllo, or endophytic region and play several beneficial and harmful roles with the plant. To know of these microorganisms, it is essential to be able to isolate purification and identify them quickly under laboratory conditions. So, to improve the microbial study, several tools and techniques such as microscopy, rRNA, or rDNA sequencing, fingerprinting, probing, clone libraries, chips, and metagenomics have been developed. The major benefits of these techniques are the identification of microbial community through direct analysis as well as it can apply in situ. Without tools and techniques, we cannot understand the roles of microbiomes. This review explains the tools and their roles in the understanding of microbiomes and their ecological diversity in environments.
Collapse
Affiliation(s)
- Enespa
- Department of Plant Pathology, School of Agriculture, SMPDC, University of Lucknow, Lucknow, India
| | - Prem Chandra
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow, India
| |
Collapse
|
9
|
Gunasekaran V, Canela N, Constantí M. Comparative Proteomic Analysis of an Ethyl Tert-Butyl Ether-Degrading Bacterial Consortium. Microorganisms 2022; 10:microorganisms10122331. [PMID: 36557584 PMCID: PMC9781318 DOI: 10.3390/microorganisms10122331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
A bacterial consortium capable of degrading ethyl tert-butyl ether (ETBE) as a sole carbon source was enriched and isolated from gasoline-contaminated water. Arthrobacter sp., Herbaspirillum sp., Pseudacidovorax sp., Pseudomonas sp., and Xanthomonas sp. were identified as the initial populations with the 16S rDNA analysis. The consortium aerobically degraded 49% of 50 mg/L of ETBE, in 6 days. The ETBE degrading efficiency of the consortium increased to 98% even with the higher concentrations of ETBE (1000 mg/L) in the subsequent subcultures, which accumulated tert-butyl alcohol (TBA). Xanthomonas sp. and Pseudomonas sp. were identified as the predominant ETBE degrading populations in the final subculture. The metaproteome of the ETBE-grown bacterial consortium was compared with the glucose-grown bacterial consortium, using 2D-DIGE. Proteins related to the ETBE metabolism, stress response, carbon metabolism and chaperones were found to be abundant in the presence of ETBE while proteins related to cell division were less abundant. The metaproteomic study revealed that the ETBE does have an effect on the metabolism of the bacterial consortium. It also enabled us to understand the responses of the complex bacterial consortium to ETBE, thus revealing interesting facts about the ETBE degrading bacterial community.
Collapse
Affiliation(s)
- Vijayalakshmi Gunasekaran
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain
- FA Bio, Harpenden AL5 2JQ, UK
- Correspondence: (V.G.); (M.C.); Tel.: +34-977-558457 (M.C.)
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Av. Universitat 1, 43204 Reus, Spain
| | - Magda Constantí
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain
- Correspondence: (V.G.); (M.C.); Tel.: +34-977-558457 (M.C.)
| |
Collapse
|
10
|
Hassan S, Sabreena, Khurshid Z, Bhat SA, Kumar V, Ameen F, Ganai BA. Marine Bacteria and Omic Approaches: A Novel and Potential Repository for Bioremediation Assessment. J Appl Microbiol 2022; 133:2299-2313. [PMID: 35818751 DOI: 10.1111/jam.15711] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Marine environments accommodating diverse assortments of life constitute a great pool of differentiated natural resources. The cumulative need to remedy unpropitious effects of anthropogenic activities on estuaries, and coastal marine ecosystems has propelled the development of effective bioremediation strategies. Marine bacteria producing biosurfactants are promising agents for bio-remediating oil pollution in marine environments, making them prospective candidates for enhancing oil recovery. Molecular omics technologies are considered an emerging field of research in ecological and diversity assessment owing to their utility in environmental surveillance and bioremediation of polluted sites. A thorough literature review was undertaken to understand the applicability of different omic techniques employed for bioremediation assessment using marine bacteria. This review further establishes that for bioremediation of environmental pollutants (i.e., heavy metals, hydrocarbons, xenobiotic and numerous recalcitrant compounds), organisms isolated from marine environments can be better utilized for their removal. The literature survey shows that omics approaches can provide exemplary knowledge about microbial communities and their role in the bioremediation of environmental pollutants. This review centres on applications of marine bacteria in enhanced bioremediation, utilizing the omics approaches that can be a vital biological contrivance in environmental monitoring to tackle environmental degradation. The paper aims to identify the gaps in investigations involving marine bacteria to help researchers, ecologists, and decision-makers to develop a holistic understanding regarding their utility in bioremediation assessment.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, India
| | - Sabreena
- Department of Environmental Science, University of Kashmir, India
| | | | | | - Vineet Kumar
- Department of Botany, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh-495009, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
11
|
Cabugao KGM, Gushgari-Doyle S, Chacon SS, Wu X, Bhattacharyya A, Bouskill N, Chakraborty R. Characterizing Natural Organic Matter Transformations by Microbial Communities in Terrestrial Subsurface Ecosystems: A Critical Review of Analytical Techniques and Challenges. Front Microbiol 2022; 13:864895. [PMID: 35602028 PMCID: PMC9114703 DOI: 10.3389/fmicb.2022.864895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Determining the mechanisms, traits, and pathways that regulate microbial transformation of natural organic matter (NOM) is critical to informing our understanding of the microbial impacts on the global carbon cycle. The capillary fringe of subsurface soils is a highly dynamic environment that remains poorly understood. Characterization of organo-mineral chemistry combined with a nuanced understanding of microbial community composition and function is necessary to understand microbial impacts on NOM speciation in the capillary fringe. We present a critical review of the popular analytical and omics techniques used for characterizing complex carbon transformation by microbial communities and focus on how complementary information obtained from the different techniques enable us to connect chemical signatures with microbial genes and pathways. This holistic approach offers a way forward for the comprehensive characterization of the formation, transformation, and mineralization of terrestrial NOM as influenced by microbial communities.
Collapse
Affiliation(s)
- Kristine Grace M Cabugao
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Sara Gushgari-Doyle
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Stephany S Chacon
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Xiaoqin Wu
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Amrita Bhattacharyya
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nicholas Bouskill
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Romy Chakraborty
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
12
|
Malla MA, Dubey A, Raj A, Kumar A, Upadhyay N, Yadav S. Emerging frontiers in microbe-mediated pesticide remediation: Unveiling role of omics and In silico approaches in engineered environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118851. [PMID: 35085655 DOI: 10.1016/j.envpol.2022.118851] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The overuse of pesticides for augmenting agriculture productivity always comes at the cost of environment, biodiversity, and human health and has put the land, water, and environmental footprints under severe threat throughout the globe. Underpinning and maximizing the microbiome functions in pesticide-contaminated environments has become a prerequisite for a sustainable environment and resilient agriculture. It is imperative to elucidate the metabolic network of the microbial communities and environmental variables at the contaminated site to predict the best strategy for remediation and soil microbe-pesticide interactions. High throughput next-generation sequencing and in silico analysis allow us to identify and discern the members and characteristics of core microbiomes at the contaminated site. Integration of modern high throughput multi-omics investigations and informatics pipelines provide novel approaches and pathways to capitalize on the core microbiomes for enhancing environmental functioning and mitigation. The role of eco-genomics tools in visualising the microbial network, taxonomy, functional potential, and environmental variables in contaminated habitats is discussed in this review. The integrated role of the potential microbe identification as individual or consortia, mechanistic approach for pesticide degradation, identification of responsible enzymes/genes, and in silico approach is emphasized for the prospects of the area.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Department of Zoology, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India; Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India
| | - Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India.
| | - Niraj Upadhyay
- Department of Chemistry, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India
| | - Shweta Yadav
- Department of Zoology, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India
| |
Collapse
|
13
|
Adam PS, Bornemann TLV, Probst AJ. Progress and Challenges in Studying the Ecophysiology of Archaea. Methods Mol Biol 2022; 2522:469-486. [PMID: 36125771 DOI: 10.1007/978-1-0716-2445-6_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It has been less than two decades since the study of archaeal ecophysiology has become unshackled from the limitations of cultivation and amplicon sequencing through the advent of metagenomics. As a primer to the guide on producing archaeal genomes from metagenomes, we briefly summarize here how different meta'omics, imaging, and wet lab methods have contributed to progress in understanding the ecophysiology of Archaea. We then peer into the history of how our knowledge on two particularly important lineages was assembled: the anaerobic methane and alkane oxidizers, encountered primarily among Euryarchaeota, and the nanosized, mainly parasitic, members of the DPANN superphylum.
Collapse
Affiliation(s)
- Panagiotis S Adam
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
| | - Till L V Bornemann
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany
| | - Alexander J Probst
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
| |
Collapse
|
14
|
Basit A, Shah ST, Ullah I, Muntha ST, Mohamed HI. Microbe-assisted phytoremediation of environmental pollutants and energy recycling in sustainable agriculture. Arch Microbiol 2021; 203:5859-5885. [PMID: 34545411 DOI: 10.1007/s00203-021-02576-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 01/17/2023]
Abstract
The perception of phytoremediation is efficiently utilized as an eco-friendly practice of green plants combating and cleaning up the stressed environment without harming it. The industrial revolution was followed by the green revolution which fulfilled the food demands of the growing population caused an increase in yield per unit area in crop production, but it also increased the use of synthetic fertilizers in agriculture. Globally, the intensive use of inorganic fertilizers in agriculture has led to serious health problems and irreversible environmental damage. Biofertilizers improve the growth of the plant and can be applied as an alternative to chemical/synthetic fertilizers. Cyanobacteria, bacteria, and fungi are known as some of the principal microbe groups used to produce biofertilizers that form symbiotic associations with plants. Microorganisms perform a key role in phosphate solubilization and mobilization, nitrogen fixation, nutrient management, biotic elicitors and probiotics, and pollution management (biodegradation agents), specifically bacteria which also help in atmospheric nitrogen fixation and are thus available for the growth of the plant. Management or biodegradation of hazardous chemical residues and heavy metals produced by a huge number of large-scale industries should be given primary importance to be transformed by various bacterial strains, fungi, algae. Currently, modern omics technologies such as metagenomic, transcriptomic, and proteomic are being used to develop strategies for studying the ecology of microorganisms, as well as their use in environmental monitoring and bioremediation. This review briefly discusses some of the major groups of microorganisms that can perform different functions responsible for plant health, crop production, phytoremediation and also focus on the omics techniques reportedly used in environmental monitoring to tackle the pollution load.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Syed Tanveer Shah
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Izhar Ullah
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Sidra Tul Muntha
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
15
|
Renn D, Shepard L, Vancea A, Karan R, Arold ST, Rueping M. Novel Enzymes From the Red Sea Brine Pools: Current State and Potential. Front Microbiol 2021; 12:732856. [PMID: 34777282 PMCID: PMC8578733 DOI: 10.3389/fmicb.2021.732856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
The Red Sea is a marine environment with unique chemical characteristics and physical topographies. Among the various habitats offered by the Red Sea, the deep-sea brine pools are the most extreme in terms of salinity, temperature and metal contents. Nonetheless, the brine pools host rich polyextremophilic bacterial and archaeal communities. These microbial communities are promising sources for various classes of enzymes adapted to harsh environments - extremozymes. Extremozymes are emerging as novel biocatalysts for biotechnological applications due to their ability to perform catalytic reactions under harsh biophysical conditions, such as those used in many industrial processes. In this review, we provide an overview of the extremozymes from different Red Sea brine pools and discuss the overall biotechnological potential of the Red Sea proteome.
Collapse
Affiliation(s)
- Dominik Renn
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen, Aachen, Germany
| | - Lera Shepard
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexandra Vancea
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ram Karan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Stefan T. Arold
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute for Experimental Molecular Imaging (ExMI), University Clinic, RWTH Aachen, Aachen, Germany
| |
Collapse
|
16
|
Li M, Wen J. Recent progress in the application of omics technologies in the study of bio-mining microorganisms from extreme environments. Microb Cell Fact 2021; 20:178. [PMID: 34496835 PMCID: PMC8425152 DOI: 10.1186/s12934-021-01671-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/30/2021] [Indexed: 11/11/2022] Open
Abstract
Bio-mining microorganisms are a key factor affecting the metal recovery rate of bio-leaching, which inevitably produces an extremely acidic environment. As a powerful tool for exploring the adaptive mechanisms of microorganisms in extreme environments, omics technologies can greatly aid our understanding of bio-mining microorganisms and their communities on the gene, mRNA, and protein levels. These omics technologies have their own advantages in exploring microbial diversity, adaptive evolution, changes in metabolic characteristics, and resistance mechanisms of single strains or their communities to extreme environments. These technologies can also be used to discover potential new genes, enzymes, metabolites, metabolic pathways, and species. In addition, integrated multi-omics analysis can link information at different biomolecular levels, thereby obtaining more accurate and complete global adaptation mechanisms of bio-mining microorganisms. This review introduces the current status and future trends in the application of omics technologies in the study of bio-mining microorganisms and their communities in extreme environments.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China
- Frontier Science Center of Ministry of Education, Tianjin University, Tianjin, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China.
- Frontier Science Center of Ministry of Education, Tianjin University, Tianjin, China.
| |
Collapse
|
17
|
Herruzo-Ruiz AM, Fuentes-Almagro CA, Jiménez-Pastor JM, Pérez-Rosa VM, Blasco J, Michán C, Alhama J. Meta-omic evaluation of bacterial microbial community structure and activity for the environmental assessment of soils: overcoming protein extraction pitfalls. Environ Microbiol 2021; 23:4706-4725. [PMID: 34258847 DOI: 10.1111/1462-2920.15673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 11/27/2022]
Abstract
Microorganisms play unique, essential and integral roles in the biosphere. This work aims to assess the utility of soil's metaomics for environmental diagnosis. Doñana National Park (DNP) was selected as a natural lab since it contains a strictly protected core that is surrounded by numerous threats of pollution. Culture-independent high-throughput molecular tools were used to evaluate the alterations of the global structure and metabolic activities of the microbiome. 16S rRNA sequencing shows lower bacterial abundance and diversity in areas historically exposed to contamination that surround DNP. For metaproteomics, an innovative post-alkaline protein extraction protocol was developed. After NaOH treatment, successive washing with Tris-HCl buffer supplemented with glycerol was essential to eliminate interferences. Starting from soils with different physicochemical characteristics, the method renders proteins with a remarkable resolution on SDS-PAGE gels. The proteins extracted were analysed by using an in-house database constructed from the rRNA data. LC-MS/MS analysis identified 2182 non-redundant proteins with 135 showing significant differences in relative abundance in the soils around DNP. Relevant global biological processes were altered in response to the environmental changes, such as protective and antioxidant mechanisms, translation, folding and homeostasis of proteins, membrane transport and aerobic respiratory metabolism.
Collapse
Affiliation(s)
- Ana M Herruzo-Ruiz
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| | | | - José M Jiménez-Pastor
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| | - Víctor M Pérez-Rosa
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, Puerto Real, E-11510, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| | - José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| |
Collapse
|
18
|
Shan J, Sanford RA, Chee-Sanford J, Ooi SK, Löffler FE, Konstantinidis KT, Yang WH. Beyond denitrification: The role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. GLOBAL CHANGE BIOLOGY 2021; 27:2669-2683. [PMID: 33547715 DOI: 10.1111/gcb.15545] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/11/2021] [Indexed: 05/02/2023]
Abstract
Many biotic and abiotic processes contribute to nitrous oxide (N2 O) production in the biosphere, but N2 O consumption in the environment has heretofore been attributed primarily to canonical denitrifying microorganisms. The nosZ genes encoding the N2 O reductase enzyme, NosZ, responsible for N2 O reduction to dinitrogen are now known to include two distinct groups: the well-studied Clade I which denitrifiers typically possess, and the novel Clade II possessed by diverse groups of microorganisms, most of which are non-denitrifiers. Clade II N2 O reducers could play an important, previously unrecognized role in controlling N2 O emissions for several reasons, including: (1) the consumption of N2 O produced by processes other than denitrification, (2) hypothesized non-respiratory functions of NosZ as an electron sink or for N2 O detoxification, (3) possible differing enzyme kinetics of Clade II NosZ compared to Clade I NosZ, and (4) greater nosZ gene abundance for Clade II compared to Clade I in soils of many ecosystems. Despite the potential ecological significance of Clade II NosZ, a census of 800 peer-reviewed original research articles discussing nosZ and published from 2013 to 2019 showed that the percentage of articles evaluating or mentioning Clade II nosZ increased from 5% in 2013 to only 22% in 2019. The census revealed that the slowly spreading awareness of Clade II nosZ may result in part from disciplinary silos, with the percentage of nosZ articles mentioning Clade II nosZ ranging from 0% in Agriculture and Agronomy journals to 32% in Multidisciplinary Sciences journals. In addition, inconsistent nomenclature for Clade I nosZ and Clade II nosZ, with 17 different terminologies used in the literature, may have created confusion about the two distinct groups of N2 O reducers. We provide recommendations to accelerate advances in understanding the role of the diversity of N2 O reducers in regulating soil N2 O emissions.
Collapse
Affiliation(s)
- Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Robert A Sanford
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joanne Chee-Sanford
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture - Agricultural Research Station,, Urbana, IL, USA
| | - Sean K Ooi
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Frank E Löffler
- Center for Environmental Biotechnology, Department of Microbiology, Department of Civil and Environmental Engineering, Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wendy H Yang
- Departments of Plant Biology and Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
19
|
Michán C, Blasco J, Alhama J. High-throughput molecular analyses of microbiomes as a tool to monitor the wellbeing of aquatic environments. Microb Biotechnol 2021; 14:870-885. [PMID: 33559398 PMCID: PMC8085945 DOI: 10.1111/1751-7915.13763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Aquatic environments are the recipients of many sources of environmental stress that trigger both local and global changes. To evaluate the associated risks to organisms and ecosystems more sensitive and accurate strategies are required. The analysis of the microbiome is one of the most promising candidates for environmental diagnosis of aquatic systems. Culture-independent interconnected meta-omic approaches are being increasing used to fill the gaps that classical microbial approaches cannot resolve. Here, we provide a prospective view of the increasing application of these high-throughput molecular technologies to evaluate the structure and functional activity of microbial communities in response to changes and disturbances in the environment, mostly of anthropogenic origin. Some relevant topics are reviewed, such as: (i) the use of microorganisms for water quality assessment, highlighting the incidence of antimicrobial resistance as an increasingly serious threat to global public health; (ii) the crucial role of microorganisms and their complex relationships with the ongoing climate change, and other stress threats; (iii) the responses of the environmental microbiome to extreme pollution conditions, such as acid mine drainage or oil spills. Moreover, protists and viruses, due to their huge impacts on the structure of microbial communities, are emerging candidates for the assessment of aquatic environmental health.
Collapse
Affiliation(s)
- Carmen Michán
- Departamento de Bioquímica y Biología MolecularCampus de Excelencia Internacional Agroalimentario CeiA3Universidad de CórdobaCampus de Rabanales, Edificio Severo OchoaCórdobaE‐14071Spain
| | - Julián Blasco
- Department of Ecology and Coastal ManagementICMAN‐CSICCampus Rio San PedroPuerto Real (Cádiz)E‐11510Spain
| | - José Alhama
- Departamento de Bioquímica y Biología MolecularCampus de Excelencia Internacional Agroalimentario CeiA3Universidad de CórdobaCampus de Rabanales, Edificio Severo OchoaCórdobaE‐14071Spain
| |
Collapse
|
20
|
Mishra S, Lin Z, Pang S, Zhang W, Bhatt P, Chen S. Recent Advanced Technologies for the Characterization of Xenobiotic-Degrading Microorganisms and Microbial Communities. Front Bioeng Biotechnol 2021; 9:632059. [PMID: 33644024 PMCID: PMC7902726 DOI: 10.3389/fbioe.2021.632059] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Global environmental contamination with a complex mixture of xenobiotics has become a major environmental issue worldwide. Many xenobiotic compounds severely impact the environment due to their high toxicity, prolonged persistence, and limited biodegradability. Microbial-assisted degradation of xenobiotic compounds is considered to be the most effective and beneficial approach. Microorganisms have remarkable catabolic potential, with genes, enzymes, and degradation pathways implicated in the process of biodegradation. A number of microbes, including Alcaligenes, Cellulosimicrobium, Microbacterium, Micrococcus, Methanospirillum, Aeromonas, Sphingobium, Flavobacterium, Rhodococcus, Aspergillus, Penecillium, Trichoderma, Streptomyces, Rhodotorula, Candida, and Aureobasidium, have been isolated and characterized, and have shown exceptional biodegradation potential for a variety of xenobiotic contaminants from soil/water environments. Microorganisms potentially utilize xenobiotic contaminants as carbon or nitrogen sources to sustain their growth and metabolic activities. Diverse microbial populations survive in harsh contaminated environments, exhibiting a significant biodegradation potential to degrade and transform pollutants. However, the study of such microbial populations requires a more advanced and multifaceted approach. Currently, multiple advanced approaches, including metagenomics, proteomics, transcriptomics, and metabolomics, are successfully employed for the characterization of pollutant-degrading microorganisms, their metabolic machinery, novel proteins, and catabolic genes involved in the degradation process. These technologies are highly sophisticated, and efficient for obtaining information about the genetic diversity and community structures of microorganisms. Advanced molecular technologies used for the characterization of complex microbial communities give an in-depth understanding of their structural and functional aspects, and help to resolve issues related to the biodegradation potential of microorganisms. This review article discusses the biodegradation potential of microorganisms and provides insights into recent advances and omics approaches employed for the specific characterization of xenobiotic-degrading microorganisms from contaminated environments.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
21
|
Sangannavar PA, Kumar JS, Subrahmanyam G, Kutala S. Genomics and omics tools to assess complex microbial communities in silkworms: A paradigm shift towards translational research. J Microbiol Methods 2021. [DOI: 10.1016/bs.mim.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Abstract
Today massive amounts of sequenced metagenomic and metatranscriptomic data from different ecological niches and environmental locations are available. Scientific progress depends critically on methods that allow extracting useful information from the various types of sequence data. Here, we will first discuss types of information contained in the various flavours of biological sequence data, and how this information can be interpreted to increase our scientific knowledge and understanding. We argue that a mechanistic understanding of biological systems analysed from different perspectives is required to consistently interpret experimental observations, and that this understanding is greatly facilitated by the generation and analysis of dynamic mathematical models. We conclude that, in order to construct mathematical models and to test mechanistic hypotheses, time-series data are of critical importance. We review diverse techniques to analyse time-series data and discuss various approaches by which time-series of biological sequence data have been successfully used to derive and test mechanistic hypotheses. Analysing the bottlenecks of current strategies in the extraction of knowledge and understanding from data, we conclude that combined experimental and theoretical efforts should be implemented as early as possible during the planning phase of individual experiments and scientific research projects. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.
Collapse
Affiliation(s)
- Ovidiu Popa
- Institute of Quantitative and Theoretical Biology, CEPLAS, Heinrich-Heine University Düsseldorf, Germany
| | - Ellen Oldenburg
- Institute of Quantitative and Theoretical Biology, CEPLAS, Heinrich-Heine University Düsseldorf, Germany
| | - Oliver Ebenhöh
- Institute of Quantitative and Theoretical Biology, CEPLAS, Heinrich-Heine University Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences, CEPLAS, Heinrich-Heine University Düsseldorf, Germany
| |
Collapse
|
23
|
Saline and Arid Soils: Impact on Bacteria, Plants, and their Interaction. BIOLOGY 2020; 9:biology9060116. [PMID: 32498442 PMCID: PMC7344409 DOI: 10.3390/biology9060116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
Salinity and drought are the most important abiotic stresses hampering crop growth and yield. It has been estimated that arid areas cover between 41% and 45% of the total Earth area worldwide. At the same time, the world’s population is going to soon reach 9 billion and the survival of this huge amount of people is dependent on agricultural products. Plants growing in saline/arid soil shows low germination rate, short roots, reduced shoot biomass, and serious impairment of photosynthetic efficiency, thus leading to a substantial loss of crop productivity, resulting in significant economic damage. However, plants should not be considered as single entities, but as a superorganism, or a holobiont, resulting from the intimate interactions occurring between the plant and the associated microbiota. Consequently, it is very complex to define how the plant responds to stress on the basis of the interaction with its associated plant growth-promoting bacteria (PGPB). This review provides an overview of the physiological mechanisms involved in plant survival in arid and saline soils and aims at describing the interactions occurring between plants and its bacteriome in such perturbed environments. The potential of PGPB in supporting plant survival and fitness in these environmental conditions has been discussed.
Collapse
|
24
|
Tang J, Fu J, Wang Y, Li B, Li Y, Yang Q, Cui X, Hong J, Li X, Chen Y, Xue W, Zhu F. ANPELA: analysis and performance assessment of the label-free quantification workflow for metaproteomic studies. Brief Bioinform 2020; 21:621-636. [PMID: 30649171 PMCID: PMC7299298 DOI: 10.1093/bib/bby127] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/19/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Label-free quantification (LFQ) with a specific and sequentially integrated workflow of acquisition technique, quantification tool and processing method has emerged as the popular technique employed in metaproteomic research to provide a comprehensive landscape of the adaptive response of microbes to external stimuli and their interactions with other organisms or host cells. The performance of a specific LFQ workflow is highly dependent on the studied data. Hence, it is essential to discover the most appropriate one for a specific data set. However, it is challenging to perform such discovery due to the large number of possible workflows and the multifaceted nature of the evaluation criteria. Herein, a web server ANPELA (https://idrblab.org/anpela/) was developed and validated as the first tool enabling performance assessment of whole LFQ workflow (collective assessment by five well-established criteria with distinct underlying theories), and it enabled the identification of the optimal LFQ workflow(s) by a comprehensive performance ranking. ANPELA not only automatically detects the diverse formats of data generated by all quantification tools but also provides the most complete set of processing methods among the available web servers and stand-alone tools. Systematic validation using metaproteomic benchmarks revealed ANPELA's capabilities in 1 discovering well-performing workflow(s), (2) enabling assessment from multiple perspectives and (3) validating LFQ accuracy using spiked proteins. ANPELA has a unique ability to evaluate the performance of whole LFQ workflow and enables the discovery of the optimal LFQs by the comprehensive performance ranking of all 560 workflows. Therefore, it has great potential for applications in metaproteomic and other studies requiring LFQ techniques, as many features are shared among proteomic studies.
Collapse
Affiliation(s)
- Jing Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Jianbo Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Li
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Yinghong Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Qingxia Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Xuejiao Cui
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Jiajun Hong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaofeng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Weiwei Xue
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| |
Collapse
|
25
|
Chiapello M, Zampieri E, Mello A. A Small Effort for Researchers, a Big Gain for Soil Metaproteomics. Front Microbiol 2020; 11:88. [PMID: 32117118 PMCID: PMC7010931 DOI: 10.3389/fmicb.2020.00088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/15/2020] [Indexed: 11/23/2022] Open
Affiliation(s)
- Marco Chiapello
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| | - Elisa Zampieri
- Council for Agricultural Research and Economics Research Centre for Cereal and Industrial Crops (CREA-CI), Vercelli, Italy
| | - Antonietta Mello
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| |
Collapse
|
26
|
Magnuson E, Mykytczuk NC, Pellerin A, Goordial J, Twine SM, Wing B, Foote SJ, Fulton K, Whyte LG. Thiomicrorhabdus
streamers and sulfur cycling in perennial hypersaline cold springs in the Canadian high Arctic. Environ Microbiol 2020; 23:3384-3400. [DOI: 10.1111/1462-2920.14916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 12/10/2019] [Accepted: 01/08/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Elisse Magnuson
- Natural Resource Sciences McGill University Montreal QC Canada
| | | | - Andre Pellerin
- Centre for Geomicrobiology Aarhus University Aarhus Denmark
| | - Jacqueline Goordial
- Natural Resource Sciences McGill University Montreal QC Canada
- School of Environmental Sciences University of Guelph Guelph, ON Canada
| | - Susan M. Twine
- Institute for Biological Sciences National Research Council Ottawa Ontario
| | - Boswell Wing
- Earth and Planetary Sciences McGill University Montreal QC Canada
| | - Simon J. Foote
- Institute for Biological Sciences National Research Council Ottawa Ontario
| | - Kelly Fulton
- Institute for Biological Sciences National Research Council Ottawa Ontario
| | - Lyle G. Whyte
- Natural Resource Sciences McGill University Montreal QC Canada
| |
Collapse
|
27
|
Acid Mine Drainage as Habitats for Distinct Microbiomes: Current Knowledge in the Era of Molecular and Omic Technologies. Curr Microbiol 2019; 77:657-674. [DOI: 10.1007/s00284-019-01771-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/09/2019] [Indexed: 11/27/2022]
|
28
|
Clifford EL, Varela MM, De Corte D, Bode A, Ortiz V, Herndl GJ, Sintes E. Taurine Is a Major Carbon and Energy Source for Marine Prokaryotes in the North Atlantic Ocean off the Iberian Peninsula. MICROBIAL ECOLOGY 2019; 78:299-312. [PMID: 30666368 PMCID: PMC6647121 DOI: 10.1007/s00248-019-01320-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/03/2019] [Indexed: 05/31/2023]
Abstract
Taurine, an amino acid-like compound, acts as an osmostress protectant in many marine metazoans and algae and is released via various processes into the oceanic dissolved organic matter pool. Taurine transporters are widespread among members of the marine prokaryotic community, tentatively indicating that taurine might be an important substrate for prokaryotes in the ocean. In this study, we determined prokaryotic taurine assimilation and respiration throughout the water column along two transects in the North Atlantic off the Iberian Peninsula. Taurine assimilation efficiency decreased from the epipelagic waters from 55 ± 14% to 27 ± 20% in the bathypelagic layers (means of both transects). Members of the ubiquitous alphaproteobacterial SAR11 clade accounted for a large fraction of cells taking up taurine, especially in surface waters. Archaea (Thaumarchaeota + Euryarchaeota) were also able to take up taurine in the upper water column, but to a lower extent than Bacteria. The contribution of taurine assimilation to the heterotrophic prokaryotic carbon biomass production ranged from 21% in the epipelagic layer to 16% in the bathypelagic layer. Hence, we conclude that dissolved free taurine is a significant carbon and energy source for prokaryotes throughout the oceanic water column being utilized with similar efficiencies as dissolved free amino acids.
Collapse
Affiliation(s)
- Elisabeth L Clifford
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Marta M Varela
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de A Coruña, Apdo 130, 15080, A Coruña, Spain
| | - Daniele De Corte
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Antonio Bode
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de A Coruña, Apdo 130, 15080, A Coruña, Spain
| | - Victor Ortiz
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Gerhard J Herndl
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, Utrecht University, PO Box 59, 1790 AB, Den Burg, The Netherlands
| | - Eva Sintes
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Baleares, Moll de Ponent s/n, 07015, Palma de Mallorca, Spain.
| |
Collapse
|
29
|
Peters DL, Wang W, Zhang X, Ning Z, Mayne J, Figeys D. Metaproteomic and Metabolomic Approaches for Characterizing the Gut Microbiome. Proteomics 2019; 19:e1800363. [PMID: 31321880 DOI: 10.1002/pmic.201800363] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/27/2019] [Indexed: 12/14/2022]
Abstract
The gut microbiome has been shown to play a significant role in human healthy and diseased states. The dynamic signaling that occurs between the host and microbiome is critical for the maintenance of host homeostasis. Analyzing the human microbiome with metaproteomics, metabolomics, and integrative multi-omics analyses can provide significant information on markers for healthy and diseased states, allowing for the eventual creation of microbiome-targeted treatments for diseases associated with dysbiosis. Metaproteomics enables functional activity information to be gained from the microbiome samples, while metabolomics provides insight into the overall metabolic states affecting/representing the host-microbiome interactions. Combining these functional -omic platforms together with microbiome composition profiling allows for a holistic overview on the functional and metabolic state of the microbiome and its influence on human health. Here the benefits of metaproteomics, metabolomics, and the integrative multi-omic approaches to investigating the gut microbiome in the context of human health and diseases are reviewed.
Collapse
Affiliation(s)
- Danielle L Peters
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| | - Wenju Wang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| | - Xu Zhang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| | - Zhibin Ning
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| | - Janice Mayne
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada.,Canadian Institute for Advanced Research, 661 University Ave, Toronto, ON, M5G 1M1, Canada.,The University of Ottawa and Shanghai Institute of Materia Medica Joint Research Center on Systems and Personalized Pharmacology, 451 Smyth Road, Ottawa, ON, KIH 8M5, Canada
| |
Collapse
|
30
|
Piovesana S, Capriotti AL, Foglia P, Montone CM, La Barbera G, Zenezini Chiozzi R, Laganà A, Cavaliere C. Development of an Analytical Method for the Metaproteomic Investigation of Bioaerosol from Work Environments. Proteomics 2019; 19:e1900152. [PMID: 31315163 DOI: 10.1002/pmic.201900152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/21/2019] [Indexed: 11/10/2022]
Abstract
The metaproteomic analysis of air particulate matter provides valuable information about the properties of bioaerosols in the atmosphere and their influence on climate and public health. In this work, a new method for the extraction and analysis of proteins in airborne particulate matter from quartz microfiber filters is developed. Different protein extraction procedures are tested to select the best extraction protocol based on protein recovery. The optimized method is tested for the extraction of proteins from spores of ubiquitous bacteria species and used for the metaproteomic characterization of filters from three work environments. In particular, ambient aerosol samples are collected in a composting plant, in a wastewater treatment plant, and in an agricultural holding. A total of 179, 15, 205, and 444 proteins are identified in composting plant, wastewater treatment plant, and agricultural holding, (cow stable and blending plant), respectively. In agreement with the major categories of primary biological aerosol particles, all identified proteins originated primarily from fungi, bacteria, and plants. The paper is the first metaproteomic study applied to bioaerosol samples collected in occupationally relevant environmental sites and, even though not aimed at monitoring the risk exposure of workers, it provides information on the possible exposure in the working environmental sites.
Collapse
Affiliation(s)
- Susy Piovesana
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Patrizia Foglia
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giorgia La Barbera
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | | | - Aldo Laganà
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
31
|
Dangi AK, Sharma B, Hill RT, Shukla P. Bioremediation through microbes: systems biology and metabolic engineering approach. Crit Rev Biotechnol 2018; 39:79-98. [DOI: 10.1080/07388551.2018.1500997] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Arun Kumar Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Russell T. Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
32
|
Chau ATT, Lee M, Adrian L, Manefield MJ. Syntrophic Partners Enhance Growth and Respiratory Dehalogenation of Hexachlorobenzene by Dehalococcoides mccartyi Strain CBDB1. Front Microbiol 2018; 9:1927. [PMID: 30186256 PMCID: PMC6113397 DOI: 10.3389/fmicb.2018.01927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022] Open
Abstract
This study investigated syntrophic interactions between chlorinated benzene respiring Dehalococcoides mccartyi strain CBDB1 and fermenting partners (Desulfovibrio vulgaris, Syntrophobacter fumaroxidans, and Geobacter lovleyi) during hexachlorobenzene respiration. Dechlorination rates in syntrophic co-cultures were enhanced 2-3 fold compared to H2 fed CBDB1 pure cultures (0.23 ± 0.04 μmol Cl− day−1). Syntrophic partners were also able to supply cobalamins to CBDB1, albeit with 3–10 fold lower resultant dechlorination activity compared to cultures receiving exogenous cyanocobalamin. Strain CBDB1 pure cultures accumulated ~1 μmol of carbon monoxide per 87.5 μmol Cl− released during hexachlorobenzene respiration resulting in decreases in dechlorination activity. The syntrophic partners investigated were shown to consume carbon monoxide generated by CBDB1, thus relieving carbon monoxide autotoxicity. Accumulation of lesser chlorinated chlorobenzene congeners (1,3- and 1,4-dichlorobenzene and 1,3,5-trichlorobenzene) also inhibited dechlorination activity and their removal from the headspace through adsorption to granular activated carbon was shown to restore activity. Proteomic analysis revealed co-culturing strain CBDB1 with Geobacter lovleyi upregulated CBDB1 genes associated with reductive dehalogenases, hydrogenases, formate dehydrogenase, and ribosomal proteins. These data provide insight into CBDB1 ecology and inform strategies for application of CBDB1 in ex situ hexachlorobenzene destruction technologies.
Collapse
Affiliation(s)
- Anh T T Chau
- College of Agriculture and Applied Biology, Cantho University, Can Tho, Vietnam.,School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Matthew Lee
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Michael J Manefield
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia.,School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
33
|
Wang AY, Thuy-Boun PS, Stupp GS, Su AI, Wolan DW. Triflic Acid Treatment Enables LC-MS/MS Analysis of Insoluble Bacterial Biomass. J Proteome Res 2018; 17:2978-2986. [PMID: 30019906 DOI: 10.1021/acs.jproteome.8b00166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The lysis and extraction of soluble bacterial proteins from cells is a common practice for proteomics analyses, but insoluble bacterial biomasses are often left behind. Here, we show that with triflic acid treatment, the insoluble bacterial biomass of Gram- and Gram+ bacteria can be rendered soluble. We use LC-MS/MS shotgun proteomics to show that bacterial proteins in the soluble and insoluble postlysis fractions differ significantly. Additionally, in the case of Gram- Pseudomonas aeruginosa, triflic acid treatment enables the enrichment of cell-envelope-associated proteins. Finally, we apply triflic acid to a human microbiome sample to show that this treatment is robust and enables the identification of a new, complementary subset of proteins from a complex microbial mixture.
Collapse
Affiliation(s)
- Ana Y Wang
- Department of Molecular Medicine and Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Peter S Thuy-Boun
- Department of Molecular Medicine and Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Gregory S Stupp
- Department of Molecular Medicine and Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Andrew I Su
- Department of Molecular Medicine and Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Dennis W Wolan
- Department of Molecular Medicine and Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
34
|
Rani A, Babu S. Environmental proteomic studies: closer step to understand bacterial biofilms. World J Microbiol Biotechnol 2018; 34:120. [PMID: 30022302 DOI: 10.1007/s11274-018-2504-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023]
Abstract
Advancement in proteome analytical techniques and the development of protein databases have been helping to understand the physiology and subtle molecular mechanisms behind biofilm formation in bacteria. This review is to highlight how the evolving proteomic approaches have revealed fundamental molecular processes underlying the formation and regulation of bacterial biofilms. Based on the survey of research reports available on differential expression of proteins in biofilms of bacterial from wide range of environments, four important cellular processes viz. metabolism, motility, transport and stress response that contribute to formation of bacterial biofilms are discussed. This review might answer how proteins related to these cellular processes contribute significantly in stabilizing biofilms of different bacteria in diverse environmental conditions.
Collapse
Affiliation(s)
- Anupama Rani
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Subramanian Babu
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
35
|
Dynamics of Bacterial Community Diversity and Structure in the Terminal Reservoir of the South-To-North Water Diversion Project in China. WATER 2018. [DOI: 10.3390/w10060709] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
|
37
|
Proteomics and the human microbiome: where we are today and where we would like to be. Emerg Top Life Sci 2017; 1:401-409. [DOI: 10.1042/etls20170051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 11/17/2022]
Abstract
What are all these hundreds of different bacterial species doing in and on us? What interactions occur between the host and the microbes, and between the microbes themselves? By studying proteins, metaproteomics tries to find preliminary answers to these questions. There is daunting complexity around this; in fact, many of these proteins have never been studied before. This article is an introduction to the field of metaproteomics in the context of the human microbiome. It summarizes where we are and what we have learnt so far. The focus will be on faecal proteomics as most metaproteomics research has been conducted on that sample type. Metaproteomics has made major advances in the past decade, but new sample preparation strategies, improved mass spectrometric analysis and, most importantly, data analysis and interpretation have the potential to pave the way for large-cohort metaproteomics.
Collapse
|
38
|
Herschend J, Damholt ZBV, Marquard AM, Svensson B, Sørensen SJ, Hägglund P, Burmølle M. A meta-proteomics approach to study the interspecies interactions affecting microbial biofilm development in a model community. Sci Rep 2017; 7:16483. [PMID: 29184101 PMCID: PMC5705676 DOI: 10.1038/s41598-017-16633-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/15/2017] [Indexed: 01/11/2023] Open
Abstract
Microbial biofilms are omnipresent in nature and relevant to a broad spectrum of industries ranging from bioremediation and food production to biomedical applications. To date little is understood about how multi-species biofilm communities develop and function on a molecular level, due to the complexity of these biological systems. Here we apply a meta-proteomics approach to investigate the mechanisms influencing biofilm formation in a model consortium of four bacterial soil isolates; Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus. Protein abundances in community and single species biofilms were compared to describe occurring inter-species interactions and the resulting changes in active metabolic pathways. To obtain full taxonomic resolution between closely related species and empower correct protein quantification, we developed a novel pipeline for generating reduced reference proteomes for spectral database searches. Meta-proteomics profiling indicated that community development is dependent on cooperative interactions between community members facilitating cross-feeding on specific amino acids. Opposite regulation patterns of fermentation and nitrogen pathways in Paenibacillus amylolyticus and Xanthomonas retroflexus may, however, indicate that competition for limited resources also affects community development. Overall our results demonstrate the multitude of pathways involved in biofilm formation in mixed communities.
Collapse
Affiliation(s)
- Jakob Herschend
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zacharias B V Damholt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Andrea M Marquard
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Per Hägglund
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
39
|
Clifford EL, Hansell DA, Varela MM, Nieto‐Cid M, Herndl GJ, Sintes E. Crustacean zooplankton release copious amounts of dissolved organic matter as taurine in the ocean. LIMNOLOGY AND OCEANOGRAPHY 2017; 62:2745-2758. [PMID: 29242669 PMCID: PMC5724677 DOI: 10.1002/lno.10603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/30/2017] [Accepted: 05/08/2017] [Indexed: 05/10/2023]
Abstract
Taurine (Tau), an amino acid-like compound, is present in almost all marine metazoans including crustacean zooplankton. It plays an important physiological role in these organisms and is released into the ambient water throughout their life cycle. However, limited information is available on the release rates by marine organisms, the concentrations and turnover of Tau in the ocean. We determined dissolved free Tau concentrations throughout the water column and its release by abundant crustacean mesozooplankton at two open ocean sites (Gulf of Alaska and North Atlantic). At both locations, the concentrations of dissolved free Tau were in the low nM range (up to 15.7 nM) in epipelagic waters, declining sharply in the mesopelagic to about 0.2 nM and remaining fairly stable throughout the bathypelagic waters. Pacific amphipod-copepod assemblages exhibited lower dissolved free Tau release rates per unit biomass (0.8 ± 0.4 μmol g-1 C-biomass h-1) than Atlantic copepods (ranging between 1.3 ± 0.4 μmol g-1 C-biomass h-1 and 9.5 ± 2.1 μmol g-1 C-biomass h-1), in agreement with the well-documented inverse relationship between biomass-normalized excretion rates and body size. Our results indicate that crustacean zooplankton might contribute significantly to the dissolved organic matter flux in marine ecosystems via dissolved free Tau release. Based on the release rates and assuming steady state dissolved free Tau concentrations, turnover times of dissolved free Tau range from 0.05 d to 2.3 d in the upper water column and are therefore similar to those of dissolved free amino acids. This rapid turnover indicates that dissolved free Tau is efficiently consumed in oceanic waters, most likely by heterotrophic bacteria.
Collapse
Affiliation(s)
- Elisabeth L. Clifford
- Department of Limnology and Bio‐OceanographyCenter of Ecology, University of ViennaViennaAustria
| | | | - Marta M. Varela
- Centro Oceanográfico de A CoruñaIEO, Instituto Español de OceanografíaA CoruñaSpain
| | - Mar Nieto‐Cid
- CSIC, Instituto de Investigaciones Marinas de VigoVigoSpain
| | - Gerhard J. Herndl
- Department of Limnology and Bio‐OceanographyCenter of Ecology, University of ViennaViennaAustria
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht UniversityDen BurgThe Netherlands
| | - Eva Sintes
- Department of Limnology and Bio‐OceanographyCenter of Ecology, University of ViennaViennaAustria
| |
Collapse
|
40
|
Carlson H, Deutschbauer A, Coates J. Microbial metal resistance and metabolism across dynamic landscapes: high-throughput environmental microbiology. F1000Res 2017; 6:1026. [PMID: 28721211 PMCID: PMC5497819 DOI: 10.12688/f1000research.10986.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2017] [Indexed: 12/15/2022] Open
Abstract
Multidimensional gradients of inorganic compounds influence microbial activity in diverse pristine and anthropogenically perturbed environments. Here, we suggest that high-throughput cultivation and genetics can be systematically applied to generate quantitative models linking gene function, microbial community activity, and geochemical parameters. Metal resistance determinants represent a uniquely universal set of parameters around which to study and evaluate microbial fitness because they represent a record of the environment in which all microbial life evolved. By cultivating microbial isolates and enrichments in laboratory gradients of inorganic ions, we can generate quantitative predictions of limits on microbial range in the environment, obtain more accurate gene annotations, and identify useful strategies for predicting and engineering the trajectory of natural ecosystems.
Collapse
Affiliation(s)
- Hans Carlson
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - John Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| |
Collapse
|