1
|
Yamamoto PK, Takasuka K, Mori M, Masuda T, Kono N. Non-invasive molecular species identification using spider silk proteomics. Sci Rep 2025; 15:13844. [PMID: 40263346 PMCID: PMC12015514 DOI: 10.1038/s41598-025-97105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Accurate species identification is essential in biology, ecology, medicine, and agriculture, yet traditional methods relying on morphological characteristics often fail due to phenotypic plasticity and cryptic species. These limitations are particularly pronounced in small organisms with minimal distinguishing features. DNA barcoding has become a popular alternative; however, it requires invasive tissue sampling, making it unsuitable for delicate or rare organisms like insects and spiders. To address this challenge, we propose a non-invasive molecular method using proteomic analysis focused on species-specific protein sequences in spider silk, offering a viable solution for species identification without harming specimens. We developed a universal silk-dissolving method, followed by sequence similarity analysis to classify species into those identifiable at the species level and those distinguishable only to a group of closely related species. A bioinformatics pipeline was established to analyze peptide sequences, achieving 96% accuracy across 15 spider species, even in the presence of contaminants. This technique complements DNA barcoding and can be extended to other organisms producing biological materials. It holds promise in pest management, medical diagnostics, and improving public health by enabling accurate species identification without invasive procedures.
Collapse
Affiliation(s)
- Phillip K Yamamoto
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
| | - Keizo Takasuka
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
- Department of Biology, Graduate School of Science, Kyushu University, Fukuoka city, Fukuoka, 819-0395, Japan
| | - Masaru Mori
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
- Institute of Innovation for Future Society, Nagoya University, Nagoya, Aichi, 464-8603, Japan
| | - Takeshi Masuda
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
| | - Nobuaki Kono
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan.
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
- Faculty of Environmental and Information Studies, Keio University, Fujisawa, Kanagawa, 252-0882, Japan.
| |
Collapse
|
2
|
Schmuck B, Greco G, Pessatti TB, Sonavane S, Langwallner V, Arndt T, Rising A. Strategies for Making High-Performance Artificial Spider Silk Fibers. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2305040. [PMID: 39355086 PMCID: PMC11440630 DOI: 10.1002/adfm.202305040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Indexed: 10/03/2024]
Abstract
Artificial spider silk is an attractive material for many technical applications since it is a biobased fiber that can be produced under ambient conditions but still outcompetes synthetic fibers (e.g., Kevlar) in terms of toughness. Industrial use of this material requires bulk-scale production of recombinant spider silk proteins in heterologous host and replication of the pristine fiber's mechanical properties. High molecular weight spider silk proteins can be spun into fibers with impressive mechanical properties, but the production levels are too low to allow commercialization of the material. Small spider silk proteins, on the other hand, can be produced at yields that are compatible with industrial use, but the mechanical properties of such fibers need to be improved. Here, the literature on wet-spinning of artificial spider silk fibers is summarized and analyzed with a focus on mechanical performance. Furthermore, several strategies for how to improve the properties of such fibers, including optimized protein composition, smarter spinning setups, innovative protein engineering, chemical and physical crosslinking as well as the incorporation of nanomaterials in composite fibers, are outlined and discussed.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Gabriele Greco
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tomas Bohn Pessatti
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Sumalata Sonavane
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Viktoria Langwallner
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tina Arndt
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Anna Rising
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| |
Collapse
|
3
|
Sonavane S, Hassan S, Chatterjee U, Soler L, Holm L, Mollbrink A, Greco G, Fereydouni N, Vinnere Pettersson O, Bunikis I, Churcher A, Lantz H, Johansson J, Reimegård J, Rising A. Origin, structure, and composition of the spider major ampullate silk fiber revealed by genomics, proteomics, and single-cell and spatial transcriptomics. SCIENCE ADVANCES 2024; 10:eadn0597. [PMID: 39141739 PMCID: PMC11323941 DOI: 10.1126/sciadv.adn0597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
Spiders produce nature's toughest fiber using renewable components at ambient temperatures and with water as solvent, making it highly interesting to replicate for the materials industry. Despite this, much remains to be understood about the bioprocessing and composition of spider silk fibers. Here, we identify 18 proteins that make up the spiders' strongest silk type, the major ampullate fiber. Single-cell RNA sequencing and spatial transcriptomics revealed that the secretory epithelium of the gland harbors six cell types. These cell types are confined to three distinct glandular zones that produce specific combinations of silk proteins. Image analysis of histological sections showed that the secretions from the three zones do not mix, and proteomics analysis revealed that these secretions form layers in the final fiber. Using a multi-omics approach, we provide substantial advancements in the understanding of the structure and function of the major ampullate silk gland as well as of the architecture and composition of the fiber it produces.
Collapse
Affiliation(s)
- Sumalata Sonavane
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sameer Hassan
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| | - Urmimala Chatterjee
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| | - Lucile Soler
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lena Holm
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Annelie Mollbrink
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Gabriele Greco
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Noah Fereydouni
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| | - Olga Vinnere Pettersson
- Department of Immunology, Genetics and Pathology, National Genomics Infrastructure, SciLifeLab, Uppsala, Sweden
| | - Ignas Bunikis
- Department of Immunology, Genetics and Pathology, National Genomics Infrastructure, SciLifeLab, Uppsala, Sweden
| | - Allison Churcher
- Department of Molecular Biology, NBIS, SciLifeLab, Umeå University, Umeå, Sweden
| | - Henrik Lantz
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| | - Johan Reimegård
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| | - Anna Rising
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| |
Collapse
|
4
|
Oktaviani NA, Malay AD, Goto M, Nagashima T, Hayashi F, Numata K. NMR assignment and dynamics of the dimeric form of soluble C-terminal domain major ampullate spidroin 2 from Latrodectus hesperus. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:249-255. [PMID: 37668860 DOI: 10.1007/s12104-023-10150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
Spider dragline silk has attracted great interest due to its outstanding mechanical properties, which exceed those of man-made synthetic materials. Dragline silk, which is composed of at least major ampullate spider silk protein 1 and 2 (MaSp1 and MaSp2), contains a long repetitive domain flanked by N-terminal and C-terminal domains (NTD and CTD). Despite the small size of the CTD, this domain plays a crucial role as a molecular switch that regulates and directs spider silk self-assembly. In this study, we report the 1H, 13C, and 15N chemical shift assignments of the Latrodectus hesperus MaSp2 CTD in dimeric form at pH 7. Our solution NMR data demonstrated that this protein contains five helix regions connected by a flexible linker.
Collapse
Affiliation(s)
- Nur Alia Oktaviani
- Biomacromolecules Research Team, RIKEN Center for the Sustainable Resource Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Ali D Malay
- Biomacromolecules Research Team, RIKEN Center for the Sustainable Resource Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mami Goto
- Biomacromolecules Research Team, RIKEN Center for the Sustainable Resource Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Toshio Nagashima
- RIKEN Center for Biosystem Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Fumiaki Hayashi
- RIKEN Center for Biosystem Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for the Sustainable Resource Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku, Katsura, Kyoto, 615-8510, Japan.
- Institute for Advanced Bioscience, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan.
| |
Collapse
|
5
|
Rising A, Harrington MJ. Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chem Rev 2023; 123:2155-2199. [PMID: 36508546 DOI: 10.1021/acs.chemrev.2c00465] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.
Collapse
Affiliation(s)
- Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | | |
Collapse
|
6
|
Abstract
![]()
The tiny spider makes
dragline silk fibers with unbeatable toughness,
all under the most innocuous conditions. Scientists have persistently
tried to emulate its natural silk spinning process using recombinant
proteins with a view toward creating a new wave of smart materials,
yet most efforts have fallen short of attaining the native fiber’s
excellent mechanical properties. One reason for these shortcomings
may be that artificial spider silk systems tend to be overly simplified
and may not sufficiently take into account the true complexity of
the underlying protein sequences and of the multidimensional aspects
of the natural self-assembly process that give rise to the hierarchically
structured fibers. Here, we discuss recent findings regarding the
material constituents of spider dragline silk, including novel spidroin
subtypes, nonspidroin proteins, and possible involvement of post-translational
modifications, which together suggest a complexity that transcends
the two-component MaSp1/MaSp2 system. We subsequently consider insights
into the spidroin domain functions, structures, and overall mechanisms
for the rapid transition from disordered soluble protein into a highly
organized fiber, including the possibility of viewing spider silk
self-assembly through a framework relevant to biomolecular condensates.
Finally, we consider the concept of “biomimetics” as
it applies to artificial spider silk production with a focus on key
practical aspects of design and evaluation that may hopefully inform
efforts to more closely reproduce the remarkable structure and function
of the native silk fiber using artificial methods.
Collapse
Affiliation(s)
- Ali D Malay
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hamish C Craig
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jianming Chen
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nur Alia Oktaviani
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
7
|
Kono N, Ohtoshi R, Malay AD, Mori M, Masunaga H, Yoshida Y, Nakamura H, Numata K, Arakawa K. Darwin's bark spider shares a spidroin repertoire with Caerostris extrusa but achieves extraordinary silk toughness through gene expression. Open Biol 2021; 11:210242. [PMID: 34932907 PMCID: PMC8692038 DOI: 10.1098/rsob.210242] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Spider silk is a protein-based material whose toughness suggests possible novel applications. A particularly fascinating example of silk toughness is provided by Darwin's bark spider (Caerostris darwini) found in Madagascar. This spider produces extraordinarily tough silk, with an average toughness of 350 MJ m-1 and over 50% extensibility, and can build river-bridging webs with a size of 2.8 m2. Recent studies have suggested that specific spidroins expressed in C. darwini are responsible for the mechanical properties of its silk. Therefore, a more comprehensive investigation of spidroin sequences, silk thread protein contents and phylogenetic conservation among closely related species is required. Here, we conducted genomic, transcriptomic and proteomic analyses of C. darwini and its close relative Caerostris extrusa. A variety of spidroins and low-molecular-weight proteins were found in the dragline silk of these species; all of the genes encoding these proteins were conserved in both genomes, but their genes were more expressed in C. darwini. The potential to produce very tough silk is common in the genus Caerostris, and our results may suggest the existence of plasticity allowing silk mechanical properties to be changed by optimizing related gene expression in response to the environment.
Collapse
Affiliation(s)
- Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Rintaro Ohtoshi
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ali D. Malay
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Hiroyuki Nakamura
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Keiji Numata
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan,Department of Material Chemistry, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| |
Collapse
|
8
|
Egg Case Protein 3: A Constituent of Black Widow Spider Tubuliform Silk. Molecules 2021; 26:molecules26165088. [PMID: 34443676 PMCID: PMC8399404 DOI: 10.3390/molecules26165088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
Spider silk has outstanding mechanical properties, rivaling some of the best materials on the planet. Biochemical analyses of tubuliform silk have led to the identification of TuSp1, egg case protein 1, and egg case protein 2. TuSp1 belongs to the spidroin superfamily, containing a non-repetitive N- and C-terminal domain and internal block repeats. ECP1 and ECP2, which lack internal block repeats and sequence similarities to the highly conserved N- and C-terminal domains of spidroins, have cysteine-rich N-terminal domains. In this study, we performed an in-depth proteomic analysis of tubuliform glands, spinning dope, and egg sacs, which led to the identification of a novel molecular constituent of black widow tubuliform silk, referred to as egg case protein 3 or ECP3. Analysis of the translated ECP3 cDNA predicts a low molecular weight protein of 11.8 kDa. Real-time reverse transcription–quantitative PCR analysis performed with different silk-producing glands revealed ECP3 mRNA is predominantly expressed within tubuliform glands of spiders. Taken together, these findings reveal a novel protein that is secreted into black widow spider tubuliform silk.
Collapse
|
9
|
Kono N, Nakamura H, Mori M, Yoshida Y, Ohtoshi R, Malay AD, Pedrazzoli Moran DA, Tomita M, Numata K, Arakawa K. Multicomponent nature underlies the extraordinary mechanical properties of spider dragline silk. Proc Natl Acad Sci U S A 2021; 118:e2107065118. [PMID: 34312234 PMCID: PMC8346794 DOI: 10.1073/pnas.2107065118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dragline silk of golden orb-weaver spiders (Nephilinae) is noted for its unsurpassed toughness, combining extraordinary extensibility and tensile strength, suggesting industrial application as a sustainable biopolymer material. To pinpoint the molecular composition of dragline silk and the roles of its constituents in achieving its mechanical properties, we report a multiomics approach, combining high-quality genome sequencing and assembly, silk gland transcriptomics, and dragline silk proteomics of four Nephilinae spiders. We observed the consistent presence of the MaSp3B spidroin unique to this subfamily as well as several nonspidroin SpiCE proteins. Artificial synthesis and the combination of these components in vitro showed that the multicomponent nature of dragline silk, including MaSp3B and SpiCE, along with MaSp1 and MaSp2, is essential to realize the mechanical properties of spider dragline silk.
Collapse
Affiliation(s)
- Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Hiroyuki Nakamura
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Rintaro Ohtoshi
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ali D Malay
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Keiji Numata
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Depertment of Material Chemistry, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan;
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| |
Collapse
|
10
|
Fujiwara M, Kono N, Hirayama A, Malay AD, Nakamura H, Ohtoshi R, Numata K, Tomita M, Arakawa K. Xanthurenic Acid Is the Main Pigment of Trichonephila clavata Gold Dragline Silk. Biomolecules 2021; 11:563. [PMID: 33921320 PMCID: PMC8070366 DOI: 10.3390/biom11040563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Spider silk is a natural fiber with remarkable strength, toughness, and elasticity that is attracting attention as a biomaterial of the future. Golden orb-weaving spiders (Trichonephila clavata) construct large, strong webs using golden threads. To characterize the pigment of golden T. clavata dragline silk, we used liquid chromatography and mass spectrometric analysis. We found that the major pigment in the golden dragline silk of T. clavata was xanthurenic acid. To investigate the possible function of the pigment, we tested the effect of xanthurenic acid on bacterial growth using gram-negative Escherichia coli and gram-positive Bacillus subtilis. We found that xanthurenic acid had a slight antibacterial effect. Furthermore, to investigate the UV tolerance of the T. clavata threads bleached of their golden color, we conducted tensile deformation tests and scanning electron microscope observations. However, in these experiments, no significant effect was observed. We therefore speculate that golden orb-weaving spiders use the pigment for other purposes, such as to attract their prey in the sunlight.
Collapse
Affiliation(s)
- Masayuki Fujiwara
- Institute for Advanced Biosciences, Keio University, Nihonkoku 403-1, Daihoji, Tsuruoka, Yamagata 997-0013, Japan; (M.F.); (N.K.); (A.H.); (M.T.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Nihonkoku 403-1, Daihoji, Tsuruoka, Yamagata 997-0013, Japan; (M.F.); (N.K.); (A.H.); (M.T.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Nihonkoku 403-1, Daihoji, Tsuruoka, Yamagata 997-0013, Japan; (M.F.); (N.K.); (A.H.); (M.T.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan
| | - Ali D. Malay
- Biomacromolecules Research Team: RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (A.D.M.); (K.N.)
| | - Hiroyuki Nakamura
- Spiber Inc.: Mizukami 234-1, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan; (H.N.); (R.O.)
| | - Rintaro Ohtoshi
- Spiber Inc.: Mizukami 234-1, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan; (H.N.); (R.O.)
| | - Keiji Numata
- Biomacromolecules Research Team: RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (A.D.M.); (K.N.)
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Nihonkoku 403-1, Daihoji, Tsuruoka, Yamagata 997-0013, Japan; (M.F.); (N.K.); (A.H.); (M.T.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan
- Faculty of Environment and Information Studies, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Nihonkoku 403-1, Daihoji, Tsuruoka, Yamagata 997-0013, Japan; (M.F.); (N.K.); (A.H.); (M.T.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan
- Faculty of Environment and Information Studies, Keio University, Endo 5322, Fujisawa, Kanagawa 252-0882, Japan
| |
Collapse
|
11
|
Shanafelt M, Rabara T, MacArt D, Williams C, Hekman R, Joo H, Tsai J, Vierra C. Structural Characterization of Black Widow Spider Dragline Silk Proteins CRP1 and CRP4. Molecules 2020; 25:molecules25143212. [PMID: 32674428 PMCID: PMC7397007 DOI: 10.3390/molecules25143212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 01/30/2023] Open
Abstract
Spider dragline silk represents a biomaterial with outstanding mechanical properties, possessing high-tensile strength and toughness. In black widows at least eight different proteins have been identified as constituents of dragline silk. These represent major ampullate spidroins MaSp1, MaSp2, MaSp’, and several low-molecular weight cysteine-rich protein (CRP) family members, including CRP1, CRP2, and CRP4. Molecular modeling predicts that CRPs contain a cystine slipknot motif, but experimental evidence to support this assertion remains to be reported. To advance scientific knowledge regarding CRP function, we recombinantly expressed and purified CRP1 and CRP4 from bacteria and investigated their secondary structure using circular dichroism (CD) under different chemical and physical conditions. We demonstrate by far-UV CD spectroscopy that these proteins contain similar secondary structure, having substantial amounts of random coil conformation, followed by lower levels of beta sheet, alpha helical and beta turn structures. CRPs are thermally and pH stable; however, treatment with reagents that disrupt disulfide bonds impact their structural conformations. Cross-linking mass spectrometry (XL-MS) data also support computational models of CRP1. Taken together, the chemical and thermal stability of CRPs, the cross-linking data, coupled with the structural sensitivity to reducing agents, are experimentally consistent with the supposition CRPs are cystine slipknot proteins.
Collapse
Affiliation(s)
- Mikayla Shanafelt
- Departments of Chemistry and Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (M.S.); (T.R.); (D.M.); (H.J.); (J.T.)
| | - Taylor Rabara
- Departments of Chemistry and Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (M.S.); (T.R.); (D.M.); (H.J.); (J.T.)
| | - Danielle MacArt
- Departments of Chemistry and Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (M.S.); (T.R.); (D.M.); (H.J.); (J.T.)
| | - Caroline Williams
- Institute for Biomedical Science Center for Microbial Pathogenesis, Georgia State University, Decatur, GA 30302, USA;
| | - Ryan Hekman
- Center for Network Systems Biology, Boston University, Boston, MA 02215, USA;
| | - Hyun Joo
- Departments of Chemistry and Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (M.S.); (T.R.); (D.M.); (H.J.); (J.T.)
| | - Jerry Tsai
- Departments of Chemistry and Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (M.S.); (T.R.); (D.M.); (H.J.); (J.T.)
| | - Craig Vierra
- Departments of Chemistry and Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (M.S.); (T.R.); (D.M.); (H.J.); (J.T.)
- Correspondence: ; Tel.: 209-946-3024
| |
Collapse
|
12
|
Gu J, Xu C, Li M, Chen B, Shang Y, Zheng H, Zhou Y, Hu Z, Peng Z, Wang B. Species Identification of Silks from Bombyx mori, Eri Silkworm and Chestnut Silkworm Using Western Blot and Proteomics Analyses. ANAL SCI 2019; 35:175-180. [PMID: 30270257 DOI: 10.2116/analsci.18p314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Species identification is of key significance for exploring the origin and transmission of ancient silks. In this study, two novel methods, i.e. western blot (WB) and proteomics analyses, were proposed and established to identify the differences between silks from Bombyx mori (B. mori) and two other distinctive species (Eri silkworm and Chestnut silkworm). Three diagnostic antibodies, a polyclonal anti-silk fibroin (anti-SF) antibody (pAb), a polyclonal anti-SF-specific peptide antibody (pAsb), and a monoclonal anti-SF antibody (mAb) were designed and prepared to distinguish silk species using the antibody-based WB technique. Proteomics analysis by liquid chromatography-tandem mass spectrometry was performed to further identify silk species at the protein level. WB results indicated that the three antibodies showed high specificity and affinity and could discern B. mori silk from Eri and Chestnut silks. Biomarkers for each SF were obtained using proteomics analysis, and they have the potential to serve as standards for identifying silk species. Thus, combining WB and proteomics analyses with conventional methods can provide more accurate silk information and may be suitable for identifying other proteinaceous materials in archaeological field.
Collapse
Affiliation(s)
- Jincui Gu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University
| | - Chengfeng Xu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University
| | - Menglu Li
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University
| | - Boyi Chen
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University
| | - Yating Shang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University
| | - Hailing Zheng
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum
| | - Yang Zhou
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum
| | - Zhiwen Hu
- Institute of Textile Conservation, Zhejiang Sci-Tech University
| | - Zhiqin Peng
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University
| | - Bing Wang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University
| |
Collapse
|
13
|
Correa-Garhwal SM, Chaw RC, Dugger T, Clarke TH, Chea KH, Kisailus D, Hayashi CY. Semi-aquatic spider silks: transcripts, proteins, and silk fibres of the fishing spider, Dolomedes triton (Pisauridae). INSECT MOLECULAR BIOLOGY 2019; 28:35-51. [PMID: 30059178 DOI: 10.1111/imb.12527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To survive in terrestrial and aquatic environments, spiders often rely heavily on their silk. The vast majority of silks that have been studied are from orb-web or cob-web weaving species, leaving the silks of water-associated spiders largely undescribed. We characterize transcripts, proteins, and silk fibres from the semi-aquatic spider Dolomedes triton. From silk gland RNAseq libraries, we report 18 silk transcripts representing four categories of known silk protein types: aciniform, ampullate, pyriform, and tubuliform. Proteomic and structural analyses (scanning electron microscopy, energy dispersive X-ray spectrometry, contact angle) of the D. triton submersible egg sac reveal similarities to silks from aquatic caddisfly larvae. We identified two layers in D. triton egg sacs, notably a highly hydrophobic outer layer with a different elemental composition compared to egg sacs of terrestrial spiders. These features may provide D. triton egg sacs with their water repellent properties.
Collapse
Affiliation(s)
- S M Correa-Garhwal
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - R C Chaw
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - T Dugger
- Materials Science and Engineering Program, University of California, Riverside, CA, USA
| | - T H Clarke
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- J. Craig Venter Institute, Rockville, MD, USA
| | - K H Chea
- Materials Science and Engineering Program, University of California, Riverside, CA, USA
| | - D Kisailus
- Materials Science and Engineering Program, University of California, Riverside, CA, USA
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - C Y Hayashi
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
14
|
Whaite AD, Wang T, Macdonald J, Cummins SF. Major ampullate silk gland transcriptomes and fibre proteomes of the golden orb-weavers, Nephila plumipes and Nephila pilipes (Araneae: Nephilidae). PLoS One 2018; 13:e0204243. [PMID: 30332416 PMCID: PMC6192577 DOI: 10.1371/journal.pone.0204243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/04/2018] [Indexed: 11/18/2022] Open
Abstract
Natural spider silk is one of the world’s toughest proteinaceous materials, yet a truly biomimetic spider silk is elusive even after several decades of intense focus. In this study, Next-Generation Sequencing was utilised to produce transcriptomes of the major ampullate gland of two Australian golden orb-weavers, Nephila plumipes and Nephila pilipes, in order to identify highly expressed predicted proteins that may co-factor in the construction of the final polymer. Furthermore, proteomics was performed by liquid chromatography tandem-mass spectroscopy to analyse the natural solid silk fibre of each species to confirm highly expressed predicted proteins within the silk gland are present in the final silk product. We assembled the silk gland transcriptomes of N. plumipes and N. pilipes into 69,812 and 70,123 contigs, respectively. Gene expression analysis revealed that silk gene sequences were among the most highly expressed and we were able to procure silk sequences from both species in excess of 1,300 amino acids. However, some of the genes with the highest expression values were not able to be identified from our proteomic analysis. Proteome analysis of “reeled” silk fibres of N. plumipes and N. pilipes revealed 29 and 18 proteins, respectively, most of which were identified as silk fibre proteins. This study is the first silk gland specific transcriptome and proteome analysis for these species and will assist in the future development of a biomimetic spider silk.
Collapse
Affiliation(s)
- Alessandra D Whaite
- GeneCology Research Centre and School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Tianfang Wang
- GeneCology Research Centre and School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Joanne Macdonald
- GeneCology Research Centre and School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.,Division of Experimental Therapeutics, Columbia University, New York City, New York, United States of America
| | - Scott F Cummins
- GeneCology Research Centre and School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
15
|
Lacava M, Camargo A, Garcia LF, Benamú MA, Santana M, Fang J, Wang X, Blamires SJ. Web building and silk properties functionally covary among species of wolf spider. J Evol Biol 2018; 31:968-978. [DOI: 10.1111/jeb.13278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/18/2018] [Accepted: 04/04/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Mariángeles Lacava
- Centro Universitario de Rivera Universidad de la República Rivera Uruguay
- Centro Universitario Regional del Este (CURE) Universidad de la República Treinta y Tres Uruguay
| | - Arley Camargo
- Centro Universitario de Rivera Universidad de la República Rivera Uruguay
| | - Luis F. Garcia
- Centro Universitario Regional del Este (CURE) Universidad de la República Treinta y Tres Uruguay
- Laboratorio Ecología del Comportamiento (IIBCE) Montevideo Uruguay
| | - Marco A. Benamú
- Centro Universitario de Rivera Universidad de la República Rivera Uruguay
- Laboratorio Ecología del Comportamiento (IIBCE) Montevideo Uruguay
| | - Martin Santana
- Laboratorio Ecología del Comportamiento (IIBCE) Montevideo Uruguay
| | - Jian Fang
- Institute for Frontier Materials (IFM) Deakin University Geelong Vic. Australia
| | - Xungai Wang
- Institute for Frontier Materials (IFM) Deakin University Geelong Vic. Australia
| | - Sean J. Blamires
- Evolution & Ecology Research Centre School of Biological, Earth & Environmental Sciences The University of New South Wales Sydney NSW Australia
| |
Collapse
|
16
|
Blamires SJ, Nobbs M, Martens PJ, Tso IM, Chuang WT, Chang CK, Sheu HS. Multiscale mechanisms of nutritionally induced property variation in spider silks. PLoS One 2018; 13:e0192005. [PMID: 29390013 PMCID: PMC5794138 DOI: 10.1371/journal.pone.0192005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/14/2018] [Indexed: 12/14/2022] Open
Abstract
Variability in spider major ampullate (MA) silk properties at different scales has proven difficult to determine and remains an obstacle to the development of synthetic fibers mimicking MA silk performance. A multitude of techniques may be used to measure multiscale aspects of silk properties. Here we fed five species of Araneoid spider solutions that either contained protein or were protein deprived and performed silk tensile tests, small and wide-angle X-ray scattering (SAXS/WAXS), amino acid composition analyses, and silk gene expression analyses, to resolve persistent questions about how nutrient deprivation induces variations in MA silk mechanical properties across scales. Our analyses found that the properties of each spider's silk varied differently in response to variations in their protein intake. We found changes in the crystalline and non-crystalline nanostructures to play specific roles in inducing the property variations we found. Across treatment MaSp expression patterns differed in each of the five species. We found that in most species MaSp expression and amino acid composition variations did not conform with our predictions based on a traditional MaSp expression model. In general, changes to the silk's alanine and proline compositions influenced the alignment of the proteins within the silk's amorphous region, which influenced silk extensibility and toughness. Variations in structural alignment in the crystalline and non-crystalline regions influenced ultimate strength independent of genetic expression. Our study provides the deepest insights thus far into the mechanisms of how MA silk properties vary from gene expression to nanostructure formations to fiber mechanics. Such knowledge is imperative for promoting the production of synthetic silk fibers.
Collapse
Affiliation(s)
- Sean J. Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, The University of New South Wales, Sydney, Australia
| | - Madeleine Nobbs
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, The University of New South Wales, Sydney, Australia
| | - Penny J. Martens
- Graduate School of Biomedical Engineering, Samuels Building F25, The University of New South Wales, Sydney, Australia
| | - I-Min Tso
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | | | - Chung-Kai Chang
- National Synchrotron Radiation Research Centre, Hsinchu, Taiwan
| | - Hwo-Shuenn Sheu
- National Synchrotron Radiation Research Centre, Hsinchu, Taiwan
| |
Collapse
|
17
|
Evolutionary shifts in gene expression decoupled from gene duplication across functionally distinct spider silk glands. Sci Rep 2017; 7:8393. [PMID: 28827773 PMCID: PMC5566633 DOI: 10.1038/s41598-017-07388-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/28/2017] [Indexed: 11/08/2022] Open
Abstract
Spider silk synthesis is an emerging model for the evolution of tissue-specific gene expression and the role of gene duplication in functional novelty, but its potential has not been fully realized. Accordingly, we quantified transcript (mRNA) abundance in seven silk gland types and three non-silk gland tissues for three cobweb-weaving spider species. Evolutionary analyses based on expression levels of thousands of homologous transcripts and phylogenetic reconstruction of 605 gene families demonstrated conservation of expression for each gland type among species. Despite serial homology of all silk glands, the expression profiles of the glue-forming aggregate glands were divergent from fiber-forming glands. Also surprising was our finding that shifts in gene expression among silk gland types were not necessarily coupled with gene duplication, even though silk-specific genes belong to multi-paralog gene families. Our results challenge widely accepted models of tissue specialization and significantly advance efforts to replicate silk-based high-performance biomaterials.
Collapse
|