1
|
Wang X, Sun L, Han X, Li Z, Xing Y, Chen X, Xi R, Sun Y, Wang G, Zhao P. The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review). Int J Mol Med 2025; 55:63. [PMID: 39950327 PMCID: PMC11878485 DOI: 10.3892/ijmm.2025.5504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Glaucoma is a neurodegenerative disease characterized by progressive and irreversible necrosis and apoptosis of retinal ganglion cells (RGCs). Deformation of the lamina cribrosa (LC) has been identified as a factor leading to damage to the optic nerve and capillaries passing through the LC, ultimately causing visual field defects and glaucoma development. Recent advancements in molecular biology, both domestically and internationally, have enabled a more comprehensive and in‑depth understanding of glaucoma pathogenesis. In the present review, the role of molecular signaling pathways associated with RGCs apoptosis, optic nerve protection and regeneration, and LC damage and remodeling in the development of glaucoma, are summarized and discussed. The insights provided herein may offer new targets and ideas for interventions and treatment strategies for glaucoma.
Collapse
Affiliation(s)
- Xiaotong Wang
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Liang Sun
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xudong Han
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Zhanglong Li
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuqing Xing
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Xinyue Chen
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Ruofan Xi
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuecong Sun
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Guilong Wang
- Shandong Provincial Education Department, Jinan, Shandong 250012, P.R. China
| | - Ping Zhao
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
2
|
Kadyan P, Singh L. Deciphering the Neuroprotective Action of Bee Venom Peptide Melittin: Insights into Mechanistic Interplay. Mol Neurobiol 2025:10.1007/s12035-025-04808-6. [PMID: 40038194 DOI: 10.1007/s12035-025-04808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, are characterized by progressive loss of neuronal structure and function. These conditions often lead to cognitive decline, motor dysfunction, and ultimately severe impairment of daily activities. A key feature of neurodegenerative diseases is chronic inflammation, which contributes to neuronal damage and exacerbates disease progression. Traditional treatments mainly focus on symptomatic relief rather than addressing the underlying causes, highlighting the need for novel therapeutic approaches. Melittin, a bioactive peptide derived from bee venom, has garnered attention for its multifaceted neuroprotective properties, particularly in the context of neuroinflammatory and neurodegenerative disorders. This review delves into the molecular mechanisms through which melittin exerts neuroprotective effects, with a focus on its ability to modulate neuroinflammation, apoptosis, and neurogenesis. Research indicates that melittin can downregulate pro-apoptotic pathways by inhibiting calpain-mediated activation of apoptosis-inducing factor and Bax, thereby reducing neuronal cell death. Additionally, melittin exerts its neuroprotective effects through the inhibition of neuroinflammatory processes, specifically by downregulating key inflammatory pathways such as NF-κB and MAPK. This modulation leads to decreased production of proinflammatory cytokines and prostaglandins, which are implicated in the pathogenesis of neurodegenerative disorders. Beyond its anti-inflammatory actions, melittin promotes neurogenesis, potentially through the modulation of the BDNF/Trk-B/CREB signaling pathway, which plays a crucial role in neuronal survival and plasticity. These properties suggest that melittin not only provides symptomatic relief but could also address the root causes of neuronal degeneration, presenting a promising avenue for the development of new treatments for neurodegenerative diseases. Further research is required to validate its efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Pankaj Kadyan
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
3
|
Tanase DM, Valasciuc E, Gosav EM, Floria M, Buliga-Finis ON, Ouatu A, Cucu AI, Botoc T, Costea CF. Enhancing Retinal Resilience: The Neuroprotective Promise of BDNF in Diabetic Retinopathy. Life (Basel) 2025; 15:263. [PMID: 40003672 PMCID: PMC11856995 DOI: 10.3390/life15020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Diabetic retinopathy (DR), a leading cause of vision impairment worldwide, is characterized by progressive damage to the retina due to prolonged hyperglycemia. Despite advances in treatment, current interventions largely target late-stage vascular complications, leaving underlying neurodegenerative processes insufficiently addressed. This article explores the crucial role in neuronal survival, axonal growth, and synaptic plasticity and the neuroprotective potential of Brain-Derived Neurotrophic Factor (BDNF) as a therapeutic strategy for enhancing retinal resilience in DR. Furthermore, it discusses innovative delivery methods for BDNF, such as gene therapy and nanocarriers, which may overcome the challenges of achieving sustained and targeted therapeutic levels in the retina, focusing on early intervention to preserve retinal function and prevent vision loss.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Oana Nicoleta Buliga-Finis
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.V.); (E.M.G.); (O.N.B.-F.); (A.O.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Andrei Ionut Cucu
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University, 720229 Suceava, Romania;
- Department of Neurosurgery, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Tina Botoc
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.B.); (C.F.C.)
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.B.); (C.F.C.)
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| |
Collapse
|
4
|
Oliveira ACDR, Figueiredo CS, Raony Í, Von-Held-Ventura JS, Granja MG, Mázala-de-Oliveira T, Pedrosa-Soares VH, dos Santos AA, Giestal-de-Araujo E. Ouabain Counteracts Retinal Ganglion Cell Death Through Modulation of BDNF and IL-1 Signaling Pathways. Brain Sci 2025; 15:123. [PMID: 40002456 PMCID: PMC11853102 DOI: 10.3390/brainsci15020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Ouabain is a steroid hormone that binds to the sodium pump (Na+, K+-ATPase) at physiological (nanomolar) concentrations, activating different signaling pathways. This interaction has been shown to prevent the axotomy-induced death of retinal ganglion cells (RGCs), although the underlying mechanisms remain unclear. Objective: In this study, we investigated potential mechanisms by which ouabain promotes RGC survival using primary cultures of rat neural retina. Results: Our findings indicate that ouabain regulates brain-derived neurotrophic factor (BDNF) signaling in retinal cells via matrix metalloproteinase-9-mediated processing of proBDNF to mature BDNF (mBDNF) and by increasing the phosphorylation of the mBDNF receptor, tropomyosin-related receptor kinase B. Ouabain also enhances the maturation of interleukin (IL)-1β through the increased activation of caspase-1, which mediates the processing of proIL-1β into IL-1β, and transiently upregulates both IL-1 receptor and IL-1 receptor antagonist (IL-1Ra). Treatment using either IL-1β or IL-1Ra alone is sufficient to enhance RGC survival similarly to that achieved with ouabain. Finally, we further show that ouabain prevents RGC death through a complex signaling mechanism shared by BDNF and IL-1β, which includes the activation of the Src and protein kinase C pathways. Conclusions: Collectively, these results suggest that ouabain stimulates the maturation and signaling of both BDNF and IL-1β, which act as key mediators of RGC survival.
Collapse
Affiliation(s)
- Amanda Candida da Rocha Oliveira
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niteroi 24020-141, Brazil; (A.C.d.R.O.); (C.S.F.); (J.S.V.-H.-V.); (T.M.-d.-O.); (V.H.P.-S.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil;
| | - Camila Saggioro Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niteroi 24020-141, Brazil; (A.C.d.R.O.); (C.S.F.); (J.S.V.-H.-V.); (T.M.-d.-O.); (V.H.P.-S.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil;
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Juliana Salles Von-Held-Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niteroi 24020-141, Brazil; (A.C.d.R.O.); (C.S.F.); (J.S.V.-H.-V.); (T.M.-d.-O.); (V.H.P.-S.)
| | - Marcelo Gomes Granja
- Research, Innovation, and Surveillance Center for COVID-19 and Health Emergencies, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil;
| | - Thalita Mázala-de-Oliveira
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niteroi 24020-141, Brazil; (A.C.d.R.O.); (C.S.F.); (J.S.V.-H.-V.); (T.M.-d.-O.); (V.H.P.-S.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil;
| | - Vinícius Henrique Pedrosa-Soares
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niteroi 24020-141, Brazil; (A.C.d.R.O.); (C.S.F.); (J.S.V.-H.-V.); (T.M.-d.-O.); (V.H.P.-S.)
| | - Aline Araujo dos Santos
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil;
- Department of Physiology and Pharmacology, Biomedical Institute, Federal Fluminense University, Niteroi 24210-130, Brazil
| | - Elizabeth Giestal-de-Araujo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niteroi 24020-141, Brazil; (A.C.d.R.O.); (C.S.F.); (J.S.V.-H.-V.); (T.M.-d.-O.); (V.H.P.-S.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil;
| |
Collapse
|
5
|
Zolotareva K, Dotsenko PA, Podkolodnyy N, Ivanov R, Makarova AL, Chadaeva I, Bogomolov A, Demenkov PS, Ivanisenko V, Oshchepkov D, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of the TATA-Binding Protein for the Promoters of Human Genes Associated with Primary Open-Angle Glaucoma. Int J Mol Sci 2024; 25:12802. [PMID: 39684516 DOI: 10.3390/ijms252312802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Primary open-angle glaucoma (POAG) is the most common form of glaucoma. This condition leads to optic nerve degeneration and eventually to blindness. Tobacco smoking, alcohol consumption, fast-food diets, obesity, heavy weight lifting, high-intensity physical exercises, and many other bad habits are lifestyle-related risk factors for POAG. By contrast, moderate-intensity aerobic exercise and the Mediterranean diet can alleviate POAG. In this work, we for the first time estimated the phylostratigraphic age indices (PAIs) of all 153 POAG-related human genes in the NCBI Gene Database. This allowed us to separate them into two groups: POAG-related genes that appeared before and after the phylum Chordata, that is, ophthalmologically speaking, before and after the camera-type eye evolved. Next, in the POAG-related genes' promoters, we in silico predicted all 3835 candidate SNP markers that significantly change the TATA-binding protein (TBP) affinity for these promoters and, through this molecular mechanism, the expression levels of these genes. Finally, we verified our results against five independent web services-PANTHER, DAVID, STRING, MetaScape, and GeneMANIA-as well as the ClinVar database. It was concluded that POAG is likely to be a symptom of the human self-domestication syndrome, a downside of being civilized.
Collapse
Affiliation(s)
- Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Polina A Dotsenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, SB RAS, Novosibirsk 630090, Russia
| | - Roman Ivanov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Aelita-Luiza Makarova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Pavel S Demenkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Vladimir Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Li KR, Huan MJ, Yao J, Li JJ, Cao Y, Wang S, Naik MT, Fang Y, Marshall J, Lan CG, Cao C. Syn3, a newly developed cyclic peptide and BDNF signaling enhancer, ameliorates retinal ganglion cell degeneration in diabetic retinopathy. Protein Cell 2024; 15:858-865. [PMID: 38743493 PMCID: PMC11528515 DOI: 10.1093/procel/pwae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Ke-ran Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Meng-Jia Huan
- Department of Ophthalmology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jia-jun Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yuan Cao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Suyu Wang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Mandar T Naik
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912,United States
| | - Yuan Fang
- Department of Ophthalmology & Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - John Marshall
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912,United States
| | - Chang-gong Lan
- Department of Joint Surgery and Geriatric Orthopedics, Affiliated Hospital of YouJiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, China
| | - Cong Cao
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institution of Neuroscience, Soochow University, Suzhou 215031, China
| |
Collapse
|
7
|
Giuffrida E, Platania CBM, Lazzara F, Conti F, Marcantonio N, Drago F, Bucolo C. The Identification of New Pharmacological Targets for the Treatment of Glaucoma: A Network Pharmacology Approach. Pharmaceuticals (Basel) 2024; 17:1333. [PMID: 39458974 PMCID: PMC11509888 DOI: 10.3390/ph17101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Glaucoma is a progressive optic neuropathy characterized by the neurodegeneration and death of retinal ganglion cells (RGCs), leading to blindness. Current glaucoma interventions reduce intraocular pressure but do not address retinal neurodegeneration. In this effort, to identify new pharmacological targets for glaucoma management, we employed a network pharmacology approach. Methods: We first retrieved transcriptomic data from GEO, an NCBI database, and carried out GEO2R (an interactive web tool aimed at comparing two or more groups of samples in a GEO dataset). The GEO2R statistical analysis aimed at identifying the top differentially expressed genes (DEGs) and used these as input of STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) app within Cytoscape software, which builds networks of proteins starting from input DEGs. Analyses of centrality metrics using Cytoscape were carried out to identify nodes (genes or proteins) involved in network stability. We also employed the web-server software MIRNET 2.0 to build miRNA-target interaction networks for a re-analysis of the GSE105269 dataset, which reports analyses of microRNA expressions. Results: The pharmacological targets, identified in silico through analyses of the centrality metrics carried out with Cytoscape, were rescored based on correlations with entries in the PubMed and clinicaltrials.gov databases. When there was no match (82 out of 135 identified central nodes, in 8 analyzed networks), targets were considered "potential innovative" targets for the treatment of glaucoma, after further validation studies. Conclusions: Several druggable targets, such as GPCRs (e.g., 5-hydroxytryptamine 5A (5-HT5A) and adenosine A2B receptors) and enzymes (e.g., lactate dehydrogenase A or monoamine oxidase B), were found to be rescored as "potential innovative" pharmacological targets for glaucoma treatment.
Collapse
Affiliation(s)
- Erika Giuffrida
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Nicoletta Marcantonio
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| |
Collapse
|
8
|
Abbasi M, Gupta V, Chitranshi N, Moustardas P, Ranjbaran R, Graham SL. Molecular Mechanisms of Glaucoma Pathogenesis with Implications to Caveolin Adaptor Protein and Caveolin-Shp2 Axis. Aging Dis 2024; 15:2051-2068. [PMID: 37962455 PMCID: PMC11346403 DOI: 10.14336/ad.2023.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Glaucoma is a common retinal disorder characterized by progressive optic nerve damage, resulting in visual impairment and potential blindness. Elevated intraocular pressure (IOP) is a major risk factor, but some patients still experience disease progression despite IOP-lowering treatments. Genome-wide association studies have linked variations in the Caveolin1/2 (CAV-1/2) gene loci to glaucoma risk. Cav-1, a key protein in caveolae membrane invaginations, is involved in signaling pathways and its absence impairs retinal function. Recent research suggests that Cav-1 is implicated in modulating the BDNF/TrkB signaling pathway in retinal ganglion cells, which plays a critical role in retinal ganglion cell (RGC) health and protection against apoptosis. Understanding the interplay between these proteins could shed light on glaucoma pathogenesis and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Petros Moustardas
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Stuart L. Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| |
Collapse
|
9
|
Wang LH, Huang CH, Lin IC. Advances in Neuroprotection in Glaucoma: Pharmacological Strategies and Emerging Technologies. Pharmaceuticals (Basel) 2024; 17:1261. [PMID: 39458902 PMCID: PMC11510571 DOI: 10.3390/ph17101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Glaucoma is a major global health concern and the leading cause of irreversible blindness worldwide, characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons. This review focuses on the need for neuroprotective strategies in glaucoma management, addressing the limitations of current treatments that primarily target intraocular pressure (IOP) reduction. Despite effective IOP management, many patients continue to experience RGC degeneration, leading to irreversible blindness. This review provides an overview of both pharmacological interventions and emerging technologies aimed at directly protecting RGCs and the optic nerve, independent of IOP reduction. Pharmacological agents such as brimonidine, neurotrophic factors, memantine, Ginkgo biloba extract, citicoline, nicotinamide, insulin, and resveratrol show promise in preclinical and early clinical studies for their neuroprotective properties. Emerging technologies, including stem cell therapy, gene therapy, mitochondrial-targeted therapies, and nanotechnologies, offer innovative approaches for neuroprotection and regeneration of damaged RGCs. While these interventions hold significant potential, further research and clinical trials are necessary to confirm their efficacy and establish their role in clinical practice. This review highlights the multifaceted nature of neuroprotection in glaucoma, aiming to guide future research and clinical practice toward more effective management of glaucoma-induced neurodegeneration.
Collapse
Affiliation(s)
- Li-Hsin Wang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Chun-Hao Huang
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
10
|
Pei K, Georgi M, Hill D, Lam CFJ, Wei W, Cordeiro MF. Review: Neuroprotective Nanocarriers in Glaucoma. Pharmaceuticals (Basel) 2024; 17:1190. [PMID: 39338350 PMCID: PMC11435059 DOI: 10.3390/ph17091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma stands as a primary cause of irreversible blindness globally, characterized by the progressive dysfunction and loss of retinal ganglion cells (RGCs). While current treatments primarily focus on controlling intraocular pressure (IOP), many patients continue to experience vision loss. Therefore, the research focus has shifted to therapeutic targets aimed at preventing or delaying RGC death and optic nerve degeneration to slow or halt disease progression. Traditional ocular drug administration, such as eye drops or oral medications, face significant challenges due to the eye's unique structural and physiological barriers, which limit effective drug delivery. Invasive methods like intravitreal injections can cause side effects such as bleeding, inflammation, and infection, making non-invasive delivery methods with high bioavailability very desirable. Nanotechnology presents a promising approach to addressing these limitations in glaucoma treatment. This review summarizes current approaches involving neuroprotective drugs combined with nanocarriers, and their impact for future use.
Collapse
Affiliation(s)
- Kun Pei
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Maria Georgi
- St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
| | - Daniel Hill
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Wei Wei
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
| | - Maria Francesca Cordeiro
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
- Western Eye Hospital, London NW1 5QH, UK
| |
Collapse
|
11
|
Aragona M, Mhalhel K, Pansera L, Montalbano G, Guerrera MC, Levanti M, Laurà R, Abbate F, Vega JA, Germanà A. Localization of Piezo 1 and Piezo 2 in Lateral Line System and Inner Ear of Zebrafish ( Danio rerio). Int J Mol Sci 2024; 25:9204. [PMID: 39273152 PMCID: PMC11395407 DOI: 10.3390/ijms25179204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Piezo proteins have been identified as mechanosensitive ion channels involved in mechanotransduction. Several ion channel dysfunctions may be associated with diseases (including deafness and pain); thus, studying them is critical to understand their role in mechanosensitive disorders and to establish new therapeutic strategies. The current study investigated for the first time the expression patterns of Piezo proteins in zebrafish octavolateralis mechanosensory organs. Piezo 1 and 2 were immunoreactive in the sensory epithelia of the lateral line system and the inner ear. Piezo 1 (28.7 ± 1.55 cells) and Piezo 2 (28.8 ± 3.31 cells) immunopositive neuromast cells were identified based on their ultrastructural features, and their overlapping immunoreactivity to the s100p specific marker (28.6 ± 1.62 cells), as sensory cells. These findings are in favor of Piezo proteins' potential role in sensory cell activation, while their expression on mantle cells reflects their implication in the maintenance and regeneration of the neuromast during cell turnover. In the inner ear, Piezo proteins' colocalization with BDNF introduces their potential implication in neuronal plasticity and regenerative events, typical of zebrafish mechanosensory epithelia. Assessing these proteins in zebrafish could open up new scenarios for the roles of these important ionic membrane channels, for example in treating impairments of sensory systems.
Collapse
Affiliation(s)
- Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33006 Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
12
|
Mitrović N, Adžić Bukvić M, Zarić Kontić M, Dragić M, Petrović S, Paunović M, Vučić V, Grković I. Flaxseed Oil Alleviates Trimethyltin-Induced Cell Injury and Inhibits the Pro-Inflammatory Activation of Astrocytes in the Hippocampus of Female Rats. Cells 2024; 13:1184. [PMID: 39056766 PMCID: PMC11274492 DOI: 10.3390/cells13141184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Exposure to the neurotoxin trimethyltin (TMT) selectively induces hippocampal neuronal injury and astrocyte activation accompanied with resultant neuroinflammation, which causes severe behavioral, cognitive, and memory impairment. A large body of evidence suggests that flaxseed oil (FSO), as one of the richest sources of essential omega-3 fatty acids, i.e., α-linolenic acids (ALA), displays neuroprotective properties. Here, we report the preventive effects of dietary FSO treatment in a rat model of TMT intoxication. The administration of FSO (1 mL/kg, orally) before and over the course of TMT intoxication (a single dose, 8 mg/kg, i.p.) reduced hippocampal cell death, prevented the activation of astrocytes, and inhibited their polarization toward a pro-inflammatory/neurotoxic phenotype. The underlying protective mechanism was delineated through the selective upregulation of BDNF and PI3K/Akt and the suppression of ERK activation in the hippocampus. Pretreatment with FSO reduced cell death and efficiently suppressed the expression of inflammatory molecules. These beneficial effects were accompanied by an increased intrahippocampal content of n-3 fatty acids. In vitro, ALA pretreatment prevented the TMT-induced polarization of cultured astrocytes towards the pro-inflammatory spectrum. Together, these findings support the beneficial neuroprotective properties of FSO/ALA against TMT-induced neurodegeneration and accompanied inflammation and hint at a promising preventive use of FSO in hippocampal degeneration and dysfunction.
Collapse
Affiliation(s)
- Nataša Mitrović
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.K.); (I.G.)
| | - Marija Adžić Bukvić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.A.B.); (M.D.)
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Marina Zarić Kontić
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.K.); (I.G.)
| | - Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.A.B.); (M.D.)
| | - Snježana Petrović
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (M.P.); (V.V.)
| | - Marija Paunović
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (M.P.); (V.V.)
| | - Vesna Vučić
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (M.P.); (V.V.)
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.K.); (I.G.)
| |
Collapse
|
13
|
Himori N, Uchida K, Ninomiya T, Nagai M, Sato K, Tsuda S, Omodaka K, Nakazawa T. The relationship between equol production status and normal tension glaucoma. Int Ophthalmol 2024; 44:287. [PMID: 38937293 PMCID: PMC11211100 DOI: 10.1007/s10792-024-03225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE Equol is metabolized by intestinal bacteria from soy isoflavones and is chemically similar to estrogen. Dietary habits, such as consumption of soy products, influence equol production. A relationship between glaucoma and estrogen has been identified; here, we investigated the relationship between equol production status and glaucoma in Japan. METHODS We recruited 68 normal-tension glaucoma (NTG) patients (male to female ratio 26:42, average age 63.0 ± 7.6 years) and 31 controls (male to female ratio 13:18, average age 66.0 ± 6.3 years) from our hospital. All women included were postmenopausal. Urinary equol concentration was quantified with the ELISA method. MD was calculated based on the Humphrey visual field. The association between MD and equol was analyzed with Spearman's rank correlation coefficient. The Mann-Whitney U test was used to compare the equol-producing (> 1 μM) and non-producing (< 1 μM) subjects. We also investigated the association between equol and glaucoma with a logistic regression analysis. RESULTS There was a significant association between equol and MD (r = 0.36, P < 0.01) in the NTG patients. Glaucoma, represented by MD, was significantly milder in the equol-producing subjects than the non-equol producing subjects (P = 0.03). A multivariate analysis revealed the independent contributions of equol, cpRNFLT, and IOP to MD (P = 0.03, P = 0.04, and P < 0.01, respectively). CONCLUSION Our results suggest that equol, acting through estrogen receptor-mediated neuroprotective effects, might be involved in suppressing the progression of NTG. This result also adds to evidence that glaucoma may be influenced by lifestyle.
Collapse
Affiliation(s)
- Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 980-8574, Japan
- Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Keiko Uchida
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Takahiro Ninomiya
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | | | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 980-8574, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 980-8574, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
14
|
Reddy SK, Devi V, Seetharaman ATM, Shailaja S, Bhat KMR, Gangaraju R, Upadhya D. Cell and molecular targeted therapies for diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1416668. [PMID: 38948520 PMCID: PMC11211264 DOI: 10.3389/fendo.2024.1416668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Diabetic retinopathy (DR) stands as a prevalent complication in the eye resulting from diabetes mellitus, predominantly associated with high blood sugar levels and hypertension as individuals age. DR is a severe microvascular complication of both type I and type II diabetes mellitus and the leading cause of vision impairment. The critical approach to combatting and halting the advancement of DR lies in effectively managing blood glucose and blood pressure levels in diabetic patients; however, this is seldom achieved. Both human and animal studies have revealed the intricate nature of this condition involving various cell types and molecules. Aside from photocoagulation, the sole therapy targeting VEGF molecules in the retina to prevent abnormal blood vessel growth is intravitreal anti-VEGF therapy. However, a substantial portion of cases, approximately 30-40%, do not respond to this treatment. This review explores distinctive pathophysiological phenomena of DR and identifiable cell types and molecules that could be targeted to mitigate the chronic changes occurring in the retina due to diabetes mellitus. Addressing the significant research gap in this domain is imperative to broaden the treatment options available for managing DR effectively.
Collapse
Affiliation(s)
- Shivakumar K. Reddy
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Amritha T. M. Seetharaman
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - S. Shailaja
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Kumar M. R. Bhat
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
15
|
Zhao N, Hao XN, Huang JM, Song ZM, Tao Y. Crosstalk Between Microglia and Müller Glia in the Age-Related Macular Degeneration: Role and Therapeutic Value of Neuroinflammation. Aging Dis 2024; 15:1132-1154. [PMID: 37728589 PMCID: PMC11081163 DOI: 10.14336/ad.2023.0823-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive neurodegeneration disease that causes photoreceptor demise and vision impairments. In AMD pathogenesis, the primary death of retinal neurons always leads to the activation of resident microglia. The migration of activated microglia to the ongoing retinal lesion and their morphological transformation from branching to ameboid-like are recognized as hallmarks of AMD pathogenesis. Activated microglia send signals to Müller cells and promote them to react correspondingly to damaging stimulus. Müller cells are a type of neuroglia cells that maintain the normal function of retinal neurons, modulating innate inflammatory responses, and stabilize retinal structure. Activated Müller cells can accelerate the progression of AMD by damaging neurons and blood vessels. Therefore, the crosstalk between microglia and Müller cells plays a homeostatic role in maintaining the retinal environment, and this interaction is complicatedly modulated. In particular, the mechanism of mutual regulation between the two glia populations is complex under pathological conditions. This paper reviews recent findings on the crosstalk between microglia and Müller glia during AMD pathology process, with special emphasis on its therapeutic potentials.
Collapse
Affiliation(s)
- Na Zhao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiao-Na Hao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jie-Min Huang
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Zong-Ming Song
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ye Tao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
16
|
Bou Ghanem GO, Wareham LK, Calkins DJ. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res 2024; 100:101261. [PMID: 38527623 DOI: 10.1016/j.preteyeres.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The disease causes vision loss due to neurodegeneration of the retinal ganglion cell (RGC) projection to the brain through the optic nerve. Glaucoma is associated with sensitivity to intraocular pressure (IOP). Thus, mainstay treatments seek to manage IOP, though many patients continue to lose vision. To address neurodegeneration directly, numerous preclinical studies seek to develop protective or reparative therapies that act independently of IOP. These include growth factors, compounds targeting metabolism, anti-inflammatory and antioxidant agents, and neuromodulators. Despite success in experimental models, many of these approaches fail to translate into clinical benefits. Several factors contribute to this challenge. Firstly, the anatomic structure of the optic nerve head differs between rodents, nonhuman primates, and humans. Additionally, animal models do not replicate the complex glaucoma pathophysiology in humans. Therefore, to enhance the success of translating these findings, we propose two approaches. First, thorough evaluation of experimental targets in multiple animal models, including nonhuman primates, should precede clinical trials. Second, we advocate for combination therapy, which involves using multiple agents simultaneously, especially in the early and potentially reversible stages of the disease. These strategies aim to increase the chances of successful neuroprotective treatment for glaucoma.
Collapse
Affiliation(s)
- Ghazi O Bou Ghanem
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
17
|
Yildiz F, Sahinoglu-Keskek N, Yilmaz IT, Candan İA, Korkmaz OT. Investigation of the Neuroprotective Effect of Riluzole on Matrix Metalloproteinases in an Experimental Model of Glaucoma. J Curr Ophthalmol 2024; 36:136-144. [PMID: 40012807 PMCID: PMC11856119 DOI: 10.4103/joco.joco_290_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 02/28/2025] Open
Abstract
Purpose To investigate the neuroprotective effect of riluzole through matrix metalloproteinase-2 (MMP-2) and MMP-9 in rats, in an experimental glaucoma model. Methods A total of 28 Wistar albino rats, 3-4 months old, weighing 250-300 g, were divided into four groups; Group I (control), Group II (glaucoma), Group III (glaucoma + corn oil + dimethyl sulfoxide (DMSO), and Group IV (glaucoma + corn oil + DMSO + riluzole). A glaucoma model was created by episcleral vein cauterization in the left eyes of Group II, III, and IV subjects. After the formation of the model, daily intraperitoneal riluzole (5 mg/kg) administration was started. At the end of 7 weeks, retinal tissues were taken and some parts of them were stained with hematoxylin and eosin for histopathological examinations. In the other part, MMP-2 and MMP-9 expressions were determined using real-time quantitative PCR and immunohistochemical techniques. Results As a result, a statistically significant increase in intraocular pressures (IOP) was found in Groups II, III, and IV when compared with the control eyes after 7 weeks (P < 0.001). There was a decrease in IOP in the riluzole group compared to the glaucoma group. Expression levels in both genes decreased slightly with riluzole administration. In the histopathological evaluation of the groups, it was observed that there were no significant differences between the findings of degeneration in ganglion cells, hemorrhage, and differentiation in layers. Conclusions MMP-2 and MMP-9 exhibited decreased expression levels in both Group III (glaucoma + corn oil + DMSO) and Group IV (glaucoma + corn oil + DMSO + 5 mg/kg riluzole) compared to the glaucoma groups in Group II. Given that both Group III and Group IV received injections of corn oil + DMSO, this conclusion was drawn.
Collapse
Affiliation(s)
- Fatma Yildiz
- Department of Medical Laboratory Techniques, Health Services Vocational School, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | - Nedime Sahinoglu-Keskek
- Department of Ophthalmology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | - Işıl Tan Yilmaz
- Department of Anesthesia, Ataturk Health Services Vocational School, Dicle University, Diyarbakır, Turkey
| | - İbrahim Aydin Candan
- Department of Histology and Embryology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | - Orhan Tansel Korkmaz
- Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
18
|
Bugara K, Pacwa A, Smedowski A. Molecular pathways in experimental glaucoma models. Front Neurosci 2024; 18:1363170. [PMID: 38562304 PMCID: PMC10982327 DOI: 10.3389/fnins.2024.1363170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Glaucoma is a complex and progressive disease that primarily affects the optic nerve axons, leading to irreversible vision loss. Although the exact molecular mechanisms underlying glaucoma pathogenesis are not fully understood, it is believed that except increased intraocular pressure, a combination of genetic and environmental factors play a role in the development of the disease. Animal models have been widely used in the study of glaucoma, allowing researchers to better understand the underlying mechanisms of the disease and test potential treatments. Several molecular pathways have been implicated in the pathogenesis of glaucoma, including oxidative stress, inflammation, and excitotoxic-induced neurodegeneration. This review summarizes the most important knowledge about molecular mechanisms involved in the glaucoma development. Although much research has been done to better understand the molecular mechanisms underlying this disease, there is still much to be learned to develop effective treatments and prevent vision loss in those affected by glaucoma.
Collapse
Affiliation(s)
- Klaudia Bugara
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Anna Pacwa
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| | - Adrian Smedowski
- GlaucoTech Co., Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
19
|
Sulak R, Liu X, Smedowski A. The concept of gene therapy for glaucoma: the dream that has not come true yet. Neural Regen Res 2024; 19:92-99. [PMID: 37488850 PMCID: PMC10479832 DOI: 10.4103/1673-5374.375319] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 07/26/2023] Open
Abstract
Gene therapies, despite of being a relatively new therapeutic approach, have a potential to become an important alternative to current treatment strategies in glaucoma. Since glaucoma is not considered a single gene disease, the identified goals of gene therapy would be rather to provide neuroprotection of retinal ganglion cells, especially, in intraocular-pressure-independent manner. The most commonly reported type of vector for gene delivery in glaucoma studies is adeno-associated virus serotype 2 that has a high tropism to retinal ganglion cells, resulting in long-term expression and low immunogenic profile. The gene therapy studies recruit inducible and genetic animal models of optic neuropathy, like DBA/2J mice model of high-tension glaucoma and the optic nerve crush-model. Reported gene therapy-based neuroprotection of retinal ganglion cells is targeting specific genes translating to growth factors (i.e., brain derived neurotrophic factor, and its receptor TrkB), regulation of apoptosis and neurodegeneration (i.e., Bcl-xl, Xiap, FAS system, nicotinamide mononucleotide adenylyl transferase 2, Digit3 and Sarm1), immunomodulation (i.e., Crry, C3 complement), modulation of neuroinflammation (i.e., erythropoietin), reduction of excitotoxicity (i.e., CamKIIα) and transcription regulation (i.e., Max, Nrf2). On the other hand, some of gene therapy studies focus on lowering intraocular pressure, by impacting genes involved in both, decreasing aqueous humor production (i.e., aquaporin 1), and increasing outflow facility (i.e., COX2, prostaglandin F2α receptor, RhoA/RhoA kinase signaling pathway, MMP1, Myocilin). The goal of this review is to summarize the current state-of-art and the direction of development of gene therapy strategies for glaucomatous neuropathy.
Collapse
Affiliation(s)
- Robert Sulak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Adrian Smedowski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| |
Collapse
|
20
|
Feng KM, Tsung TH, Chen YH, Lu DW. The Role of Retinal Ganglion Cell Structure and Function in Glaucoma. Cells 2023; 12:2797. [PMID: 38132117 PMCID: PMC10741833 DOI: 10.3390/cells12242797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Glaucoma, a leading cause of irreversible blindness globally, primarily affects retinal ganglion cells (RGCs). This review dives into the anatomy of RGC subtypes, covering the different underlying theoretical mechanisms that lead to RGC susceptibility in glaucoma, including mechanical, vascular, excitotoxicity, and neurotrophic factor deficiency, as well as oxidative stress and inflammation. Furthermore, we examined numerous imaging methods and functional assessments to gain insight into RGC health. Finally, we investigated the current possible neuroprotective targets for RGCs that could help with future glaucoma research and management.
Collapse
Affiliation(s)
| | | | | | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (K.M.F.); (T.-H.T.); (Y.-H.C.)
| |
Collapse
|
21
|
Shpak AA, Rider FK, Druzhkova TA, Zhanina MY, Popova SB, Guekht AB, Gulyaeva NV. Reduced Levels of Lacrimal Glial Cell Line-Derived Neurotrophic Factor (GDNF) in Patients with Focal Epilepsy and Focal Epilepsy with Comorbid Depression: A Biomarker Candidate. Int J Mol Sci 2023; 24:16818. [PMID: 38069144 PMCID: PMC10705972 DOI: 10.3390/ijms242316818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Our previous studies showed that in patients with brain diseases, neurotrophic factors in lacrimal fluid (LF) may change more prominently than in blood serum (BS). Since glial cell line-derived neurotrophic factor (GDNF) is involved in the control of neuronal networks in an epileptic brain, we aimed to assess the GDNF levels in LF and BS as well as the BDNF and the hypothalamic-pituitary-adrenocortical and inflammation indices in BS of patients with focal epilepsy (FE) and epilepsy and comorbid depression (FE + MDD) and to compare them with those of patients with major depressive disorder (MDD) and healthy controls (HC). GDNF levels in BS were similar in patients and HC and higher in FE taking valproates. GDNF levels in LF were significantly lower in all patient groups compared to controls, and independent of drugs used. GDNF concentrations in LF and BS positively correlated in HC, but not in patient groups. BDNF level was lower in BS of patients compared with HC and higher in FE + MDD taking valproates. A reduction in the GDNF level in LF might be an important biomarker of FE. Logistic regression models demonstrated that the probability of FE can be evaluated using GDNF in LF and BDNF in BS; that of MDD using GDNF in LF and cortisol and TNF-α in BS; and that of epilepsy with MDD using GDNF in LF and TNF-α and BDNF in BS.
Collapse
Affiliation(s)
- Alexander A. Shpak
- The S. Fyodorov Eye Microsurgery Federal State Institution, 127486 Moscow, Russia;
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, 115419 Moscow, Russia; (F.K.R.); (T.A.D.); (M.Y.Z.); (S.B.P.); (A.B.G.)
| | - Flora K. Rider
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, 115419 Moscow, Russia; (F.K.R.); (T.A.D.); (M.Y.Z.); (S.B.P.); (A.B.G.)
| | - Tatiana A. Druzhkova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, 115419 Moscow, Russia; (F.K.R.); (T.A.D.); (M.Y.Z.); (S.B.P.); (A.B.G.)
| | - Marina Y. Zhanina
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, 115419 Moscow, Russia; (F.K.R.); (T.A.D.); (M.Y.Z.); (S.B.P.); (A.B.G.)
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia
| | - Sofya B. Popova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, 115419 Moscow, Russia; (F.K.R.); (T.A.D.); (M.Y.Z.); (S.B.P.); (A.B.G.)
| | - Alla B. Guekht
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, 115419 Moscow, Russia; (F.K.R.); (T.A.D.); (M.Y.Z.); (S.B.P.); (A.B.G.)
| | - Natalia V. Gulyaeva
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, 115419 Moscow, Russia; (F.K.R.); (T.A.D.); (M.Y.Z.); (S.B.P.); (A.B.G.)
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia
| |
Collapse
|
22
|
Amato R, Canovai A, Melecchi A, Maci S, Quintela F, Fonseca BA, Cammalleri M, Dal Monte M. Efficacy of a Spearmint (Mentha spicata L.) Extract as Nutritional Support in a Rat Model of Hypertensive Glaucoma. Transl Vis Sci Technol 2023; 12:6. [PMID: 37917085 PMCID: PMC10627303 DOI: 10.1167/tvst.12.11.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023] Open
Abstract
Purpose Glaucoma is an eye-brain axis disorder characterized by loss of retinal ganglion cells (RGCs). Although the role of intraocular pressure (IOP) elevation in glaucoma has been established, the reduction of oxidative stress and inflammation has emerged as a promising target for neuronal tissue-supporting glaucoma management. Therefore, we evaluated the effect of a proprietary spearmint extract (SPE) on RGC density, activity, and neuronal health markers in a rat model of hypertensive glaucoma. Methods Animals were divided in four groups: untreated healthy control and three glaucomatous groups receiving orally administered vehicle, SPE-low dose, or SPE-high dose for 28 days. Ocular hypertension was induced through intracameral injection of methylcellulose at day 15. At day 29, rats underwent electroretinogram (ERG) recordings, and retinas were analyzed for RGC density and markers of neural trophism, oxidative stress, and inflammation. Results SPE exerted dose-dependent response benefits on all markers except for IOP elevation. SPE significantly improved RGC-related ERG responses, cell density, neurotrophins, oxidative stress, and inflammation markers. Also, in SPE-high rats, most of the parameters were not statistically different from those of healthy controls. Conclusions SPE, a plant-based, polyphenolic extract, could be an effective nutritional support for neuronal tissues. Translational Relevance These results suggest that SPE not only may be a complementary approach in support to hypotensive treatments for the management of glaucoma but may also serve as nutritional support in other ocular conditions where antioxidant, anti-inflammatory, and neuroprotective mechanism are often disrupted.
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | - Samanta Maci
- Kemin Human Nutrition and Health, a Division of Kemin Foods L.C., Lisbon, Portugal
| | - Filipa Quintela
- Kemin Human Nutrition and Health, a Division of Kemin Foods L.C., Lisbon, Portugal
| | | | - Maurizio Cammalleri
- Department of Biology, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health,” University of Pisa, Pisa, Italy
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health,” University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Zhang QQ, Qu Y. Brain-derived neurotrophic factor in degenerative retinal diseases: Update and novel perspective. J Neurosci Res 2023; 101:1624-1632. [PMID: 37334646 DOI: 10.1002/jnr.25226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
Dysfunction and death of neuronal cells are cardinal features of degenerative retinal diseases that are known to arise as the disease progresses. Increasingly evidence suggests that abnormal expression of brain-derived neurotrophic factor (BDNF) may serve as an obligatory relay of the dysfunction and death of neuronal cells in degenerative retinal diseases. Although disorder of BDNF, whether depletion or augmentation, has been connected with neuronal apoptosis and neuroinflammation, the exact mechanisms underlying the effect of impaired BDNF expression on degenerative retinal diseases remain unclear. Here, we present an overview of how BDNF is linked to pathological mechanism of retinal degenerative diseases, summarize BDNF-based treatment strategies, and discuss possible research perspectives in the future.
Collapse
Affiliation(s)
- Qing-Qing Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Qu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
24
|
Carrera I, Corzo L, Martínez-Iglesias O, Naidoo V, Cacabelos R. Neuroprotective Effect of Nosustrophine in a 3xTg Mouse Model of Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1306. [PMID: 37765114 PMCID: PMC10535028 DOI: 10.3390/ph16091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegeneration, characterized by the progressive deterioration of neurons and glial cells, is a feature of Alzheimer's disease (AD). The present study aims to demonstrate that the onset and early progression of neurodegenerative processes in transgenic mice models of AD can be delayed by a cocktail of neurotrophic factors and derived peptides named Nosustrophine, a nootropic supplement made by a peptide complex extracted from the young porcine brain, ensuring neuroprotection and improving neuro-functional recovery. Experimental 3xTg-APP/Bin1/COPS5 transgenic mice models of AD were treated with Nosustrophine at two different early ages, and their neuropathological hallmark and behavior response were analyzed. Results showed that Nosustrophine increased the activity of the immune system and reduced pathological changes in the hippocampus and cortex by halting the development of amyloid plaques, mainly seen in mice of 3-4 months of age, indicating that its effect is more preventive than therapeutic. Taken together, the results indicate the potent neuroprotective activity of Nosustrophine and its stimulating effects on neuronal plasticity. This study shows for the first time an effective therapy using nootropic supplements against degenerative diseases, although further investigation is needed to understand their molecular pathways.
Collapse
Affiliation(s)
- Iván Carrera
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain; (L.C.); (O.M.-I.); (V.N.); (R.C.)
| | | | | | | | | |
Collapse
|
25
|
Chen Y, Yang X, Mao J. The Neuroprotective Effect of Activation of Sigma-1 Receptor on Neural Injury by Optic Nerve Crush. Invest Ophthalmol Vis Sci 2023; 64:9. [PMID: 37669061 PMCID: PMC10484044 DOI: 10.1167/iovs.64.12.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023] Open
Abstract
Purpose This study aimed to explore the neuroprotective effects of sigma-1 receptor (S1R) on optic nerve crush (ONC) mice by upregulating its expression through intravitreal injection of adeno-associated virus (AAV). Methods The animals were divided into four groups. Mice that underwent ONC were administered an intravitreal injection with blank vector (ONC group), with AAV targeting downregulation of S1R (S1R-sh group), or with AAV targeting overexpression of S1R (S1R-AAV group). Mice in the control group underwent intravitreal injection with blank vector. The thickness of each layer of the retina was measured through optical coherence tomography, and the apoptotic rate of retinal neurons was determined using the TUNEL assay. The expression levels of brain-derived neurotrophic factor (BDNF) and S1R were quantified through western blot. Electroretinogram (ERG) was performed to evaluate the visual function. Results The thickness of the total retina (P = 0.001), ganglion cell layer (P = 0.017), and inner nuclear layer (P = 0.002) in S1R-AAV group was significantly thicker than that of the ONC group. The number of retinal apoptotic cells in the S1R-AAV group was 23% lower than that in the ONC group (P = 0.002). ERG results showed that, compared to the ONC group, the amplitudes of the a- and b-waves were higher in the S1R-AAV group (a-wave, P < 0.001; b-wave, P = 0.007). Western blot showed that the expression of BDNF in the S1R-AAV group was higher than that in the ONC group (P < 0.001). Conclusions Activation of S1R in the retina through intravitreal injection of AAV can effectively maintain the retina structure, promote neuronal cell survival, and protect visual function.
Collapse
Affiliation(s)
- Yao Chen
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Chang Sha, China
| | - Xueli Yang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Chang Sha, China
| | - Junfeng Mao
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Chang Sha, China
| |
Collapse
|
26
|
Pan F, Hu D, Sun LJ, Bai Q, Wang YS, Hou X. Valproate reduces retinal ganglion cell apoptosis in rats after optic nerve crush. Neural Regen Res 2023; 18:1607-1612. [PMID: 36571369 PMCID: PMC10075129 DOI: 10.4103/1673-5374.357913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The retinal ganglion cells of the optic nerve have a limited capacity for self-repair after injury. Valproate is a histone deacetylase inhibitor and multitarget drug, which has been demonstrated to protect retinal neurons. In this study, we established rat models of optic nerve-crush injury and injected valproate into the vitreous cavity immediately after modeling. We evaluated changes in the ultrastructure morphology of the endoplasmic reticulum of retinal ganglion cells over time via transmission electron microscope. Immunohistochemistry and western blot assay revealed that valproate upregulated the expression of the endoplasmic reticulum stress marker glucose-regulated protein 78 and downregulated the expression of transcription factor C/EBP homologous protein, phosphorylated eukaryotic translation initiation factor 2α, and caspase-12 in the endoplasmic reticulum of retinal ganglion cells. These findings suggest that valproate reduces apoptosis of retinal ganglion cells in the rat after optic nerve-crush injury by attenuating phosphorylated eukaryotic translation initiation factor 2α-C/EBP homologous protein signaling and caspase-12 activation during endoplasmic reticulum stress. These findings represent a newly discovered mechanism that regulates how valproate protects neurons.
Collapse
Affiliation(s)
- Feng Pan
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Dan Hu
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Li-Juan Sun
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Qian Bai
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu-Sheng Wang
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xu Hou
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
27
|
Ahluwalia K, Martinez-Camarillo JC, Thomas BB, Naik A, Gonzalez-Calle A, Pollalis D, Lebkowski J, Lee SY, Mitra D, Louie SG, Humayun MS. Polarized RPE Secretome Preserves Photoreceptors in Retinal Dystrophic RCS Rats. Cells 2023; 12:1689. [PMID: 37443724 PMCID: PMC10340490 DOI: 10.3390/cells12131689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Retinal degenerative diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa, lack effective therapies. Conventional monotherapeutic approaches fail to target the multiple affected pathways in retinal degeneration. However, the retinal pigment epithelium (RPE) secretes several neurotrophic factors addressing diverse cellular pathways, potentially preserving photoreceptors. This study explored human embryonic stem cell-derived, polarized RPE soluble factors (PRPE-SF) as a combination treatment for retinal degeneration. PRPE-SF promoted retinal progenitor cell survival, reduced oxidative stress in ARPE-19 cells, and demonstrated critical antioxidant and anti-inflammatory effects for preventing retinal degeneration in the Royal College of Surgeons (RCS) rat model. Importantly, PRPE-SF treatment preserved retinal structure and scotopic b-wave amplitudes, suggesting therapeutic potential for delaying retinal degeneration. PRPE-SF is uniquely produced using biomimetic membranes for RPE polarization and maturation, promoting a protective RPE secretome phenotype. Additionally, PRPE-SF is produced without animal serum to avoid immunogenicity in future clinical development. Lastly, PRPE-SF is a combination of neurotrophic factors, potentially ameliorating multiple dysfunctions in retinal degenerations. In conclusion, PRPE-SF offers a promising therapeutic candidate for retinal degenerative diseases, advancing the development of effective therapeutic strategies for these debilitating conditions.
Collapse
Affiliation(s)
- Kabir Ahluwalia
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
| | - Juan-Carlos Martinez-Camarillo
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Biju B. Thomas
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aditya Naik
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
| | - Alejandra Gonzalez-Calle
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dimitrios Pollalis
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jane Lebkowski
- Regenerative Patch Technologies LLC, Menlo Park, CA 94028, USA;
| | - Sun Young Lee
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Debbie Mitra
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
| | - Stan G. Louie
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
| | - Mark S. Humayun
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
28
|
Patel C, Pande S, Sagathia V, Ranch K, Beladiya J, Boddu SHS, Jacob S, Al-Tabakha MM, Hassan N, Shahwan M. Nanocarriers for the Delivery of Neuroprotective Agents in the Treatment of Ocular Neurodegenerative Diseases. Pharmaceutics 2023; 15:837. [PMID: 36986699 PMCID: PMC10052766 DOI: 10.3390/pharmaceutics15030837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Retinal neurodegeneration is considered an early event in the pathogenesis of several ocular diseases, such as diabetic retinopathy, age-related macular degeneration, and glaucoma. At present, there is no definitive treatment to prevent the progression or reversal of vision loss caused by photoreceptor degeneration and the death of retinal ganglion cells. Neuroprotective approaches are being developed to increase the life expectancy of neurons by maintaining their shape/function and thus prevent the loss of vision and blindness. A successful neuroprotective approach could prolong patients' vision functioning and quality of life. Conventional pharmaceutical technologies have been investigated for delivering ocular medications; however, the distinctive structural characteristics of the eye and the physiological ocular barriers restrict the efficient delivery of drugs. Recent developments in bio-adhesive in situ gelling systems and nanotechnology-based targeted/sustained drug delivery systems are receiving a lot of attention. This review summarizes the putative mechanism, pharmacokinetics, and mode of administration of neuroprotective drugs used to treat ocular disorders. Additionally, this review focuses on cutting-edge nanocarriers that demonstrated promising results in treating ocular neurodegenerative diseases.
Collapse
Affiliation(s)
- Chirag Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Sonal Pande
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Vrunda Sagathia
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Ketan Ranch
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Jayesh Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
| | - Moawia M. Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Nageeb Hassan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
29
|
Nishijima E, Honda S, Kitamura Y, Namekata K, Kimura A, Guo X, Azuchi Y, Harada C, Murakami A, Matsuda A, Nakano T, Parada LF, Harada T. Vision protection and robust axon regeneration in glaucoma models by membrane-associated Trk receptors. Mol Ther 2023; 31:810-824. [PMID: 36463402 PMCID: PMC10014229 DOI: 10.1016/j.ymthe.2022.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Activation of neurotrophic factor signaling is a promising therapy for neurodegeneration. However, the transient nature of ligand-dependent activation limits its effectiveness. In this study, we solved this problem by inventing a system that forces membrane localization of the intracellular domain of tropomyosin receptor kinase B (iTrkB), which results in constitutive activation without ligands. Our system overcomes the small size limitation of the genome packaging in adeno-associated virus (AAV) and allows high expression of the transgene. Using AAV-mediated gene therapy in the eyes, we demonstrate that iTrkB expression enhances neuroprotection in mouse models of glaucoma and stimulates robust axon regeneration after optic nerve injury. In addition, iTrkB expression in the retina was also effective in an optic tract transection model, in which the injury site is near the superior colliculus. Regenerating axons successfully formed pathways to their brain targets, resulting in partial recovery of visual behavior. Our system may also be applicable to other trophic factor signaling pathways and lead to a significant advance in the field of gene therapy for neurotrauma and neurodegenerative disorders, including glaucoma.
Collapse
Affiliation(s)
- Euido Nishijima
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan; Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Sari Honda
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan; Department of Ophthalmology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuta Kitamura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan; Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Yuriko Azuchi
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akira Matsuda
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Luis F Parada
- Brain Tumor Center and Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
30
|
Li L, Yu K, Mo Z, Yang K, Chen F, Yang J. In Vitro Neurotrophic Properties and Structural Characterization of a New Polysaccharide LTC-1 from Pyrola corbieri Levl (Luticao). Molecules 2023; 28:1544. [PMID: 36838533 PMCID: PMC9964326 DOI: 10.3390/molecules28041544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Pyrola corbieri Levl has been used to strengthen bones and nourish the kidney (the kidney governs the bone and is beneficial to the brain) by the local Miao people in China. However, the functional components and neurotrophic activity have not been reported. A new acidic homogeneous heteropolysaccharide named LTC-1 was obtained and characterized by periodate oxidation, Smith degradation, partial acid hydrolysis, GC-MS spectrometry, methylation analysis, and Fourier transform infrared spectroscopy, and its molecular weight was 3239 Da. The content of mannuronic acid (Man A) in LTC-1 was 46%, and the neutral sugar was composed of L-rhamnose (L-Rha), L-arabinose (L-Ara), D-xylose (D-Xyl), D-mannose (D-Man), D-glucose (D-Glc) and D-galactose (D-Gal) with a molar ratio of 1.00:3.63:0.86:1.30:6.97:1.30. The main chain of LTC-1 was composed of Glc, Gal, Man, Man A and the branched chain Ara, Glc, Gal. The terminal residues were composed of Glc and Gal. The main chain and branched chains were linked by (1→5)-linked-Ara, (1→3)-linked-Glc, (1→4)-linked-Glc, (1→6)-linked-Glc, (1→3)-linked-Gal, (1→6)-linked-Gal, (1→3, 6)-linked-Man and ManA. Meanwhile, neurotrophic activity was evaluated through PC12 and primary hippocampal neuronal cell models. LTC-1 exhibited neurotrophic activity in a concentration-dependent manner, which significantly induced the differentiation of PC12 cells, promoted the neurite outgrowth of PC12 cells, enhanced the formation of the web architecture of dendrites, and increased the density of dendritic spines in hippocampal neurons and the expression of PSD-95. These results displayed significant neurotrophic factor-like activity of LTC-1, which suggests that LTC-1 is a potential treatment option for neurodegenerative diseases.
Collapse
Affiliation(s)
- Liangqun Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Kangkang Yu
- School of Life Science, Shanghai University, Shanghai 200444, China
| | | | - Keling Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Fuxue Chen
- School of Life Science, Shanghai University, Shanghai 200444, China
| | - Juan Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| |
Collapse
|
31
|
Basavarajappa D, Gupta V, Wall RV, Gupta V, Chitranshi N, Mirshahvaladi SSO, Palanivel V, You Y, Mirzaei M, Klistorner A, Graham SL. S1PR1 signaling attenuates apoptosis of retinal ganglion cells via modulation of cJun/Bim cascade and Bad phosphorylation in a mouse model of glaucoma. FASEB J 2023; 37:e22710. [PMID: 36520045 DOI: 10.1096/fj.202201346r] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/09/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and apoptotic retinal ganglion cell (RGC) death, and is the leading cause of irreversible blindness worldwide. Among the sphingosine 1-phosphate receptors (S1PRs) family, S1PR1 is a highly expressed subtype in the central nervous system and has gained rapid attention as an important mediator of pathophysiological processes in the brain and the retina. Our recent study showed that mice treated orally with siponimod drug exerted neuroprotection via modulation of neuronal S1PR1 in experimental glaucoma. This study identified the molecular signaling pathway modulated by S1PR1 activation with siponimod treatment in RGCs in glaucomatous injury. We investigated the critical neuroprotective signaling pathway in vivo using mice deleted for S1PR1 in RGCs. Our results showed marked upregulation of the apoptotic pathway was associated with decreased Akt and Erk1/2 activation levels in the retina in glaucoma conditions. Activation of S1PR1 with siponimod treatment significantly increased neuroprotective Akt and Erk1/2 activation and attenuated the apoptotic signaling via suppression of c-Jun/Bim cascade and by increasing Bad phosphorylation. Conversely, deletion of S1PR1 in RGCs significantly increased the apoptotic cells in the ganglion cell layer in glaucoma and diminished the neuroprotective effects of siponimod treatment on Akt/Erk1/2 activation, c-Jun/Bim cascade, and Bad phosphorylation. Our data demonstrated that activation of S1PR1 in RGCs induces crucial neuroprotective signaling that suppresses the proapoptotic c-Jun/Bim cascade and increases antiapoptotic Bad phosphorylation. Our findings suggest that S1PR1 is a potential therapeutic target for neuroprotection of RGCs in glaucoma.
Collapse
Affiliation(s)
- Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Roshana Vander Wall
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Seyed Shahab Oddin Mirshahvaladi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Viswanthram Palanivel
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Yuyi You
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Alexander Klistorner
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde Sydney, New South Wales, Australia
| |
Collapse
|
32
|
Axonal Regeneration: Underlying Molecular Mechanisms and Potential Therapeutic Targets. Biomedicines 2022; 10:biomedicines10123186. [PMID: 36551942 PMCID: PMC9775075 DOI: 10.3390/biomedicines10123186] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Axons in the peripheral nervous system have the ability to repair themselves after damage, whereas axons in the central nervous system are unable to do so. A common and important characteristic of damage to the spinal cord, brain, and peripheral nerves is the disruption of axonal regrowth. Interestingly, intrinsic growth factors play a significant role in the axonal regeneration of injured nerves. Various factors such as proteomic profile, microtubule stability, ribosomal location, and signalling pathways mark a line between the central and peripheral axons' capacity for self-renewal. Unfortunately, glial scar development, myelin-associated inhibitor molecules, lack of neurotrophic factors, and inflammatory reactions are among the factors that restrict axonal regeneration. Molecular pathways such as cAMP, MAPK, JAK/STAT, ATF3/CREB, BMP/SMAD, AKT/mTORC1/p70S6K, PI3K/AKT, GSK-3β/CLASP, BDNF/Trk, Ras/ERK, integrin/FAK, RhoA/ROCK/LIMK, and POSTN/integrin are activated after nerve injury and are considered significant players in axonal regeneration. In addition to the aforementioned pathways, growth factors, microRNAs, and astrocytes are also commendable participants in regeneration. In this review, we discuss the detailed mechanism of each pathway along with key players that can be potentially valuable targets to help achieve quick axonal healing. We also identify the prospective targets that could help close knowledge gaps in the molecular pathways underlying regeneration and shed light on the creation of more powerful strategies to encourage axonal regeneration after nervous system injury.
Collapse
|
33
|
Kuo CY, Liu CJL. Neuroprotection in Glaucoma: Basic Aspects and Clinical Relevance. J Pers Med 2022; 12:jpm12111884. [PMID: 36579616 PMCID: PMC9697907 DOI: 10.3390/jpm12111884] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Glaucoma is a neurodegenerative disease that affects primarily the retinal ganglion cells (RGCs). Increased intraocular pressure (IOP) is one of the major risk factors for glaucoma. The mainstay of current glaucoma therapy is limited to lowering IOP; however, controlling IOP in certain patients can be futile in slowing disease progression. The understanding of potential biomolecular processes that occur in glaucomatous degeneration allows for the development of glaucoma treatments that modulate the death of RGCs. Neuroprotection is the modification of RGCs and the microenvironment of neurons to promote neuron survival and function. Numerous studies have revealed effective neuroprotection modalities in animal models of glaucoma; nevertheless, clinical translation remains a major challenge. In this review, we select the most clinically relevant treatment strategies, summarize preclinical and clinical data as well as recent therapeutic advances in IOP-independent neuroprotection research, and discuss the feasibility and hurdles of each therapeutic approach based on possible pathogenic mechanisms. We also summarize the potential therapeutic mechanisms of various agents in neuroprotection related to glutamate excitotoxicity.
Collapse
Affiliation(s)
- Che-Yuan Kuo
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Catherine Jui-Ling Liu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: ; Tel.: +886-2-2875-7325
| |
Collapse
|
34
|
Valente S, Ciavarella C, Astolfi G, Bergantin E, Curti N, Buzzi M, Fontana L, Versura P. Impact of Freeze-Drying on Cord Blood (CB), Serum (S), and Platelet-Rich Plasma (CB-PRP) Preparations on Growth Factor Content and In Vitro Cell Wound Healing. Int J Mol Sci 2022; 23:ijms231810701. [PMID: 36142617 PMCID: PMC9503903 DOI: 10.3390/ijms231810701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Blood-based preparations are used in clinical practice for the treatment of several eye disorders. The aim of this study is to analyze the effect of freeze-drying blood-based preparations on the levels of growth factors and wound healing behaviors in an in vitro model. Platelet-rich plasma (PRP) and serum (S) preparations from the same Cord Blood (CB) sample, prepared in both fresh frozen (FF) and freeze-dried (FD) forms (and then reconstituted), were analyzed for EGF and BDNF content (ELISA Quantikine kit). The human MIO-M1 glial cell line (Moorfield/Institute of Ophthalmology, London, UK) was incubated with FF and FD products and evaluated for cell migration with scratch-induced wounding (IncuCyte S3 Essen BioScience), proliferation with cyclin A2 and D1 gene expression, and activation with vimentin and GFAP gene expression. The FF and FD forms showed similar concentrations of EGF and BDNF in both the S and PRP preparations. The wound healing assay showed no significant difference between the FF and FD forms for both S and PRP. Additionally, cell migration, proliferation, and activation did not appear to change in the FD forms compared to the FF ones. Our study showed that reconstituted FD products maintained the growth factor concentrations and biological properties of FF products and could be used as a functional treatment option.
Collapse
Affiliation(s)
- Sabrina Valente
- DIMES, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (S.V.); (C.C.)
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| | - Carmen Ciavarella
- DIMES, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (S.V.); (C.C.)
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| | - Gloria Astolfi
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
- Ophthalmology Unit, DIMES, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| | - Elisa Bergantin
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (E.B.); (M.B.)
| | - Nico Curti
- eDIMES Lab, DIMES, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| | - Marina Buzzi
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (E.B.); (M.B.)
| | - Luigi Fontana
- Ophthalmology Unit, DIMES, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (E.B.); (M.B.)
| | - Piera Versura
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
- Ophthalmology Unit, DIMES, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (E.B.); (M.B.)
- Correspondence:
| |
Collapse
|
35
|
Bales KL, Chacko AS, Nickerson JM, Boatright JH, Pardue MT. Treadmill exercise promotes retinal astrocyte plasticity and protects against retinal degeneration in a mouse model of light-induced retinal degeneration. J Neurosci Res 2022; 100:1695-1706. [PMID: 35582827 PMCID: PMC9746889 DOI: 10.1002/jnr.25063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/15/2022]
Abstract
Exercise is an effective neuroprotective intervention that preserves retinal function and structure in several animal models of retinal degeneration. However, the retinal cell types governing exercise-induced neuroprotection remain elusive. Previously, we found exercise-induced retinal neuroprotection was associated with increased levels of retinal brain-derived neurotrophic factor (BDNF) and required intact signal transduction with its high-affinity receptor, tropomyosin kinase B (TrkB). Brain studies have shown astrocytes express BDNF and TrkB and that decreased BDNF-TrkB signaling in astrocytes contributes to neurodegeneration. Additionally, exercise has been shown to alter astrocyte morphology. Using a light-induced retinal degeneration (LIRD) model, we investigated how exercise influences retinal astrocytes in adult male BALB/c mice. Treadmill exercise in dim control and LIRD groups had increased astrocyte density, GFAP labeling, branching, dendritic endpoints, and arborization. Meanwhile, inactive LIRD animals had significant reductions in all measured parameters. Additionally, exercised groups had increased astrocytic BDNF expression that was visualized using proximity ligase assay. Isolated retinal astrocytes from exercised LIRD groups had significantly increased expression of a specific isoform of TrkB associated with cell survival, TrkB.FL. Conversely, inactive LIRD isolated retinal astrocytes had significantly increased expression of TrkB.T1, which has been implicated in neuronal cell death. Our data indicate exercise not only alters retinal astrocyte morphology but also promotes specific BDNF-TrkB signaling associated with cell survival and protection during retinal degeneration. These findings provide novel insights into the effects of treadmill exercise on retinal astrocyte morphology and cellular expression, highlighting retinal astrocytes as a potential cell type involved in BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Katie L. Bales
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, USA
| | - Alicia S. Chacko
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - John M. Nickerson
- Department of Ophthalmology, Emory University, Atlanta, Georgia, USA
| | - Jeffrey H. Boatright
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, USA
- Department of Ophthalmology, Emory University, Atlanta, Georgia, USA
| | - Machelle T. Pardue
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Ophthalmology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
36
|
Panikker P, Roy S, Ghosh A, Poornachandra B, Ghosh A. Advancing precision medicines for ocular disorders: Diagnostic genomics to tailored therapies. Front Med (Lausanne) 2022; 9:906482. [PMID: 35911417 PMCID: PMC9334564 DOI: 10.3389/fmed.2022.906482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Successful sequencing of the human genome and evolving functional knowledge of gene products has taken genomic medicine to the forefront, soon combining broadly with traditional diagnostics, therapeutics, and prognostics in patients. Recent years have witnessed an extraordinary leap in our understanding of ocular diseases and their respective genetic underpinnings. As we are entering the age of genomic medicine, rapid advances in genome sequencing, gene delivery, genome surgery, and computational genomics enable an ever-increasing capacity to provide a precise and robust diagnosis of diseases and the development of targeted treatment strategies. Inherited retinal diseases are a major source of blindness around the world where a large number of causative genes have been identified, paving the way for personalized diagnostics in the clinic. Developments in functional genetics and gene transfer techniques has also led to the first FDA approval of gene therapy for LCA, a childhood blindness. Many such retinal diseases are the focus of various clinical trials, making clinical diagnoses of retinal diseases, their underlying genetics and the studies of natural history important. Here, we review methodologies for identifying new genes and variants associated with various ocular disorders and the complexities associated with them. Thereafter we discuss briefly, various retinal diseases and the application of genomic technologies in their diagnosis. We also discuss the strategies, challenges, and potential of gene therapy for the treatment of inherited and acquired retinal diseases. Additionally, we discuss the translational aspects of gene therapy, the important vector types and considerations for human trials that may help advance personalized therapeutics in ophthalmology. Retinal disease research has led the application of precision diagnostics and precision therapies; therefore, this review provides a general understanding of the current status of precision medicine in ophthalmology.
Collapse
Affiliation(s)
| | - Shomereeta Roy
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Anuprita Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | | | - Arkasubhra Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
37
|
Mohan N, Chakrabarti A, Nazm N, Mehta R, Edward DP. Newer advances in medical management of glaucoma. Indian J Ophthalmol 2022; 70:1920-1930. [PMID: 35647957 PMCID: PMC9359258 DOI: 10.4103/ijo.ijo_2239_21] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The burden of irreversible vision loss from Glaucoma continues to rise. While the disease pathogenesis is not well understood, intraocular pressure (IOP) is the only modifiable risk factor identified to prevent glaucomatous vision loss. Medical management remains the first-line of treatment in most adult glaucomas and the evolution of medical therapy for glaucoma has followed an exponential curve. This review tracks the rapid development of new medications and drug delivery systems in the recent years. Introduction of Rho kinase inhibitors with an entirely new mechanism of action from that of the currently used anti glaucoma medications has been a significant milestone. Latanoprostene Bunod is a novel, single molecule which provides two active metabolites that work through two different pathways for reducing intra ocular pressure. Bimatoprost implants and travoprost punctum plugs attempt to ease chronic medication use in glaucoma patients. Nanotechnology is an evolving route of drug delivery. Role of cannabinoids in medical management of glaucoma remain equivocal. The relatively short term effect on IOP, the risks of developing tolerance and side effects impacting patients' neurocognitive health greatly outweigh the potential benefit. Research on Latrunculin B, Adenosine receptor agonists, Specific gene silencing and Stem cell therapy are poised to make an impact on glaucoma treatment. While there is some evidence to support the role of Brimonidine in neuroprotection, further research is needed to clarify the role of Memantine and Neurotrophins. Evidence for benefit from dietary supplementation with Alpha lipoic acid, Forskolin , and Ginko Biloba is limited.
Collapse
Affiliation(s)
- Neethu Mohan
- Department of Glaucoma, Aravind Eye Hospital, Chennai, Tamil Nadu, India
| | - Arup Chakrabarti
- Department of Glaucoma, Chakrabarti Eye Care Centre, Trivandrum, Kerala, India
| | - Nazneen Nazm
- Department of Ophthalmology, ESI-PGIMSR, ESIC Medical College and Hospital, Kolkata, West Bengal, India
| | - Rajvi Mehta
- Department of Glaucoma, Duke Eye Centre, Durham, NC, USA
| | - Deepak P Edward
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
38
|
Lambuk L, Mohd Lazaldin MA, Ahmad S, Iezhitsa I, Agarwal R, Uskoković V, Mohamud R. Brain-Derived Neurotrophic Factor-Mediated Neuroprotection in Glaucoma: A Review of Current State of the Art. Front Pharmacol 2022; 13:875662. [PMID: 35668928 PMCID: PMC9163364 DOI: 10.3389/fphar.2022.875662] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells (RGCs) are neurons of the visual system that are responsible for transmitting signals from the retina to the brain via the optic nerve. Glaucoma is an optic neuropathy characterized by apoptotic loss of RGCs and degeneration of optic nerve fibers. Risk factors such as elevated intraocular pressure and vascular dysregulation trigger the injury that culminates in RGC apoptosis. In the event of injury, the survival of RGCs is facilitated by neurotrophic factors (NTFs), the most widely studied of which is brain-derived neurotrophic factor (BDNF). Its production is regulated locally in the retina, but transport of BDNF retrogradely from the brain to retina is also crucial. Not only that the interruption of this retrograde transport has been detected in the early stages of glaucoma, but significantly low levels of BDNF have also been detected in the sera and ocular fluids of glaucoma patients, supporting the notion that neurotrophic deprivation is a likely mechanism of glaucomatous optic neuropathy. Moreover, exogenous NTF including BDNF administration was shown reduce neuronal loss in animal models of various neurodegenerative diseases, indicating the possibility that exogenous BDNF may be a treatment option in glaucoma. Current literature provides an extensive insight not only into the sources, transport, and target sites of BDNF but also the intracellular signaling pathways, other pathways that influence BDNF signaling and a wide range of its functions. In this review, the authors discuss the neuroprotective role of BDNF in promoting the survival of RGCs and its possible application as a therapeutic tool to meet the challenges in glaucoma management. We also highlight the possibility of using BDNF as a biomarker in neurodegenerative disease such as glaucoma. Further we discuss the challenges and future strategies to explore the utility of BDNF in the management of glaucoma.
Collapse
Affiliation(s)
- Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | | | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Igor Iezhitsa
- Department of Pharmacology and Therapeutics, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| | - Renu Agarwal
- Department of Pharmacology and Therapeutics, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, United States
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, United States
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
39
|
Shpak AA, Guekht AB, Druzhkova TA, Troshina AA, Gulyaeva NV. Glial cell line-derived neurotrophic factor (GDNF) in patients with primary open-angle glaucoma and age-related cataract. Mol Vis 2022; 28:39-47. [PMID: 35656168 PMCID: PMC9108012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/13/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE To study glial cell line-derived neurotrophic factor (GDNF) concentrations in aqueous humor (AH), lacrimal fluid (LF), and blood serum (BS) in patients with age-related cataract and primary open-angle glaucoma (POAG). METHODS GDNF was studied in AH, LF, and BS in 47 patients with age-related cataract, and 30 patients with POAG combined with cataract (one eye in each person). AH was sampled during cataract surgery. RESULTS GDNF concentration (pg/ml) in patients with POAG and cataract was lower than in cataract-only patients (p<0.001), both in AH (46.3±31.1 versus 88.9±46.9) and in LF (222±101 versus 344±134). The difference was not significant for the GDNF concentration in BS (194±56 versus 201±45). In the earlier (early and moderate) stages of POAG, compared to later (advanced and severe) stages, GDNF concentration was significantly lower in LF (176±99 versus 258±91; p = 0.027) and in BS (165±42 versus 217±55; p = 0.017), while GDNF concentration in AH showed an insignificant difference (40.0±25.7 versus 51.1±34.7). In patients with POAG, GDNF concentration in LF and BS was inversely correlated with the Humphrey visual field index: Pearson's correlation coefficient r = -0.465 (p = 0.01) for LF and r = -0.399 (p = 0.029) for BS. When compared to the cataract group, patients in the earlier stages of POAG showed significantly lower GDNF concentrations in all studied biologic fluids. CONCLUSIONS Compared to patients with cataract only, GDNF levels are lower in the AH and LF of patients with POAG and cataract, especially at earlier stages of the disease (at these stages, the GDNF level in BS is also lower). At earlier stages of POAG, compared to later stages, GDNF content is lower in LF and BS. These data could serve as a reason for the therapeutic use of GDNF in patients with POAG.
Collapse
Affiliation(s)
- Alexander A. Shpak
- The S. Fyodorov Eye Microsurgery Federal State Institution, Moscow, Russian Federation
| | - Alla B. Guekht
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
| | - Tatiana A. Druzhkova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
| | - Anna A. Troshina
- The S. Fyodorov Eye Microsurgery Federal State Institution, Moscow, Russian Federation
| | - Natalia V. Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
40
|
Boccuni I, Fairless R. Retinal Glutamate Neurotransmission: From Physiology to Pathophysiological Mechanisms of Retinal Ganglion Cell Degeneration. Life (Basel) 2022; 12:638. [PMID: 35629305 PMCID: PMC9147752 DOI: 10.3390/life12050638] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Glutamate neurotransmission and metabolism are finely modulated by the retinal network, where the efficient processing of visual information is shaped by the differential distribution and composition of glutamate receptors and transporters. However, disturbances in glutamate homeostasis can result in glutamate excitotoxicity, a major initiating factor of common neurodegenerative diseases. Within the retina, glutamate excitotoxicity can impair visual transmission by initiating degeneration of neuronal populations, including retinal ganglion cells (RGCs). The vulnerability of RGCs is observed not just as a result of retinal diseases but has also been ascribed to other common neurodegenerative and peripheral diseases. In this review, we describe the vulnerability of RGCs to glutamate excitotoxicity and the contribution of different glutamate receptors and transporters to this. In particular, we focus on the N-methyl-d-aspartate (NMDA) receptor as the major effector of glutamate-induced mechanisms of neurodegeneration, including impairment of calcium homeostasis, changes in gene expression and signalling, and mitochondrial dysfunction, as well as the role of endoplasmic reticular stress. Due to recent developments in the search for modulators of NMDA receptor signalling, novel neuroprotective strategies may be on the horizon.
Collapse
Affiliation(s)
- Isabella Boccuni
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
41
|
Agues-Barbosa T, da Silva Junior FC, Gomes-de-Lima JN, Batistuzzo de Medeiros SR, Luchiari AC. Behavioral genetics of alcohol's effects in three zebrafish (Danio rerio) populations. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110495. [PMID: 34915060 DOI: 10.1016/j.pnpbp.2021.110495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Alcohol abuse is one of the most dangerous and serious problems for patients and society. Interpopulation studies are important in understanding how genetic background contributes to the effects of alcohol. In this study, we applied a chronic alcohol exposure protocol in three zebrafish populations (Danio rerio; both sexes; AB, TU, and outbred fish - OB). We analyzed the behavioral responses and mRNA expression involved in neurotransmitter metabolism - th1, tph1, ache, ada1, gaba1, gad1b, and bdnf. Locomotion patterns were similar between populations (increased speed after acute alcohol and unaltered locomotion after chronic and withdrawal treatments). All populations exhibited increased expression of genes associated with locomotion (th1, gad1b, and gaba1) after acute alcohol exposure. Anxiety-like responses increased in AB and TU fish during withdrawal and decreased in AB fish after acute alcohol exposure. Genes related to anxiety-like behavior (tph1 and ada1) were overexpressed in AB and TU fish after acute and withdrawal treatments, while OB fish exhibited unaltered responses. Bdnf levels decreased during withdrawal in AB and OB fish, while TU showed upregulated levels in both chronic and withdrawal treatments. Our results suggest that zebrafish populations respond differently to alcohol exposure, which may contribute to understanding the mechanisms underlying alcohol use and dependence. Moreover, we found that a more diverse genetic background (OB) was related to higher variability in behavioral and mRNA expression, demonstrating that inbred populations (AB and TU) may be useful tools in identifying alcohol use and abuse mechanisms.
Collapse
Affiliation(s)
- Thais Agues-Barbosa
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | | | | | | | - Ana Carolina Luchiari
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil.
| |
Collapse
|
42
|
Aragona M, Porcino C, Guerrera MC, Montalbano G, Laurà R, Cometa M, Levanti M, Abbate F, Cobo T, Capitelli G, Vega JA, Germanà A. The BDNF/TrkB Neurotrophin System in the Sensory Organs of Zebrafish. Int J Mol Sci 2022; 23:ijms23052621. [PMID: 35269763 PMCID: PMC8910639 DOI: 10.3390/ijms23052621] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) was discovered in the last century, and identified as a member of the neurotrophin family. BDNF shares approximately 50% of its amino acid with other neurotrophins such as NGF, NT-3 and NT-4/5, and its linear amino acid sequences in zebrafish (Danio rerio) and human are 91% identical. BDNF functions can be mediated by two categories of receptors: p75NTR and Trk. Intriguingly, BDNF receptors were highly conserved in the process of evolution, as were the other NTs’ receptors. In this review, we update current knowledge about the distribution and functions of the BDNF-TrkB system in the sensory organs of zebrafish. In fish, particularly in zebrafish, the distribution and functions of BDNF and TrkB in the brain have been widely studied. Both components of the system, associated or segregated, are also present outside the central nervous system, especially in sensory organs including the inner ear, lateral line system, retina, taste buds and olfactory epithelium.
Collapse
Affiliation(s)
- Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Gabriel Capitelli
- Faculty of Medical Sciences, University of Buenos Aires, Viamonte 1053, CABA, Buenos Aires 1056, Argentina;
| | - José A. Vega
- Grupo SINPOS, Universidad de Oviedo, 33003 Oviedo, Spain;
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
- Correspondence:
| |
Collapse
|
43
|
Conti F, Lazzara F, Romano GL, Platania CBM, Drago F, Bucolo C. Caffeine Protects Against Retinal Inflammation. Front Pharmacol 2022; 12:824885. [PMID: 35069225 PMCID: PMC8773454 DOI: 10.3389/fphar.2021.824885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023] Open
Abstract
Caffeine, one of the most consumed central nervous system (CNS) stimulants, is an antagonist of A1 and A2A adenosine receptors. In this study, we investigated the potential protective effects of this methylxanthine in the retinal tissue. We tested caffeine by using in vitro and in vivo paradigms of retinal inflammation. Human retinal pigment epithelial cells (ARPE-19) were exposed to lipopolysaccharide (LPS) with or without caffeine. This latter was able to reduce the inflammatory response in ARPE-19 cells exposed to LPS, attenuating the release of IL-1β, IL-6, and TNF-α and the nuclear translocation of p-NFκB. Additionally, caffeine treatment restored the integrity of the ARPE-19 monolayer assessed by transepithelial electrical resistance (TEER) and the sodium fluorescein permeability test. Finally, the ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to induce retinal inflammation and investigate the effects of caffeine treatment. Mouse eyes were treated topically with caffeine, and a pattern electroretinogram (PERG) was used to assess the retinal ganglion cell (RGC) function; furthermore, we evaluated the levels of IL-6 and BDNF in the retina. Retinal BDNF dropped significantly (p < 0.05) in the I/R group compared to the control group (normal mice); on the contrary, caffeine treatment maintained physiological levels of BDNF in the retina of I/R eyes. Caffeine was also able to reduce IL-6 mRNA levels in the retina of I/R eyes. In conclusion, these findings suggest that caffeine is a good candidate to counteract inflammation in retinal diseases.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| |
Collapse
|
44
|
Markitantova YV, Simirskii VN. The Role of the Purinergic Signaling System in the Control of Histogenesis, Homeostasis, and Pathogenesis of the Vertebrate Retina. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
González Fleitas MF, Dorfman D, Rosenstein RE. A novel viewpoint in glaucoma therapeutics: enriched environment. Neural Regen Res 2021; 17:1431-1439. [PMID: 34916414 PMCID: PMC8771091 DOI: 10.4103/1673-5374.330594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Glaucoma is one of the world's most frequent visual impairment causes and leads to selective damage to retinal ganglion cells and their axons. Despite glaucoma's most accepted risk factor is increased intraocular pressure (IOP), the mechanisms behind the disease have not been fully elucidated. To date, IOP lowering remains the gold standard; however, glaucoma patients may still lose vision regardless of effective IOP management. Therefore, the exclusive IOP control apparently is not enough to stop the disease progression, and developing new resources to protect the retina and optic nerve against glaucoma is a goal of vast clinical importance. Besides pharmacological treatments, environmental conditions have been shown to prevent neurodegeneration in the central nervous system. In this review, we discuss current concepts on key pathogenic mechanisms involved in glaucoma, the effect of enriched environment on these mechanisms in different experimental models, as well as recent evidence supporting the preventive and therapeutic effect of enriched environment exposure against experimental glaucomatous damage. Finally, we postulate that stimulating vision may become a non-invasive and rehabilitative therapy that could be eventually translated to the human disease, preventing glaucoma-induced terrible sequelae resulting in permanent visual disability.
Collapse
Affiliation(s)
- María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| |
Collapse
|
46
|
Mao D, He Z, Xuan W, Deng J, Li W, Fang X, Li L, Zhang F. Effect and mechanism of BDNF/TrkB signaling on vestibular compensation. Bioengineered 2021; 12:11823-11836. [PMID: 34719333 PMCID: PMC8810063 DOI: 10.1080/21655979.2021.1997565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates neuronal plasticity by targeting the tyrosine kinase B receptor (TrkB) receptor, but limited researches concentrate on the role of BDNF/TrkB signaling in vestibular compensation. In this study, rats with unilateral vestibular dysfunction were established by unilateral labyrinthectomy (UL) and infusion with siBDNF or 7, 8-Dihydroxyflavone (7,8-DHF, a TrkB receptor agonist). The behavioral scores of rats with vestibular deficits were determined and the rotarod test was performed after UL. BDNF and TrkB levels after UL were determined by western blot and quantitative reverse transcription PCR (qRT-PCR). 5-bromo-2'-deoxyuridine (BrdU)-positive cells (newly generated cells) and GAD67-positive cells (GABAergic neurons) were identified by immunohistochemistry. Glial fibrillary acidic protein (GFAP) (astrocyte marker)-positive cells were identified and GABA type A receptor (GABAAR) expression was detected by immunofluorescence. We found that after UL, BDNF and TrkB levels were up-regulated with a maximum value at 4 h, and then progressively down-regulated during 4 h ~ 7 d. Blocking BDNF/TrkB signaling inhibited the recovery from vestibular deficits, decreased the numbers of newly generated cells and astrocytes in medial vestibular nucleus (MVN), inferior vestibular nerve (IVN), superior vestibular nerve (SVN) and lateral vestibular nucleus (LVN), and disrupted the balances of GABAergic neurons and GABAAR expressions in the left (lesioned) side and right (intact) side of MVN, whereas activation of BDNF/TrkB signaling caused opposite results. The current study indicated that BDNF/TrkB signaling avails vestibular compensation, depending on the number of newly generated cells and astrocytes, the rebalance of GABAergic neurons, and GABAAR expression in bilateral MVN.
Collapse
Affiliation(s)
- Dehong Mao
- Department of Otolaryngology, Yongchuan Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Zhongmei He
- Department of Otolaryngology, Yongchuan Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Wei Xuan
- Department of Otolaryngology, Yongchuan Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Jiao Deng
- Department of Otolaryngology, Yongchuan Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Weichun Li
- Department of Otolaryngology, Yongchuan Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Xiaoying Fang
- Department of Otolaryngology, Yongchuan Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Linglong Li
- Department of Otolaryngology, Yongchuan Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Feng Zhang
- Department of Otolaryngology, Yongchuan Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| |
Collapse
|
47
|
Geva M, Gershoni-Emek N, Naia L, Ly P, Mota S, Rego AC, Hayden MR, Levin LA. Neuroprotection of retinal ganglion cells by the sigma-1 receptor agonist pridopidine in models of experimental glaucoma. Sci Rep 2021; 11:21975. [PMID: 34753986 PMCID: PMC8578336 DOI: 10.1038/s41598-021-01077-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
Optic neuropathies such as glaucoma are characterized by retinal ganglion cell (RGC) degeneration and death. The sigma-1 receptor (S1R) is an attractive target for treating optic neuropathies as it is highly expressed in RGCs, and its absence causes retinal degeneration. Activation of the S1R exerts neuroprotective effects in models of retinal degeneration. Pridopidine is a highly selective and potent S1R agonist in clinical development. We show that pridopidine exerts neuroprotection of retinal ganglion cells in two different rat models of glaucoma. Pridopidine strongly binds melanin, which is highly expressed in the retina. This feature of pridopidine has implications to its ocular distribution, bioavailability, and effective dose. Mitochondria dysfunction is a key contributor to retinal ganglion cell degeneration. Pridopidine rescues mitochondrial function via activation of the S1R, providing support for the potential mechanism driving its neuroprotective effect in retinal ganglion cells.
Collapse
Affiliation(s)
| | | | - Luana Naia
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Neurobiology, Care Science and Society, Karolinska Institutet, Stockholm, Sweden
| | - Philip Ly
- The Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sandra Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Michael R Hayden
- Prilenia Therapeutics, Herzliya, Israel
- The Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Leonard A Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
- Montreal Neurological Institute, McGill University, Montreal, Canada.
| |
Collapse
|
48
|
Schlecht A, Vallon M, Wagner N, Ergün S, Braunger BM. TGFβ-Neurotrophin Interactions in Heart, Retina, and Brain. Biomolecules 2021; 11:biom11091360. [PMID: 34572573 PMCID: PMC8464756 DOI: 10.3390/biom11091360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic insults to the heart and brain, i.e., myocardial and cerebral infarction, respectively, are amongst the leading causes of death worldwide. While there are therapeutic options to allow reperfusion of ischemic myocardial and brain tissue by reopening obstructed vessels, mitigating primary tissue damage, post-infarction inflammation and tissue remodeling can lead to secondary tissue damage. Similarly, ischemia in retinal tissue is the driving force in the progression of neovascular eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD), which eventually lead to functional blindness, if left untreated. Intriguingly, the easily observable retinal blood vessels can be used as a window to the heart and brain to allow judgement of microvascular damages in diseases such as diabetes or hypertension. The complex neuronal and endocrine interactions between heart, retina and brain have also been appreciated in myocardial infarction, ischemic stroke, and retinal diseases. To describe the intimate relationship between the individual tissues, we use the terms heart-brain and brain-retina axis in this review and focus on the role of transforming growth factor β (TGFβ) and neurotrophins in regulation of these axes under physiologic and pathologic conditions. Moreover, we particularly discuss their roles in inflammation and repair following ischemic/neovascular insults. As there is evidence that TGFβ signaling has the potential to regulate expression of neurotrophins, it is tempting to speculate, and is discussed here, that cross-talk between TGFβ and neurotrophin signaling protects cells from harmful and/or damaging events in the heart, retina, and brain.
Collapse
|
49
|
Cell Ferroptosis: New Mechanism and New Hope for Retinitis Pigmentosa. Cells 2021; 10:cells10082153. [PMID: 34440922 PMCID: PMC8393369 DOI: 10.3390/cells10082153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is a leading cause of inherited retinal degeneration, with more than 60 gene mutations. Despite the genetic heterogenicity, photoreceptor cell damage remains the hallmark of RP pathology. As a result, RP patients usually suffer from reduced night vision, loss of peripheral vision, decreased visual acuity, and impaired color perception. Although photoreceptor cell death is the primary outcome of RP, the underlying mechanisms are not completely elucidated. Ferroptosis is a novel programmed cell death, with characteristic iron overload and lipid peroxidation. Recent studies, using in vitro and in vivo RP models, discovered the involvement of ferroptosis-associated cell death, suggesting a possible new mechanism for RP pathogenesis. In this review, we discuss the association between ferroptosis and photoreceptor cell damage, and its implication in the pathogenesis of RP. We propose that ferroptotic cell death not only opens up a new research area in RP, but may also serve as a novel therapeutic target for RP.
Collapse
|
50
|
Vernazza S, Oddone F, Tirendi S, Bassi AM. Risk Factors for Retinal Ganglion Cell Distress in Glaucoma and Neuroprotective Potential Intervention. Int J Mol Sci 2021; 22:7994. [PMID: 34360760 PMCID: PMC8346985 DOI: 10.3390/ijms22157994] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells (RGCs) are a population of neurons of the central nervous system (CNS) extending with their soma to the inner retina and with their axons to the optic nerve. Glaucoma represents a group of neurodegenerative diseases where the slow progressive death of RGCs results in a permanent loss of vision. To date, although Intra Ocular Pressure (IOP) is considered the main therapeutic target, the precise mechanisms by which RGCs die in glaucoma have not yet been clarified. In fact, Primary Open Angle Glaucoma (POAG), which is the most common glaucoma form, also occurs without elevated IOP. This present review provides a summary of some pathological conditions, i.e., axonal transport blockade, glutamate excitotoxicity and changes in pro-inflammatory cytokines along the RGC projection, all involved in the glaucoma cascade. Moreover, neuro-protective therapeutic approaches, which aim to improve RGC degeneration, have also been taken into consideration.
Collapse
Affiliation(s)
- Stefania Vernazza
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
| | | | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|