1
|
Reuben RC, Torres C. Integrating the milk microbiome signatures in mastitis: milk-omics and functional implications. World J Microbiol Biotechnol 2025; 41:41. [PMID: 39826029 PMCID: PMC11742929 DOI: 10.1007/s11274-024-04242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025]
Abstract
Mammalian milk contains a variety of complex bioactive and nutritional components and microorganisms. These microorganisms have diverse compositions and functional roles that impact host health and disease pathophysiology, especially mastitis. The advent and use of high throughput omics technologies, including metagenomics, metatranscriptomics, metaproteomics, metametabolomics, as well as culturomics in milk microbiome studies suggest strong relationships between host phenotype and milk microbiome signatures in mastitis. While single omics studies have undoubtedly contributed to our current understanding of milk microbiome and mastitis, they often provide limited information, targeting only a single biological viewpoint which is insufficient to provide system-wide information necessary for elucidating the biological footprints and molecular mechanisms driving mastitis and milk microbiome dysbiosis. Therefore, integrating a multi-omics approach in milk microbiome research could generate new knowledge, improve the current understanding of the functional and structural signatures of the milk ecosystem, and provide insights for sustainable mastitis control and microbiome management.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Biology Department, King's College, 133 North River Street, Wilkes-Barre, PA, 18711, USA.
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
2
|
Fu J, Wang Y, Qiao W, Di S, Huang Y, Zhao J, Jing M, Chen L. Research progress on factors affecting the human milk metabolome. Food Res Int 2024; 197:115236. [PMID: 39593319 DOI: 10.1016/j.foodres.2024.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Human milk is the gold standard for infant nutrition and contains macronutrients, micronutrients, and various bioactive substances. The human milk composition and metabolite profiles are complex and dynamic, complicating its specific analysis. Metabolomics, a recently emerging technology, has been used to identify human milk metabolites classes. Applying metabolomics to study the factors affecting human milk metabolites can provide significant insights into the relationship between infant nutrition, health, and development and better meet the nutritional needs of infants during growth. Here, we systematically review the current status of human milk metabolomic research, and related methods, offering an in-depth analysis of the influencing factors and results of human milk metabolomics from a metabolic perspective to provide novel ideas to further advance human milk metabolomics.
Collapse
Affiliation(s)
- Jieyu Fu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yaling Wang
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Shujuan Di
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yibo Huang
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Mengna Jing
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
3
|
Pan S, Yu W, Zhang J, Guo Y, Qiao X, Xu P, Zhai Y. Environmental chemical TCPOBOP exposure alters milk liposomes and offspring growth trajectories in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116061. [PMID: 38340598 DOI: 10.1016/j.ecoenv.2024.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Exposure to environmental endocrine disruptors (EEDs) has become a global health concern, and EEDs are known to be potent inducers of constitutive androstane receptor (CAR). 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP, hereafter abbreviated as TC), a specific ligand for CAR, has been considered as a potential EED. Here, we analyzed the effect of TC exposure to female mice on the histological morphology of their alveoli in the basic unit of lactation. We quantified differences in the milk metabolome of the control and TC-exposed group while assessing the correlations between metabolites and neonatal growth. Mammary histological results showed that TC exposure inhibited alveolar development. Based on the milk metabolomic data, we identified a total of 1505 differential metabolites in both the positive and negative ion mode, which indicated that TC exposure affected milk composition. As expected, the differential metabolites were significantly enriched in the drug metabolism pathway. Further analyses revealed that differential metabolites were significantly enriched in multiple lipid metabolic pathways, such as fatty acid biosynthesis, suggesting that most differential metabolites were concentrated in lipids. Simultaneously, a quantitative analysis showed that TC exposure led to a decrease in the relative abundance of total milk lipids, affecting the proportion of some lipid subclasses. Notably, a portion of lipid metabolites were associated with neonatal growth. Taken together, these findings suggest that TC exposure may affect milk lipidomes, resulting in the inability of mothers to provide adequate nutrients, ultimately affecting the growth and health of their offspring.
Collapse
Affiliation(s)
- Shijia Pan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Wen Yu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jia Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yuan Guo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Xiaoxiao Qiao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Pengfei Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Ashokan M, Rana E, Sneha K, Namith C, Naveen Kumar GS, Azharuddin N, Elango K, Jeyakumar S, Ramesha KP. Metabolomics-a powerful tool in livestock research. Anim Biotechnol 2023; 34:3237-3249. [PMID: 36200897 DOI: 10.1080/10495398.2022.2128814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Advancements in the Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) along with recent developments in omics sciences have resulted in a better understanding of molecular mechanisms and pathways associated with the physio-pathological state of the animal. Metabolomics is a post-genomics tool that deals with small molecular metabolites in a given set of time which provides clear information about the status of an organism. Recently many researchers mainly focus their research on metabolomics studies due to its valuable information in the various fields of livestock management and precision dairying. The main aim of the present review is to provide an insight into the current research output from different sources and application of metabolomics in various areas of livestock including nutri-metabolomics, disease diagnosis advancements, reproductive disorders, pharmaco-metabolomics, genomics studies, and dairy production studies. The present review would be helpful in understanding the metabolomics methodologies and use of livestock metabolomics in various areas in a brief way.
Collapse
Affiliation(s)
- M Ashokan
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
- Animal Genetics and Breeding Division, Hassan Veterinary College, Hassan, India
- Department of Animal Husbandry, Cattle Breeding and Fodder Development, Thiruvarur, India
| | - Ekta Rana
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - Kadimetla Sneha
- Animal Genetics and Breeding Division, Hassan Veterinary College, Hassan, India
| | - C Namith
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - G S Naveen Kumar
- Animal Genetics and Breeding Division, Hassan Veterinary College, Hassan, India
| | - N Azharuddin
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - K Elango
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - S Jeyakumar
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - K P Ramesha
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| |
Collapse
|
5
|
Timlin M, Fitzpatrick E, McCarthy K, Tobin JT, Murphy EG, Pierce KM, Murphy JP, Hennessy D, O'Donovan M, Harbourne N, Brodkorb A, O'Callaghan TF. Impact of varying levels of pasture allowance on the nutritional quality and functionality of milk throughout lactation. J Dairy Sci 2023; 106:6597-6622. [PMID: 37532625 DOI: 10.3168/jds.2022-22921] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/12/2023] [Indexed: 08/04/2023]
Abstract
The objective of this study was to examine the impact of increasing proportions of grazed pasture in the diet on the composition, quality, and functionality of bovine milk across a full lactation. Fifty-four spring-calving cows were randomly assigned to 1 of 3 groups (n = 18), blocked on the basis of mean calving date (February 15, 2020 ± 0.8 d), pre-experimental daily milk yield (24.70 ± 3.70 kg), milk solids yield (2.30 ± 0.27 kg), lactation number (3.10 ± 0.13), and economic breeding index (182 ± 19). Raw milk samples were obtained weekly from each group between March and November 2020. Group 1 (GRS) consumed perennial ryegrass and was supplemented with 5% concentrates (dry matter basis); group 2 was maintained indoors and consumed a total mixed ration (TMR) diet consisting of maize silage, grass silage, and concentrates; and group 3 consumed a partial mixed ration diet (PMR), rotating between perennial ryegrass during the day and indoor TMR feeding at night. Raw milk samples consisted of a pooled morning and evening milking and were analyzed for gross composition, free amino acids, fatty acid composition, heat coagulation time, color, fat globule size, and pH. The TMR milks had a significantly higher total solids, lactose, protein, and whey protein as a proportion of protein content compared with both GRS and PMR milks. The GRS milks demonstrated a significantly lower somatic cell count (SCC), but a significantly higher pH and b*-value than both TMR and PMR milks. The PMR milks exhibited significantly lower total solids and fat content, but also demonstrated significantly higher SCC and total free amino acid content compared with GRS and TMR. Partial least squares discriminant analysis of fatty acid profiles displayed a distinct separation between GRS and TMR samples, while PMR displayed an overlap between both GRS and TMR groupings. Variable importance in projection analysis identified conjugated linoleic acid cis-9,trans-11, C18:2n-6 cis, C18:3n-3, C11:0, and C18:2n-6 trans as the largest contributors to the variation between the diets. Milk fats derived from GRS diets exhibited the highest proportion of unsaturated fats and higher unsaturation, health-promoting, and desaturase indices. The lowest proportions of saturated fats and the lowest atherogenic index were also exhibited by GRS-derived milk fats. This work highlights the positive influence of grass-fed milk for human consumption through its more nutritionally beneficial fatty acid profile, despite the highest milk solid percentages derived from TMR feeding systems. Furthermore, this study demonstrates the proportional response of previously highlighted biomarkers of pasture feeding to the proportion of pasture in the cow's diet.
Collapse
Affiliation(s)
- Mark Timlin
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland P61 C996; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland D04 V1W8; Food for Health Ireland, University College Dublin, Ireland D04 V1W8
| | - Ellen Fitzpatrick
- Teagasc, Environmental Research Centre, Johnstown Castle, Wexford, Ireland Y35 Y521
| | - Kieran McCarthy
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 P302
| | - John T Tobin
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland P61 C996
| | - Eoin G Murphy
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland P61 C996; Food for Health Ireland, University College Dublin, Ireland D04 V1W8
| | - Karina M Pierce
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland D04 V1W8; Food for Health Ireland, University College Dublin, Ireland D04 V1W8
| | - John P Murphy
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 P302
| | - Deirdre Hennessy
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 P302; School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland T23 N73K
| | - Michael O'Donovan
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 P302
| | - Niamh Harbourne
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland D04 V1W8
| | - André Brodkorb
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland P61 C996; Food for Health Ireland, University College Dublin, Ireland D04 V1W8.
| | - Tom F O'Callaghan
- Food for Health Ireland, University College Dublin, Ireland D04 V1W8; School of Food and Nutritional Sciences, University College Cork, Cork, Ireland T12 K8AF
| |
Collapse
|
6
|
Lemas DJ, Du X, Dado-Senn B, Xu K, Dobrowolski A, Magalhães M, Aristizabal-Henao JJ, Young BE, Francois M, Thompson LA, Parker LA, Neu J, Laporta J, Misra BB, Wane I, Samaan S, Garrett TJ. Untargeted Metabolomic Analysis of Lactation-Stage-Matched Human and Bovine Milk Samples at 2 Weeks Postnatal. Nutrients 2023; 15:3768. [PMID: 37686800 PMCID: PMC10490210 DOI: 10.3390/nu15173768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Epidemiological data demonstrate that bovine whole milk is often substituted for human milk during the first 12 months of life and may be associated with adverse infant outcomes. The objective of this study is to interrogate the human and bovine milk metabolome at 2 weeks of life to identify unique metabolites that may impact infant health outcomes. Human milk (n = 10) was collected at 2 weeks postpartum from normal-weight mothers (pre-pregnant BMI < 25 kg/m2) that vaginally delivered term infants and were exclusively breastfeeding their infant for at least 2 months. Similarly, bovine milk (n = 10) was collected 2 weeks postpartum from normal-weight primiparous Holstein dairy cows. Untargeted data were acquired on all milk samples using high-resolution liquid chromatography-high-resolution tandem mass spectrometry (HR LC-MS/MS). MS data pre-processing from feature calling to metabolite annotation was performed using MS-DIAL and MS-FLO. Our results revealed that more than 80% of the milk metabolome is shared between human and bovine milk samples during early lactation. Unbiased analysis of identified metabolites revealed that nearly 80% of milk metabolites may contribute to microbial metabolism and microbe-host interactions. Collectively, these results highlight untargeted metabolomics as a potential strategy to identify unique and shared metabolites in bovine and human milk that may relate to and impact infant health outcomes.
Collapse
Affiliation(s)
- Dominick J. Lemas
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
- Center for Perinatal Outcomes Research, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Xinsong Du
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Bethany Dado-Senn
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Ke Xu
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Amanda Dobrowolski
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Marina Magalhães
- Department of Behavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL 32603, USA;
| | - Juan J. Aristizabal-Henao
- Department of Physiological Science, Center for Environmental and Human Toxicology, College of Veterinary Science, University of Florida, Gainesville, FL 32608, USA;
| | - Bridget E. Young
- Division of Breastfeeding and Lactation Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Magda Francois
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Lindsay A. Thompson
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Leslie A. Parker
- Center for Perinatal Outcomes Research, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Josef Neu
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Jimena Laporta
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | | | - Ismael Wane
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Samih Samaan
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (X.D.); (K.X.); (A.D.); (M.F.); (L.A.T.); (I.W.); (S.S.)
| | - Timothy J. Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| |
Collapse
|
7
|
Su M, Lin X, Xiao Z, She Y, Deng M, Liu G, Sun B, Guo Y, Liu D, Li Y. Genome-Wide Association Study of Lactation Traits in Chinese Holstein Cows in Southern China. Animals (Basel) 2023; 13:2545. [PMID: 37570353 PMCID: PMC10417049 DOI: 10.3390/ani13152545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023] Open
Abstract
Lactation traits are economically important for dairy cows. Southern China has a high-temperature and high-humidity climate, and environmental and genetic interactions greatly impact dairy cattle performance. The aim of this study was to identify novel single-nucleotide polymorphism sites and novel candidate genes associated with lactation traits in Chinese Holstein cows under high-temperature and humidity conditions in southern China. A genome-wide association study was performed for the lactation traits of 392 Chinese Holstein cows, using GGP Bovine 100 K SNP gene chips. Some 23 single nucleotide polymorphic loci significantly associated with lactation traits were screened. Among them, 16 were associated with milk fat rate, 7 with milk protein rate, and 3 with heat stress. A quantitative trait locus that significantly affects milk fat percentage in Chinese Holstein cows was identified within a window of approximately 0.5 Mb in the region of 0.4-0.9 Mb on Bos taurus autosome 14. According to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, ten genes (DGAT1, IDH2, CYP11B1, GFUS, CYC1, GPT, PYCR3, OPLAH, ALDH1A3, and NAPRT) associated with lactation fat percentage, milk yield, antioxidant activity, stress resistance, and inflammation and immune response were identified as key candidates for lactation traits. The results of this study will help in the development of an effective selection and breeding program for Chinese Holstein cows in high-temperature and humidity regions.
Collapse
Affiliation(s)
- Minqiang Su
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Xiaojue Lin
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Zupeng Xiao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Yuanhang She
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
8
|
Baumgartel K, Stevens M, Vijayakumar N, Saint Fleur A, Prescott S, Groer M. The Human Milk Metabolome: A Scoping Literature Review. J Hum Lact 2023; 39:255-277. [PMID: 36924445 DOI: 10.1177/08903344231156449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
BACKGROUND Human milk is a complex source of nutrition and other bioactives that protects infants from disease, holding a lifetime of beneficial effects. The field of metabolomics provides a robust platform through which we can better understand human milk at a level rarely examined. RESEARCH AIM To Identify, describe, synthesize, and critically analyze the literature within the past 5 years related to the human milk metabolome. METHODS We conducted a scoping literature review and quality analysis of the recent science reflecting untargeted metabolomic approaches to examining human milk. We searched six databases using the terms "breast milk," "metabolome," "metabolite," and "human milk," Out of more than 1,069 abstracts, we screened and identified 22 articles that met our inclusion criteria. RESULTS We extracted data related to the study author, geographic location, research design, analyses, platform used, and results. We also extracted data related to human milk research activities, including collection protocol, infant/maternal considerations, and time. Selected studies focused on a variety of phenotypes, including maternal and infant disease. Investigators used varying approaches to evaluate the metabolome, and differing milk collection protocols were observed. CONCLUSION The human milk metabolome is informed by many factors-which may contribute to infant health outcomes-that have resulted in disparate milk metabolomic profiles. Standardized milk collection and storage procedures should be implemented to minimize degradation. Investigators may use our findings to develop research questions that test a targeted metabolomic approach.
Collapse
Affiliation(s)
| | - Monica Stevens
- College of Medicine, University of South Florida, Tampa, FL, USA
| | - Nisha Vijayakumar
- School of Public Health, University of South Florida, Tampa, FL, USA
| | | | | | - Maureen Groer
- College of Nursing, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
9
|
Couvillion SP, Mostoller KE, Williams JE, Pace RM, Stohel IL, Peterson HK, Nicora CD, Nakayasu ES, Webb-Robertson BJM, McGuire MA, McGuire MK, Metz TO. Interrogating the role of the milk microbiome in mastitis in the multi-omics era. Front Microbiol 2023; 14:1105675. [PMID: 36819069 PMCID: PMC9932517 DOI: 10.3389/fmicb.2023.1105675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
There is growing interest in a functional understanding of milk-associated microbiota as there is ample evidence that host-associated microbial communities play an active role in host health and phenotype. Mastitis, characterized by painful inflammation of the mammary gland, is prevalent among lactating humans and agricultural animals and is associated with significant clinical and economic consequences. The etiology of mastitis is complex and polymicrobial and correlative studies have indicated alterations in milk microbial community composition. Recent evidence is beginning to suggest that a causal relationship may exist between the milk microbiota and host phenotype in mastitis. Multi-omic approaches can be leveraged to gain a mechanistic, molecular level understanding of how the milk microbiome might modulate host physiology, thereby informing strategies to prevent and ameliorate mastitis. In this paper, we review existing studies that have utilized omics approaches to investigate the role of the milk microbiome in mastitis. We also summarize the strengths and challenges associated with the different omics techniques including metagenomics, metatranscriptomics, metaproteomics, metabolomics and lipidomics and provide perspective on the integration of multiple omics technologies for a better functional understanding of the milk microbiome.
Collapse
Affiliation(s)
- Sneha P. Couvillion
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States,*Correspondence: Sneha P. Couvillion, ✉
| | - Katie E. Mostoller
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Janet E. Williams
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Ryan M. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Izabel L. Stohel
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Haley K. Peterson
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Carrie D. Nicora
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Ernesto S. Nakayasu
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Bobbie-Jo M. Webb-Robertson
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Mark A. McGuire
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Thomas O. Metz
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States,Thomas O. Metz, ✉
| |
Collapse
|
10
|
Pintus R, Dessì A, Mussap M, Fanos V. Metabolomics can provide new insights into perinatal nutrition. Acta Paediatr 2023; 112:233-241. [PMID: 34487568 PMCID: PMC10078676 DOI: 10.1111/apa.16096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/13/2023]
Abstract
Perinatal nutrition is a key factor related to the Developmental Origin of Health and Disease hypothesis, which states that each and every event that happens during the periconceptional period and pregnancy can affect the health status of an individual. Metabolomics can be a very useful tool for gathering information about the effect of perinatal nutrition on both mothers and newborn infants. This non-systematic review focuses on the main metabolites detected by this technique, with regard to gestational diabetes, intrauterine growth restriction and breast milk. Conclusion. Nutrition, metabolome and microbiome interactions are gaining interest in the scientific community.
Collapse
Affiliation(s)
- Roberta Pintus
- Neonatal Intensive Care Unit, AOU Cagliari Department of Surgery, University of Cagliari, Cagliari, Italy
| | - Angelica Dessì
- Neonatal Intensive Care Unit, AOU Cagliari Department of Surgery, University of Cagliari, Cagliari, Italy
| | - Michele Mussap
- Neonatal Intensive Care Unit, AOU Cagliari Department of Surgery, University of Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, AOU Cagliari Department of Surgery, University of Cagliari, Cagliari, Italy
| |
Collapse
|
11
|
Calvo Barbosa AM, Casallas Cortes S, Pulido N, Parra MY, Rodríguez-López A, Guevara-Morales J, Echeverri-Peña OY. Metabolic impact of infant formulas in young infants. An outlook from the urine metabolome. Heliyon 2022; 8:e10432. [PMID: 36119867 PMCID: PMC9475274 DOI: 10.1016/j.heliyon.2022.e10432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/25/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Although breast milk is the ideal food source for newborns during the first six months of life, a high percentage of children receive infant formulas. There is evidence that specific diet habits may influence individual metabolic profile. Therefore, in newborns, such profile can be influenced by the use of infantile formulas given the composition differences that display compared to human milk. Up to now, there are no reports in the literature that address this issue. Objectives this work aims to compare the metabolic profile of full-term newborns that were feed with either breast milk (n = 32) or infantile formulas (n = 21). Methods: Metabolic profile was established based on urine analysis through gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (H-NMR). Results our results evidenced a more gluconeogenic profile in breast-fed infants characterized by elevation of Kreb's cycle intermediaries like fumaric, succinic and ketoglutaric acids compared to infants receiving infant formula. In addition, infant formula fed infants presented urinary excretion of metabolites derived from specific compounds present in this type of diet that were not observed in breast-fed infants, for instance D-glucitol, and 4-deoxytetronic. Moreover, in infant formula fed infants there was excretion of basal levels of metabolites of clinical relevance like 3-hydroxy-3-methyl-glutaric, 2-methyl-3-keto-valeric and 3,4-dihydroxybutyric. Conclusion These results show the importance of understanding the metabolic impact of diet in newborn population in normal and pathological contexts.
Collapse
Affiliation(s)
- Angie Marcela Calvo Barbosa
- Instituto de Errores Innatos Del Metabolismo. Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 # 43-82. Ed. 54, Bogotá, Colombia
| | - Stefany Casallas Cortes
- Instituto de Errores Innatos Del Metabolismo. Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 # 43-82. Ed. 54, Bogotá, Colombia
| | - Ninna Pulido
- Instituto de Errores Innatos Del Metabolismo. Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 # 43-82. Ed. 54, Bogotá, Colombia
- Grupo de Ciencias de Laboratorio Clínico. Hospital Universitaria San Ignacio, Bogotá, Colombia
| | - Martha Yaneth Parra
- Instituto de Errores Innatos Del Metabolismo. Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 # 43-82. Ed. 54, Bogotá, Colombia
| | - Alexander Rodríguez-López
- Instituto de Errores Innatos Del Metabolismo. Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 # 43-82. Ed. 54, Bogotá, Colombia
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Departamento de Química. Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 # 43-82. Ed. 54, Bogotá, Colombia
| | - Johana Guevara-Morales
- Instituto de Errores Innatos Del Metabolismo. Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 # 43-82. Ed. 54, Bogotá, Colombia
| | - Olga Yaneth Echeverri-Peña
- Instituto de Errores Innatos Del Metabolismo. Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 # 43-82. Ed. 54, Bogotá, Colombia
| |
Collapse
|
12
|
Metabolomics-based comparative study of breast colostrum and mature breast milk. Food Chem 2022; 384:132491. [DOI: 10.1016/j.foodchem.2022.132491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022]
|
13
|
Melnik BC. Lifetime Impact of Cow's Milk on Overactivation of mTORC1: From Fetal to Childhood Overgrowth, Acne, Diabetes, Cancers, and Neurodegeneration. Biomolecules 2021; 11:404. [PMID: 33803410 PMCID: PMC8000710 DOI: 10.3390/biom11030404] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
The consumption of cow's milk is a part of the basic nutritional habits of Western industrialized countries. Recent epidemiological studies associate the intake of cow's milk with an increased risk of diseases, which are associated with overactivated mechanistic target of rapamycin complex 1 (mTORC1) signaling. This review presents current epidemiological and translational evidence linking milk consumption to the regulation of mTORC1, the master-switch for eukaryotic cell growth. Epidemiological studies confirm a correlation between cow's milk consumption and birthweight, body mass index, onset of menarche, linear growth during childhood, acne vulgaris, type 2 diabetes mellitus, prostate cancer, breast cancer, hepatocellular carcinoma, diffuse large B-cell lymphoma, neurodegenerative diseases, and all-cause mortality. Thus, long-term persistent consumption of cow's milk increases the risk of mTORC1-driven diseases of civilization. Milk is a highly conserved, lactation genome-controlled signaling system that functions as a maternal-neonatal relay for optimized species-specific activation of mTORC1, the nexus for regulation of eukaryotic cell growth, and control of autophagy. A deeper understanding of milk´s impact on mTORC1 signaling is of critical importance for the prevention of common diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany
| |
Collapse
|
14
|
The Metabolomic Analysis of Human Milk Offers Unique Insights into Potential Child Health Benefits. Curr Nutr Rep 2021; 10:12-29. [PMID: 33555534 DOI: 10.1007/s13668-020-00345-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE OF REVIEW Human milk is the gold standard of infant nutrition. The milk changes throughout lactation and is tailored for the infant providing the nutrients, minerals and vitamins necessary for supporting healthy infant growth. Human milk also contains low molecular weight compounds (metabolites) possibly eliciting important bioactivity. Metabolomics is the study of these metabolites. The purpose of this review was to examine recent metabolomics studies and cohort studies on human milk to assess the impact of human milk metabolomic analyses combined with investigations of infant growth and development. RECENT FINDINGS The metabolite profile of human milk varies among other factors according to lactation stage, gestation at birth, and maternal genes, diet and disease state. Few studies investigate how these variations impact infant growth and development. Several time-related factors affecting human milk metabolome are potentially ubiquitous among mothers, although maternal-related factors are heavily confounded, which complicates studies of metabolite abundancies and variabilities and further possibilities of observing cause and effect in infants.
Collapse
|
15
|
Wang A, Koleva P, du Toit E, Geddes DT, Munblit D, Prescott SL, Eggesbø M, Johnson CC, Wegienka G, Shimojo N, Campbell D, Kozyrskyj AL, Slupsky CM. The Milk Metabolome of Non-secretor and Lewis Negative Mothers. Front Nutr 2021; 7:576966. [PMID: 33634158 PMCID: PMC7901958 DOI: 10.3389/fnut.2020.576966] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: The functional role of milk for the developing neonate is an area of great interest, and a significant amount of research has been done. However, a lot of work remains to fully understand the complexities of milk, and the variations imposed through genetics. It has previously been shown that both secretor (Se) and Lewis blood type (Le) status impacts the human milk oligosaccharide (HMO) content of human milk. While some studies have compared the non-HMO milk metabolome of Se+ and Se- women, none have reported on the non-HMO milk metabolome of Se- and Le- mothers. Method and Results: To determine the differences in the non-HMO milk metabolome between Se-Le- mothers and other HMO phenotypes (Se+Le+, Se+Le-, and Se-Le+), 10 milk samples from 10 lactating mothers were analyzed using nuclear magnetic resonance (NMR) spectroscopy. Se or Le HMO phenotypes were assigned based on the presence and absence of 6 HMOs generated by the Se and Le genes. After classification, 58 milk metabolites were compared among the HMO phenotypes. Principal component analysis (PCA) identified clear separation between Se-Le- milk and the other milks. Fold change analysis demonstrated that the Se-Le- milk had major differences in free fatty acids, free amino acids, and metabolites related to energy metabolism. Conclusion: The results of this brief research report suggest that the milk metabolome of mothers with the Se-Le- phenotype differs in its non-HMO metabolite composition from mothers with other HMO phenotypes.
Collapse
Affiliation(s)
- Aidong Wang
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
| | - Petya Koleva
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Elloise du Toit
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Donna T. Geddes
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| | - Daniel Munblit
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Susan L. Prescott
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- The ORIGINS Project, Telethon Kids Institute, Perth Childrens Hospital, University of Western Australia, Crawley, WA, Australia
| | - Merete Eggesbø
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Christine C. Johnson
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, United States
| | - Ganesa Wegienka
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, United States
| | - Naoki Shimojo
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Dianne Campbell
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Department of Allergy and Immunology, Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - Anita L. Kozyrskyj
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Carolyn M. Slupsky
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
LC/MS-based metabolomics to evaluate the milk composition of human, horse, goat and cow from China. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03654-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Neonatal Mouse Gut Metabolites Influence Cryptosporidium parvum Infection in Intestinal Epithelial Cells. mBio 2020; 11:mBio.02582-20. [PMID: 33323514 PMCID: PMC7773987 DOI: 10.1128/mbio.02582-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cryptosporidium sp. occupies a unique intracellular niche that exposes the parasite to both host cell contents and the intestinal lumen, including metabolites from the diet and produced by the microbiota. Both dietary and microbial products change over the course of early development and could contribute to the changes seen in susceptibility to cryptosporidiosis in humans and mice. The protozoan parasite Cryptosporidium sp. is a leading cause of diarrheal disease in those with compromised or underdeveloped immune systems, particularly infants and toddlers in resource-poor localities. As an enteric pathogen, Cryptosporidium sp. invades the apical surface of intestinal epithelial cells, where it resides in close proximity to metabolites in the intestinal lumen. However, the effect of gut metabolites on susceptibility to Cryptosporidium infection remains largely unstudied. Here, we first identified which gut metabolites are prevalent in neonatal mice when they are most susceptible to Cryptosporidium parvum infection and then tested the isolated effects of these metabolites on C. parvum invasion and growth in intestinal epithelial cells. Our findings demonstrate that medium or long-chain saturated fatty acids inhibit C. parvum growth, perhaps by negatively affecting the streamlined metabolism in C. parvum, which is unable to synthesize fatty acids. Conversely, long-chain unsaturated fatty acids enhanced C. parvum invasion, possibly by modulating membrane fluidity. Hence, gut metabolites, either from diet or produced by the microbiota, influence C. parvum growth in vitro and may also contribute to the early susceptibility to cryptosporidiosis seen in young animals.
Collapse
|
18
|
Torrez Lamberti MF, DeBose-Scarlett E, Garret T, Parker LA, Neu J, Lorca GL. Metabolomic Profile of Personalized Donor Human Milk. Molecules 2020; 25:E5783. [PMID: 33302441 PMCID: PMC7763631 DOI: 10.3390/molecules25245783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
Human milk could be considered an active and complex mixture of beneficial bacteria and bioactive compounds. Since pasteurization drastically reduces the microbial content, we recently demonstrated that pasteurized donor human milk (DHM) could be inoculated with different percentages (10% and 30%) of mother's own milk (MOM) to restore the unique live microbiota, resulting in personalized milk (RM10 and RM30, respectively). Pasteurization affects not only the survival of the microbiota but also the concentration of proteins and metabolites, in this study, we performed a comparative metabolomic analysis of the RM10, RM30, MOM and DHM samples to evaluate the impact of microbial restoration on metabolite profiles, where metabolite profiles clustered into four well-defined groups. Comparative analyses of DHM and MOM metabolomes determined that over one thousand features were significantly different. In addition, significant changes in the metabolite concentrations were observed in MOM and RM30 samples after four hours of incubation, while the concentration of metabolites in DHM remained constant, indicating that these changes are related to the microbial expansion. In summary, our analyses indicate that the metabolite profiles of DHM are significantly different from that of MOM, and the profile of MOM may be partially restored in DHM through microbial expansion.
Collapse
Affiliation(s)
- Monica F. Torrez Lamberti
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (M.F.T.L.); (E.D.-S.)
| | - Evon DeBose-Scarlett
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (M.F.T.L.); (E.D.-S.)
| | - Timothy Garret
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Leslie Ann Parker
- College of Nursing, University of Florida, Gainesville, FL 32611, USA;
| | - Josef Neu
- Department of Pediatrics, Division of Neonatology, University of Florida, Gainesville, FL 32611, USA;
| | - Graciela L. Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (M.F.T.L.); (E.D.-S.)
| |
Collapse
|
19
|
Physiologic changes in serotonin concentrations in breast milk during lactation. Nutrition 2020; 79-80:110969. [PMID: 32947128 DOI: 10.1016/j.nut.2020.110969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/22/2020] [Accepted: 07/23/2020] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Serotonin (5-hydroxytryptamine; 5-HT) plays an important role in milk volume homeostasis in the mammary glands during lactation, and 5-HT in milk also may affect infant development. The aim of this study was to investigate changes in 5-HT concentration in breast milk according to the duration of lactation and evaluate whether the 5-HT concentration varied before and after nursing. METHODS Healthy nursing Japanese women who had a natural delivery or underwent a cesarean delivery at Iwate Medical University Hospital were included in this study. RESULTS The mean 5-HT concentration in milk was obtained from multiparous mothers 6 to 7 d after delivery (colostrum) and was significantly higher compared with primiparous mothers (24.3 ± 2.63 versus 18.5 ± 2.60 ng/mL). Additionally, mean 5-HT concentration increased with increasing lactation duration in primiparous women (colostrum: 18.5 ± 2.60; 1 mo postdelivery: 19.8 ± 2.46; 3 mo postdelivery: 22.7 ± 2.55 ng/mL); in particular, the mean 5-HT concentration in breast milk 3 mo after delivery was significantly higher than in colostrum. The mean 5-HT concentrations in breast milk in primiparous mothers immediately before nursing, 1 to 2 h after nursing, and immediately before the next nursing event were 23.6 ± 1.48, 22.82 ± 1.65, and 21.84 ± 1.31 ng/mL, respectively; mean 5-HT concentrations in multiparous women were 25.4 ± 1.65, 23.6 ± 2.20, or 22.4 ± 2.09 ng/mL, respectively. There was no significant difference in 5-HT concentrations at each time point between the groups. CONCLUSION This information may be useful in determining the role of 5-HT in breast milk on infant development and growth.
Collapse
|
20
|
Phan M, Momin SR, Senn MK, Wood AC. Metabolomic Insights into the Effects of Breast Milk Versus Formula Milk Feeding in Infants. Curr Nutr Rep 2020; 8:295-306. [PMID: 31203566 DOI: 10.1007/s13668-019-00284-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the latest scientific evidence for the presence of metabolomic differences between infants fed breast milk (I-BM) and infants fed formula milk (I-FM). RECENT FINDINGS Across the studies included in this review, a total of 261 metabolites were analyzed, of which 151 metabolites were reported as significantly associated with infant feeding modality (BM versus FM). However, taken as a whole, the relevant literature was notable both for methodological limitations, such as small sample sizes, and heterogeneity between the studies. This may be why many associations between infant metabolite profile and feeding modality have not replicated across studies. To our knowledge, this is the first review to integrate the available literature on metabolomic differences between I-BM versus I-FM. This narrative review synthesized the data across studies and identified those metabolites which show the most robust associations with infant feeding modality. Methodological limitations of the current studies are identified, followed by recommendations for how to address these in future studies.
Collapse
Affiliation(s)
- Mimi Phan
- USDA / ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA
| | - Shabnam R Momin
- USDA / ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA
| | - Mackenzie K Senn
- USDA / ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA
| | - Alexis C Wood
- USDA / ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Meoni G, Tenori L, Luchinat C. Nuclear Magnetic Resonance-Based Metabolomic Comparison of Breast Milk and Organic and Traditional Formula Milk Brands for Infants and Toddlers. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:424-436. [PMID: 32522087 DOI: 10.1089/omi.2019.0125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In recent years, new formula milk (FM) products based on milk from farms that strictly adhere to the "organic farming" practices became available. However, little is known about the differences in nutritional profile of these organic formulae with respect to traditional ones. We comprehensively evaluated the metabolite profiles of FM with nuclear magnetic resonance (NMR)-based metabolomic analysis. Five commercial brands of organic and nonorganic formula liquid milk for infants (0-12 months) and toddlers (1-3 years) were analyzed, together with human milk (HM) samples. Proton NMR (1H NMR) spectroscopy mapped molecular characteristics of FM linked to different production techniques, and identified differences between FM and HM samples. We performed a metabolic fingerprint analysis using multivariate and univariate statistical techniques. A clear distinction is found among different commercial brands of the FM samples. In addition, several differences in metabolomic profiles of FM have been found in comparison with HM for the first time. Notably, it was possible to identify, both in the formulations for toddlers and for infants, metabolites that vary in concentration between the formulae produced with milk obtained according to organic farming techniques, and those produced using nonorganic milk. In particular, organic and nonorganic formulations are differentiated by the levels of glucose, methionine, o-phosphocholine, butyrate, hippurate, creatine, and dimethyl sulfone. Importantly, the HM appeared to differ from both organic and nonorganic brands in a context of metabolites. These findings inform efforts to design FM in ways that closely mimic HM, and guide research to differentiate organic and traditional FM.
Collapse
Affiliation(s)
| | - Leonardo Tenori
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Florence, Italy
| | - Claudio Luchinat
- Centro Risonanze Magnetiche (CERM) and Department of Chemistry, University of Florence, Florence, Italy
| |
Collapse
|
22
|
Li M, Li Q, Zheng Y, Shi X, Zhang J, Ma C, Guan B, Peng Y, Yang M, Yue X. New insights into the alterations of full spectrum amino acids in human colostrum and mature milk between different domains based on metabolomics. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03470-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
The Determinants of the Human Milk Metabolome and Its Role in Infant Health. Metabolites 2020; 10:metabo10020077. [PMID: 32093351 PMCID: PMC7074355 DOI: 10.3390/metabo10020077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Human milk is needed for optimal growth as it satisfies both the nutritional and biological needs of an infant. The established relationship between breastfeeding and an infant’s health is attributable to the nutritional and non-nutritional, functional components of human milk including metabolites such as the lipids, amino acids, biogenic amines and carbohydrates. These components have diverse roles, including protecting the infant against infections and guiding the development of the infant’s immature immune system. In this review, we provide an in-depth and updated insight into the immune modulatory and anti-infective role of human milk metabolites and their effects on infant health and development. We also review the literature on potential determinants of the human milk metabolome, including maternal infectious diseases such as human immunodeficiency virus and mastitis.
Collapse
|
24
|
Ten-Doménech I, Ramos-Garcia V, Piñeiro-Ramos JD, Gormaz M, Parra-Llorca A, Vento M, Kuligowski J, Quintás G. Current Practice in Untargeted Human Milk Metabolomics. Metabolites 2020; 10:E43. [PMID: 31979022 PMCID: PMC7074033 DOI: 10.3390/metabo10020043] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022] Open
Abstract
Human milk (HM) is considered the gold standard for infant nutrition. HM contains macro- and micronutrients, as well as a range of bioactive compounds (hormones, growth factors, cell debris, etc.). The analysis of the complex and dynamic composition of HM has been a permanent challenge for researchers. The use of novel, cutting-edge techniques involving different metabolomics platforms has permitted to expand knowledge on the variable composition of HM. This review aims to present the state-of-the-art in untargeted metabolomic studies of HM, with emphasis on sampling, extraction and analysis steps. Workflows available from the literature have been critically revised and compared, including a comprehensive assessment of the achievable metabolome coverage. Based on the scientific evidence available, recommendations for future untargeted HM metabolomics studies are included.
Collapse
Affiliation(s)
- Isabel Ten-Doménech
- Neonatal Research Unit, Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (I.T.-D.); (V.R.-G.); (J.D.P.-R.); (M.G.); (A.P.-L.); (M.V.)
| | - Victoria Ramos-Garcia
- Neonatal Research Unit, Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (I.T.-D.); (V.R.-G.); (J.D.P.-R.); (M.G.); (A.P.-L.); (M.V.)
| | - José David Piñeiro-Ramos
- Neonatal Research Unit, Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (I.T.-D.); (V.R.-G.); (J.D.P.-R.); (M.G.); (A.P.-L.); (M.V.)
| | - María Gormaz
- Neonatal Research Unit, Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (I.T.-D.); (V.R.-G.); (J.D.P.-R.); (M.G.); (A.P.-L.); (M.V.)
- Division of Neonatology, University & Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Anna Parra-Llorca
- Neonatal Research Unit, Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (I.T.-D.); (V.R.-G.); (J.D.P.-R.); (M.G.); (A.P.-L.); (M.V.)
| | - Máximo Vento
- Neonatal Research Unit, Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (I.T.-D.); (V.R.-G.); (J.D.P.-R.); (M.G.); (A.P.-L.); (M.V.)
- Division of Neonatology, University & Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Julia Kuligowski
- Neonatal Research Unit, Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (I.T.-D.); (V.R.-G.); (J.D.P.-R.); (M.G.); (A.P.-L.); (M.V.)
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, Carrer de la Innovació, 2, 08225 Terrassa, Spain;
- Unidad Analítica, Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| |
Collapse
|
25
|
Bardanzellu F, Peila C, Fanos V, Coscia A. Clinical insights gained through metabolomic analysis of human breast milk. Expert Rev Proteomics 2019; 16:909-932. [PMID: 31825672 DOI: 10.1080/14789450.2019.1703679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Among the OMICS technologies, that have emerged in recent years, metabolomics has allowed relevant step forwards in clinical research. Several improvements in disease diagnosis and clinical management have been permitted, even in neonatology. Among potentially evaluable biofluids, breast milk (BM) results are highly interesting, representing a fluid of conjunction between mothers newborns, describing their interaction.Areas covered: in this review, updating a previous review article, we discuss research articles and reviews on BM metabolomics and found in MEDLINE using metabolomics, breast milk, neonatal nutrition, breastfeeding, human milk composition, and preterm neonates as keywords.Expert opinion: Our research group has a profound interest in metabolomics research. In 2012, we published the first metabolomic analysis on BM samples, reporting interesting data on its composition and relevant differences with formula milk (FM), useful to improve FM composition. As confirmed by successive studies, such technology can detect the specific BM composition and its dependence on several variables, including lactation stage, gestational age, maternal or environmental conditions. Moreover, since BM contaminants or drug levels can be detected, metabolomics also results useful to determine BM safety. These are only a few practical applications of BM analysis, which will be reviewed in this paper.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, Monserrato, Italy
| | - Chiara Peila
- Neonatology Unit, Department of Public Health and Pediatrics, Università degli Studi di Torino, Turin, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, Monserrato, Italy
| | - Alessandra Coscia
- Neonatology Unit, Department of Public Health and Pediatrics, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
26
|
Metabolomics methods to analyze full spectrum of amino acids in different domains of bovine colostrum and mature milk. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03385-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Garwolińska D, Namieśnik J, Kot-Wasik A, Hewelt-Belka W. State of the art in sample preparation for human breast milk metabolomics—merits and limitations. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
A new dilution-enrichment sample preparation strategy for expanded metabolome monitoring of human breast milk that overcomes the simultaneous presence of low- and high-abundance lipid species. Food Chem 2019; 288:154-161. [PMID: 30902276 DOI: 10.1016/j.foodchem.2019.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 11/23/2022]
Abstract
The complex nature of human breast milk (HBM) makes samples difficult to analyze, requiring several extraction techniques and analytical platforms to obtain high metabolome coverage. In this work, we combined liquid-liquid extraction (LLE) and solid-phase extraction (SPE) techniques to prepare HBM samples to overcome the challenge of low- and high-abundance lipid species, enabling the semiquantitative analysis of total HBM lipids in one liquid chromatography-mass spectrometry (LC-MS) run. A nonorganic fraction obtained during the LLE step was used to analyze small polar metabolites. This analytical approach allows extensive metabolome coverage, especially for low-abundance glycerophospholipids and sphingolipids. The method was applied to monitor short-term metabolome changes in HBM composition within individual mothers and the results showed variable metabolite composition patterns. Simultaneous detection of high-abundance glycerolipids and low-abundance but not less significant phospholipids in one LC-MS run saves time, decreases cost, and enables comprehensive insight into the dynamics of HBM composition.
Collapse
|
29
|
Meng X, Dunsmore G, Koleva P, Elloumi Y, Wu RY, Sutton RT, Ambrosio L, Hotte N, Nguyen V, Madsen KL, Dieleman LA, Chen H, Huang V, Elahi S. The Profile of Human Milk Metabolome, Cytokines, and Antibodies in Inflammatory Bowel Diseases Versus Healthy Mothers, and Potential Impact on the Newborn. J Crohns Colitis 2019; 13:431-441. [PMID: 30418545 PMCID: PMC6441305 DOI: 10.1093/ecco-jcc/jjy186] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS For women with inflammatory bowel disease [IBD], it is not very well known how IBD or IBD treatment affects their breast milk components. We aimed to investigate whether breast milk composition differs in healthy control [HC] versus IBD mothers in terms of antibodies, cytokines, and metabolite,s to identify potential impact of IBD breast milk on neonatal immune system. METHODS Breast milk specimens from HC [n = 17] and IBD [n = 31 for Crohn's disease [CD]; and n = 41 for ulcerative colitis [UC]; were collected at 3 and 6 months postpartum [PP3] and [PP6], respectively. Faecal samples were also collected. Cytokines and immunoglobulins [IgA/IgG/IgE] were analysed by multiplex Meso Scale Discovery [MSD] and commercial kits. Moreover, breast milk metabolites were analysed by 1H nuclear magnetic resonance [NMR]. RESULTS We found that breast milk from IBD mothers showed significantly lower levels of IgA, sugar metabolite [lactose], and 2-aminobutyrate. In contrast, we observed that breast milk from mothers with IBD had increased levels of pro-inflammatory cytokines and higher energy metabolites [lactate and succinate] than milk from healthy mothers. In addition, we noticed that the type of treatment [5-aminosalicylic acid versus biologics] influenced the milk cytokines and metabolites profile. CONCLUSIONS The reduction in immunoprotective components of IBD breast milk such as sIgA and lactose theoretically may modulate the potential protective effects of breastfeeding. On the other hand, presence of higher levels of pro-inflammatory cytokines, lactate, and succinate may predispose the offspring to an inflammatory condition or impact on the gut microbiome. Better understanding of the role of succinate in infants and its potential effects on microbiome or mucosal immunity merits further investigations.
Collapse
Affiliation(s)
- Xuanyi Meng
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada,State Key Laboratory of Food Science and Technology, Nanchang University. Nanchang, China
| | - Garett Dunsmore
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Petya Koleva
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yesmine Elloumi
- Division of Gastroenterology, University of Alberta, AB, Canada
| | - Richard You Wu
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Lindsy Ambrosio
- Division of Gastroenterology, University of Alberta, AB, Canada
| | - Naomi Hotte
- Division of Gastroenterology, University of Alberta, AB, Canada
| | - Vivian Nguyen
- Division of Gastroenterology, University of Alberta, AB, Canada
| | - Karen L Madsen
- Division of Gastroenterology, University of Alberta, AB, Canada
| | | | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University. Nanchang, China
| | - Vivian Huang
- Division of Gastroenterology, University of Alberta, AB, Canada,Division of Gastroenterology, University of Toronto, Mount Sinai Hospital, Toronto, ON, Canada
| | - Shokrollah Elahi
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada,Corresponding author: Shokrollah Elahi, PhD, 7020L, Katz Group Centre for Pharmacology and Health Research, 11361-87th Ave NW, Edmonton, AB, T6G2E1, Canada. Tel.: 780-492-1336; fax: 780-492-7466;
| |
Collapse
|
30
|
Abstract
Nutritionally, the first 1,000 days of an infant's life - from conception to two years - has been identified as a highly influential period, during which lasting health can be achieved. Significant evidence links patterns of infant feeding to both short and long-term health outcomes, many of which can be prevented through nutritional modifications. Recommended globally, breastfeeding is recognised as the gold standard of infant nutrition; providing key nutrients to achieve optimal health, growth and development, and conferring immunologic protective effects against disease. Nevertheless, infant formulas are often the sole source of nutrition for many infants during the first stage of life. Producers of infant formula strive to supply high quality, healthy, safe alternatives to breast milk with a comparable balance of nutrients to human milk imitating its composition and functional performance measures. The concept of 'nutritional programming', and the theory that exposure to specific conditions, can predispose an individual's health status in later life has become an accepted dictum, and has sparked important nutritional research prospects. This review explores the impact of early life nutrition, specifically, how different feeding methods affect health outcomes.
Collapse
Affiliation(s)
- Susan Finn
- Nutrition and Health Science from Cork Institute of Technology
| | | | | | - Roy D. Sleator
- University College Cork and National University of Ireland
| |
Collapse
|
31
|
Kirwan JA, Brennan L, Broadhurst D, Fiehn O, Cascante M, Dunn WB, Schmidt MA, Velagapudi V. Preanalytical Processing and Biobanking Procedures of Biological Samples for Metabolomics Research: A White Paper, Community Perspective (for "Precision Medicine and Pharmacometabolomics Task Group"-The Metabolomics Society Initiative). Clin Chem 2018; 64:1158-1182. [PMID: 29921725 DOI: 10.1373/clinchem.2018.287045] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The metabolome of any given biological system contains a diverse range of low molecular weight molecules (metabolites), whose abundances can be affected by the timing and method of sample collection, storage, and handling. Thus, it is necessary to consider the requirements for preanalytical processes and biobanking in metabolomics research. Poor practice can create bias and have deleterious effects on the robustness and reproducibility of acquired data. CONTENT This review presents both current practice and latest evidence on preanalytical processes and biobanking of samples intended for metabolomics measurement of common biofluids and tissues. It highlights areas requiring more validation and research and provides some evidence-based guidelines on best practices. SUMMARY Although many researchers and biobanking personnel are familiar with the necessity of standardizing sample collection procedures at the axiomatic level (e.g., fasting status, time of day, "time to freezer," sample volume), other less obvious factors can also negatively affect the validity of a study, such as vial size, material and batch, centrifuge speeds, storage temperature, time and conditions, and even environmental changes in the collection room. Any biobank or research study should establish and follow a well-defined and validated protocol for the collection of samples for metabolomics research. This protocol should be fully documented in any resulting study and should involve all stakeholders in its design. The use of samples that have been collected using standardized and validated protocols is a prerequisite to enable robust biological interpretation unhindered by unnecessary preanalytical factors that may complicate data analysis and interpretation.
Collapse
Affiliation(s)
- Jennifer A Kirwan
- Berlin Institute of Health, Berlin, Germany; .,Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Institute of Food and Health, UCD, Dublin, Ireland
| | | | - Oliver Fiehn
- NIH West Coast Metabolomics Center, UC Davis, Davis, CA
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine and IBUB, Universitat de Barcelona, Barcelona and Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBER-EHD), Madrid, Spain
| | - Warwick B Dunn
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, UK
| | - Michael A Schmidt
- Advanced Pattern Analysis and Countermeasures Group, Research Innovation Center, Colorado State University, Fort Collins, CO.,Sovaris Aerospace, LLC, Boulder, CO
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
32
|
Chen S, Chai M, Tian C, Li Y, Deng T, Wu H, Liu X. Genetic variants of fatty acid elongase 6 in Chinese Holstein cow. Gene 2018; 670:123-129. [PMID: 29787827 DOI: 10.1016/j.gene.2018.05.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
Abstract
In the dairy industry, genetic variants have contributed to the improvement of milk production traits. Fatty acid elongase 6 (ELOVL6), which elongates saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs), plays a distinct role in the balance of long-chain fatty acids composition in animals. ELOVL6 catalyzes the elongation of palmitic acids (C16:0) which is the most common saturated fatty acid found in animals and also an essential precursor to synthesize other long-chain fatty acids. However, the genetic variant research of bovine ELOVL6 on milk quality traits is still unknown. Therefore, our study aimed to detect the single nucleotide polymorphism (SNPs) of bovine ELOVL6 and explored the relationship between SNPs and milk quality traits including milk yield, fat content, protein content and somatic cell score. In this study, three SNPs, including SNP1 (g16379651A>G), SNP2 (g16458976A>G) and SNP3 (g16511290A>G), have been identified in intron 3 and 3'UTR regions of ELOVL6 in Chinese Holstein (CH) cows. Besides, the results of genetic diversity analysis, linkage disequilibrium and haplotype analysis indicated that these SNPs presented moderate polymorphisms which reflected relatively high genetic diversity. No strong linkage among these SNPs were detected in sampled population of cows. Moreover, the results of correlation analyses demonstrated that these SNPs of bovine ELOVL6 were significantly related to milk yield (P < 0.05). The SNP1 was also correlated with somatic cell score, whereas the SNP3 was associated with fat content. The 21 combined genotypes (diplotypes) were highly significantly correlated (P < 0.01) with milk yield. These results revealed that the genetic variants of bovine ELOVL6 influenced the milk production of CH cows. Hence, the three SNPs could be regarded as molecular markers in marker-assisted selection (MAS) of the dairy cow breeding.
Collapse
Affiliation(s)
- Si Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Menglin Chai
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chen Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuzhuang Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian Deng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaolin Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
33
|
Chen S, Hu Z, He H, Liu X. Fatty acid elongase7 is regulated via SP1 and is involved in lipid accumulation in bovine mammary epithelial cells. J Cell Physiol 2018; 233:4715-4725. [DOI: 10.1002/jcp.26255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/05/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Si Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P.R. China
| | - Zhigang Hu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P.R. China
| | - Hua He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P.R. China
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi P.R. China
| | - Xiaolin Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P.R. China
| |
Collapse
|
34
|
Alisi A, Vajro P. Pre-natal and post-natal environment monitoring to prevent non-alcoholic fatty liver disease development. J Hepatol 2017; 67:451-453. [PMID: 28619256 DOI: 10.1016/j.jhep.2017.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Anna Alisi
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Pietro Vajro
- Dept. Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Unit of Pediatrics, University of Salerno, Baronissi (Sa), Italy
| |
Collapse
|
35
|
Cacho NT, Lawrence RM. Innate Immunity and Breast Milk. Front Immunol 2017; 8:584. [PMID: 28611768 PMCID: PMC5447027 DOI: 10.3389/fimmu.2017.00584] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022] Open
Abstract
Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant's optimal growth and development. The growing infant's immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant's innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk's effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant's intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs) have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant's gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system and the developing infant.
Collapse
Affiliation(s)
- Nicole Theresa Cacho
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Robert M Lawrence
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
36
|
Patel DP, Krausz KW, Xie C, Beyoğlu D, Gonzalez FJ, Idle JR. Metabolic profiling by gas chromatography-mass spectrometry of energy metabolism in high-fat diet-fed obese mice. PLoS One 2017; 12:e0177953. [PMID: 28520815 PMCID: PMC5433781 DOI: 10.1371/journal.pone.0177953] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/05/2017] [Indexed: 01/12/2023] Open
Abstract
A novel, selective and sensitive single-ion monitoring (SIM) gas chromatography-mass spectrometry (GCMS) method was developed and validated for the determination of energy metabolites related to glycolysis, the tricarboxylic acid (TCA) cycle, glutaminolysis, and fatty acid β-oxidation. This assay used N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) containing 1% tert-butyldimethylchlorosilane (TBDMCS) as derivatizing reagent and was highly reproducible, sensitive, specific and robust. The assay was used to analyze liver tissue and serum from C57BL/6N obese mice fed a high-fat diet (HFD) and C57BL/6N mice fed normal chow for 8 weeks. HFD-fed mice serum displayed statistically significantly reduced concentrations of pyruvate, citrate, succinate, fumarate, and 2-oxoglutarate, with an elevated concentration of pantothenic acid. In liver tissue, HFD-fed mice exhibited depressed levels of glycolysis end-products pyruvate and lactate, glutamate, and the TCA cycle intermediates citrate, succinate, fumarate, malate, and oxaloacetate. Pantothenate levels were 3-fold elevated accompanied by a modest increased gene expression of Scl5a6 that encodes the pantothenate transporter SLC5A6. Since both glucose and fatty acids inhibit coenzyme A synthesis from pantothenate, it was concluded that these data were consistent with downregulated fatty acid β-oxidation, glutaminolysis, glycolysis, and TCA cycle activity, due to impaired anaplerosis. The novel SIM GCMS assay provided new insights into metabolic effects of HFD in mice.
Collapse
Affiliation(s)
- Daxesh P. Patel
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Kristopher W. Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Diren Beyoğlu
- Hepatology Research Group, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Jeffrey R. Idle
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- Hepatology Research Group, Department of Clinical Research, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
37
|
Analysis of serotonin concentrations in human milk by high-performance liquid chromatography with fluorescence detection. Biochem Biophys Res Commun 2017; 485:102-106. [PMID: 28189675 DOI: 10.1016/j.bbrc.2017.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 11/20/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in milk volume homeostasis in the mammary gland during lactation; 5-HT in milk may also affect infant development. However, there are few reports on 5-HT concentrations in human breast milk. To address this issue, we developed a simple method based on high-performance liquid chromatography with fluorescence detection (HPLC-FD) for measuring 5-HT concentrations in human breast milk. Breast milk samples were provided by four healthy Japanese women. Calibration curves for 5-HT in each sample were prepared with the standard addition method between 5 and 1000 ng/ml, and all had correlation coefficients >0.999. The recovery of 5-HT was 96.1%-101.0%, with a coefficient of variation of 3.39%-8.62%. The range of 5-HT concentrations estimated from the calibration curves was 11.1-51.1 ng/ml. Thus, the HPLC-FD method described here can effectively extract 5-HT from human breast milk with high reproducibility.
Collapse
|