1
|
Dutra Alves NS, Reigado GR, Santos M, Caldeira IDS, Hernandes HDS, Freitas-Marchi BL, Zhivov E, Chambergo FS, Nunes VA. Advances in regenerative medicine-based approaches for skin regeneration and rejuvenation. Front Bioeng Biotechnol 2025; 13:1527854. [PMID: 40013305 PMCID: PMC11861087 DOI: 10.3389/fbioe.2025.1527854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Significant progress has been made in regenerative medicine for skin repair and rejuvenation. This review examines core technologies including stem cell therapy, bioengineered skin substitutes, platelet-rich plasma (PRP), exosome-based therapies, and gene editing techniques like CRISPR. These methods hold promise for treating a range of conditions, from chronic wounds and burns to age-related skin changes and genetic disorders. Challenges remain in optimizing these therapies for broader accessibility and ensuring long-term safety and efficacy.
Collapse
Affiliation(s)
- Nathalia Silva Dutra Alves
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Gustavo Roncoli Reigado
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Mayara Santos
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Izabela Daniel Sardinha Caldeira
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Henrique dos Santos Hernandes
- Laboratory of Proteins and Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | | | - Elina Zhivov
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, FL, United States
| | - Felipe Santiago Chambergo
- Laboratory of Proteins and Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Viviane Abreu Nunes
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Chen YK, Mohamed AH, Amer Alsaiari A, Olegovich Bokov D, Ali Patel A, Al Abdulmonem W, Shafie A, Adnan Ashour A, Azhar Kamal M, Ahmad F, Ahmad I. The role of mesenchymal stem cells in the treatment and pathogenesis of psoriasis. Cytokine 2024; 182:156699. [PMID: 39033730 DOI: 10.1016/j.cyto.2024.156699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Psoriasis, a prevalent inflammatory skin condition impacting millions globally, continues to pose treatment challenges, despite the availability of multiple therapies. This underscores the demand for innovative treatments. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option due to their capacity to modulate the immune system and facilitate tissue healing. Recent research indicates that MSCs don't just work through direct cell-to-cell interactions but also release extracellular vesicles (EVs), containing various bioactive substances like proteins, lipids, and nucleic acids. This article explores our current knowledge of psoriasis's origins and the potential utilization of MSCs and their EVs, particularly exosomes, in managing the condition. Additionally, we delve into how MSCs and EVs function in therapy, including their roles in regulating immune responses and promoting tissue repair. Lastly, we discuss the obstacles and opportunities associated with translating MSC-based treatments for psoriasis into clinical practice.
Collapse
Affiliation(s)
- Yan-Kun Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518109, China; Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, China
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil 51001, Hilla, Iraq.
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Ayyub Ali Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
3
|
Kushary S, Cao X, Ghosh T, Roy PK. A mathematical insight to control the disease psoriasis using mesenchymal stem cell transplantation with a biologic inhibitor. Sci Rep 2024; 14:21897. [PMID: 39300232 DOI: 10.1038/s41598-024-71251-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Psoriasis is a chronic, non-contagious, immune-mediated skin disorder. Inflammation of the skin's surface is characterised by scaly white, red, or silvery spots that occur due to the hyper-proliferation of keratinocytes in the epidermal layer. Primarily, pharmaceutical drugs or immune therapy are used to treat psoriasis. We are all aware that, certain therapeutic strategies can have some adverse effects, and over time, that hidden inflammation may manifest. This article introduces a mathematical model for psoriasis, formulated by employing a set of nonlinear ordinary differential equations (ODEs) that describe the densities of T-cells, dendritic cells (DCs), keratinocytes, and mesenchymal stromal cells (MSCs) as basic cell populations. A tumor necrosis factor- α ( T N F - α ) inhibitor has been imposed from the initial stage of the treatment regime, using the optimal control theoretic approach, and the numerical results have been observed. After 80 days of monitoring using only biologic T N F - α inhibitors, if this approach did not provide the intended outcomes (when severity arises), stem cells are administered a few times in a pulsed manner as a cell replacement technique in addition to this anti T N F - α medicine. We have observed the combined therapeutic benefit of stem cell replacement with a T N F - α inhibitor from a mathematical point of view. The theoretical analysis and the numerical results revealed that stem cell transplantation, along with a T N F - α inhibitor, is a promising psoriasis treatment option moving forward.
Collapse
Affiliation(s)
- Subhankar Kushary
- Department of Mathematics, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Xianbing Cao
- School of Mathematics and Statistics, Beijing Technology and Business University, Beijing, 100048, China
| | - Tushar Ghosh
- Department of Mathematics, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Priti Kumar Roy
- Department of Mathematics, Jadavpur University, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
4
|
Kim SJ, Kim OH, Hong HE, Ju JH, Lee DS. Etanercept-synthesizing adipose-derived stem cell secretome: A promising therapeutic option for inflammatory bowel disease. World J Gastrointest Surg 2024; 16:882-892. [PMID: 38577094 PMCID: PMC10989350 DOI: 10.4240/wjgs.v16.i3.882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/03/2024] [Accepted: 02/03/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract, with tumor necrosis factor (TNF)-α playing a key role in its pathogenesis. Etanercept, a decoy receptor for TNF, is used to treat inflammatory conditions. The secretome derived from adipose-derived stem cells (ASCs) has anti-inflammatory effects, making it a promising therapeutic option for IBD.
AIM To investigate the anti-inflammatory effects of the secretome obtained from ASCs synthesizing etanercept on colon cells and in a dextran sulfate sodium (DSS)-induced IBD mouse model.
METHODS ASCs were transfected with etanercept-encoding mini-circle plasmids to create etanercept-producing cells. The secretory material from these cells was then tested for anti-inflammatory effects both in vitro and in a DSS-induced IBD mouse model.
RESULTS This study revealed promising results indicating that the group treated with the secretome derived from etanercept-synthesizing ASCs [Etanercept-Secretome (Et-Sec) group] had significantly lower expression levels of inflammatory mediators, such as interleukin-6, Monocyte Chemoattractant Protein-1, and TNF-α, when compared to the control secretome (Ct-Sec). Moreover, the Et-Sec group exhibited a marked therapeutic effect in terms of preserving the architecture of intestinal tissue compared to the Ct-Sec.
CONCLUSION These results suggest that the secretome derived from ASCs that synthesize etanercept has potential as a therapeutic agent for the treatment of IBD, potentially enhancing treatment efficacy by merging the anti-inflammatory qualities of the ASC secretome with etanercept's targeted approach to better address the multifaceted pathophysiology of IBD.
Collapse
Affiliation(s)
- Say-June Kim
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Ok-Hee Kim
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Ha-Eun Hong
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Do Sang Lee
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| |
Collapse
|
5
|
Behrangi E, Feizollahi M, Zare S, Goodarzi A, Ghasemi MR, Sadeghzadeh-Bazargan A, Dehghani A, Nouri M, Zeinali R, Roohaninasab M, Nilforoushzadeh MA. Evaluation of the efficacy of mesenchymal stem cells derived conditioned medium in the treatment of striae distensae: a double blind randomized clinical trial. Stem Cell Res Ther 2024; 15:62. [PMID: 38439103 PMCID: PMC10913631 DOI: 10.1186/s13287-024-03675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Striae distensae is a disfiguring atrophic skin condition that impairs the body's aesthetic image. Despite the variety of conducted studies, there is controversy regarding the best modalities. Human mesenchymal stem cells are considered a rich source for scar treatment. Skin needling is among the most efficient and safe aesthetic and therapeutic devices. This study aimed to evaluate the efficacy of the combination of needling and intradermal injection of mesenchymal stem cells compared to skin needling alone for treating striae distensae. METHOD This study was a randomized, double-blind clinical trial involving 10 women aged 18-60. Each striae lesion was divided into two parts, with one side receiving needling and intradermal injection of conditioned medium, while the other side received needling and intradermal injection of normal saline. This treatment was administered in three sessions with three-week intervals. Patients were evaluated before the first intervention and three months after the final session. Three months after the completion of the intervention, patients' lesions were evaluated using biometric criteria, physician evaluation, and patient self-assessment. RESULTS The results demonstrated a significant improvement in dermal and complete thickness and skin density in patients treated with microneedling. All skin ultrasound parameters improved significantly in patients receiving the combination of needling and conditioned medium. When comparing the two groups, significantly higher physician and patient satisfaction was observed in the combination group. However, the comparison of biometric indices improvement wasn't significant between these groups. CONCLUSION The combination of human mesenchymal stem cells with microneedling could be considered a novel effective option for stretch marks.
Collapse
Affiliation(s)
- Elham Behrangi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Feizollahi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ghasemi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Sadeghzadeh-Bazargan
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Dehghani
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Nouri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Zeinali
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Roohaninasab
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Skin Repair Research Center, Jordan Dermatology and Hair Transplantation Center, Tehran, Iran.
| |
Collapse
|
6
|
Apeku E, Tantuoyir MM, Zheng R, Tanye N. Exploring the polarization of M1 and M2 macrophages in the context of skin diseases. Mol Biol Rep 2024; 51:269. [PMID: 38302766 DOI: 10.1007/s11033-023-09014-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 02/03/2024]
Abstract
Macrophages are critical components of the immune system and play vital roles in pathogen defense, immune regulation, and tissue repair. These cells exhibit different polarization states depending on environmental signals, and the M1/M2 paradigm is a useful tool for comprehending these states. This review article comprehensively presents the underlying mechanisms of M1 and M2 macrophage polarization and examines their polarization in various skin diseases. Additionally, this paper discusses therapeutic strategies that target M1 and M2 macrophage polarization in skin diseases. A more profound understanding of macrophage polarization in skin diseases could provide valuable insights for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Ernestina Apeku
- Department of Dermatology, The 1st Hospital of Shanxi Medical University; Graduate Department of Shanxi Medical University, Taiyuan, Shanxi, China
| | | | - Rui Zheng
- Department of Dermatology, The 1st Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Nestor Tanye
- School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Verling SD, Mashoudy K, Gompels M, Goldenberg G. Regenerative Medicine in Clinical and Aesthetic Dermatology. A COMPREHENSIVE GUIDE TO MALE AESTHETIC AND RECONSTRUCTIVE PLASTIC SURGERY 2024:65-79. [DOI: 10.1007/978-3-031-48503-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Kim DK, Lee HJ, Lee IH, Lee JJ. Immunomodulatory Effects of Primed Tonsil-Derived Mesenchymal Stem Cells on Atopic Dermatitis via B Cell Regulation. Cells 2023; 13:80. [PMID: 38201284 PMCID: PMC10777933 DOI: 10.3390/cells13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Mesenchymal stem cells (MSCs) ameliorate T-and B cell-mediated immune responses. In particular, tonsil-MSCs (T-MSCs) are attractive candidates for practical and clinical applications because of their ease of acquisition and relatively low immunogenicity compared with other MSC sources. The use of MSCs as a therapeutic tool in atopic dermatitis (AD) has been investigated, but that of T-MSCs remains to be explored. Therefore, we investigated the immunomodulatory effects of primed T-MSCs in AD pathogenesis. In our animal study, primed T-MSCs showed greater immunological suppressive effects than naïve T-MSCs. Additionally, in vitro, the proliferation of B cells was downregulated by the addition of primed T-MSCs compared with naïve T-MSCs. The activation of B cells to differentiate into antibody-secreting cells and produce IgE was also reduced when primed T-MSCs were added. Moreover, under CD40-knockdown conditions, we found that CD40 in primed T-MSCs played a critical role as a regulator of B cell activation and was mediated by the non-canonical NF-κB pathway. Therefore, our findings suggest a promising role for primed T-MSCs in the treatment of AD by regulating B cell-mediated inflammatory responses, which are dependent on CD40 expression on primed T-MSCs mediated through the non-canonical NF-κB pathway.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Hyun-Joo Lee
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Il Hwan Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Jae-Jun Lee
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| |
Collapse
|
9
|
Tolouei AE, Oruji F, Tehrani S, Rezaei S, Mozaffari A, Jahri M, Nasiri K. Gingival mesenchymal stem cell therapy, immune cells, and immunoinflammatory application. Mol Biol Rep 2023; 50:10461-10469. [PMID: 37904011 DOI: 10.1007/s11033-023-08826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/12/2023] [Indexed: 11/01/2023]
Abstract
MSC-based therapeutic strategies have proven to be incredibly effective. Robust self-renewal, multilineage differentiation, and potential for tissue regeneration and disease treatments are all features of MSCs isolated from oral tissue. Human exfoliated deciduous teeth, dental follicles, dental pulp, apical papilla SCs, and alveolar bone are the primary sources of oral MSC production. The early immunoinflammatory response is the first stage of the healing process. Oral MSCs can interact with various cells, such as immune cells, revealing potential immunomodulatory regulators. They also have strong differentiation and regeneration potential. Therefore, a ground-breaking strategy would be to research novel immunomodulatory approaches for treating disease and tissue regeneration that depend on the immunomodulatory activities of oral MSCs during tissue regeneration.
Collapse
Affiliation(s)
| | - Farshid Oruji
- College of Medicine, Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sahar Tehrani
- Department of Pediatric Dentistry, School of Dentistry, Ahvaz Jundishapour University of Medical Sciences Ahvaz, Ahvaz, Iran
| | - Sara Rezaei
- Restorative Dentistry Resident, Faculty of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Asieh Mozaffari
- Department of Periodontics, Faculty of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Jahri
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Colunga-Pedraza PR, Irabien-Zuñiga M, Rodriguez-Roque CS, de la Cruz-de la Cruz C, Gómez-De León A, Santana-Hernández P, Jaime-Pérez JC, Mancías-Guerra C, Gómez-Almaguer D. Lactate dehydrogenase as a hematopoietic stem cell mobilization biomarker in autologous transplantation. Hematol Transfus Cell Ther 2023; 45:435-441. [PMID: 36163321 PMCID: PMC10627851 DOI: 10.1016/j.htct.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/17/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Pre-apheresis peripheral blood CD34+ cell count (PBCD34+) is the most important predictor of good cell mobilization before hematopoietic stem cell transplantation, albeit flow cytometry is not always immediately available. Identification of surrogate markers can be useful. The CD34+ cells proliferate after mobilization, resulting in elevated lactate dehydrogenase (LDH) activity and correlating with the PBCD34+ count. OBJECTIVE To determine the LDH cut-off value at which adequate CD34+ cell mobilization is achieved and its diagnostic yield. MATERIALS AND METHODS A total of 103 patients who received an autologous stem cell transplantation (ASCT) between January 2015 and January 2020 were included. Demographic and laboratory characteristics were obtained, including complete blood count, pre-apheresis PBCD34+ and LDH levels. Receiver operating characteristic (ROC) curves were performed to identify the optimal serum LDH activity cut-off points for ≥ 2 and ≥ 4 × 106 cells/kg post-mobilization CD34+ count and their diagnostic yield. RESULTS A post-mobilization serum LDH cut-off value of 462 U/L yielded a sensitivity (Se) = 86.8% (positive predictive value [PPV] = 72.7%), a pre- and post-mobilization serum LDH difference cut-off value of 387 U/L, an Se = 45.7% (PPV = 97%) and an LDH ratio of 2.46, with an Se = 47.1% (PPV = 97%) for an optimal mobilization count (CD34+ ≥ 4 × 106). CONCLUSION The LDH measurement represents a fast and affordable way to predict PBCD34+ mobilization in cases where flow cytometry is not immediately available. According to the LDH diagnostic yield, it could be used as a surrogate marker in transplant centers, supporting the CD34+ count, which remains the gold standard.
Collapse
Affiliation(s)
- Perla R Colunga-Pedraza
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Francisco I. Madero Ave. No number. Mitras Centro, Monterrey, Nuevo León, México
| | - Mariela Irabien-Zuñiga
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Francisco I. Madero Ave. No number. Mitras Centro, Monterrey, Nuevo León, México
| | - Carlos Saúl Rodriguez-Roque
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Francisco I. Madero Ave. No number. Mitras Centro, Monterrey, Nuevo León, México
| | - Carlos de la Cruz-de la Cruz
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Francisco I. Madero Ave. No number. Mitras Centro, Monterrey, Nuevo León, México
| | - Andrés Gómez-De León
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Francisco I. Madero Ave. No number. Mitras Centro, Monterrey, Nuevo León, México
| | - Paola Santana-Hernández
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Francisco I. Madero Ave. No number. Mitras Centro, Monterrey, Nuevo León, México
| | - José Carlos Jaime-Pérez
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Francisco I. Madero Ave. No number. Mitras Centro, Monterrey, Nuevo León, México
| | - Consuelo Mancías-Guerra
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Francisco I. Madero Ave. No number. Mitras Centro, Monterrey, Nuevo León, México
| | - David Gómez-Almaguer
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Francisco I. Madero Ave. No number. Mitras Centro, Monterrey, Nuevo León, México.
| |
Collapse
|
11
|
Cheng W, Fan C, Song Q, Chen P, Peng H, Lin L, Liu C, Wang B, Zhou Z. Induced pluripotent stem cell-based therapies for organ fibrosis. Front Bioeng Biotechnol 2023; 11:1119606. [PMID: 37274156 PMCID: PMC10232908 DOI: 10.3389/fbioe.2023.1119606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Fibrotic diseases result in organ remodelling and dysfunctional failure and account for one-third of all deaths worldwide. There are no ideal treatments that can halt or reverse progressive organ fibrosis, moreover, organ transplantation is complicated by problems with a limited supply of donor organs and graft rejection. The development of new approaches, especially induced pluripotent stem cell (iPSC)-based therapy, is becoming a hot topic due to their ability to self-renew and differentiate into different cell types that may replace the fibrotic organs. In the past decade, studies have differentiated iPSCs into fibrosis-relevant cell types which were demonstrated to have anti-fibrotic effects that may have the potential to inform new effective precision treatments for organ-specific fibrosis. In this review, we summarize the potential of iPSC-based cellular approaches as therapeutic avenues for treating organ fibrosis, the advantages and disadvantages of iPSCs compared with other types of stem cell-based therapies, as well as the challenges and future outlook in this field.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qing Song
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Hong Peng
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Ling Lin
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Cong Liu
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Bin Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
12
|
Dysregulated balance in Th17/Treg axis of Pristane-induced lupus mouse model, are mesenchymal stem cells therapeutic? Int Immunopharmacol 2023; 117:109699. [PMID: 36867923 DOI: 10.1016/j.intimp.2023.109699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Despite advances in general and targeted immunosuppressive therapies, limiting all mainstay treatment options in refractory systemic lupus erythematosus (SLE) cases has necessitated the development of new therapeutic strategies. Mesenchymal stem cells (MSCs) have recently emerged with unique properties, including a solid propensity to reduce inflammation, exert immunomodulatory effects, and repair injured tissues. METHODS An animal model of acquired SLE mice was induced via intraperitoneal immunization with Pristane and affirmed by measuring specific biomarkers. Bone marrow (BM) MSCs were isolated from healthy BALB/c mice and cultured in vitro, then were identified and confirmed by flow cytometry and cytodifferentiation. Systemic MSCs transplantation was performed and then several parameters were analyzed and compared, including specific cytokines (IL-17, IL-4, IFN-ɣ, TGF-β) at the serum level, the percentage of Th cell subsets (Treg/Th17, Th1/Th2) in splenocytes, and also the relief of lupus nephritis, respectively by enzyme-linked immunosorbent assay (ELISA), flow cytometry analysis and by hematoxylin & eosin staining and also immunofluorescence assessment. Experiments were carried out with different initiation treatment time points (early and late stages of disease). Analysis of variance (ANOVA) followed by post hoc Tukey's test was used for multiple comparisons. RESULTS The rate of proteinuria, anti-double-stranded deoxyribonucleic acid (anti-dsDNA) antibodies, and serum creatinine levels decreased with BM-MSCs transplantation. These results were associated with attenuated lupus renal pathology in terms of reducing IgG and C3 deposition and lymphocyte infiltration. Our findings suggested that TGF-β (associated with lupus microenvironment) can contribute to MSC-based immunotherapy by modulating the population of TCD4+ cell subsets. Obtained results indicated that MSCs-based cytotherapy could negatively affect the progression of induced SLE by recovering the function of Treg cells, suppressing Th1, Th2, and Th17 lymphocyte function, and downregulating their pro-inflammatory cytokines. CONCLUSION MSC-based immunotherapy showed a delayed effect on the progression of acquired SLE in a lupus microenvironment-dependent manner. Allogenic MSCs transplantation revealed the ability to re-establish the balance of Th17/Treg, Th1/Th2 and restore the plasma cytokines network in a pattern dependent on disease conditions. The conflicting results of early versus advanced therapy suggest that MSCs may produce different effects depending on when they are administered and their activation status.
Collapse
|
13
|
Wen K, Li W, Cheng C, Weige X, Jiaqi C, Shiyu S, Lingyan H, Hongwei W, Sijing X. Human dental pulp stem cells ameliorate the imiquimod-induced psoriasis in mice. Heliyon 2023; 9:e13337. [PMID: 36816313 PMCID: PMC9932705 DOI: 10.1016/j.heliyon.2023.e13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 12/26/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Psoriasis is an autoimmune disease, which has a significant impact on the quality of patient's life. And, there is still no cure for psoriasis. The human dental pulp stem cell (hDPSC) possesses the properties of immunoregulation. In this study, we aimed to determine the effect of hDPSC on the imiquimod (IMQ)-induced psoriasis in mice. The psoriasis model was established by topical application of IMQ cream in mice for 7 days. We found that subcutaneous injection of hDPSC could reduce the symptoms of skin lesions in IMQ-induced psoriasis and suppress the expression of keratin 16, S100A8, S100A9, which are associated with abnormal epidermal proliferation. Subepithelial inflammatory cytokines, CD4+ T lymphocytes and CD11c+ dendritic cells infiltrations were significantly inhibited in by hDPSC. The TNF-α, IFN-γ expressions in serum were decreased, and splenomegaly induced by IMQ was improved after hDPSC treatment. In summary, our study demonstrated that hDPSC could reduce the symptoms of skin lesions and suppress local and systemic immune responses of IMQ-induced psoriasis in mice, which might provide a new sight for the treatment of psoriasis.
Collapse
Affiliation(s)
- Kang Wen
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Wu Li
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Chen Cheng
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Xie Weige
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Chen Jiaqi
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Song Shiyu
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Huang Lingyan
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Wang Hongwei
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China,Corresponding author.
| | - Xie Sijing
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China,Corresponding author.
| |
Collapse
|
14
|
Bellei B, Migliano E, Picardo M. Therapeutic potential of adipose tissue-derivatives in modern dermatology. Exp Dermatol 2022; 31:1837-1852. [PMID: 35102608 DOI: 10.1111/exd.14532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Stem cell-mediated therapies in combination with biomaterial and growth factor-based approaches in regenerative medicine are rapidly evolving with increasing application beyond the dermatologic field. Adipose-derived stem cells (ADSCs) are the more frequently used adult stem cells due to their abundance and easy access. In the case of volumetric defects, adipose tissue can take the shape of defects, restoring the volume and enhancing the regeneration of receiving tissue. When regenerative purposes prevail on volume restoration, the stromal vascular fraction (SVF) rich in staminal cells, purified mesenchymal stem cells (MSCs) or their cell-free derivatives grafting are favoured. The therapeutic efficacy of acellular approaches is explained by the fact that a significant part of the natural propensity of stem cells to repair damaged tissue is ascribable to their secretory activity that combines mitogenic factors, cytokines, chemokines and extracellular matrix components. Therefore, the secretome's ability to modulate multiple targets simultaneously demonstrated preclinical and clinical efficacy in reversing pathological mechanisms of complex conditions such atopic dermatitis (AD), vitiligo, psoriasis, acne and Lichen sclerosus (LS), non-resolving wounds and alopecia. This review analysing both in vivo and in vitro models gives an overview of the clinical relevance of adipose tissue-derivatives such as autologous fat graft, stromal vascular fraction, purified stem cells and secretome for skin disorders application. Finally, we highlighted the major disease-specific limitations and the future perspective in this field.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Emilia Migliano
- Department of Plastic and Regenerative Surgery, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
15
|
Mesenchymal Stem Cells and Psoriasis: Systematic Review. Int J Mol Sci 2022; 23:ijms232315080. [PMID: 36499401 PMCID: PMC9740222 DOI: 10.3390/ijms232315080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal Stem Cells (MSCs) are multipotent non-hematopoietic stromal cells found in different body tissues such as bone marrow, adipose tissue, periosteum, Wharton's jelly, umbilical cord, blood, placenta, amniotic fluid, and skin. The biological behavior of MSCs depends mainly on their interaction with the microenvironment in which they are found, whose quality deeply influences the regenerative and immunomodulatory properties of these cells. Several studies confirm the interaction between MSCs and inflammatory microenvironment in the pathogenesis of psoriasis, designating MSCs as an important factor driving psoriasis development. This review aims to describe the most recent evidence on how the inflammatory microenvironment that characterizes psoriasis influences the homeostasis of MSCs and how they can be used to treat the disease.
Collapse
|
16
|
Thanaskody K, Jusop AS, Tye GJ, Wan Kamarul Zaman WS, Dass SA, Nordin F. MSCs vs. iPSCs: Potential in therapeutic applications. Front Cell Dev Biol 2022; 10:1005926. [PMID: 36407112 PMCID: PMC9666898 DOI: 10.3389/fcell.2022.1005926] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
Over the past 2 decades, mesenchymal stem cells (MSCs) have attracted a lot of interest as a unique therapeutic approach for a variety of diseases. MSCs are capable of self-renewal and multilineage differentiation capacity, immunomodulatory, and anti-inflammatory properties allowing it to play a role in regenerative medicine. Furthermore, MSCs are low in tumorigenicity and immune privileged, which permits the use of allogeneic MSCs for therapies that eliminate the need to collect MSCs directly from patients. Induced pluripotent stem cells (iPSCs) can be generated from adult cells through gene reprogramming with ectopic expression of specific pluripotency factors. Advancement in iPS technology avoids the destruction of embryos to make pluripotent cells, making it free of ethical concerns. iPSCs can self-renew and develop into a plethora of specialized cells making it a useful resource for regenerative medicine as they may be created from any human source. MSCs have also been used to treat individuals infected with the SARS-CoV-2 virus. MSCs have undergone more clinical trials than iPSCs due to high tumorigenicity, which can trigger oncogenic transformation. In this review, we discussed the overview of mesenchymal stem cells and induced pluripotent stem cells. We briefly present therapeutic approaches and COVID-19-related diseases using MSCs and iPSCs.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia,Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia,*Correspondence: Fazlina Nordin,
| |
Collapse
|
17
|
Gingiva-Derived Mesenchymal Stem Cells Attenuate Imiquimod- (IMQ-) Induced Murine Psoriasis-Like Skin Inflammation. Stem Cells Int 2022; 2022:6544514. [PMID: 35813890 PMCID: PMC9262573 DOI: 10.1155/2022/6544514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/28/2021] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Human gingiva-derived mesenchymal stem cells (GMSCs) are isolated from the gingival propria with promising regenerative, immunomodulatory, and anti-inflammatory properties. Recently, several studies, including ours, have found that GMSCs have the therapeutic potentials of nerve regeneration and skin disorders in various types such as the cell itself, cell-free conditioned medium, or extracellular vesicles (EVs). However, the mechanobiological behavior of GMSCs is closely related to the culture conditions. Therefore, the purpose of this study was to evaluate the function of human GMSCs on imiquimod- (IMQ-) induced murine psoriasis-like skin inflammation in two-dimensional (2D) and three-dimensional (3D) culture conditions. Here, we isolated and characterized GMSCs in 2D and 3D culture conditions and found that GMSCs in 2D and 3D infusion can significantly ameliorate the IMQ-induced murine psoriasis-like skin inflammation, reduce the levels of Th1- and Th17-related cytokines IFN-γ, TNF-α, IL-6, IL-17A, IL-17F, IL-21, and IL-22, and upregulate the percentage of spleen CD25+CD3+ T cells while downregulate the percentage of spleen IL-17+CD3+ T cells. In summary, our novel findings reveal that GMSCs in 2D and 3D infusion may possess therapeutic effects in the treatment of psoriasis.
Collapse
|
18
|
LUO X, YIN J, CAI Y, LIN S, TONG C, SUI H, YE M, Long Y, LIN P, LAN T. Cytoplasm or supernatant—where is the treasury of the bioactive antiaging factor from mesenchymal stem cells? Stem Cells Dev 2022; 31:529-540. [PMID: 35491559 DOI: 10.1089/scd.2021.0245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Xuewei LUO
- Xiamen Medical College, 519884, Xiamen, Fujian, China
- Guangxi University, 12664, Medicinal College, Nanning, Guangxi, China
| | - Jingwen YIN
- Xiamen Medical College, 519884, Xiamen, Fujian, China
| | - Yiwen CAI
- Xiamen Medical College, 519884, Xiamen, Fujian, China
| | | | | | - Huaxiu SUI
- Xiamen Medical College, 519884, Xiamen, Fujian, China
| | - Mingzhu YE
- Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Yufei Long
- Xiamen Medical College, 519884, Xiamen, Fujian, China
- Guangxi University, 12664, Medicinal College, Nanning, Guangxi, China
| | - Pingli LIN
- Xiamen Fifth Hospital, Department of Obstetrics, Xiamen, Fujian, China
| | - Tianshu LAN
- Xiamen Medical College, 519884, Xiamen, China
- Xiamen Medical College, 519884, Key laboratory of functional and clinical translational medicine, Fujian province university, Xiamen, Fujian, China
| |
Collapse
|
19
|
Kim SY, Yoon TH, Na J, Yi SJ, Jin Y, Kim M, Oh TH, Chung TW. Mesenchymal Stem Cells and Extracellular Vesicles Derived from Canine Adipose Tissue Ameliorates Inflammation, Skin Barrier Function and Pruritus by Reducing JAK/STAT Signaling in Atopic Dermatitis. Int J Mol Sci 2022; 23:ijms23094868. [PMID: 35563259 PMCID: PMC9101369 DOI: 10.3390/ijms23094868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Canine atopic dermatitis (AD) is a common chronic inflammatory skin disorder resulting from imbalance between T lymphocytes. Current canine AD treatments use immunomodulatory drugs, but some of the dogs have limitations that do not respond to standard treatment, or relapse after a period of time. Thus, the purpose of this study was to evaluate the immunomodulatory effect of mesenchymal stem cells derived from canine adipose tissue (cASCs) and cASCs-derived extracellular vesicles (cASC-EVs) on AD. First, we isolated and characterized cASCs and cASCs-EVs to use for the improvement of canine atopic dermatitis. Here, we investigated the effect of cASCs or cASC-EVs on DNCB-induced AD in mice, before using for canine AD. Interestingly, we found that cASCs and cASC-EVs improved AD-like dermatitis, and markedly decreased levels of serum IgE, (49.6%, p = 0.002 and 32.1%, p = 0.016 respectively) epidermal inflammatory cytokines and chemokines, such as IL-4 (32%, p = 0.197 and 44%, p = 0.094 respectively), IL-13 (47.4%, p = 0.163, and 50.0%, p = 0.039 respectively), IL-31 (64.3%, p = 0.030 and 76.2%, p = 0.016 respectively), RANTES (66.7%, p = 0.002 and 55.6%, p = 0.007) and TARC (64%, p = 0.016 and 86%, p = 0.010 respectively). In addition, cASCs or cASC-EVs promoted skin barrier repair by restoring transepidermal water loss, enhancing stratum corneum hydration and upregulating the expression levels of epidermal differentiation proteins. Moreover, cASCs or cASC-EVs reduced IL-31/TRPA1-mediated pruritus and activation of JAK/STAT signaling pathway. Taken together, these results suggest the potential of cASCs or cASC-EVs for the treatment of chronic inflammation and damaged skin barrier in AD or canine AD.
Collapse
Affiliation(s)
- Sung Youl Kim
- GNG CELL Co., Ltd., R&D Center, 122 Unjung-ro, Bundang-gu, Seongnam-si 13466, Korea; (S.Y.K.); (T.H.Y.)
| | - Tae Hong Yoon
- GNG CELL Co., Ltd., R&D Center, 122 Unjung-ro, Bundang-gu, Seongnam-si 13466, Korea; (S.Y.K.); (T.H.Y.)
| | - Jungtae Na
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea;
| | - Seong Joon Yi
- Department of Veterinary Anatomy, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
| | - Yunseok Jin
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea; (Y.J.); (M.K.)
| | - Minji Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea; (Y.J.); (M.K.)
| | - Tae-Ho Oh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea; (Y.J.); (M.K.)
- Correspondence: (T.-H.O.); (T.-W.C.)
| | - Tae-Wook Chung
- JIN BioCell Co., Ltd., R&D Center, #101-103, National Clinical Research Center for Korean Medicine, Pusan National University Korean Medicine Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan-si 50612, Korea
- Correspondence: (T.-H.O.); (T.-W.C.)
| |
Collapse
|
20
|
Wang J, Zhang D, Zhu Y, Mo X, McHugh PC, Tong Q. Astragalus and human mesenchymal stem cells promote wound healing by mediating immunomodulatory effects through paracrine signaling. Regen Med 2022; 17:219-232. [PMID: 35249360 DOI: 10.2217/rme-2021-0076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background: Skin regeneration from an injury without a scar is still a challenge. Methods: A murine model of a skin wound was treated with a combination of extract of astragalus and exosomes of mesenchymal stem cells (MSCs). CD11b+ and CD45 macrophages were detected and levels of cytokines were tested. Results: The expression of growth factors VEGF, FGF2 and EGF was elevated after treatment administered to MSCs. The administration of ethanolic extract of astragalus decreased the expression of TNF-α, IL-1β and IL-6 and simultaneously increased the levels of IL-10. The combination sped up the process of wound healing. A sustained-release gel with both ingredients was developed to enhance restoration from granulation. Conclusion: The extract of astragalus promotes the efficacy of MSC-derived exosomes in skin repair.
Collapse
Affiliation(s)
- Jiaqi Wang
- Clinical Research Center, Changhai Hospital, Shanghai, 200433, China
| | - Dandan Zhang
- Arachna Skin Biotechnology Center, Eston Cell Technology (Shanghai) Co. Ltd, Shanghai, 201611, China
| | - Ying Zhu
- Department of Respiratory & Critical Care Medicine, Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Patrick C McHugh
- Centre for Biomarker Research, School of Applied Sciences, University of Huddersfield, HD1 3DH, UK
| | - Qiang Tong
- Department of Rheumatology & Immunology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200235, China
| |
Collapse
|
21
|
Guan J, Li Y, Lu F, Feng J. Adipose-derived stem cells ameliorate atopic dermatitis by suppressing the IL-17 expression of Th17 cells in an ovalbumin-induced mouse model. Stem Cell Res Ther 2022; 13:98. [PMID: 35255962 PMCID: PMC8900338 DOI: 10.1186/s13287-022-02774-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have therapeutic potential for atopic dermatitis (AD) owing to their immunoregulatory effects. However, the underlying mechanisms associated with the therapeutic efficacy of MSCs on AD are diverse and related to both cell type and delivery method. Objectives This study investigated the therapeutic effect and mechanisms of adipose-derived stem cells (ADSCs) on AD using an ovalbumin (OVA)-induced AD mouse model. Methods AD mice were subcutaneously injected with mouse ADSCs, cortisone, or PBS, and the therapeutic effects were determined by gross and histological examinations and serum IgE levels. Additionally, qPCR, RNA-sequencing analyses of skin samples and co-culture of ADSCs and Th17 cells were conducted to explore the underlying therapeutic mechanisms. Results ADSCs treatment attenuated the AD pathology, decreased the serum IgE levels, and decreased mast cells infiltration in the skin of the model mice. Moreover, tissue levels of IL-4R and Th17-relevant products (IL-17A, CCL20, and MMP12) were suppressed in the ADSC- and cortisone-treated groups. Genomics and bioinformatics analyses demonstrated significant enrichment of inflammation-related pathways in the downregulated genes of the ADSC- and cortisone-treated groups, specifically the IL-17 signaling pathway. Co-culture experiments revealed that ADSCs significantly suppressed the proliferation of Th17 cells and the expression of proinflammatory cytokines (IL-17A and RORγT). Furthermore, expression levels of PD-L1, TGF-β, and PGE2 were significantly upregulated in co-cultured ADSCs relative to those in monocultured ADSCs. Conclusion ADSCs ameliorate OVA-induced AD in mice mainly by downregulating IL-17 secretion of Th17 cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02774-7.
Collapse
Affiliation(s)
- Jingyan Guan
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yibao Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Jingwei Feng
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
22
|
Paganelli A, Trubiani O, Diomede F, Pisciotta A, Paganelli R. Immunomodulating Profile of Dental Mesenchymal Stromal Cells: A Comprehensive Overview. FRONTIERS IN ORAL HEALTH 2022; 2:635055. [PMID: 35047993 PMCID: PMC8757776 DOI: 10.3389/froh.2021.635055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Dental mesenchymal stromal cells (MSCs) are multipotent cells present in dental tissues, characterized by plastic adherence in culture and specific surface markers (CD105, CD73, CD90, STRO-1, CD106, and CD146), common to all other MSC subtypes. Dental pulp, periodontal ligament, apical papilla, human exfoliated deciduous teeth, alveolar bone, dental follicle, tooth germ, and gingiva are all different sources for isolation and expansion of MSCs. Dental MSCs have regenerative and immunomodulatory properties; they are scarcely immunogenic but actively modulate T cell reactivity. in vitro studies and animal models of autoimmune diseases have provided evidence for the suppressive effects of dental MSCs on peripheral blood mononuclear cell proliferation, clearance of apoptotic cells, and promotion of a shift in the Treg/Th17 cell ratio. Appropriately stimulated MSCs produce anti-inflammatory mediators, such as transforming growth factor-β (TGF-β), prostaglandin E2, and interleukin (IL)-10. A particular mechanism through which MSCs exert their immunomodulatory action is via the production of extracellular vesicles containing such anti-inflammatory mediators. Recent studies demonstrated MSC-mediated inhibitory effects both on monocytes and activated macrophages, promoting their polarization to an anti-inflammatory M2-phenotype. A growing number of trials focusing on MSCs to treat autoimmune and inflammatory conditions are ongoing, but very few use dental tissue as a cellular source. Recent results suggest that dental MSCs are a promising therapeutic tool for immune-mediated disorders. However, the exact mechanisms responsible for dental MSC-mediated immunosuppression remain to be clarified, and impairment of dental MSCs immunosuppressive function in inflammatory conditions and aging must be assessed before considering autologous MSCs or their secreted vesicles for therapeutic purposes.
Collapse
Affiliation(s)
- Alessia Paganelli
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy.,Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Alessandra Pisciotta
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Paganelli
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy.,YDA, Institute of Clinical Immunotherapy and Advanced Biological Treatments, Pescara, Italy
| |
Collapse
|
23
|
Kouchakian MR, Baghban N, Moniri SF, Baghban M, Bakhshalizadeh S, Najafzadeh V, Safaei Z, Izanlou S, Khoradmehr A, Nabipour I, Shirazi R, Tamadon A. The Clinical Trials of Mesenchymal Stromal Cells Therapy. Stem Cells Int 2021; 2021:1634782. [PMID: 34745268 PMCID: PMC8566082 DOI: 10.1155/2021/1634782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/22/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a heterogeneous population of adult stem cells, which are multipotent and possess the ability to differentiate/transdifferentiate into mesodermal and nonmesodermal cell lineages. MSCs display broad immunomodulatory properties since they are capable of secreting growth factors and chemotactic cytokines. Safety, accessibility, and isolation from patients without ethical concern make MSCs valuable sources for cell therapy approaches in autoimmune, inflammatory, and degenerative diseases. Many studies have been conducted on the application of MSCs as a new therapy, but it seems that a low percentage of them is related to clinical trials, especially completed clinical trials. Considering the importance of clinical trials to develop this type of therapy as a new treatment, the current paper is aimed at describing characteristics of MSCs and reviewing relevant clinical studies registered on the NIH database during 2016-2020 to discuss recent advances on MSC-based therapeutic approaches being used in different diseases.
Collapse
Affiliation(s)
- Mohammad Reza Kouchakian
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyedeh Farzaneh Moniri
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Baghban
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Vahid Najafzadeh
- Department of Veterinary and Animal Sciences, Anatomy & Biochemistry Section, University of Copenhagen, Copenhagen, Denmark
| | - Zahra Safaei
- Department of Obstetrics and Gynecology, School of Medicine, Amir Al Mo'menin Hospital, Amir Al Mo'menin IVF Center, Arak University of Medical Sciences, Arak, Iran
| | - Safoura Izanlou
- Department of Nursing, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
24
|
Riedl J, Popp C, Eide C, Ebens C, Tolar J. Mesenchymal stromal cells in wound healing applications: role of the secretome, targeted delivery and impact on recessive dystrophic epidermolysis bullosa treatment. Cytotherapy 2021; 23:961-973. [PMID: 34376336 PMCID: PMC8569889 DOI: 10.1016/j.jcyt.2021.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multi-potent stromal-derived cells capable of self-renewal that possess several advantageous properties for wound healing, making them of interest to the field of dermatology. Research has focused on characterizing the unique properties of MSCs, which broadly revolve around their regenerative and more recently discovered immunomodulatory capacities. Because of ease of harvesting and expansion, differentiation potential and low immunogenicity, MSCs have been leading candidates for tissue engineering and regenerative medicine applications for wound healing, yet results from clinical studies have been variable, and promising pre-clinical work has been difficult to reproduce. Therefore, the specific mechanisms of how MSCs influence the local microenvironment in distinct wound etiologies warrant further research. Of specific interest in MSC-mediated healing is harnessing the secretome, which is composed of components known to positively influence wound healing. Molecules released by the MSC secretome can promote re-epithelialization and angiogenesis while inhibiting fibrosis and microbial invasion. This review focuses on the therapeutic interest in MSCs with regard to wound healing applications, including burns and diabetic ulcers, with specific attention to the genetic skin disease recessive dystrophic epidermolysis bullosa. This review also compares various delivery methods to support skin regeneration in the hopes of combating the poor engraftment of MSCs after delivery, which is one of the major pitfalls in clinical studies utilizing MSCs.
Collapse
Affiliation(s)
- Julia Riedl
- Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, Minnesota, USA; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Courtney Popp
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cindy Eide
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christen Ebens
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
25
|
Kaur G, Ramirez A, Xie C, Clark D, Dong C, Maki C, Ramos T, Izadyar F, Najera SOL, Harb J, Hao J. A double-blinded placebo-controlled evaluation of adipose-derived mesenchymal stem cells in treatment of canine atopic dermatitis. Vet Res Commun 2021; 46:251-260. [PMID: 34713306 DOI: 10.1007/s11259-021-09853-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/17/2021] [Indexed: 01/22/2023]
Abstract
Mesenchymal stem cells (MSCs) have emerged as a new therapy for various immune-mediated inflammatory diseases. In this study we perform the first double-blinded, placebo-controlled evaluation of the efficacy of adipose-derived allogenic canine MSCs for the treatment of canine atopic dermatitis (cAD). Enrolled canine patients were randomly divided into placebo (PBS saline), low-dose (5 × 105 cells/kg), and high-dose (5 × 106 cells/kg) treatment groups. Each patient received three subcutaneous MSCs treatments or PBS saline at four-week intervals with injections at five sites. Patients were monitored by physical exams, pruritus visual analog scales (PVAS) signed by the primary caretaker, canine atopic dermatitis extent and severity index-4 (CADESI-4) scores by two veterinarians, and complete blood count and serum chemistry analysis along with laboratory analysis for potential biomarkers. Patients were kept off any immune-modulating drugs during the study period, and oral antibiotics and topicals were used for managing pruritus and secondary infections. The PVAS scores and the serum miR-483 levels were significantly lower in the high dose group compared to the placebo group at day90 post first-treatment. The CADESI-4 scores of the high dose group also showed downward trends. No severe adverse effects were observed in any patient in this study. The high dose MSC treatment is efficacious in alleviating the clinical signs of cAD until 30 days after the last subcutaneous administration of MSCs, and miRNA-483 may be a reliable prognostic biomarker for cAD. The MSCs efficacy and potential biomarkers should be further explored by a larger scale clinical trial.
Collapse
Affiliation(s)
- Gagandeep Kaur
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA.
| | - Ana Ramirez
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Chen Xie
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - David Clark
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Charli Dong
- Animal Dermatology Clinic, Pasadena, CA, USA
| | | | | | | | | | - Jerry Harb
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA. .,Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
26
|
Cinat D, Coppes RP, Barazzuol L. DNA Damage-Induced Inflammatory Microenvironment and Adult Stem Cell Response. Front Cell Dev Biol 2021; 9:729136. [PMID: 34692684 PMCID: PMC8531638 DOI: 10.3389/fcell.2021.729136] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells ensure tissue homeostasis and regeneration after injury. Due to their longevity and functional requirements, throughout their life stem cells are subject to a significant amount of DNA damage. Genotoxic stress has recently been shown to trigger a cascade of cell- and non-cell autonomous inflammatory signaling pathways, leading to the release of pro-inflammatory factors and an increase in the amount of infiltrating immune cells. In this review, we discuss recent evidence of how DNA damage by affecting the microenvironment of stem cells present in adult tissues and neoplasms can affect their maintenance and long-term function. We first focus on the importance of self-DNA sensing in immunity activation, inflammation and secretion of pro-inflammatory factors mediated by activation of the cGAS-STING pathway, the ZBP1 pathogen sensor, the AIM2 and NLRP3 inflammasomes. Alongside cytosolic DNA, the emerging roles of cytosolic double-stranded RNA and mitochondrial DNA are discussed. The DNA damage response can also initiate mechanisms to limit division of damaged stem/progenitor cells by inducing a permanent state of cell cycle arrest, known as senescence. Persistent DNA damage triggers senescent cells to secrete senescence-associated secretory phenotype (SASP) factors, which can act as strong immune modulators. Altogether these DNA damage-mediated immunomodulatory responses have been shown to affect the homeostasis of tissue-specific stem cells leading to degenerative conditions. Conversely, the release of specific cytokines can also positively impact tissue-specific stem cell plasticity and regeneration in addition to enhancing the activity of cancer stem cells thereby driving tumor progression. Further mechanistic understanding of the DNA damage-induced immunomodulatory response on the stem cell microenvironment might shed light on age-related diseases and cancer, and potentially inform novel treatment strategies.
Collapse
Affiliation(s)
- Davide Cinat
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert P Coppes
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
27
|
Søgaard PP, Lind M, Christiansen CR, Petersson K, Clauss A, Caffarel-Salvador E. Future Perspectives of Oral Delivery of Next Generation Therapies for Treatment of Skin Diseases. Pharmaceutics 2021; 13:1722. [PMID: 34684016 PMCID: PMC8537019 DOI: 10.3390/pharmaceutics13101722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Gene therapies have conspicuously bloomed in recent years as evidenced by the increasing number of cell-, gene-, and oligo-based approved therapies. These therapies hold great promise for dermatological disorders with high unmet need, for example, epidermolysis bullosa or pachyonychia congenita. Furthermore, the recent clinical success of clustered regularly interspaced short palindromic repeats (CRISPR) for genome editing in humans will undoubtedly contribute to defining a new wave of therapies. Like biologics, naked nucleic acids are denatured inside the gastrointestinal tract and need to be administered via injections. For a treatment to be effective, a sufficient amount of a given regimen needs to reach systemic circulation. Multiple companies are racing to develop novel oral drug delivery approaches to circumvent the proteolytic and acidic milieu of the gastrointestinal tract. In this review, we provide an overview of the evolution of the gene therapy landscape, with a deep focus on gene and oligonucleotide therapies in clinical trials aimed at treating skin diseases. We then examine the progress made in drug delivery, with particular attention on the peptide field and drug-device combinations that deliver macromolecules into the gastrointestinal tract. Such novel devices could potentially be applied to administer other therapeutics including genes and CRISPR-based systems.
Collapse
Affiliation(s)
- Pia Pernille Søgaard
- Regenerative Medicine Department, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (P.P.S.); (C.R.C.); (A.C.)
| | - Marianne Lind
- Explorative Formulation and Technologies, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (M.L.); (K.P.)
| | | | - Karsten Petersson
- Explorative Formulation and Technologies, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (M.L.); (K.P.)
| | - Adam Clauss
- Regenerative Medicine Department, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (P.P.S.); (C.R.C.); (A.C.)
| | - Ester Caffarel-Salvador
- Regenerative Medicine Department, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (P.P.S.); (C.R.C.); (A.C.)
- LEO Science & Tech Hub, One Broadway, Cambridge, MA 02142, USA
| |
Collapse
|
28
|
Kim EY, Kim HS, Hong KS, Chung HM, Park SP, Noh G. Mesenchymal stem/stromal cell therapy in atopic dermatitis and chronic urticaria: immunological and clinical viewpoints. Stem Cell Res Ther 2021; 12:539. [PMID: 34635172 PMCID: PMC8503727 DOI: 10.1186/s13287-021-02583-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Allergic diseases are immune-mediated diseases. Allergies share a common immunopathogenesis, with specific differences according to the specific disease. Mesenchymal stem/stromal cells (MSCs) have been applied to people suffering from allergic and many other diseases. In this review, the immunologic roles of MSCs are systemically reviewed according to disease immunopathogenesis from a clinical viewpoint. MSCs seem to be a promising therapeutic modality not only as symptomatic treatments but also as causative and even preventive treatments for allergic diseases, including atopic dermatitis and chronic urticaria.
Collapse
Affiliation(s)
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science, The Graduate School of Dong-A University, Busan, Korea.,Department of Health Sciences, The Graduate School of Dong-A University, Busan, Korea
| | | | - Hyung-Min Chung
- Miraecellbio Co., Ltd., Seoul, Korea.,Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Se-Pill Park
- Miraecellbio Co., Ltd., Seoul, Korea. .,Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, 63243, Korea.
| | - Geunwoong Noh
- Department of Allergy, Allergy and Clinical Immunology Center, Cheju Halla General Hospital, Doreongno 65, Jeju-si, 63127, Jeju Special Self-Governing Province, Korea.
| |
Collapse
|
29
|
Umbilical cord as a source of mesenchymal stem cells improves melasma in parturients: a clinical randomized trial. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.27.1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
30
|
Shin HT, Lee SH, Yoon HS, Heo JH, Lee SB, Byun JW, Shin J, Cho YK, Chung E, Jeon MS, Song SU, Choi GS. Long-term efficacy and safety of intravenous injection of clonal mesenchymal stem cells derived from bone marrow in five adults with moderate to severe atopic dermatitis. J Dermatol 2021; 48:1236-1242. [PMID: 33990997 DOI: 10.1111/1346-8138.15928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/01/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023]
Abstract
Atopic dermatitis is a chronic and relapsing inflammatory skin disease that is treated with immunosuppressants. However, long-term use of immunosuppressants may cause toxicity and severe side-effects. To confirm the long-term efficacy and safety of clonal mesenchymal stem cell therapy, we performed investigator-initiated clinical trials and long-term observation in five adult patients with moderate to severe atopic dermatitis that was refractory to conventional treatments. The clinical response assessment values such as Eczema Area and Severity Index (EASI) improved significantly at 16 weeks, and 80% (4/5) of the patients achieved EASI-50 after one or two treatment cycles. Patients were observed for long-term efficacy and safety for an average of 38 weeks (range, 16-86) and showed no serious side-effects. Among the cytokines tested, CCL-17, interleukin (IL)-13, and IL-22 significantly decreased at the end-point of the five participants, two patients who maintained good clinical response over 84 weeks showed increased IL-17 cytokine levels in the blood.
Collapse
Affiliation(s)
- Hyun-Tae Shin
- Department of Dermatology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Si Hyub Lee
- Department of Dermatology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Hee Seong Yoon
- Department of Dermatology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Ji Hye Heo
- Department of Dermatology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Seon Bok Lee
- Department of Dermatology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Ji Won Byun
- Department of Dermatology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Jeonghyun Shin
- Department of Dermatology, Inha University School of Medicine, Incheon, Republic of Korea
| | | | | | - Myung-Shin Jeon
- Program in Biomedical Science and Engineering, Graduate School, Inha University, Incheon, Republic of Korea
| | - Sun U Song
- SCM Lifescience Co. Ltd., Incheon, Republic of Korea.,Program in Biomedical Science and Engineering, Graduate School, Inha University, Incheon, Republic of Korea
| | - Gwang Seong Choi
- Department of Dermatology, Inha University School of Medicine, Incheon, Republic of Korea
| |
Collapse
|
31
|
Zibandeh N, Genc D, Ozgen Z, Duran Y, Goker K, Baris S, Ergun T, Akkoc T. Mesenchymal stem cells derived from human dental follicle modulate the aberrant immune response in atopic dermatitis. Immunotherapy 2021; 13:825-840. [PMID: 33955241 DOI: 10.2217/imt-2020-0257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Atopic dermatitis (AD) is an inflammatory cutaneous disorder. The advancements in the understanding of AD immunological pathogenesis have caused the development of therapies that suppress the dysregulated immune response. We aimed to evaluate the immunomodulatory effect of dental stem cells (dental follicle-mesenchymal stem cells [DF-MSCs]) on AD patients. Materials & methods: We investigated the immunoregulatory potential of DF-MSCs on T cell response in AD and compared them with psoriasis and healthy individuals and the underlying mechanisms. Results: DF-MSCs significantly reduced Fas, FasL and TNFR II frequency in T cells, increased naive T cell population while reducing memory T cell, decreased inflammatory cytokine levels and promoted Tregs frequency in the AD population. Conclusion: These results imply that DF-MSCs are modulating inflammation through decreasing T cell apoptosis, inducing Treg expansion and stabilizing cytokine levels.
Collapse
Affiliation(s)
- Noushin Zibandeh
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey.,Koc University Research Center for Translational Medicine, Koc University, Istanbul, Turkey
| | - Deniz Genc
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey
| | - Zuleyha Ozgen
- Department of Dermatology, Marmara University, Istanbul, Turkey
| | - Yazgul Duran
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey
| | - Kamil Goker
- Department of Oral & Maxillofacial Surgery, Marmara University, Istanbul, Turkey
| | - Safa Baris
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey
| | - Tulin Ergun
- Department of Dermatology, Marmara University, Istanbul, Turkey
| | - Tunc Akkoc
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey
| |
Collapse
|
32
|
Park KY, Han HS, Park JW, Kwon HH, Park GH, Seo SJ. Exosomes derived from human adipose tissue-derived mesenchymal stem cells for the treatment of dupilumab-related facial redness in patients with atopic dermatitis: A report of two cases. J Cosmet Dermatol 2021; 21:844-849. [PMID: 33844417 DOI: 10.1111/jocd.14153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Atopic dermatitis is a chronic, pruritic, and inflammatory dermatosis that affects approximately 20% of children and 10% of adults worldwide. Dupilumab facial redness is gaining attention as additional cases are coming to light in the medical literature. OBJECTIVES AND METHODS Exosomes are nano-sized vesicles that are constantly released by almost all cells. They can travel between cells and transport their cargo (lipids, proteins, and nucleic acids), making them a possible cell-free therapeutic option for various diseases. Herein, we investigated whether topical application of human adipose tissue-derived mesenchymal stem cell-derived exosomes could reduce dupilumab facial redness in patients with severe atopic dermatitis. RESULTS Two patients with atopic dermatitis and refractory dupilumab facial redness were successfully treated with electroporation-assisted topical application of human adipose tissue-derived mesenchymal stem cell-derived exosomes. Six repeated sessions of treatment, with an interval of 1 week between each session, led to marked improvement in erythematous facial lesions. CONCLUSIONS We suggest that human adipose tissue-derived mesenchymal stem cell-derived exosomes may serve as an effective agent in the management of dupilumab facial redness. However, further controlled studies with a larger number of patients are necessary to confirm the efficacy and safety of this agent, as well as the optimal treatment protocol.
Collapse
Affiliation(s)
- Kui Young Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hye Sung Han
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jae Wan Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | | | - Gyeong-Hun Park
- Department of Dermatology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
The Use of Umbilical Cord-derived Mesenchymal Stem Cells Seeded Fibrin Matrix in the Treatment of Stage IV Acute Graft-Versus-Host Disease Skin Lesions in Pediatric Hematopoietic Stem Cell Transplant Patients. J Pediatr Hematol Oncol 2021; 43:e312-e319. [PMID: 33031163 DOI: 10.1097/mph.0000000000001964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have been used systemically or locally in many chronic and nonhealing skin lesions in recent years. In this study, umbilical cord-derived MSCs (UC-MSCs)-seeded fibrin matrix was used as a wound dressing in pediatric patients with stage 4 acute graft-versus-host disease (aGVHD)-induced desquamated skin lesions. This is the first study in which the UC-MSCs-seeded fibrin matrix was used as a wound dressing in aGVHD. A total of 14 times the MSCs-seeded fibrin matrix were applied to 9 patients as a wound dressing. On the seventh day, epithelialization and clinical response were evaluated. According to the size of the skin defect min: 1, max: 6 pieces were applied at a time. After 48 to 72 hours, it was observed that all of the MSCs-seeded fibrin matrixes adhered to the skin and the crustation started in 6 (43%) applications, whereas liquefaction was detected under all of them in 7 (50%) applications. Complete response was obtained in 6 applications (43%), partial response in 1 (7%), and no response in 7 applications (50%). This study showed that the MSCs-seeded fibrin matrix can be used effectively and safely in the matrix in the local treatment of aGVHD-induced skin wounds in pediatric patients.
Collapse
|
34
|
An Update on the Potential of Mesenchymal Stem Cell Therapy for Cutaneous Diseases. Stem Cells Int 2021; 2021:8834590. [PMID: 33505474 PMCID: PMC7806381 DOI: 10.1155/2021/8834590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are nonhematopoietic postnatal stem cells with self-renewal, multipotent differentiation, and potent immunomodulatory and anti-inflammatory capabilities, thus playing an important role in tissue repair and regeneration. Numerous clinical and preclinical studies have demonstrated the potential application of MSCs in the treatment of tissue inflammation and immune diseases, including inflammatory skin diseases. Therefore, understanding the biological and immunological characteristics of MSCs is important to standardize and optimize MSC-based regenerative therapy. In this review, we highlight the mechanisms underlying MSC-mediated immunomodulation and tissue repair/regeneration and present the latest development of MSC-based clinical trials on cutaneous diseases.
Collapse
|
35
|
The efficacy of in vivo administration of Apremilast on mesenchymal stem cells derived from psoriatic patients. Inflamm Res 2020; 70:79-87. [DOI: 10.1007/s00011-020-01412-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
|
36
|
Influences of Xeno-Free Media on Mesenchymal Stem Cell Expansion for Clinical Application. Tissue Eng Regen Med 2020; 18:15-23. [PMID: 33150562 DOI: 10.1007/s13770-020-00306-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent somatic stem/progenitor cells that can be isolated from various tissues and have attracted increasing attention from the scientific community. This is due to MSCs showing great potential for incurable disease treatment, and most applications of MSCs involve tissue degeneration and treatment of immune- and inflammation-mediated diseases. Conventional MSC cultures contain fetal bovine serum (FBS), which is a common supplement for cell development but is also a risk factor for exposure to animal-derived pathogens. To avoid the risks resulting from the xenogeneic origin and animal-derived pathogens of FBS, xeno-free media have been developed and commercialized to satisfy MSC expansion demands for human clinical applications. This review summarized and provided an overview of xeno-free media that are currently used for MSC expansion. Additionally, we discussed the influences of different xeno-free media on MSC biology with particular regard to cell morphology, surface marker expression, proliferation, differentiation and immunomodulation. The xeno-free media can be serum-free and xeno-free media or media supplemented with some human-originating substances, such as human serum, human platelet lysates, human umbilical cord serum/plasma, or human plasma-derived supplements for cell culture medium. These media have capacity to maintain a spindle-shaped morphology, the expression of typical surface markers, and the capacity of multipotent differentiation and immunomodulation of MSCs. Xeno-free media showed potential for safe use for human clinical treatment. However, the influences of these xeno-free media on MSCs are various and any xeno-free medium should be examined prior to being used for MSC cultures.
Collapse
|
37
|
Kwon HH, Yang SH, Lee J, Park BC, Park KY, Jung JY, Bae Y, Park GH. Combination Treatment with Human Adipose Tissue Stem Cell-derived Exosomes and Fractional CO2 Laser for Acne Scars: A 12-week Prospective, Double-blind, Randomized, Split-face Study. Acta Derm Venereol 2020; 100:adv00310. [PMID: 33073298 PMCID: PMC9309822 DOI: 10.2340/00015555-3666] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
A variety of applications of human adipose tissue stem cell-derived exosomes have been suggested as novel cell-free therapeutic strategies in the regenerative and aesthetic medical fields. This study evaluated the clinical efficacy and safety of adipose tissue stem cell-derived exosomes as an adjuvant therapy after application of fractional CO2 laser for acne scars. A 12-week prospective, double-blind, randomized, split-face trial was performed. A total of 25 patients received 3 consecutive treatment sessions of fractional CO2 laser to the whole face, with a follow-up evaluation. Post-laser treatment regimens were applied; for each patient, one side of the face was treated with adipose tissue stem cell-derived exosomes gel and the other side was treated with control gel. Adipose tissue stem cell-derived exosomes-treated sides had achieved a significantly greater improvement than the control sides at the final follow-up visit (percentage reduction in échelle d'évaluation clinique des cicatrices d'acné scores: 32.5 vs 19.9%, p < 0.01). Treatment-related erythema was milder, and post-treatment downtime was shorter on the applications of human adipose tissue stem cell-derived exosomes-treated side. In conclusion, the combined use of this novel material with resurfacing devices would provide synergistic effects on both the efficacy and safety of atrophic acne scar treatments.
Collapse
|
38
|
Priester C, MacDonald A, Dhar M, Bow A. Examining the Characteristics and Applications of Mesenchymal, Induced Pluripotent, and Embryonic Stem Cells for Tissue Engineering Approaches across the Germ Layers. Pharmaceuticals (Basel) 2020; 13:E344. [PMID: 33114710 PMCID: PMC7692540 DOI: 10.3390/ph13110344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
The field of regenerative medicine utilizes a wide array of technologies and techniques for repairing and restoring function to damaged tissues. Among these, stem cells offer one of the most potent and promising biological tools to facilitate such goals. Implementation of mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) offer varying advantages based on availability and efficacy in the target tissue. The focus of this review is to discuss characteristics of these three subset stem cell populations and examine their utility in tissue engineering. In particular, the development of therapeutics that utilize cell-based approaches, divided by germinal layer to further assess research targeting specific tissues of the mesoderm, ectoderm, and endoderm. The combinatorial application of MSCs, iPSCs, and ESCs with natural and synthetic scaffold technologies can enhance the reparative capacity and survival of implanted cells. Continued efforts to generate more standardized approaches for these cells may provide improved study-to-study variations on implementation, thereby increasing the clinical translatability of cell-based therapeutics. Coupling clinically translatable research with commercially oriented methods offers the potential to drastically advance medical treatments for multiple diseases and injuries, improving the quality of life for many individuals.
Collapse
Affiliation(s)
- Caitlin Priester
- Department of Animal Science, University of Tennessee, Knoxville, TN 37998, USA;
| | - Amber MacDonald
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| | - Madhu Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| | - Austin Bow
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| |
Collapse
|
39
|
Xiong M, Zhang Q, Hu W, Zhao C, Lv W, Yi Y, Wu Y, Wu M. Exosomes From Adipose-Derived Stem Cells: The Emerging Roles and Applications in Tissue Regeneration of Plastic and Cosmetic Surgery. Front Cell Dev Biol 2020; 8:574223. [PMID: 33015067 PMCID: PMC7511773 DOI: 10.3389/fcell.2020.574223] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are an important stem cell type separated from adipose tissue, with the properties of multilineage differentiation, easy availability, high proliferation potential, and self-renewal. Exosomes are novel frontiers of intercellular communication regulating the biological behaviors of cells, such as angiogenesis, immune modulation, proliferation, and migration. ASC-derived exosomes (ASC-exos) are important components released by ASCs paracrine, possessing multiple biological activities. Tissue regeneration requires coordinated “vital networks” of multiple growth factors, proteases, progenitors, and immune cells producing inflammatory cytokines. Recently, as cell-to-cell messengers, ASC-exos have received much attention for the fact that they are important paracrine mediators contributing to their suitability for tissue regeneration. ASC-exos, with distinct properties by encapsulating various types of bioactive cargoes, are endowed with great application potential in tissue regeneration, mechanically via the migration and proliferation of repair cells, facilitation of the neovascularization, and other specific functions in different tissues. Here, this article elucidated the research progress of ASC-exos about tissue regeneration in plastic and cosmetic surgery, including skin anti-aging therapy, dermatitis improvement, wound healing, scar removal, flap transplantation, bone tissue repair and regeneration, obesity prevention, fat grafting, breast cancer, and breast reconstruction. Deciphering the biological properties of ASC-exos will provide further insights for exploring novel therapeutic strategies of tissue regeneration in plastic and cosmetic surgery.
Collapse
Affiliation(s)
- Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Ramos TD, Silva JD, da Fonseca-Martins AM, da Silveira Pratti JE, Firmino-Cruz L, Maciel-Oliveira D, Dos-Santos JS, Tenorio JIN, de Araujo AF, Freire-de-Lima CG, Diaz BL, Cruz FF, Rocco PRM, de Matos Guedes HL. Combined therapy with adipose tissue-derived mesenchymal stromal cells and meglumine antimoniate controls lesion development and parasite load in murine cutaneous leishmaniasis caused by Leishmania amazonensis. Stem Cell Res Ther 2020; 11:374. [PMID: 32867857 PMCID: PMC7457509 DOI: 10.1186/s13287-020-01889-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background Leishmaniasis is a neglected disease caused by Leishmania spp. One of its characteristics is an imbalance of host immune responses to foster parasite survival. In this setting, mesenchymal stromal cells (MSCs) may be a viable therapeutic alternative, given their well-established immunomodulatory potential. In this study, we compared the effects of therapy with bone marrow (BM)- and adipose tissue (AD)-derived MSCs in leishmaniasis caused by Leishmania amazonensis in C57BL/6 mice. After determining the most effective MSC source, we then combined these cells with meglumine antimoniate (a pentavalent antimonial commonly used for the treatment of leishmaniasis) to treat the infected mice. Methods In vitro, co-culture of AD-MSCs and BM-MSCs with Leishmania amazonensis-infected macrophages was performed to understand the influence of both MSC sources in infected cells. In vivo, infected C57BL/6 mice were treated with phosphate-buffered saline (PBS), AD-MSCs and BM-MSCs, and then meglumine antimoniate was combined with MSCs from the most effective source. Results In vitro, co-culture of Leishmania amazonensis-infected macrophages with BM-MSCs, compared to AD-MSCs, led to a higher parasite load and lower production of nitric oxide. Fibroblasts grown in conditioned medium from co-cultures with AD-MSCs promoted faster wound healing. Despite a non-significant difference in the production of vascular endothelial growth factor, we observed higher production of tumor necrosis factor-α and interleukin (IL)-10 in the co-culture with AD-MSCs. In vivo, treatment of infected mice with BM-MSCs did not lead to disease control; however, the use of AD-MSCs was associated with partial control of lesion development, without significant differences in the parasite load. AD-MSCs combined with meglumine antimoniate reduced lesion size and parasite load when compared to PBS and AD-MSC groups. At the infection site, we detected a small production of IL-10, but we were unable to detect production of either IL-4 or interferon-γ, indicating resolution of infection without effect on the percentage of regulatory T cells. Conclusion Combination treatment of cutaneous leishmaniasis with AD-MSCs and meglumine antimoniate may be a viable alternative.
Collapse
Affiliation(s)
- Tadeu Diniz Ramos
- Grupo de Imunologia e Vacinologia, Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Laboratório de Imunomodulação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Johnatas Dutra Silva
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alessandra Marcia da Fonseca-Martins
- Grupo de Imunologia e Vacinologia, Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Juliana Elena da Silveira Pratti
- Grupo de Imunologia e Vacinologia, Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luan Firmino-Cruz
- Grupo de Imunologia e Vacinologia, Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo Maciel-Oliveira
- Grupo de Imunologia e Vacinologia, Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Julio Souza Dos-Santos
- Grupo de Imunologia e Vacinologia, Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - João Ivo Nunes Tenorio
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Almair Ferreira de Araujo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Célio Geraldo Freire-de-Lima
- Laboratório de Imunomodulação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno Lourenço Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Herbert Leonel de Matos Guedes
- Grupo de Imunologia e Vacinologia, Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil. .,UFRJ Campus Duque de Caxias Professor Geraldo Cidade, Duque de Caxias, Rio de Janeiro, Brazil. .,Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|
41
|
Li X, Zhang B, Wang H, Zhao X, Zhang Z, Ding G, Wei F. The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. Stem Cell Res Ther 2020; 11:326. [PMID: 32727592 PMCID: PMC7392710 DOI: 10.1186/s13287-020-01846-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background Periodontal ligament stem cells (PDLSCs) have many applications in the field of cytotherapy, tissue engineering, and regenerative medicine. However, the effect of age on the biological and immunological characteristics of PDLSCs remains unclear. Methods In this study, we compared PDLSCs isolated from young and adult individuals. PDLSC proliferation was analyzed by Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2′-deoxyuridine (EdU) staining, and apoptosis level was detected by Annexin V-PE/7-ADD staining. PDLSC osteogenic/adipogenic/chondrogenic differentiation potentials were assessed by alkaline phosphatase (ALP), Alizarin Red, Oil Red O, Alcian Blue staining, and related quantitative analysis. PDLSC immunosuppressive capacity was determined by EdU and Annexin V-PE/7-ADD staining. To explore its underlying mechanism, microarray, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), and western blot analyses were performed to detect differentially expressed genes and proteins in PDLSCs. Results Our results demonstrated that with aging, the proliferation and osteogenic/adipogenic/chondrogenic differentiation potential of PDLSCs decreased, whereas apoptosis of PDLSCs increased. Moreover, the immunosuppressive ability of PDLSCs decreased with aging. Compared with PDLSCs from young subjects, analysis of mRNA expression revealed an upregulation of CCND3 and RC3H2, and a downregulation of Runx2, ALP, COL1A1, PPARγ2, CXCL12, FKBP1A, FKBP1B, NCSTN, P2RX7, PPP3CB, RIPK2, SLC11A1, and TP53 in those from adult individuals. Furthermore, protein expression levels of Runx2, ALP, COL1A1, and PPARγ2 in the adult group were decreased, whereas that of CCND3 increased. Conclusions Taken together, aging influences the biological and immunological characteristics of PDLSCs, and thus, it is more appropriate to utilize PDLSCs from young individuals for tissue regeneration, post-aging treatment, and allotransplantation.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Bowen Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Hong Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xiaolu Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Zijie Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Gang Ding
- Department of Stomatology, Yidu Central Hospital, Weifang Medical University, Qingzhou, Shandong, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
42
|
Liu S, Liu F, Zhou Y, Jin B, Sun Q, Guo S. Immunosuppressive Property of MSCs Mediated by Cell Surface Receptors. Front Immunol 2020; 11:1076. [PMID: 32849489 PMCID: PMC7399134 DOI: 10.3389/fimmu.2020.01076] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
In the past decade, mesenchymal stem cells (MSCs) tend to exhibit inherent tropism for refractory inflammatory diseases and engineered MSCs have appeared on the market as therapeutic agents. Recently, engineered MSCs target to cell surface molecules on immune cells has been a new strategy to improve MSC applications. In this review, we discuss the roles of multiple receptors (ICAM-1, Gal-9, PD-L1, TIGIT, CD200, and CXCR4) in the process of MSCs' immunosuppressive properties. Furthermore, we discuss the principles and strategies for developing receptor-regulated MSCs and their mechanisms of action and the challenges of using MSCs as immunosuppressive therapies.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Fei Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Baeku Jin
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
43
|
Daltro SRT, Meira CS, Santos IP, Ribeiro dos Santos R, Soares MBP. Mesenchymal Stem Cells and Atopic Dermatitis: A Review. Front Cell Dev Biol 2020; 8:326. [PMID: 32478072 PMCID: PMC7240073 DOI: 10.3389/fcell.2020.00326] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are stromal-derived non-hematopoietic progenitor cells that reside in and can be expanded from various tissues sources of adult and neonatal origin, such as the bone marrow, umbilical cord, umbilical cord blood, adipose tissue, amniotic fluid, placenta, dental pulp and skin. The discovery of the immunosuppressing action of MSCs on T cells has opened new perspectives for their use as a therapeutic agent for immune-mediated disorders, including allergies. Atopic dermatitis (AD), a chronic and relapsing skin disorder that affects up to 20% of children and up to 3% of adults worldwide, is characterized by pruritic eczematous lesions, impaired cutaneous barrier function, Th2 type immune hyperactivation and, frequently, elevation of serum immunoglobulin E levels. Although, in the dermatology field, the application of MSCs as a therapeutic agent was initiated using the concept of cell replacement for skin defects and wound healing, accumulating evidence have shown that MSC-mediated immunomodulation can be applicable to the treatment of inflammatory/allergic skin disorders. Here we reviewed the pre-clinical and clinical studies and possible biological mechanisms of MSCs as a therapeutic tool for the treatment of atopic dermatitis.
Collapse
Affiliation(s)
| | | | | | - Ricardo Ribeiro dos Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Health Institute of Technology, National Industrial Learning Service - Integrated Manufacturing and Technology Campus (SENAI-CIMATEC), Salvador, Brazil
- National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Health Institute of Technology, National Industrial Learning Service - Integrated Manufacturing and Technology Campus (SENAI-CIMATEC), Salvador, Brazil
- National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Shin KO, Ha DH, Kim JO, Crumrine DA, Meyer JM, Wakefield JS, Lee Y, Kim B, Kim S, Kim HK, Lee J, Kwon HH, Park GH, Lee JH, Lim J, Park S, Elias PM, Park K, Yi YW, Cho BS. Exosomes from Human Adipose Tissue-Derived Mesenchymal Stem Cells Promote Epidermal Barrier Repair by Inducing de Novo Synthesis of Ceramides in Atopic Dermatitis. Cells 2020; 9:E680. [PMID: 32164386 PMCID: PMC7140723 DOI: 10.3390/cells9030680] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Atopic dermatitis (AD) is a multifactorial, heterogeneous disease associated with epidermal barrier disruption and intense systemic inflammation. Previously, we showed that exosomes derived from human adipose tissue-derived mesenchymal stem cells (ASC-exosomes) attenuate AD-like symptoms by reducing multiple inflammatory cytokine levels. Here, we investigated ASC-exosomes' effects on skin barrier restoration by analyzing protein and lipid contents. We found that subcutaneous injection of ASC-exosomes in an oxazolone-induced dermatitis model remarkably reduced trans-epidermal water loss, while enhancing stratum corneum (SC) hydration and markedly decreasing the levels of inflammatory cytokines such as IL-4, IL-5, IL-13, TNF-α, IFN-γ, IL-17, and TSLP, all in a dose-dependent manner. Interestingly, ASC-exosomes induced the production of ceramides and dihydroceramides. Electron microscopic analysis revealed enhanced epidermal lamellar bodies and formation of lamellar layer at the interface of the SC and stratum granulosum with ASC-exosomes treatment. Deep RNA sequencing analysis of skin lesions demonstrated that ASC-exosomes restores the expression of genes involved in skin barrier, lipid metabolism, cell cycle, and inflammatory response in the diseased area. Collectively, our results suggest that ASC-exosomes effectively restore epidermal barrier functions in AD by facilitating the de novo synthesis of ceramides, resulting in a promising cell-free therapeutic option for treating AD.
Collapse
Affiliation(s)
- Kyong-Oh Shin
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (Y.L.); (B.K.); (S.K.)
| | - Dae Hyun Ha
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (J.O.K.); (H.-k.K.); (J.H.L.); (J.L.); (S.P.)
| | - Jin Ock Kim
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (J.O.K.); (H.-k.K.); (J.H.L.); (J.L.); (S.P.)
| | - Debra A. Crumrine
- Department of Dermatology, University of California, NCIRE, and Veterans Affairs Medical Center, San Francisco, CA 94121, USA; (D.A.C.); (J.M.M.); (J.S.W.); (P.M.E.)
| | - Jason M. Meyer
- Department of Dermatology, University of California, NCIRE, and Veterans Affairs Medical Center, San Francisco, CA 94121, USA; (D.A.C.); (J.M.M.); (J.S.W.); (P.M.E.)
| | - Joan S. Wakefield
- Department of Dermatology, University of California, NCIRE, and Veterans Affairs Medical Center, San Francisco, CA 94121, USA; (D.A.C.); (J.M.M.); (J.S.W.); (P.M.E.)
| | - Yerin Lee
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (Y.L.); (B.K.); (S.K.)
| | - Bogyeong Kim
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (Y.L.); (B.K.); (S.K.)
| | - Sungeun Kim
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (Y.L.); (B.K.); (S.K.)
| | - Hyun-keun Kim
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (J.O.K.); (H.-k.K.); (J.H.L.); (J.L.); (S.P.)
| | - Joon Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea;
| | | | - Gyeong-Hun Park
- Department of Dermatology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong-si, Gyeonggi-do 431-060, Korea;
| | - Jun Ho Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (J.O.K.); (H.-k.K.); (J.H.L.); (J.L.); (S.P.)
| | - Jihye Lim
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (J.O.K.); (H.-k.K.); (J.H.L.); (J.L.); (S.P.)
| | - Sejeong Park
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (J.O.K.); (H.-k.K.); (J.H.L.); (J.L.); (S.P.)
| | - Peter M. Elias
- Department of Dermatology, University of California, NCIRE, and Veterans Affairs Medical Center, San Francisco, CA 94121, USA; (D.A.C.); (J.M.M.); (J.S.W.); (P.M.E.)
| | - Kyungho Park
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (Y.L.); (B.K.); (S.K.)
| | - Yong Weon Yi
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (J.O.K.); (H.-k.K.); (J.H.L.); (J.L.); (S.P.)
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (J.O.K.); (H.-k.K.); (J.H.L.); (J.L.); (S.P.)
| |
Collapse
|
45
|
Seo Y, Shin TH, Ahn JS, Oh SJ, Shin YY, Yang JW, Park HY, Shin SC, Kwon HK, Kim JM, Sung ES, Park GC, Lee BJ, Kim HS. Human Tonsil-Derived Mesenchymal Stromal Cells Maintain Proliferating and ROS-Regulatory Properties via Stanniocalcin-1. Cells 2020; 9:cells9030636. [PMID: 32155780 PMCID: PMC7140534 DOI: 10.3390/cells9030636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) from various sources exhibit different potential for stemness and therapeutic abilities. Recently, we reported a unique MSCs from human palatine tonsil (TMSCs) and their superior proliferation capacity compared to MSCs from other sources. However, unique characteristics of each MSC are not yet precisely elucidated. We investigated the role of stanniocalcin-1 (STC1), an anti-oxidative hormone, in the functions of TMSCs. We found that STC1 was highly expressed in TMSC compared with MSCs from bone marrow or adipose tissue. The proliferation, senescence and differentiation of TMSCs were assessed after the inhibition of STC1 expression. STC1 inhibition resulted in a significant decrease in the proliferation of TMSCs and did not affect the differentiation potential. To reveal the anti-oxidative ability of STC1 in TMSCs themselves or against other cell types, the generation of mitochondrial reactive oxygen species (ROS) in TMSC or ROS-mediated production of interleukin (IL)-1β from macrophage-like cells were detected. Interestingly, the basal level of ROS generation in TMSCs was significantly elevated after STC1 inhibition. Moreover, down-regulation of STC1 impaired the inhibitory effect of TMSCs on IL-1β production in macrophages. Taken together, these findings indicate that STC1 is highly expressed in TMSCs and plays a critical role in proliferating and ROS-regulatory abilities.
Collapse
Affiliation(s)
- Yoojin Seo
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Tae-Hoon Shin
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (T.-H.S.); (H.Y.P.)
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ji-Su Ahn
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Su-Jeong Oh
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Ye Young Shin
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Ji Won Yang
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Hee Young Park
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (T.-H.S.); (H.Y.P.)
| | - Sung-Chan Shin
- Department of Otorhinolaryngology, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (S.-C.S.); (H.-K.K.); (J.M.K.)
| | - Hyun-Keun Kwon
- Department of Otorhinolaryngology, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (S.-C.S.); (H.-K.K.); (J.M.K.)
| | - Ji Min Kim
- Department of Otorhinolaryngology, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (S.-C.S.); (H.-K.K.); (J.M.K.)
| | - Eui-Suk Sung
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Pusan National University School of Medicine, Yangsan Pusan National University Hospital, Yangsan 50612, Korea;
| | - Gi Cheol Park
- Department of Otolaryngology – Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea;
| | - Byung-Joo Lee
- Department of Otorhinolaryngology, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (S.-C.S.); (H.-K.K.); (J.M.K.)
- Correspondence: (B.-J.L.); (H.-S.K.); Tel.: +82-51-240-7675 (B.-J.L.); +82-51-510-8231 (H.-S.K.)
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Correspondence: (B.-J.L.); (H.-S.K.); Tel.: +82-51-240-7675 (B.-J.L.); +82-51-510-8231 (H.-S.K.)
| |
Collapse
|
46
|
Cannabinoids in the Pathophysiology of Skin Inflammation. Molecules 2020; 25:molecules25030652. [PMID: 32033005 PMCID: PMC7037408 DOI: 10.3390/molecules25030652] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/26/2020] [Accepted: 02/02/2020] [Indexed: 12/22/2022] Open
Abstract
Cannabinoids are increasingly-used substances in the treatment of chronic pain, some neuropsychiatric disorders and more recently, skin disorders with an inflammatory component. However, various studies cite conflicting results concerning the cellular mechanisms involved, while others suggest that cannabinoids may even exert pro-inflammatory behaviors. This paper aims to detail and clarify the complex workings of cannabinoids in the molecular setting of the main dermatological inflammatory diseases, and their interactions with other substances with emerging applications in the treatment of these conditions. Also, the potential role of cannabinoids as antitumoral drugs is explored in relation to the inflammatory component of skin cancer. In vivo and in vitro studies that employed either phyto-, endo-, or synthetic cannabinoids were considered in this paper. Cannabinoids are regarded with growing interest as eligible drugs in the treatment of skin inflammatory conditions, with potential anticancer effects, and the readiness in monitoring of effects and the facility of topical application may contribute to the growing support of the use of these substances. Despite the promising early results, further controlled human studies are required to establish the definitive role of these products in the pathophysiology of skin inflammation and their usefulness in the clinical setting.
Collapse
|
47
|
Li H, Tian Y, Xie L, Liu X, Huang Z, Su W. Mesenchymal stem cells in allergic diseases: Current status. Allergol Int 2020; 69:35-45. [PMID: 31445840 DOI: 10.1016/j.alit.2019.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Allergic diseases, which include asthma, allergic skin diseases, allergic rhinitis and allergic conjunctivitis, have already garnered worldwide public health attention over recent decades. Mesenchymal stem cells (MSCs) have gradually emerged as a potential method for treating allergic diseases due to their immunosuppressive characteristics, tissue repair ability and secretion of various biological factors. This potential of MSC-based therapy has been confirmed in clinical and preclinical studies, which report the therapeutic benefits of MSCs for various allergic diseases and explore the antiallergic mechanisms. In this review, we focus on the discoveries and biological mechanisms of MSCs as a therapeutic tool in allergic diseases. We discuss the challenges of conducting MSC studies as well as future directions.
Collapse
|
48
|
Mesenchymal Stem Cells Alleviate Moderate-to-Severe Psoriasis by Reducing the Production of Type I Interferon (IFN-I) by Plasmacytoid Dendritic Cells (pDCs). Stem Cells Int 2019; 2019:6961052. [PMID: 31827531 PMCID: PMC6885248 DOI: 10.1155/2019/6961052] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The anti-inflammatory and immunomodulatory properties of mesenchymal stem cells (MSCs) have been proposed to be involved in some autoimmune diseases and have been successfully tested in patients and mice. But their contribution to psoriasis and the underlying mechanisms involved remains elusive. Here, we explored the feasibility of using human umbilical cord-derived MSC (hUC-MSC) infusion as a therapeutic approach in an imiquimod- (IMQ-) induced psoriasis mouse model. MSC infusion were found to significantly reduce the severity and development of psoriasis, inhibit the infiltration of immune cells to the skin, and downregulate the expression of several proinflammatory cytokines and chemokines. Our results provide an explanation for the therapeutic effects of MSC infusion by first suppressing neutrophil function and then downregulating the production of type I interferon (IFN-I) by plasmacytoid dendritic cells (pDCs). Therefore, we discovered a novel mechanism of stem cell therapy for psoriasis. In summary, our results showed that MSC infusion could be an effective and safe treatment for psoriasis.
Collapse
|
49
|
Félix Garza ZC, Lenz M, Liebmann J, Ertaylan G, Born M, Arts ICW, Hilbers PAJ, van Riel NAW. Characterization of disease-specific cellular abundance profiles of chronic inflammatory skin conditions from deconvolution of biopsy samples. BMC Med Genomics 2019; 12:121. [PMID: 31420038 PMCID: PMC6698047 DOI: 10.1186/s12920-019-0567-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/31/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Psoriasis and atopic dermatitis are two inflammatory skin diseases with a high prevalence and a significant burden on the patients. Underlying molecular mechanisms include chronic inflammation and abnormal proliferation. However, the cell types contributing to these molecular mechanisms are much less understood. Recently, deconvolution methodologies have allowed the digital quantification of cell types in bulk tissue based on mRNA expression data from biopsies. Using these methods to study the cellular composition of the skin enables the rapid enumeration of multiple cell types, providing insight into the numerical changes of cell types associated with chronic inflammatory skin conditions. Here, we use deconvolution to enumerate the cellular composition of the skin and estimate changes related to onset, progress, and treatment of these skin diseases. METHODS A novel signature matrix, i.e. DerM22, containing expression data from 22 reference cell types, is used, in combination with the CIBERSORT algorithm, to identify and quantify the cellular subsets within whole skin biopsy samples. We apply the approach to public microarray mRNA expression data from the skin layers and 648 samples from healthy subjects and patients with psoriasis or atopic dermatitis. The methodology is validated by comparison to experimental results from flow cytometry and immunohistochemistry studies, and the deconvolution of independent data from isolated cell types. RESULTS We derived the relative abundance of cell types from healthy, lesional, and non-lesional skin and observed a marked increase in the abundance of keratinocytes and leukocytes in the lesions of both inflammatory dermatological conditions. The relative fraction of these cells varied from healthy to diseased skin and from non-lesional to lesional skin. We show that changes in the relative abundance of skin-related cell types can be used to distinguish between mild and severe cases of psoriasis and atopic dermatitis, and trace the effect of treatment. CONCLUSIONS Our analysis demonstrates the value of this new resource in interpreting skin-derived transcriptomics data by enabling the direct quantification of cell types in a skin sample and the characterization of pathological changes in tissue composition.
Collapse
Affiliation(s)
- Zandra C. Félix Garza
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Lenz
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
- Preventive Cardiology and Preventive Medicine – Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Joerg Liebmann
- Philips Electronics Netherlands B.V., Research, Eindhoven, The Netherlands
| | - Gökhan Ertaylan
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- VITO Health, VITO NV, Mol, Belgium
| | - Matthias Born
- Philips Electronics Netherlands B.V., Research, Eindhoven, The Netherlands
| | - Ilja C. W. Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Peter A. J. Hilbers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Natal A. W. van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
50
|
Regeneration of Dermis: Scarring and Cells Involved. Cells 2019; 8:cells8060607. [PMID: 31216669 PMCID: PMC6627856 DOI: 10.3390/cells8060607] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
There are many studies on certain skin cell specifications and their contribution to wound healing. In this review, we provide an overview of dermal cell heterogeneity and their participation in skin repair, scar formation, and in the composition of skin substitutes. The papillary, reticular, and hair follicle associated fibroblasts differ not only topographically, but also functionally. Human skin has a number of particular characteristics that are different from murine skin. This should be taken into account in experimental procedures. Dermal cells react differently to skin wounding, remodel the extracellular matrix in their own manner, and convert to myofibroblasts to different extents. Recent studies indicate a special role of papillary fibroblasts in the favorable outcome of wound healing and epithelial-mesenchyme interactions. Neofolliculogenesis can substantially reduce scarring. The role of hair follicle mesenchyme cells in skin repair and possible therapeutic applications is discussed. Participation of dermal cell types in wound healing is described, with the addition of possible mechanisms underlying different outcomes in embryonic and adult tissues in the context of cell population characteristics and extracellular matrix composition and properties. Dermal white adipose tissue involvement in wound healing is also overviewed. Characteristics of myofibroblasts and their activity in scar formation is extensively discussed. Cellular mechanisms of scarring and possible ways for its prevention are highlighted. Data on keloid cells are provided with emphasis on their specific characteristics. We also discuss the contribution of tissue tension to the scar formation as well as the criteria and effectiveness of skin substitutes in skin reconstruction. Special attention is given to the properties of skin substitutes in terms of cell composition and the ability to prevent scarring.
Collapse
|