1
|
Thakur B, Verma R, Bhatia A. Mutations in Necroptosis-Related Genes Reported in Breast Cancer: A Cosmic and Uniport Database-Based Study. Clin Breast Cancer 2025; 25:e341-e359. [PMID: 39794252 DOI: 10.1016/j.clbc.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025]
Abstract
Breast cancer (BC) now holds the top position as the primary reason of cancer-related fatalities worldwide, overtaking lung cancer. BC is classified into diverse categories depending on histopathological type, hormone receptor status, and gene expression profile, with ongoing evolution in their classifications. Cancer initiates and advances when there is a disruption in cell death pathways. In BC, the primary cell death pathway, apoptosis, experiences dysregulation across multiple stages. Ongoing studies aim to discover therapeutic targets that enhance cancer cell susceptibility to apoptosis. However, resistance to this therapy remains a significant challenge in treating BC. If apoptosis is hindered, investigating alternative pathways for cell death that can effectively eradicate BC cells during treatment becomes a valuable endeavor. In this context, necroptosis is gaining considerable focus as an alternative cell death pathway. Necroptosis represents a programmed version of necrosis which shares its key regulators with apoptosis. When apoptosis is hampered, necroptosis serves as an alternative cell death pathway even in physiological conditions like formation of limbs during embryonic development. Additionally, it comes into play during bacterial and viral infections when the apoptosis machinery is hijacked and inhibited by proteins from these pathogens. Studies reveal that in BC, mutations significantly impact molecules in the apoptosis pathway, contributing to the onset, advancement, and multiplication of cancer cells. Although some studies do indicate that the functionality of necroptosis pathway may be compromised in malignancy the status of its key molecules remains largely unknown. In this article, we aim to gather the known mutations present in key molecules of necroptosis among various subtypes of BC, utilizing data from the Cosmic and UniProt databases. The same may help to enhance the development of therapeutic strategies to effectively induce necroptosis in apoptosis-resistant BCs.
Collapse
Affiliation(s)
- Banita Thakur
- Department of General Surgery, Stanford university, CA, USA
| | - Rohit Verma
- Department of Neurosurgery, Stanford University, CA, USA
| | - Alka Bhatia
- Department of Experimental Medicine & Biotechnology, PGIMER, Chandigarh, India.
| |
Collapse
|
2
|
Xiong Z, Zhou X, Li Y, Yang L. PACAP inhibits sepsis-associated acute lung injury by inhibiting the Sp1/AQP1 pathway. Peptides 2025:171411. [PMID: 40409714 DOI: 10.1016/j.peptides.2025.171411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/05/2025] [Accepted: 05/21/2025] [Indexed: 05/25/2025]
Abstract
Sepsis-induced acute lung injury (ALI) represents a severe pathological state marked by uncontrolled inflammation, redox imbalance, and alveolar-capillary barrier breakdown. Here, we evaluated the therapeutic potential of pituitary adenylate cyclase-activating polypeptide (PACAP) in a murine sepsis-ALI model. PACAP treatment notably ameliorated histological damage, reduced oxidative stress biomarkers, and mitigated inflammatory processes, including neutrophil accumulation and pro-inflammatory cytokine release. Molecular analysis revealed PACAP-mediated downregulation of Aquaporin-1 (AQP1) and specificity protein 1 (Sp1), key regulators of alveolar fluid homeostasis and inflammatory signaling. Genetic Sp1 overexpression abrogated PACAP-induced AQP1 suppression, validating the Sp1/AQP1 signaling pathway as a critical mediator of PACAP's protective effects. Additionally, in vitro MTT assays on RAW 264.7 macrophages demonstrated that PACAP has low toxicity at biologically relevant levels. These findings demonstrate PACAP's therapeutic promise for sepsis-ALI through modulation of the Sp1/AQP1 axis.
Collapse
Affiliation(s)
- Zhuangzhi Xiong
- Department of EmergencyDepartment, Wuhan Hankou Hospital, Wuhan, Hubei, 430012, China
| | - Xiaoqin Zhou
- Bishan Hospital of Chongqing medical university, Bishan Hospital of Chongqing, Chongqing, 402760, China
| | - Yufeng Li
- Department of Physical Examination, Xianning Central Hospital,The First Affiliated Hospital Of Hubei University Of Science And Technology, Xianning, Hubei, 437100, China.
| | - Liu Yang
- Bishan Hospital of Chongqing medical university, Bishan Hospital of Chongqing, Chongqing, 402760, China.
| |
Collapse
|
3
|
Drewniak P, Xiao P, Ladizhansky V, Bondar AN, Brown LS. A conserved H-bond network in human aquaporin-1 is necessary for native folding and oligomerization. Biophys J 2024; 123:4285-4303. [PMID: 39425471 DOI: 10.1016/j.bpj.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024] Open
Abstract
Aquaporins (AQPs) are α-helical transmembrane proteins that conduct water through membranes with high selectivity and permeability. For human AQP1, in addition to the functional Asn-Pro-Ala motifs and the aromatic/Arg selectivity filter within the pore, there are several highly conserved residues that form an expansive hydrogen-bonding network. Previous solid-state nuclear magnetic resonance studies and structural conservation analysis have detailed which residues may be involved in this network. We explored this network by mutating the side chains or backbones involved in hydrogen-bonding, generating the following mutants: N127A, V133P, E142A, T187A, R195A, and S196A. The fold and stability of these mutants were assessed with attenuated total reflection Fourier transform infrared spectroscopy coupled with hydrogen/deuterium exchange upon increasing temperature. We found that replacement of any of the chosen residues to alanine leads to either partial instability or outright misfolding at room temperature, with the latter being most pronounced for the N127A, V133P, T187A, and R195A mutants. Deconvolution analysis of the amide I band revealed considerable secondary structure deviations, with some mutants exhibiting new random coil and β sheet structures. We also found that some of these mutations potentially disrupt the oligomerization of human AQP1. BN-PAGE and DLS data provide evidence toward the loss of tetramers within most of the mutants, meanwhile only the S196A mutant retains tetrameric organization. The molecular dynamics simulation of the wild-type, and the N127A, E142A, and T187A mutants show that these mutations result in major rearrangements of intra- and intermonomer hydrogen-bond networks. Overall, we show that specific point mutations that perturb hydrogen-bonding clusters result in severe misfolding in hAQP1 and disruption of its oligomerization. These data provide valuable insight into the structural stability of human aquaporin-1 and have implications toward other members of the AQP family, as these networks are largely conserved among a variety of human and nonmammalian AQP homologs.
Collapse
Affiliation(s)
- Philip Drewniak
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Peng Xiao
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Vladimir Ladizhansky
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Atomiștilor 405, Măgurele 077125, Romania; Forschungszentrum Jülich, Institute for Neuroscience and Medicine (INM), Computational Biomedicine (INM-9), Wilhelm-Johnen Straße, 5428 Jülich, Germany.
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Veshkini A, Kühn C, Dengler F, Bachmann L, Liermann W, Helm C, Ulrich R, Delling C, Hammon HM. Cryptosporidium parvum infection alters the intestinal mucosa transcriptome in neonatal calves: impacts on epithelial barriers and transcellular transport systems. Front Cell Infect Microbiol 2024; 14:1495309. [PMID: 39703373 PMCID: PMC11656319 DOI: 10.3389/fcimb.2024.1495309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Cryptosporidium parvum (C. parvum) is the most prevalent enteric protozoan parasite causing infectious diarrhea in neonatal calves worldwide with a direct negative impact on their health and welfare. This study utilized next-generation sequencing (NGS) to deepen our understanding of intestinal epithelial barriers and transport mechanisms in the pathophysiology of infectious diarrhea in neonatal calves, which could potentially unveil novel solutions for treatment. Methods At day 1 of life, male Holstein-Friesian calves were either orally infected (n = 5) or not (control group, n = 5) with C. parvum oocysts (in-house strain LE-01-Cp-15). On day 8 after infection, calves were slaughtered and jejunum mucosa samples were taken. The RNA was extracted from collected samples and subjected to sequencing. Differentially expressed genes (DEG) between the infected and CTRL groups were assessed using DESeq2 at a false discovery rate < 0.05 and used for gene ontology (GO) and pathway enrichment analysis in Cytoscape (v3.9.1). Results and discussion To study the pathophysiology of infectious diarrhea on intestinal permeability, 459 genes related to epithelial cell barrier integrity and paracellular and transmembrane transport systems were selected from 12,908 identified genes in mucus. Among, there were 61 increased and 109 decreased gene transcripts belonged to adhesion molecules (e.g. ADGRD1 and VCAM1), ATP-binding cassette (ABC, e.g. ABCC2 and ABCD1) and solute carrier (SLC, e.g. SLC28A2 and SLC38A3) transporters, and ion channels (e.g. KCNJ15). Our results suggest deregulation of cellular junctions and thus a possibly increased intestinal permeability, whereas deregulation of ABC and SLC transporters and ion channels may influence the absorption/secretion of amino acids, carbohydrates, fats, and organic compounds, as well as acid-based balance and osmotic hemostasis. Besides pathogen-induced gene expression alterations, part of the DEG may have been triggered or consequently affected by inflammatory mechanisms. The study provided a deeper understanding of the pathophysiology of infectious diarrhea in neonatal calves and the host-pathogen interactions at the transcript level. For further studies with a particular focus on the transport system, these results could lead to a new approach to elucidating pathophysiological regulatory mechanisms.
Collapse
Affiliation(s)
- Arash Veshkini
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Christa Kühn
- Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
- Agricultural and Environmental Faculty, University Rostock, Rostock, Germany
| | - Franziska Dengler
- Institute of Animal Sciences, University of Hohenheim, Hohenheim, Germany
| | - Lisa Bachmann
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Faculty of Agriculture and Food Science, University of Applied Science Neubrandenburg, Neubrandenburg, Germany
| | - Wendy Liermann
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Christiane Helm
- Institute for Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Reiner Ulrich
- Institute for Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Cora Delling
- Institute of Veterinary Parasitology, Leipzig University, Leipzig, Germany
| | - Harald M. Hammon
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
5
|
Edamana S, Login FH, Riishede A, Dam VS, Kirkegaard T, Nejsum LN. The water channels aquaporin-1 and aquaporin-3 interact with and affect the cell polarity protein Scribble in 3D in vitro models of breast cancer. Am J Physiol Cell Physiol 2024; 327:C1323-C1334. [PMID: 39279492 DOI: 10.1152/ajpcell.00094.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Cellular changes in carcinomas include alterations in cell proliferation, cell migration, cell-cell adhesion, and cellular polarity. In vitro studies have revealed that the water channels, aquaporin-1 (AQP1) and AQP3, can influence cell migration and cell-cell adhesion. Of note, we previously showed that AQP1 overexpression reduced levels of cell-cell adhesion proteins, whereas AQP3 increased levels when overexpressed in normal epithelial cells. Expression of AQP1 and AQP3 in breast carcinoma is associated with lymph node metastasis, recurrence, and poor survival of patients with breast cancer. In this study, we investigated if AQP1 and AQP3 affected cell polarity in breast cancer by studying the relationship between the major polarity protein Scribble and AQP1 and AQP3. In breast cancer tissue samples, the protein expression of AQP1, AQP3, and Scribble did not show an obvious correlation. However, in a GST pull-down assay, AQP1 and AQP3 interacted with Scribble. AQP1 overexpression reduced the size of 3D spheroids as well as reduced Scribble levels at cell-cell contacts, whereas AQP3 overexpression showed no significant change in spheroid size compared with control, AQP3 overexpression also reduced Scribble levels at cell-cell contacts. Of note, AQP1 overexpression increased cell migration and induced cell detachment and dissemination from migrating breast cancer cell sheets, whereas AQP3 overexpression did not. Thus, AQP1 and AQP3 differentially affect 3D-grown breast cancer spheroids, and especially AQP1 may contribute to cancer development and spread via negatively affecting cellular junctions and cell polarity proteins as well as increasing cell migration and cell detachment.NEW & NOTEWORTHY Overexpression of the water channels aquaporin-1 and aquaporin-3 reduced levels of the key polarity protein Scribble at cell-cell junctions, suggesting potential implications in breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andreas Riishede
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vibeke S Dam
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Teresa Kirkegaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Karimi N, Ahmadi V. Aquaporin Channels in Skin Physiology and Aging Pathophysiology: Investigating Their Role in Skin Function and the Hallmarks of Aging. BIOLOGY 2024; 13:862. [PMID: 39596817 PMCID: PMC11592281 DOI: 10.3390/biology13110862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
This study examines the critical role of aquaporins (AQPs) in skin physiology and aging pathophysiology. The skin plays a vital role in maintaining homeostasis by acting as a protective barrier against external pathogens and excessive water loss, while also contributing to the appearance and self-esteem of individuals. Key physiological features, such as elasticity and repair capability, are essential for its proper function. However, with aging, these characteristics deteriorate, reducing the skin's ability to tolerate environmental stressors which contribute to external aging as well as internal aging processes, which negatively affect barrier function, immune response, and overall well-being. AQPs, primarily known for facilitating water transport, are significant for normal skin functions, including hydration and the movement of molecules like glycerol and hydrogen peroxide, which influence various cellular processes and functions. In this context, we categorized aquaporin dysfunction into several hallmarks of aging, including mitochondrial dysfunction, cellular senescence, stem cell depletion, impaired macroautophagy, dysbiosis, and inflamm-aging. Eight aquaporins (AQP1, 3, 5, 7, 8, 9, 10, and 11) are expressed in various skin cells, regulating essential processes such as cell migration, proliferation, differentiation, and also immune response. Dysregulation or altered expression of these proteins can enhance skin aging and related pathologies by activating these hallmarks. This study provides valuable insights into the potential of targeting aquaporins to mitigate skin aging and improve skin physiologic functions.
Collapse
Affiliation(s)
- Nazli Karimi
- Physiology Department, Medical Faculty, Hacettepe University, Ankara 06800, Turkey
| | - Vahid Ahmadi
- Dermatology Department, Beytepe Murat Erdi Eker State Hospital, Ankara 06800, Turkey
| |
Collapse
|
7
|
Yun X, Niedermeyer S, Andrade MR, Jiang H, Suresh K, Kolb T, Damarla M, Shimoda LA. Aquaporin 1 confers apoptosis resistance in pulmonary arterial smooth muscle cells from the SU5416 hypoxia rat model. Physiol Rep 2024; 12:e16156. [PMID: 39175041 PMCID: PMC11341275 DOI: 10.14814/phy2.16156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Pulmonary hypertension (PH) arises from increased pulmonary vascular resistance due to contraction and remodeling of the pulmonary arteries. The structural changes include thickening of the smooth muscle layer from increased proliferation and resistance to apoptosis. The mechanisms underlying apoptosis resistance in PH are not fully understood. In cancer cells, high expression of aquaporin 1 (AQP1), a water channel, is associated with apoptosis resistance. We showed AQP1 protein was expressed in pulmonary arterial smooth muscle cells (PASMCs) and upregulated in preclinical PH models. In this study, we used PASMCs isolated from control male rats and the SU5416 plus hypoxia (SuHx) model to test the role of AQP1 in modulating susceptibility to apoptosis. We found the elevated level of AQP1 in PASMCs from SuHx rats was necessary for resistance to apoptosis and that apoptosis resistance could be conferred by increasing AQP1 in control PASMCs. In exploring the downstream pathways involved, we found AQP1 levels influence the expression of Bcl-2, with enhanced AQP1 levels corresponding to increased Bcl-2 expression, reducing the ratio of BAX to Bcl-2, consistent with apoptosis resistance. These results provide a mechanism by which AQP1 can regulate PASMC fate.
Collapse
MESH Headings
- Animals
- Aquaporin 1/metabolism
- Aquaporin 1/genetics
- Apoptosis
- Male
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/cytology
- Rats
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Pyrroles/pharmacology
- Indoles/pharmacology
- Hypoxia/metabolism
- Rats, Sprague-Dawley
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Cells, Cultured
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Disease Models, Animal
Collapse
Affiliation(s)
- Xin Yun
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Shannon Niedermeyer
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Manuella Ribas Andrade
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Karthik Suresh
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Todd Kolb
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
8
|
Nakhjavani M, Smith E, Yeo K, Tomita Y, Price TJ, Yool A, Townsend AR, Hardingham JE. Differential antiangiogenic and anticancer activities of the active metabolites of ginsenoside Rg3. J Ginseng Res 2024; 48:171-180. [PMID: 38465222 PMCID: PMC10920002 DOI: 10.1016/j.jgr.2021.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023] Open
Abstract
Background Epimers of ginsenoside Rg3 (Rg3) have a low bioavailability and are prone to deglycosylation, which produces epimers of ginsenoside Rh2 (S-Rh2 and R-Rh2) and protopanaxadiol (S-PPD and R-PPD). The aim of this study was to compare the efficacy and potency of these molecules as anti-cancer agents. Methods Crystal violet staining was used to study the anti-proliferatory action of the molecules on a human epithelial breast cancer cell line, MDA-MB-231, and human umbilical vein endothelial cells (HUVEC) and compare their potency. Cell death and cell cycle were studied using flow cytometry and mode of cell death was studied using live cell imaging. Anti-angiogenic effects of the drug were studied using loop formation assay. Molecular docking showed the interaction of these molecules with vascular endothelial growth factor receptor-2 (VEGFR2) and aquaporin (AQP) water channels. VEGF bioassay was used to study the interaction of Rh2 with VEGFR2, in vitro. Results HUVEC was the more sensitive cell line to the anti-proliferative effects of S-Rh2, S-PPD and R-PPD. The molecules induced necroptosis/necrosis in MDA-MB-231 and apoptosis in HUVEC. S-Rh2 was the most potent inhibitor of loop formation. In silico molecular docking predicted a good binding score between Rh2 or PPD and the ATP-binding pocket of VEGFR2. VEGF bioassay showed that Rh2 was an allosteric modulator of VEGFR2. In addition, SRh2 and PPD had good binding scores with AQP1 and AQP5, both of which play roles in cell migration and proliferation. Conclusion The combination of these molecules might be responsible for the anti-cancer effects observed by Rg3.
Collapse
Affiliation(s)
- Maryam Nakhjavani
- Molecular Oncology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia
| | - Eric Smith
- Molecular Oncology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Kenny Yeo
- Molecular Oncology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Yoko Tomita
- Molecular Oncology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Medical Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA, Australia
| | - Timothy J. Price
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Medical Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA, Australia
| | - Andrea Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Amanda R. Townsend
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Medical Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA, Australia
| | - Jennifer E. Hardingham
- Molecular Oncology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
9
|
Liu Q, Zhu J, Huang Z, Zhang X, Yang J. Identification of Novel Cuproptosis-Related Genes Mediating the Prognosis and Immune Microenvironment in Cholangiocarcinoma. Technol Cancer Res Treat 2024; 23:15330338241239139. [PMID: 38613350 PMCID: PMC11015765 DOI: 10.1177/15330338241239139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Cuproptosis is a novel type of mediated cell death strongly associated with the progression of several cancers and has been implicated as a potential therapeutic target. However, the role of cuproptosis in cholangiocarcinoma for prognostic prediction, subgroup classification, and therapeutic strategies remains largely unknown. METHODS A systematic analysis was conducted among 146 cuproptosis-related genes and clinical information based on independent mRNA and protein datasets to elucidate the potential mechanisms and prognostic prediction value of cuproptosis-related genes. A 10-cuproptosis-related gene prediction model was constructed, and its effects on cholangiocarcinoma prognosis were significantly connected to poor patient survival. Additionally, the expression patterns of our model included genes that were validated with several cholangiocarcinoma cancer cell lines and a normal biliary epithelial cell line. RESULTS First, a 10-cuproptosis-related gene signature (ADAM9, ADAM17, ALB, AQP1, CDK1, MT2A, PAM, SOD3, STEAP3, and TMPRSS6) displayed excellent predictive performance for the overall survival of cholangiocarcinoma. The low-cuproptosis group had a significantly better prognosis than the high-cuproptosis group with transcriptome and protein cohorts. Second, compared with the high-risk and low-risk groups, the 2 groups displayed distinct tumor microenvironments, reduced proportions of endothelial cells, and increased levels of cancer-associated fibroblasts based on CIBERSORTx and EPIC analyses. Third, patients' sensitivities to chemotherapeutic drugs and immune checkpoints revealed distinctive differences between the 2 groups. Finally, in replicating the expression patterns of the 10 genes, these results were validated with quantitative real-time polymerase chain reaction results validating the abnormal expression pattern of the target genes in cholangiocarcinoma. CONCLUSIONS Collectively, we established and verified an effective prognostic model that could separate cholangiocarcinoma patients into 2 heterogeneous cuproptosis subtypes based on the molecular or protein characteristics of 10 cuproptosis-related genes. These findings may provide potential benefits for unveiling molecular characteristics and defining subgroups could improve the early diagnosis and individualized treatment of cholangiocarcinoma patients.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Jianpeng Zhu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhicheng Huang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, China
| |
Collapse
|
10
|
Jariani A, Kakroodi ST, Arabfard M, Jamialahmadi T, Rahimi M, Sahebkar A. Identification of Key Genes in Angiogenesis of Breast and Prostate Cancers in the Context of Different Cell Types. Curr Med Chem 2024; 31:1595-1605. [PMID: 36999716 DOI: 10.2174/0929867330666230331101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/27/2022] [Accepted: 02/03/2023] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Angiogenesis involves the development of new blood vessels. Biochemical signals start this process in the body, which is followed by migration, growth, and differentiation of endothelial cells that line the inside wall of blood vessels. This process is vital for the growth of cancer cells and tumors. MATERIALS AND METHODS We started our analysis by composing a list of genes that have a validated impact in humans with respect to angiogenesis-related phenotypes. Here, we have investigated the expression patterns of angiogenesis-related genes in the context of previously published single-cell RNA-Seq data from prostate and breast cancer samples. RESULTS Using a protein-protein interaction network, we showed how different modules of angiogenesis-related genes are overexpressed in different cell types. In our results, genes, such as ACKR1, AQP1, and EGR1, showed a strong cell type-dependent overexpression pattern in the two investigated cancer types, which can potentially be helpful in the diagnosis and follow-up of patients with prostate and breast cancer. CONCLUSION Our work demonstrates how different biological processes in distinct cell types contribute to the angiogenesis process, which can provide clues regarding the potential application of targeted inhibition of the angiogenesis process.
Collapse
Affiliation(s)
- Abbas Jariani
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rahimi
- Clinical care and Health Promotion Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Guan Y, Han J, Chen D, Zhan Y, Chen J. Aquaporin 1 overexpression may enhance glioma tumorigenesis by interacting with the transcriptional regulation networks of Foxo4, Maz, and E2F families. Chin Neurosurg J 2023; 9:34. [PMID: 38057925 DOI: 10.1186/s41016-023-00342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/06/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND The glioblastoma has served as a valuable experimental model system for investigating the growth and invasive properties of glioblastoma. Aquaporin-1 (AQP1) in facilitating cell migration and potentially contributing to tumor progression. In this study, we analyzed the role of AQP1 overexpression in glioblastoma and elucidated the main mechanisms involved. METHODS AQP1 overexpression recombinant vector was introduced into C6 rat glioma cells to construct an AQP1 overexpression C6 cell line, and its effect on cell viability and migration ability was detected by MTT and Transwell. RNA was extracted by Trizol method for gene sequencing and transcriptomics analysis, and the differentially expressed genes (DEGs) were enriched for up- and downregulated genes by Principal component analysis (PCA), and the molecular mechanism of AQP1 overexpression was analyzed in comparison with the control group using the NCBI GEO database. Statistical analysis was performed using Mann-Whitney paired two tailed t test. RESULTS The cell viability of AQP1-transfected cell lines increased by 23% and the mean distance traveled increased by 67% compared with the control group. Quantitative analysis of gene expression showed that there were 12,121 genes with an average transcripts per million (TPM) value greater than 1. DEGs accounted for 13% of the genes expressed, with the highest correlation with upregulated genes being FOXO4 and MAZ, and the highest with downregulated genes being E2F TFs. CONCLUSIONS AQP1 may be implicated in glioma formation by interacting with the transcriptional regulation networks involving the FOXO4, MAZ, and E2F1/2. These findings shed light on the potential significance of AQP1 in glioma pathogenesis and warrant further investigations to unravel the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Ying Guan
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical College, Haikou City, 570102, Hainan Province, China
| | - Jinhua Han
- Department of Radiology, The First Affiliated Hospital of Hainan Medical College, Haikou City, 570102, Hainan Province, China
| | - Die Chen
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical College, Haikou City, 570102, Hainan Province, China
| | - Yuefu Zhan
- Department of Radiology, Hainan Children's Hospital, Haikou City, 571103, Hainan Province, China
| | - Jianqiang Chen
- Department of Radiology, The First Affiliated Hospital of Hainan Medical College, Haikou City, 570102, Hainan Province, China.
| |
Collapse
|
12
|
Camillo L, Esposto E, Gironi LC, Airoldi C, Alhamed SA, Boldorini RL, Zavattaro E, Savoia P. Aquaporin 1, Aquaporin 8, and Aquaporin 9 Expressions in Malignant Melanoma: A Possible Correlation with Prognosis and Clinical Outcome. J Clin Med 2023; 12:7137. [PMID: 38002749 PMCID: PMC10672695 DOI: 10.3390/jcm12227137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Aquaporins (AQPs) are small transmembrane proteins able to facilitate the passive transport of water and small molecules throughout cells. Several studies have demonstrated that modulation of AQPs' expression contributes to cancer development and progression. However, to date, very little is known about their involvement in malignant melanoma (MM) progression. In this retrospective observational study, we evaluated the correlation between AQP1, -8, and -9 expression and the clinical outcomes of 58 patients diagnosed with MM from 2014 to 2016, of which 14 were diagnosed as nodular melanoma (NM) and 44 as superficial spreading melanoma (SSM). In general, we found that AQPs were more highly expressed in SSM than NM, suggesting a potential correlation with prognosis. While analyzing the expression of each AQP, we discovered that AQP1 was associated with a specific body site and low mitotic index, AQP8 with a negative sentinel lymph node, and AQP9 with the Breslow thickness and lack of ulcerations. Together with the survival analysis performed in this study, our results suggest that the expression of AQP1, -8, and -9 could be correlated with a better prognosis for malignant melanoma.
Collapse
Affiliation(s)
- Lara Camillo
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.A.A.); (R.L.B.); (P.S.)
| | - Elia Esposto
- AOU Maggiore della Carità, 28100 Novara, Italy; (E.E.); (L.C.G.)
| | | | - Chiara Airoldi
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Shahd Abdullah Alhamed
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.A.A.); (R.L.B.); (P.S.)
| | - Renzo Luciano Boldorini
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.A.A.); (R.L.B.); (P.S.)
| | - Elisa Zavattaro
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.A.A.); (R.L.B.); (P.S.)
| | - Paola Savoia
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.A.A.); (R.L.B.); (P.S.)
| |
Collapse
|
13
|
Toader C, Tataru CP, Florian IA, Covache-Busuioc RA, Dumitrascu DI, Glavan LA, Costin HP, Bratu BG, Ciurea AV. From Homeostasis to Pathology: Decoding the Multifaceted Impact of Aquaporins in the Central Nervous System. Int J Mol Sci 2023; 24:14340. [PMID: 37762642 PMCID: PMC10531540 DOI: 10.3390/ijms241814340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaporins (AQPs), integral membrane proteins facilitating selective water and solute transport across cell membranes, have been the focus of extensive research over the past few decades. Particularly noteworthy is their role in maintaining cellular homeostasis and fluid balance in neural compartments, as dysregulated AQP expression is implicated in various degenerative and acute brain pathologies. This article provides an exhaustive review on the evolutionary history, molecular classification, and physiological relevance of aquaporins, emphasizing their significance in the central nervous system (CNS). The paper journeys through the early studies of water transport to the groundbreaking discovery of Aquaporin 1, charting the molecular intricacies that make AQPs unique. It delves into AQP distribution in mammalian systems, detailing their selective permeability through permeability assays. The article provides an in-depth exploration of AQP4 and AQP1 in the brain, examining their contribution to fluid homeostasis. Furthermore, it elucidates the interplay between AQPs and the glymphatic system, a critical framework for waste clearance and fluid balance in the brain. The dysregulation of AQP-mediated processes in this system hints at a strong association with neurodegenerative disorders such as Parkinson's Disease, idiopathic normal pressure hydrocephalus, and Alzheimer's Disease. This relationship is further explored in the context of acute cerebral events such as stroke and autoimmune conditions such as neuromyelitis optica (NMO). Moreover, the article scrutinizes AQPs at the intersection of oncology and neurology, exploring their role in tumorigenesis, cell migration, invasiveness, and angiogenesis. Lastly, the article outlines emerging aquaporin-targeted therapies, offering a glimpse into future directions in combatting CNS malignancies and neurodegenerative diseases.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
14
|
Dan Q, Jiang X, Wang R, Dai Z, Sun D. Biogenic Imaging Contrast Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207090. [PMID: 37401173 PMCID: PMC10477908 DOI: 10.1002/advs.202207090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/08/2023] [Indexed: 07/05/2023]
Abstract
Imaging contrast agents are widely investigated in preclinical and clinical studies, among which biogenic imaging contrast agents (BICAs) are developing rapidly and playing an increasingly important role in biomedical research ranging from subcellular level to individual level. The unique properties of BICAs, including expression by cells as reporters and specific genetic modification, facilitate various in vitro and in vivo studies, such as quantification of gene expression, observation of protein interactions, visualization of cellular proliferation, monitoring of metabolism, and detection of dysfunctions. Furthermore, in human body, BICAs are remarkably helpful for disease diagnosis when the dysregulation of these agents occurs and can be detected through imaging techniques. There are various BICAs matched with a set of imaging techniques, including fluorescent proteins for fluorescence imaging, gas vesicles for ultrasound imaging, and ferritin for magnetic resonance imaging. In addition, bimodal and multimodal imaging can be realized through combining the functions of different BICAs, which helps overcome the limitations of monomodal imaging. In this review, the focus is on the properties, mechanisms, applications, and future directions of BICAs.
Collapse
Affiliation(s)
- Qing Dan
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Xinpeng Jiang
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Run Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Desheng Sun
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| |
Collapse
|
15
|
Login FH, Nejsum LN. Aquaporin water channels: roles beyond renal water handling. Nat Rev Nephrol 2023; 19:604-618. [PMID: 37460759 DOI: 10.1038/s41581-023-00734-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 08/18/2023]
Abstract
Aquaporin (AQP) water channels are pivotal to renal water handling and therefore in the regulation of body water homeostasis. However, beyond the kidney, AQPs facilitate water reabsorption and secretion in other cells and tissues, including sweat and salivary glands and the gastrointestinal tract. A growing body of evidence has also revealed that AQPs not only facilitate the transport of water but also the transport of several small molecules and gases such as glycerol, H2O2, ions and CO2. Moreover, AQPs are increasingly understood to contribute to various cellular processes, including cellular migration, adhesion and polarity, and to act upstream of several intracellular and intercellular signalling pathways to regulate processes such as cell proliferation, apoptosis and cell invasiveness. Of note, several AQPs are highly expressed in multiple cancers, where their expression can correlate with the spread of cancerous cells to lymph nodes and alter the response of cancers to conventional chemotherapeutics. These data suggest that AQPs have diverse roles in various homeostatic and physiological systems and may be exploited for prognostics and therapeutic interventions.
Collapse
Affiliation(s)
- Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
16
|
Kirkegaard T, Riishede A, Tramm T, Nejsum LN. Aquaglyceroporins in Human Breast Cancer. Cells 2023; 12:2185. [PMID: 37681917 PMCID: PMC10486483 DOI: 10.3390/cells12172185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins are water channels that facilitate passive water transport across cellular membranes following an osmotic gradient and are essential in the regulation of body water homeostasis. Several aquaporins are overexpressed in breast cancer, and AQP1, AQP3 and AQP5 have been linked to spread to lymph nodes and poor prognosis. The subgroup aquaglyceroporins also facilitate the transport of glycerol and are thus involved in cellular metabolism. Transcriptomic analysis revealed that the three aquaglyceroporins, AQP3, AQP7 and AQP9, but not AQP10, are overexpressed in human breast cancer. It is, however, unknown if they are all expressed in the same cells or have a heterogeneous expression pattern. To investigate this, we employed immunohistochemical analysis of serial sections from human invasive ductal and lobular breast cancers. We found that AQP3, AQP7 and AQP9 are homogeneously expressed in almost all cells in both premalignant in situ lesions and invasive lesions. Thus, potential intervention strategies targeting cellular metabolism via the aquaglyceroporins should consider all three expressed aquaglyceroporins, namely AQP3, AQP7 and AQP9.
Collapse
Affiliation(s)
- Teresa Kirkegaard
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Andreas Riishede
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
| | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Lene N. Nejsum
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
| |
Collapse
|
17
|
Calamita G, Delporte C. Insights into the Function of Aquaporins in Gastrointestinal Fluid Absorption and Secretion in Health and Disease. Cells 2023; 12:2170. [PMID: 37681902 PMCID: PMC10486417 DOI: 10.3390/cells12172170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins (AQPs), transmembrane proteins permeable to water, are involved in gastrointestinal secretion. The secretory products of the glands are delivered either to some organ cavities for exocrine glands or to the bloodstream for endocrine glands. The main secretory glands being part of the gastrointestinal system are salivary glands, gastric glands, duodenal Brunner's gland, liver, bile ducts, gallbladder, intestinal goblet cells, exocrine and endocrine pancreas. Due to their expression in gastrointestinal exocrine and endocrine glands, AQPs fulfill important roles in the secretion of various fluids involved in food handling. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to gastrointestinal secretion.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
18
|
Zhuang MQ, Jiang XL, Liu WD, Xie QH, Wang P, Dong LW, Hu HP, Zhou HB, Zhou YB. Aquaporin 1 is a prognostic marker and inhibits tumour progression through downregulation of Snail expression in intrahepatic cholangiocarcinoma. Dig Liver Dis 2023; 55:1133-1140. [PMID: 36642562 DOI: 10.1016/j.dld.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Recently, some studies have suggested a link between AQP1 and cancer progression. AIMS The aim of the present study was to investigate the influence of AQP1 on the clinicopathology and prognosis of intrahepatic cholangiocarcinoma (ICC) patients. METHODS We retrospectively detected the expression of AQP1 protein in 307 patients with ICC who underwent partial hepatectomy. Western blot analysis was used to detect AQP1 protein levels in stable AQP1 overexpression and knockdown cell lines. The influence of AQP1 on the invasion and metastasis ability of ICC cells was assessed by wound-healing and Transwell assays in vitro as well as by a splenic liver metastasis model in vivo. RESULTS Positive membranous AQP1 expression was identified in 34.2% (105/307) of the ICC specimens. Survival data revealed that positive AQP1 expression was significantly associated with favourable disease-free survival (DFS) and overall survival (OS) (p = 0.0290 and p = 0003, respectively). Moreover, high AQP1 expression inhibited the invasion and migration of ICC cells in vitro as well as inhibited liver metastasis in nude mice. Mechanistically, high AQP1 expression in ICC cells increased the levels of E-cadherin but decreased the levels of the Snail transcription factor. CONCLUSIONS AQP1 expression is associated with a favourable prognosis in ICC patients. AQP1 inhibits ICC cell invasion, metastasis, and epithelial-mesenchymal transition (EMT) through downregulation of Snail expression.
Collapse
Affiliation(s)
- Meng-Qi Zhuang
- Department of Digestive Medicine, Second Affiliated Hospital, Anhui Medical College, Anhui 230000, China; Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Xiao-Lan Jiang
- Department of Digestive Medicine, First people's Hospital of Honghe autonomous Prefecture, Yunnan Province 661199, China
| | - Wen-Di Liu
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Qiao-Hua Xie
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Peng Wang
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Li-Wei Dong
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - He-Ping Hu
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Hua-Bang Zhou
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China.
| | - Yu-Bao Zhou
- Department of Digestive Medicine, Second Affiliated Hospital, Anhui Medical College, Anhui 230000, China.
| |
Collapse
|
19
|
Middelkoop MA, Don EE, Hehenkamp WJK, Polman NJ, Griffioen AW, Huirne JAF. Angiogenesis in abnormal uterine bleeding: a narrative review. Hum Reprod Update 2023; 29:457-485. [PMID: 36857162 PMCID: PMC10320491 DOI: 10.1093/humupd/dmad004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/12/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Abnormal uterine bleeding (AUB) has a significant socioeconomic impact since it considerably impacts quality of life. Therapeutic options are frequently based on trial and error and do not target disease aetiology. Pathophysiological insight in this disease is required for the development of novel treatment options. If no underlying cause is found for the AUB (e.g. fibroids, adenomyosis, polyps), endometrial-AUB (AUB-E) is usually caused by a primary endometrium disorder. When AUB is induced by prescribed (exogenous) hormones, it is classified as iatrogenic-AUB (AUB-I). Considering vascular modulation and function, AUB-E and AUB-I both could potentially result from abnormal vascularization in the endometrium due to alterations in the process of angiogenesis and vascular maturation. OBJECTIVE AND RATIONALE We aim to investigate the fundamental role of angiogenesis and vascular maturation in patients with AUB and hypothesize that aberrant endometrial angiogenesis has an important role in the aetiology of both AUB-E and AUB-I, possibly through different mechanisms. SEARCH METHODS A systematic literature search was performed until September 2021 in the Cochrane Library Databases, Embase, PubMed, and Web of Science, with search terms such as angiogenesis and abnormal uterine bleeding. Included studies reported on angiogenesis in the endometrium of premenopausal women with AUB-E or AUB-I. Case reports, letters, reviews, editorial articles, and studies on AUB with causes classified by the International Federation of Gynecology and Obstetrics as myometrial, oncological, or infectious, were excluded. Study quality was assessed by risk of bias, using the Cochrane tool and the Newcastle-Ottawa Scale. OUTCOMES Thirty-five out of 2158 articles were included. In patients with AUB-E, vascular endothelial growth factor A and its receptors (1 and 2), as well as the angiopoietin-1:angiopoietin-2 ratio and Tie-1, were significantly increased. Several studies reported on the differential expression of other pro- and antiangiogenic factors in patients with AUB-E, suggesting aberrant vascular maturation and impaired vessel integrity. Overall, endometrial microvessel density (MVD) was comparable in patients with AUB-E and controls. Interestingly, patients with AUB-I showed a higher MVD and higher expression of proangiogenic factors when compared to controls, in particular after short-term hormone exposure. This effect was gradually lost after longer-term exposure, while alterations in vessel maturation were observed after both short- and long-term exposures. WIDER IMPLICATIONS AUB-E and AUB-I are most likely associated with aberrant endometrial angiogenesis and impaired vessel maturation. This review supports existing evidence that increased proangiogenic and decreased antiangiogenic factors cause impaired vessel maturation, resulting in more fragile and permeable vessels. This matches our hypothesis and these mechanisms appear to play an important role in the pathophysiology of AUB-E and AUB-I. Exploring the alterations in angiogenesis in these patients could provide treatment targets for AUB.
Collapse
Affiliation(s)
- Mei-An Middelkoop
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Emma E Don
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Wouter J K Hehenkamp
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Nicole J Polman
- Department of Obstetrics and Gynaecology, Flevoziekenhuis, Almere, the Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Judith A F Huirne
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
20
|
Zhang G, Hao Y, Chen L, Li Z, Gao L, Tian J, Qiao Q, Zhang J. Expression of aquaporin 1, 3 and 5 in colorectal carcinoma: correlation with clinicopathological characteristics and prognosis. Pathol Oncol Res 2023; 29:1611179. [PMID: 37334171 PMCID: PMC10272351 DOI: 10.3389/pore.2023.1611179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023]
Abstract
Background: Prognostic biomarkers in colorectal carcinoma (CRC) have an important role in therapeutic strategy. Studies have shown that high expression of Aquaporin (AQP) is associated with poor prognosis in a variety of human tumors. AQP is involved in the initiation and development of CRC. The present study aimed to investigate the correlation between the expression of AQP1, 3 and 5 and clinicopathological features or prognosis in CRC. Methods: The AQP1, 3 and 5 expressions were analyzed based on the immunohistochemical staining of tissue microarray specimens including 112 patients with CRC between June 2006 and November 2008. The expression score of AQP (Allred_score and H_score) was digitally obtained with Qupath software. Patients were divided into high or low expression subgroups based on the optimal cut-off values. The relationship between expression of AQP and clinicopathological characteristics were evaluated using chi-square test, t-test, or one-way ANOVA, when appropriate. Survival analysis of 5-year progression free survival (PFS) and overall survival (OS) was performed with time-dependent ROC, Kaplan-Meier curves, univariate and multivariate COX analysis. Results: The AQP1, 3 and 5 expressions were associated with regional lymph node metastasis, histological grading, and tumor location in CRC, respectively (p < 0.05). Kaplan-Meier curves showed that patients with high AQP1 expression had worse 5-year PFS than those with low AQP1 expression (Allred_score: 47% vs. 72%, p = 0.015; H_score: 52% vs. 78% p = 0.006), as well as 5-year OS (Allred_score: 51% vs. 75%, p = 0.005; H_score: 56% vs. 80%, p = 0.002). Multivariate Cox regression analysis indicated that AQP1 expression was an independent risk prognostic factor (p = 0.033, HR = 2.274, HR95% CI: 1.069-4.836). There was no significant correlation between the expression of AQP3 and 5 and the prognosis. Conclusion: The AQP1, 3 and 5 expressions correlate with different clinicopathological characteristics and the AQP1 expression may be a potential biomarker of prognosis in CRC.
Collapse
Affiliation(s)
- Guangwen Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yongfei Hao
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- School of Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Ling Chen
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zengshan Li
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Langlang Gao
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jian Tian
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qing Qiao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jinsong Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
21
|
Kang H, Yang S, Lee J. Tauroursodeoxycholic Acid Enhances Osteogenic Differentiation through EGFR/p-Akt/CREB1 Pathway in Mesenchymal Stem Cells. Cells 2023; 12:1463. [PMID: 37296585 PMCID: PMC10252885 DOI: 10.3390/cells12111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are pluripotent stromal cells that are among the most appealing candidates for regenerative medicine and may aid in the repair and regeneration of skeletal disorders through multiple mechanisms, including angiogenesis, differentiation, and response to inflammatory conditions. Tauroursodeoxycholic acid (TUDCA) has recently been used in various cell types as one of these drugs. The mechanism of osteogenic differentiation by TUDCA in hMSCs remains unknown. METHODS Cell proliferation was performed by the WST-1 method, and alkaline phosphatase activity and alizarin red-sulfate staining were used to confirm the osteogenic differentiation indicator. Expression of genes related to bone differentiation and specific genes related to signaling pathways was confirmed by quantitative real-time polymerase chain reaction. RESULTS We found that cell proliferation was higher as the concentration increased, and showed that the induction of osteogenic differentiation was significantly enhanced. We also show that osteogenic differentiation genes were upregulated, with the expression of the epidermal growth factor receptor (EGFR) and cAMP responsive element binding protein 1 (CREB1) being specifically high. To confirm the participation of the EGFR signaling pathway, the osteogenic differentiation index and expression of osteogenic differentiation genes were determined after using an EGFR inhibitor. As a result, EGFR expression was remarkably low, and that of CREB1, cyclin D1, and cyclin E1 was also significantly low. CONCLUSIONS Therefore, we suggest that TUDCA-induced osteogenic differentiation of human MSCs is enhanced through the EGFR/p-Akt/CREB1 pathway.
Collapse
Affiliation(s)
- Hyojin Kang
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Wonkwang University, 77 Dunsan-ro, Seo-gu, Daejeon 35233, Republic of Korea;
| | - Sunsik Yang
- Bonecell Biotech Inc., 77 Dunsan-dong, Seo-gu, Daejeon 35233, Republic of Korea;
| | - Jun Lee
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Wonkwang University, 77 Dunsan-ro, Seo-gu, Daejeon 35233, Republic of Korea;
| |
Collapse
|
22
|
Paccetti-Alves I, Batista MSP, Pimpão C, Victor BL, Soveral G. Unraveling the Aquaporin-3 Inhibitory Effect of Rottlerin by Experimental and Computational Approaches. Int J Mol Sci 2023; 24:ijms24066004. [PMID: 36983077 PMCID: PMC10057066 DOI: 10.3390/ijms24066004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The natural polyphenolic compound Rottlerin (RoT) showed anticancer properties in a variety of human cancers through the inhibition of several target molecules implicated in tumorigenesis, revealing its potential as an anticancer agent. Aquaporins (AQPs) are found overexpressed in different types of cancers and have recently emerged as promising pharmacological targets. Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a key role in cancer and metastasis. Here, we report the ability of RoT to inhibit human AQP3 activity with an IC50 in the micromolar range (22.8 ± 5.82 µM for water and 6.7 ± 2.97 µM for glycerol permeability inhibition). Moreover, we have used molecular docking and molecular dynamics simulations to understand the structural determinants of RoT that explain its ability to inhibit AQP3. Our results show that RoT blocks AQP3-glycerol permeation by establishing strong and stable interactions at the extracellular region of AQP3 pores interacting with residues essential for glycerol permeation. Altogether, our multidisciplinary approach unveiled RoT as an anticancer drug against tumors where AQP3 is highly expressed providing new information to aquaporin research that may boost future drug design.
Collapse
Affiliation(s)
- Inês Paccetti-Alves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Marta S P Batista
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Bruno L Victor
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
23
|
Abulizi A, Dawuti A, Yang B. Aquaporins in Tumor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:303-315. [PMID: 36717503 DOI: 10.1007/978-981-19-7415-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent researches have demonstrated that aquaporins (AQPs), including water-selective channels, aquaglyceroporins and superaquaporins, are generally expressed in various tumors, such as lung, colorectal, liver, brain, breast tumors, etc. Therefore, it is imperative to study the accurate relationship between AQPs and tumor, which may provide innovative approaches to treat and prevent tumor development. In this chapter, we mainly reviewed the expression and pathophysiological function of AQPs in tumor, and summarize recent work on AQPs in tumor. Although, the underlying mechanism of AQP in tumor is not very clear, growing evidences suggest that cell migration, adhesion, angiogenesis, and division contribute to tumor development, in which AQPs might be involved. Therefore, it is still necessary to conduct further studies to determine the specific roles of AQPs in the tumor.
Collapse
Affiliation(s)
- Abudumijiti Abulizi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China.
| | - Awaguli Dawuti
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
24
|
Fan L, Wu P, Li X, Tie L. Aquaporins in Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:125-135. [PMID: 36717490 DOI: 10.1007/978-981-19-7415-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent studies have shown that aquaporins (AQPs) are involved in the regulation of cardiovascular function and the development of related diseases, especially in cerebral ischemia, congestive heart failure, hypertension, and angiogenesis. Therefore, further studies are needed to elucidate the mechanism accounting for the association between AQPs and vascular function-related diseases, which may lead to novel approaches to the prevention and treatment of those diseases. Here we will discuss the expression and physiological roles of AQPs in vascular tissues and summarize recent progress in the research on AQPs related cardiovascular diseases.
Collapse
Affiliation(s)
- Lu Fan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Pin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Xuejun Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China.
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China.
| |
Collapse
|
25
|
Mieszczański P, Januszyk S, Zmarzły N, Ossowski P, Dziobek K, Sagan D, Boroń D, Opławski M, Grabarek BO. miRNAs Participate in the Regulation of Oxidative Stress-Related Gene Expression in Endometrioid Endometrial Cancer. Int J Mol Sci 2022; 23:ijms232415817. [PMID: 36555458 PMCID: PMC9779631 DOI: 10.3390/ijms232415817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species are formed as by-products of normal cell metabolism. They are needed to maintain cell homeostasis and signaling, which is possible due to defense systems. Disruption of this balance leads to oxidative stress that can induce cancer. Redox regulation by miRNAs may be a potential therapeutic target. The aim of the study was to assess the activity of genes associated with oxidative stress in endometrial cancer and to determine their relationship with miRNAs. The study included 45 patients with endometrioid endometrial cancer and 45 without neoplastic changes. The expression profile of genes associated with oxidative stress was determined with mRNA microarrays, RT-qPCR and ELISA. The miRNA prediction was performed based on the miRNA microarray experiment and the mirDB tool. PRDX2 and AQP1 showed overexpression that was probably not related to miRNA activity. A high level of PKD2 may be the result of a decrease in the activity of miR-195-3p, miR-20a, miR-134. A SOD3 level reduction can be caused by miR-328, miR-363. In addition, miR-363 can also regulate KLF2 expression. In the course of endometrial cancer, the phenomenon of oxidative stress is observed, the regulation of which may be influenced by miRNAs.
Collapse
Affiliation(s)
- Paweł Mieszczański
- Hospital of Ministry of Interior and Administration, 40-052 Katowice, Poland
- Correspondence:
| | - Szmon Januszyk
- ICZ Healthcare Hospital in Zywiec, 34-300 Zywiec, Poland
| | - Nikola Zmarzły
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, Academy of Silesia, 41-800 Zabrze, Poland
| | - Piotr Ossowski
- Woman and Child Medical Center in Cracow, 30-002 Cracow, Poland
| | - Konrad Dziobek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics Faculty of Medicine, Academy of Silesia, 41-800 Zabrze, Poland
| | - Dorota Sagan
- Medical Center Dormed Medical SPA, 28-105 Busko-Zdroj, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics Faculty of Medicine, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Cracow, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Cracow, 30-705 Cracow, Poland
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Cracow, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Cracow, 30-705 Cracow, Poland
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics Faculty of Medicine, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Cracow, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, 40-662 Katowice, Poland
- Gyncentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
| |
Collapse
|
26
|
Pepke ML, Kvalnes T, Lundregan S, Boner W, Monaghan P, Saether BE, Jensen H, Ringsby TH. Genetic architecture and heritability of early-life telomere length in a wild passerine. Mol Ecol 2022; 31:6360-6381. [PMID: 34825754 DOI: 10.1111/mec.16288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 01/31/2023]
Abstract
Early-life telomere length (TL) is associated with fitness in a range of organisms. Little is known about the genetic basis of variation in TL in wild animal populations, but to understand the evolutionary and ecological significance of TL it is important to quantify the relative importance of genetic and environmental variation in TL. In this study, we measured TL in 2746 house sparrow nestlings sampled across 20 years and used an animal model to show that there is a small heritable component of early-life TL (h2 = 0.04). Variation in TL among individuals was mainly driven by environmental (annual) variance, but also brood and parental effects. Parent-offspring regressions showed a large maternal inheritance component in TL ( h maternal 2 = 0.44), but no paternal inheritance. We did not find evidence for a negative genetic correlation underlying the observed negative phenotypic correlation between TL and structural body size. Thus, TL may evolve independently of body size and the negative phenotypic correlation is likely to be caused by nongenetic environmental effects. We further used genome-wide association analysis to identify genomic regions associated with TL variation. We identified several putative genes underlying TL variation; these have been inferred to be involved in oxidative stress, cellular growth, skeletal development, cell differentiation and tumorigenesis in other species. Together, our results show that TL has a low heritability and is a polygenic trait strongly affected by environmental conditions in a free-living bird.
Collapse
Affiliation(s)
- Michael Le Pepke
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thomas Kvalnes
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sarah Lundregan
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Bernt-Erik Saether
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thor Harald Ringsby
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
27
|
Han Y, Shi Y, Chen B, Wang J, Liu Y, Sheng S, Fu Z, Shen C, Wang X, Yin S, Li H. An ion-channel-gene-based prediction model for head and neck squamous cell carcinoma: Prognostic assessment and treatment guidance. Front Immunol 2022; 13:961695. [PMID: 36389709 PMCID: PMC9650652 DOI: 10.3389/fimmu.2022.961695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/12/2022] [Indexed: 09/18/2023] Open
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) is a very diverse malignancy with a poor prognosis. The purpose of this study was to develop a new signature based on 12 ion channel genes to predict the outcome and immune status of HNSCC patients. METHODS Clinicopathological information and gene sequencing data of HNSCC patients were generated from the Cancer Genome Atlas and Gene Expression Omnibus databases. A set of 323 ion channel genes was obtained from the HUGO Gene Nomenclature Committee database and literature review. Using univariate Cox regression analysis, the ion channel genes related to HNSCC prognosis were identified. A prognostic signature and nomogram were then created using machine learning methods. Kaplan-Meier analysis was used to explore the relevance of the risk scores and overall survival (OS). We also investigated the association between risk scores, tumor immune infiltration, and gene mutational status. Finally, we detected the expression levels of the signature genes by quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry. RESULTS We separated the patients into high- and low-risk groups according to the risk scores computed based on these 12 ion channel genes, and the OS of the low-risk group was significantly longer (p<0.001). The area under the curve for predicting 3-year survival was 0.729. Univariate and multivariate analyses showed that the 12-ion-channel-gene risk model was an independent prognostic factor. We also developed a nomogram model based on risk scores and clinicopathological variables to forecast outcomes. Furthermore, immune cell infiltration, gene mutation status, immunotherapy response, and chemotherapeutic treatment sensitivity were all linked to risk scores. Moreover, high expression levels of ANO1, AQP9, and BEST2 were detected in HNSCC tissues, whereas AQP5, SCNN1G, and SCN4A expression was low in HNSCC tissues, as determined by experiments. CONCLUSION The 12-ion-channel-gene prognostic signatures have been demonstrated to be highly efficient in predicting the prognosis, immune microenvironment, gene mutation status, immunotherapy response, and chemotherapeutic sensitivity of HNSCC patients.
Collapse
Affiliation(s)
- Yanxun Han
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Yangyang Shi
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bangjie Chen
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | | | - Yuchen Liu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | | | - Ziyue Fu
- Anhui Medical University, Hefei, Anhui, China
| | | | - Xinyi Wang
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Siyue Yin
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Haiwen Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Yin L, Li XY, Zhu LL, Chen GL, Xiang Z, Wang QQ, Bi JW, Wang Q. Clinical application status and prospect of the combined anti-tumor strategy of ablation and immunotherapy. Front Immunol 2022; 13:965120. [PMID: 36131929 PMCID: PMC9483102 DOI: 10.3389/fimmu.2022.965120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Image-guided tumor ablation eliminates tumor cells by physical or chemical stimulation, which shows less invasive and more precise in local tumor treatment. Tumor ablation provides a treatment option for medically inoperable patients. Currently, clinical ablation techniques are widely used in clinical practice, including cryoablation, radiofrequency ablation (RFA), and microwave ablation (MWA). Previous clinical studies indicated that ablation treatment activated immune responses besides killing tumor cells directly, such as short-term anti-tumor response, immunosuppression reduction, specific and non-specific immune enhancement, and the reduction or disappearance of distant tumor foci. However, tumor ablation transiently induced immune response. The combination of ablation and immunotherapy is expected to achieve better therapeutic results in clinical application. In this paper, we provided a summary of the principle, clinical application status, and immune effects of tumor ablation technologies for tumor treatment. Moreover, we discussed the clinical application of different combination of ablation techniques with immunotherapy and proposed possible solutions for the challenges encountered by combined therapy. It is hoped to provide a new idea and reference for the clinical application of combinate treatment of tumor ablation and immunotherapy.
Collapse
Affiliation(s)
- Li Yin
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Xing-yu Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lin-lin Zhu
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Gui-lai Chen
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Zhuo Xiang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Qing-qing Wang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Jing-wang Bi
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Qiang Wang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- *Correspondence: Qiang Wang,
| |
Collapse
|
29
|
Critical Role of Aquaporins in Cancer: Focus on Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14174182. [PMID: 36077720 PMCID: PMC9455074 DOI: 10.3390/cancers14174182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Aquaporins are proteins able to regulate the transfer of water and other small substances such as ions, glycerol, urea, and hydrogen peroxide across cellular membranes. AQPs provide for a huge variety of physiological phenomena; their alteration provokes several types of pathologies including cancer and hematological malignancies. Our review presents data revealing the possibility of employing aquaporins as biomarkers in patients with hematological malignancies and evaluates the possibility that interfering with the expression of aquaporins could represent an effective treatment for hematological malignancies. Abstract Aquaporins are transmembrane molecules regulating the transfer of water and other compounds such as ions, glycerol, urea, and hydrogen peroxide. Their alteration has been reported in several conditions such as cancer. Tumor progression might be enhanced by aquaporins in modifying tumor angiogenesis, cell volume adaptation, proteases activity, cell–matrix adhesions, actin cytoskeleton, epithelial–mesenchymal transitions, and acting on several signaling pathways facilitating cancer progression. Close connections have also been identified between the aquaporins and hematological malignancies. However, it is difficult to identify a unique action exerted by aquaporins in different hemopathies, and each aquaporin has specific effects that vary according to the class of aquaporin examined and to the different neoplastic cells. However, the expression of aquaporins is altered in cell cultures and in patients with acute and chronic myeloid leukemia, in lymphoproliferative diseases and in multiple myeloma, and the different expression of aquaporins seems to be able to influence the efficacy of treatment and could have a prognostic significance, as greater expression of aquaporins is correlated to improved overall survival in leukemia patients. Finally, we assessed the possibility that modifying the aquaporin expression using aquaporin-targeting regulators, specific monoclonal antibodies, and even aquaporin gene transfer could represent an effective therapy of hematological malignancies.
Collapse
|
30
|
Insight into the Mammalian Aquaporin Interactome. Int J Mol Sci 2022; 23:ijms23179615. [PMID: 36077012 PMCID: PMC9456110 DOI: 10.3390/ijms23179615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
Aquaporins (AQPs) are a family of transmembrane water channels expressed in all living organisms. AQPs facilitate osmotically driven water flux across biological membranes and, in some cases, the movement of small molecules (such as glycerol, urea, CO2, NH3, H2O2). Protein-protein interactions play essential roles in protein regulation and function. This review provides a comprehensive overview of the current knowledge of the AQP interactomes and addresses the molecular basis and functional significance of these protein-protein interactions in health and diseases. Targeting AQP interactomes may offer new therapeutic avenues as targeting individual AQPs remains challenging despite intense efforts.
Collapse
|
31
|
Maiese A, Scatena A, Costantino A, Chiti E, Occhipinti C, La Russa R, Di Paolo M, Turillazzi E, Frati P, Fineschi V. Expression of MicroRNAs in Sepsis-Related Organ Dysfunction: A Systematic Review. Int J Mol Sci 2022; 23:9354. [PMID: 36012630 PMCID: PMC9409129 DOI: 10.3390/ijms23169354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a critical condition characterized by increased levels of pro-inflammatory cytokines and proliferating cells such as neutrophils and macrophages in response to microbial pathogens. Such processes lead to an abnormal inflammatory response and multi-organ failure. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of gene regulation. This means that miRNAs are involved in multiple intracellular pathways and thus contribute to or inhibit inflammation. As a result, their variable expression in different tissues and organs may play a key role in regulating the pathophysiological events of sepsis. Thanks to this property, miRNAs may serve as potential diagnostic and prognostic biomarkers in such life-threatening events. In this narrative review, we collect the results of recent studies on the expression of miRNAs in heart, blood, lung, liver, brain, and kidney during sepsis and the molecular processes in which they are involved. In reviewing the literature, we find at least 122 miRNAs and signaling pathways involved in sepsis-related organ dysfunction. This may help clinicians to detect, prevent, and treat sepsis-related organ failures early, although further studies are needed to deepen the knowledge of their potential contribution.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Andrea Scatena
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Andrea Costantino
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Enrica Chiti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Carla Occhipinti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Marco Di Paolo
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| |
Collapse
|
32
|
Bystrup M, Login FH, Edamana S, Borgquist S, Tramm T, Kwon TH, Nejsum LN. Aquaporin-5 in breast cancer. APMIS 2022; 130:253-260. [PMID: 35114014 PMCID: PMC9314690 DOI: 10.1111/apm.13212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 01/14/2023]
Abstract
The water channel aquaporin‐5 (AQP5) is essential in transepithelial water transport in secretory glands. AQP5 is ectopically overexpressed in breast cancer, where expression is associated with lymph node metastasis and poor prognosis. Besides the role in water transport, AQP5 has been found to play a role in cancer metastasis, migration, and proliferation. AQP5 has also been shown to be involved in the dysregulation of epithelial cell–cell adhesion; frequently observed in cancers. Insight into the underlying molecular mechanisms of how AQP5 contributes to cancer development and progression is essential for potentially implementing AQP5 as a prognostic biomarker and to develop targeted intervention strategies for the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Malte Bystrup
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Signe Borgquist
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Pathology, Aarhus University Hospital, Aarhus N, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
33
|
Chen Y, Li B, Jiang Z, Li H, Dang Y, Tang C, Xia Y, Zhang H, Song B, Long L. Multi-parameter diffusion and perfusion magnetic resonance imaging and radiomics nomogram for preoperative evaluation of aquaporin-1 expression in rectal cancer. Abdom Radiol (NY) 2022; 47:1276-1290. [PMID: 35166938 DOI: 10.1007/s00261-021-03397-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE The overexpression of aquaporin-1 (AQP1) is associated with poor prognosis in rectal cancer. This study aimed to explore the value of multi-parameter diffusion and perfusion MRI and radiomics models in predicting AQP1 high expression. METHODS This prospective study was performed from July 2019 to February 2021, which included rectal cancer participants after preoperative rectal MRI, with diffusion-weighted imaging, intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), and dynamic contrast-enhanced (DCE) sequences. Radiomic features were extracted from MR images, and immunohistochemical tests assessed AQP1 expression. Selected quantitative MRI and radiomic features were analyzed. Receiver operating characteristic (ROC) curves evaluated the predictive performance. The nomogram performance was evaluated by its calibration, discrimen, and clinical utility. The intraclass correlation coefficient evaluated the interobserver agreement for the MRI features. RESULTS 110 participants with the age of 60.7 ± 12.5 years been enrolled in this study. The apparent diffusion coefficient (ADC), IVIM_D, DKI_diffusivity, and DCE_Ktrans were significantly higher in participants with high AQP1 expression than in those with low expression (P < 0.05). ADC (b = 1000, 2000, and 3000 s/mm2), IVIM_D, DKI_diffusivity, and DCE_Ktrans were positively correlated (r = 0.205, 0.275, 0.37, 0.235, 0.229, and 0.227, respectively; P < 0.05), whereas DKI_Kurtosis was negatively correlated (r = - 0.22, P = 0.021) with AQP1 expression. ADC (b = 3000 s/mm2), IVIM_D, DKI_ diffusivity, DKI_Kurtosis, and DCE_Ktrans had moderate diagnostic efficiencies for high AQP1 expression (AUC = 0.715, 0.636, 0.627, 0.633, and 0.632, respectively; P < 0.05). The radiomic features had excellent predictive efficiency for high AQP1 expression (AUC = 0.967 and 0.917 for training and validation). The model-based nomogram had C-indexes of 0.932 and 0.851 for the training and validation cohorts, which indicated good fitting to the calibration curves (p > 0.05). CONCLUSION Diffusion and perfusion MRI can indicate the aquaporin-1 expression in rectal cancer, and radiomic features can enhance the predictive efficiency for high AQP1 expression. A nomogram for high aquaporin-1 expression will improve clinical decision-making.
Collapse
Affiliation(s)
- Yidi Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Basen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zijian Jiang
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hui Li
- Department of Anus and Intestine Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Cheng Tang
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yuwei Xia
- Huiying Medical Technology, Beijing, 100192, China
| | | | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liling Long
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Gaungxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
34
|
Henderson SW, Nourmohammadi S, Ramesh SA, Yool AJ. Aquaporin ion conductance properties defined by membrane environment, protein structure, and cell physiology. Biophys Rev 2022; 14:181-198. [PMID: 35340612 PMCID: PMC8921385 DOI: 10.1007/s12551-021-00925-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are multifunctional transmembrane channel proteins permeable to water and an expanding array of solutes. AQP-mediated ion channel activity was first observed when purified AQP0 from bovine lens was incorporated into lipid bilayers. Electrophysiological properties of ion-conducting AQPs since discovered in plants, invertebrates, and mammals have been assessed using native, reconstituted, and heterologously expressed channels. Accumulating evidence is defining amino acid residues that govern differential solute permeability through intrasubunit and central pores of AQP tetramers. Rings of charged and hydrophobic residues around pores influence AQP selectivity, and are candidates for further work to define motifs that distinguish ion conduction capability, versus strict water and glycerol permeability. Similarities between AQP ion channels thus far include large single channel conductances and long open times, but differences in ionic selectivity, permeability to divalent cations, and mechanisms of gating (e.g., by voltage, pH, and cyclic nucleotides) are unique to subtypes. Effects of lipid environments in modulating parameters such as single channel amplitude could explain in part the variations in AQP ion channel properties observed across preparations. Physiological roles of the ion-conducting AQP classes span diverse processes including regulation of cell motility, organellar pH, neural development, signaling, and nutrient acquisition. Advances in computational methods can generate testable predictions of AQP structure-function relationships, which combined with innovative high-throughput assays could revolutionize the field in defining essential properties of ion-conducting AQPs, discovering new AQP ion channels, and understanding the effects of AQP interactions with proteins, signaling cascades, and membrane lipids.
Collapse
Affiliation(s)
- Sam W. Henderson
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005 Australia
| | | | - Sunita A. Ramesh
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042 Australia
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
35
|
Bruun-Sørensen AS, Edamana S, Login FH, Borgquist S, Nejsum LN. Aquaporins in pancreatic ductal adenocarcinoma. APMIS 2021; 129:700-705. [PMID: 34582595 DOI: 10.1111/apm.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022]
Abstract
Aquaporins are water channel proteins facilitating passive transport of water across cellular membranes. Aquaporins are over- or ectopically expressed in a multitude of cancers, including pancreatic ductal adenocarcinoma, which is a highly aggressive cancer with low survival rate. Evidence suggests that aquaporins can affect multiple cellular processes involved in cancer development and progression including epithelial-mesenchymal transition, cellular migration, cell proliferation, invasion, and cellular adhesions. In pancreatic ductal adenocarcinoma, aquaporin-1, aquaporin-3, and aquaporin-5 are overexpressed and have been associated with metastatic processes and poor survival. Thus, aquaporin expression has been suggested as diagnostic markers and therapeutic targets in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Anne Sofie Bruun-Sørensen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Signe Borgquist
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
36
|
Traberg-Nyborg L, Login FH, Edamana S, Tramm T, Borgquist S, Nejsum LN. Aquaporin-1 in breast cancer. APMIS 2021; 130:3-10. [PMID: 34758159 DOI: 10.1111/apm.13192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022]
Abstract
The canonical function of aquaporin (AQP) water channels is to facilitate passive transport of water across cellular membranes making them essential in the regulation of body water homeostasis. Moreover, AQPs, including AQP1, have been found to be overexpressed in multiple cancer types, including breast cancer, where AQP1 overexpression is associated with poor prognosis. AQPs have been shown to affect cellular processes associated with cancer progression and spread including cell migration, angiogenesis, and proliferation. Moreover, AQPs can regulate levels of adhesion proteins at cell-cell junctions, a regulatory role, which is still largely unexplored in cancer. Understanding the molecular mechanisms of how AQP1 contributes to breast cancer progression and metastatic processes is essential to establish AQP1 as a biomarker and to develop targeted anticancer treatments for breast cancer patients. This mini-review focuses on the role of AQP1 in breast cancer.
Collapse
Affiliation(s)
- Laura Traberg-Nyborg
- Department of Clinical Medicine, Aarhus University, Aarhus N.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus C
| | | | | | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, Aarhus N.,Department of Pathology, Aarhus University Hospital, Aarhus N
| | - Signe Borgquist
- Department of Clinical Medicine, Aarhus University, Aarhus N.,Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus N
| |
Collapse
|
37
|
Sultan A, Sahar NE, Riaz SK, Qadir J, Waqar SH, Haq F, Khaliq T, Malik MFA. Metadherin (MTDH) overexpression significantly correlates with advanced tumor grade and stages among colorectal cancer patients. Mol Biol Rep 2021; 48:7999-8007. [PMID: 34741710 DOI: 10.1007/s11033-021-06834-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Colorectal cancer is the 4th leading cause of cancer related deaths affecting both men and women worldwide. In the present study, any probable role of MTDH mRNA expression in CRC tumorigenesis was explored using both discovery and validation cohorts. METHODS AND RESULTS After prior ethical and biosafety approvals, tumor tissue samples along with their adjacent controls were collected for this study from Pakistani patients diagnosed with colorectal cancer. RNA was isolated using Trizol reagent, followed by cDNA synthesis. Transcript analysis of MTDH was performed by using qPCR. Moreover, genome-wide expression of MTDH was also determined through micro-array data analysis using BRB-array tools software. MTDH expression was significantly high in tumor tissue samples (p < 0.05) compared to their respective controls. Likewise, results of microarray analysis also revealed overamplification of MTDH in tumor samples as compared to controls. Expression of MTDH was also found to be positively correlated with KI-67 index (p < 0.05) and were observed to be significantly upregulated in advance tumor grade (p < 0.05) and stage (p < 0.05). However, no association of MTDH overexpression with age and gender could be established. CONCLUSION Hence, it can be concluded that MTDH is a core element that plays a pivotal role in colorectal tumorigenesis irrespective of patient's age and gender. Molecular insight into the tumor microenvironment revealed MTDH as a niche, representing distinctive framework for cancer progression, thus, making it an innovative target strategy for colorectal cancer treatment.
Collapse
Affiliation(s)
- Aimen Sultan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Namood-E Sahar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan.,College of Medicine, University of Nebraska, Medical Center, Omaha, USA
| | - Syeda Kiran Riaz
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Javeria Qadir
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shahzad Hussain Waqar
- Department of General Surgery, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Farhan Haq
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Tanwir Khaliq
- Department of General Surgery, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | | |
Collapse
|
38
|
Flitcroft JG, Verheyen J, Vemulkar T, Welbourne EN, Rossi SH, Welsh SJ, Cowburn RP, Stewart GD. Early detection of kidney cancer using urinary proteins: a truly non-invasive strategy. BJU Int 2021; 129:290-303. [PMID: 34570419 DOI: 10.1111/bju.15601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To review urinary protein biomarkers as potential non-invasive, easily obtainable, early diagnostic tools in renal cell carcinoma (RCC). METHODS A PubMed database search was performed up to the year 2020 to identify primary studies reporting potential urinary protein biomarkers for RCC. Separate searches were conducted to identify studies describing appropriate methods of developing cancer screening programmes and detection of cancer biomarkers. RESULTS Several urinary protein biomarkers are under validation for RCC diagnostics, e.g. aquaporin-1, perilipin-2, carbonic anhydrase-9, Raf-kinase inhibitory protein, nuclear matrix protein-22, 14-3-3 Protein β/α and neutrophil gelatinase-associated lipocalin. However, none has yet been validated or approved for clinical use due to low sensitivity or specificity, inconsistencies in appropriate study design, or lack of external validation. CONCLUSIONS Evaluation of biomarkers' feasibility, sample preparation and storage, biomarker validation, and the application of novel technologies may provide a solution that maximises the potential for a truly non-invasive biomarker in early RCC diagnostics.
Collapse
Affiliation(s)
- Jordan G Flitcroft
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Jeroen Verheyen
- Department of Surgery, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Tarun Vemulkar
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Emma N Welbourne
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Sabrina H Rossi
- Department of Surgery, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Sarah J Welsh
- Department of Surgery, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Russell P Cowburn
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Grant D Stewart
- Department of Surgery, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
39
|
Chu Y, Wang X, Yu N, Li Y, Kan J. Long non‑coding RNA FGD5‑AS1/microRNA‑133a‑3p upregulates aquaporin 1 to decrease the inflammatory response in LPS‑induced sepsis. Mol Med Rep 2021; 24:784. [PMID: 34498707 DOI: 10.3892/mmr.2021.12424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/19/2021] [Indexed: 11/06/2022] Open
Abstract
Sepsis is a systemic inflammatory response syndrome caused by infections. The present study aimed to investigate the potential mechanism of FGD5‑AS1 in sepsis and lipopolysaccharide (LPS)‑induced inflammatory response. An animal model of sepsis was constructed. LPS was used to induce mice HL‑1 cardiomyocytes to construct a cell model. The association between FGD5‑AS1 and miR‑133a‑3p was investigated through animal and cell models. FGD5‑AS1 overexpression was used to analyze the effect of FGD5‑AS1 on inflammatory reaction. Tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β and IL‑6 levels were detected by enzyme‑linked immunosorbent assay and reverse transcription‑quantitative polymerase chain reaction. The interaction of FGD5‑AS1, miR‑133a‑3p and aquaporin 1 (AQP1) was detected by dual‑luciferase reporter assay and microRNA (miRNA/miR) pull‑down assay. Compared with the control group, the expression of FGD5‑AS1 was decreased and the expression of miR‑133a‑3p was increased in the sepsis group. FGD5‑AS1 overexpression increased LPS‑induced expression of FGD5‑AS1 and AQP1, decreased the expression of miR‑133a‑3p, and inhibited the expression of the inflammatory cytokines, TNF‑α, IL‑6 and IL‑1β. Dual‑luciferase reporter and miRNA pull‑down assays confirmed the interaction of FGD5‑AS1, miR‑133a‑3p and AQP1. These results indicated that FGD5‑AS1 is the competitive endogenous RNA of miR‑133a‑3p on AQP1, and thus FGD5‑AS1 overexpression may be able to inhibit the inflammatory response in sepsis.
Collapse
Affiliation(s)
- Yuru Chu
- Intensive Care Unit, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, P.R. China
| | - Xu Wang
- Acupuncture Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, P.R. China
| | - Naihao Yu
- Intensive Care Unit, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, P.R. China
| | - Yali Li
- Intensive Care Unit, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, P.R. China
| | - Jianying Kan
- Intensive Care Unit, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, P.R. China
| |
Collapse
|
40
|
Critical role of Aquaporin-1 and telocytes in infantile hemangioma response to propranolol beta blockade. Proc Natl Acad Sci U S A 2021; 118:2018690118. [PMID: 33558238 DOI: 10.1073/pnas.2018690118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Propranolol, a nonselective β-adrenergic receptor (ADRB) antagonist, is the first-line therapy for severe infantile hemangiomas (IH). Since the incidental discovery of propranolol efficacy in IH, preclinical and clinical investigations have shown evidence of adjuvant propranolol response in some malignant tumors. However, the mechanism for propranolol antitumor effect is still largely unknown, owing to the absence of a tumor model responsive to propranolol at nontoxic concentrations. Immunodeficient mice engrafted with different human tumor cell lines were treated with anti-VEGF bevacizumab to create a model sensitive to propranolol. Proteomics analysis was used to reveal propranolol-mediated protein alteration correlating with tumor growth inhibition, and Aquaporin-1 (AQP1), a water channel modulated in tumor cell migration and invasion, was identified. IH tissues and cells were then functionally investigated. Our functional protein association networks analysis and knockdown of ADRB2 and AQP1 indicated that propranolol treatment and AQP1 down-regulation trigger the same pathway, suggesting that AQP1 is a major driver of beta-blocker antitumor response. Examining AQP1 in human hemangioma samples, we found it exclusively in a perivascular layer, so far unrecognized in IH, made of telocytes (TCs). Functional in vitro studies showed that AQP1-positive TCs play a critical role in IH response to propranolol and that modulation of AQP1 in IH-TC by propranolol or shAQP1 decreases capillary-like tube formation in a Matrigel-based angiogenesis assay. We conclude that IH sensitivity to propranolol may rely, at least in part, on a cross talk between lesional vascular cells and stromal TCs.
Collapse
|
41
|
Alkhalifa H, Mohammed F, Taurin S, Greish K, Taha S, Fredericks S. Inhibition of aquaporins as a potential adjunct to breast cancer cryotherapy. Oncol Lett 2021; 21:458. [PMID: 33907568 PMCID: PMC8063341 DOI: 10.3892/ol.2021.12719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cryoablation is an emerging type of treatment for cancer. The sensitization of tumors using cryosensitizing agents prior to treatment enhances ablation efficiency and may improve clinical outcomes. Water efflux, which is regulated by aquaporin channels, contributes to cancer cell damage achieved through cryoablation. An increase in aquaporin (AQP) 3 is cryoprotective, whereas its inhibition augments cryodamage. The present study aimed to investigate aquaporin (AQP1, AQP3 and AQP5) gene expression and cellular localization in response to cryoinjury. Cultured breast cancer cells (MDA-MB-231 and MCF-7) were exposed to freezing to induce cryoinjury. RNA and protein extracts were then analyzed using reverse transcription-quantitative PCR and western blotting, respectively. Localization of aquaporins was studied using immunocytochemistry. Additionally, cells were transfected with small interfering RNA to silence aquaporin gene expression and cell viability was assessed using the Sulforhodamine B assay. Cryoinjury did not influence gene expression of AQPs, except for a 4-fold increase of AQP1 expression in MDA-MD-231 cells. There were no clear differences in AQP protein expression for either cell lines upon exposure to frozen and non-frozen temperatures, with the exception of fainter AQP5 bands for non-frozen MCF-7 cells. The exposure of cancer cells to freezing temperatures altered the localization of AQP1 and AQP3 proteins in both MCF-7 and MDA-MD-231 cells. The silencing of AQP1, AQP3 and AQP5 exacerbated MDA-MD-231 cell damage associated with freezing compared with control siRNA. This was also observed with AQP3 and AQP5 silencing in MCF-7 cells. Inhibition of aquaporins may potentially enhance cryoinjury. This cryosensitizing process may be used as an adjunct to breast cancer cryotherapy, especially in the border area targeted by cryoablation where freezing temperatures are not cold enough to induce cellular damage.
Collapse
Affiliation(s)
- Haifa Alkhalifa
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, Adliya 15503, Kingdom of Bahrain
- Department of Science, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Fatima Mohammed
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, Adliya 15503, Kingdom of Bahrain
| | - Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Segaya, Manama 328, Kingdom of Bahrain
| | - Khaled Greish
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Segaya, Manama 328, Kingdom of Bahrain
| | - Safa Taha
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Segaya, Manama 328, Kingdom of Bahrain
| | - Salim Fredericks
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, Adliya 15503, Kingdom of Bahrain
| |
Collapse
|
42
|
Nakhjavani M, Smith E, Yeo K, Palethorpe HM, Tomita Y, Price TJ, Townsend AR, Hardingham JE. Anti-Angiogenic Properties of Ginsenoside Rg3 Epimers: In Vitro Assessment of Single and Combination Treatments. Cancers (Basel) 2021; 13:cancers13092223. [PMID: 34066403 PMCID: PMC8125638 DOI: 10.3390/cancers13092223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Tumour angiogenesis plays a key role in tumour growth and progression. The application of current anti-angiogenic drugs is accompanied by adverse effects and drug resistance. Therefore, finding safer effective treatments is needed. Ginsenoside Rg3 (Rg3) has two epimers, 20(S)-Rg3 (SRg3) and 20(R)-Rg3 (RRg3), with stereoselective activities. Using response surface methodology, we optimised a combination of these two epimers for the loop formation of human umbilical vein endothelial cell (HUVEC). The optimised combination (C3) was tested on HUVEC and two murine endothelial cell lines. C3 significantly inhibited the loop formation, migration, and proliferation of these cells, inducing apoptosis in HUVEC and cell cycle arrest in all of the cell lines tested. Using molecular docking and vascular endothelial growth factor (VEGF) bioassay, we showed that Rg3 has an allosteric modulatory effect on vascular endothelial growth factor receptor 2 (VEGFR2). C3 also decreased the VEGF expression in hypoxic conditions, decreased the expression of aquaporin 1 and affected AKT signaling. The proteins that were mostly affected after C3 treatment were those related to mammalian target of rapamycin (mTOR). Eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) was one of the important targets of C3, which was affected in both hypoxic and normoxic conditions. In conclusion, these results show the potential of C3 as a novel anti-angiogenic drug.
Collapse
Affiliation(s)
- Maryam Nakhjavani
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (K.Y.); (Y.T.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
| | - Eric Smith
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (K.Y.); (Y.T.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
- Correspondence: ; Tel.: +61-8-8222-6142
| | - Kenny Yeo
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (K.Y.); (Y.T.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
| | - Helen M. Palethorpe
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia;
| | - Yoko Tomita
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (K.Y.); (Y.T.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
- Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Tim J. Price
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
- Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Amanda R. Townsend
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
- Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Jennifer E. Hardingham
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (K.Y.); (Y.T.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
| |
Collapse
|
43
|
Tomita Y, Smith E, Palethorpe HM, Nakhjavani M, Yeo KKL, Townsend AR, Price TJ, Yool AJ, Hardingham JE. In Vitro Synergistic Inhibition of HT-29 Proliferation and 2H-11 and HUVEC Tubulogenesis by Bacopaside I and II Is Associated with Ca 2+ Flux and Loss of Plasma Membrane Integrity. Pharmaceuticals (Basel) 2021; 14:ph14050436. [PMID: 34066415 PMCID: PMC8148107 DOI: 10.3390/ph14050436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023] Open
Abstract
We previously showed how triterpene saponin bacopaside (bac) II, purified from the medicinal herb Bacopa monnieri, induced cell death in colorectal cancer cell lines and reduced endothelial cell migration and tube formation, and further demonstrated a synergistic effect of a combination of bac I and bac II on the inhibition of breast cancer cell line growth. Here, we assessed the effects of bac I and II on the colorectal cancer HT-29 cell line, and mouse (2H-11) and human umbilical vein endothelial cell (HUVEC) lines, measuring outcomes including cell viability, proliferation, migration, tube formation, apoptosis, cytosolic Ca2+ levels and plasma membrane integrity. Combined bac I and II, each applied at concentrations below IC50 values, caused a synergistic reduction of the viability and proliferation of HT-29 and endothelial cells, and impaired the migration of HT-29 and tube formation of endothelial cells. A significant enhancement of apoptosis was induced only in HUVEC, although an increase in cytosolic Ca2+ was detected in all three cell lines. Plasma membrane integrity was compromised in 2H-11 and HUVEC, as determined by an increase in propidium iodide staining, which was preceded by Ca2+ flux. These in vitro findings support further research into the mechanisms of action of the combined compounds for potential clinical use.
Collapse
Affiliation(s)
- Yoko Tomita
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Correspondence: ; Tel.: +61-8-8222-7096
| | - Eric Smith
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Helen M. Palethorpe
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Maryam Nakhjavani
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Kenny K. L. Yeo
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Amanda R. Townsend
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Timothy J. Price
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Andrea J. Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Jennifer E. Hardingham
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (E.S.); (H.M.P.); (M.N.); (K.K.L.Y.); (A.R.T.); (T.J.P.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
44
|
AQP3 and AQP5-Potential Regulators of Redox Status in Breast Cancer. Molecules 2021; 26:molecules26092613. [PMID: 33947079 PMCID: PMC8124745 DOI: 10.3390/molecules26092613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is still one of the leading causes of mortality in the female population. Despite the campaigns for early detection, the improvement in procedures and treatment, drastic improvement in survival rate is omitted. Discovery of aquaporins, at first described as cellular plumbing system, opened new insights in processes which contribute to cancer cell motility and proliferation. As we discover new pathways activated by aquaporins, the more we realize the complexity of biological processes and the necessity to fully understand the pathways affected by specific aquaporin in order to gain the desired outcome-remission of the disease. Among the 13 human aquaporins, AQP3 and AQP5 were shown to be significantly upregulated in breast cancer indicating their role in the development of this malignancy. Therefore, these two aquaporins will be discussed for their involvement in breast cancer development, regulation of oxidative stress and redox signalling pathways leading to possibly targeting them for new therapies.
Collapse
|
45
|
Aquaporins implicated in the cell proliferation and the signaling pathways of cell stemness. Biochimie 2021; 188:52-60. [PMID: 33894294 DOI: 10.1016/j.biochi.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022]
Abstract
Aquaporins (AQPs) are water channel proteins facilitating passive transport of water and other small molecules across biomembranes. Regulation of osmotic homeostasis via AQPs is accompanied by dynamic participation of various cellular signaling pathways. Recently emerging evidence reveals that functional roles of AQPs are further extended from the osmotic regulation via water permeation into the cell proliferation and differentiation. In particular, anomalous expression of AQPs has been demonstrated in various types of cancer cells and cancer stem-like cells and it has been proposed as markers for proliferation and progression of cancer cells. Thus, a more comprehensive view on AQPs could bring a great interest in the cell stemness accompanied by the expression of AQPs. AQPs are broadly expressed across tissues and cells in a cell type- and lineage-specific manner during development via spatiotemporal transcriptional regulation. Moreover, AQPs are expressed in various adult stem cells and cells associated with a stem cell niche as well as cancer stem-like cells. However, the expression and regulatory mechanisms of AQP expression in stem cells have not been well understood. This review highlighted the AQPs expression in stem cell niches/stem cells and the involvement of AQPs in the cell proliferation and signaling pathways associated with cell stemness.
Collapse
|
46
|
Angelico G, Ieni A, Caltabiano R, Santoro A, Inzani F, Spadola S, Tuccari G, Macrì A, Zannoni GF. Evaluation of Beta-Catenin Subcellular Localization and Water Channel Protein AQP1 Expression as Predictive Markers of Chemo-Resistance in Ovarian High-Grade Serous Carcinoma: Comparative Study between Preoperative Peritoneal Biopsies and Surgical Samples. Diagnostics (Basel) 2021; 11:452. [PMID: 33807998 PMCID: PMC8000296 DOI: 10.3390/diagnostics11030452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Background. Mutations of the β-catenin gene (CTNNB1), leading to aberrant immunohistochemical expression of β-catenin, represent a key mechanism of WNT/β-catenin pathway alteration in ovarian cancer. Aquaporin 1 (AQP1), as component of transmembrane-water-channel family proteins, has been documented in different human tumors and, recently, also in ovarian carcinoma. Only few studies have investigated the pathogenetic and prognostic role of β-catenin and AQP1 in ovarian carcinoma. METHODS We evaluated the expression of β-catenin and AQP1 in the preoperative peritoneal biopsies of 32 patients with peritoneal carcinosis, in which a histological diagnosis of high grade serous ovarian carcinoma was made. Furthermore, we have investigated their potential association with chemotherapeutic response evaluated at the omental site, as well as with clinico-pathological parameters. RESULTS Sixteen cases showed an aberrant membranous and cytoplasmic β-catenin staining pattern. The remaining 16 cases showed a preserved β-catenin expression localized only in cell membranes; 20 cases showed positive membranous staining (AQP1+), while 12 cases were considered negative (AQP1-). In the AQP+ group, we detected a significant association of AQP1 expression with poor chemotherapy response in omental tissues complete response score (CRS) 1-2, while a CRS 3 was never observed in all positive cases. CONCLUSIONS Our findings suggest that β-catenin and AQP1 are expressed in a sub-group of ovarian tumors and play important roles in carcinogenesis. Patients affected by high grade serous carcinoma could be categorized in two different predictive groups: as AQP+ and AQP-. AQP+ cases may represent a subset of poor responders who could be considered more eligible for cytoreductive surgery rather than for neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Giuseppe Angelico
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Unità di Gineco-patologia e Patologia Mammaria, 00168 Roma, Italy; (G.A.); (A.S.); (F.I.); (S.S.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98122 Messina, Italy; (A.I.); (G.T.)
| | - Rosario Caltabiano
- Department Gian Filippo Ingrassia, Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy;
| | - Angela Santoro
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Unità di Gineco-patologia e Patologia Mammaria, 00168 Roma, Italy; (G.A.); (A.S.); (F.I.); (S.S.)
| | - Frediano Inzani
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Unità di Gineco-patologia e Patologia Mammaria, 00168 Roma, Italy; (G.A.); (A.S.); (F.I.); (S.S.)
| | - Saveria Spadola
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Unità di Gineco-patologia e Patologia Mammaria, 00168 Roma, Italy; (G.A.); (A.S.); (F.I.); (S.S.)
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98122 Messina, Italy; (A.I.); (G.T.)
| | - Antonio Macrì
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Surgery and Peritoneal Surface Malignancy and Soft Tissue Sarcoma Program, University of Messina, 98122 Messina, Italy;
| | - Gian Franco Zannoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Unità di Gineco-patologia e Patologia Mammaria, 00168 Roma, Italy; (G.A.); (A.S.); (F.I.); (S.S.)
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
47
|
Edamana S, Login FH, Yamada S, Kwon TH, Nejsum LN. Aquaporin water channels as regulators of cell-cell adhesion proteins. Am J Physiol Cell Physiol 2021; 320:C771-C777. [PMID: 33625928 DOI: 10.1152/ajpcell.00608.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aquaporin (AQP) water channels facilitate passive transport of water across cellular membranes following an osmotic gradient. AQPs are expressed in a multitude of epithelia, endothelia, and other cell types where they play important roles in physiology, especially in the regulation of body water homeostasis, skin hydration, and fat metabolism. AQP dysregulation is associated with many pathophysiological conditions, including nephrogenic diabetes insipidus, chronic kidney disease, and congestive heart failure. Moreover, AQPs have emerged as major players in a multitude of cancers where high expression correlates with metastasis and poor prognosis. Besides water transport, AQPs have been shown to be involved in cellular signaling, cell migration, cell proliferation, and regulation of junctional proteins involved in cell-cell adhesion; all cellular processes which are dysregulated in cancer. This review focuses on AQPs as regulators of junctional proteins involved in cell-cell adhesion.
Collapse
Affiliation(s)
- Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, California
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
48
|
Cheriyan A, Nellickal AJ, John NT, Jeyaseelan L, Kumar S, Devasia A, Kekre N. Diagnostic accuracy of urinary aquaporin-1 as a biomarker for renal cell carcinoma. INDIAN JOURNAL OF UROLOGY : IJU : JOURNAL OF THE UROLOGICAL SOCIETY OF INDIA 2021; 37:59-64. [PMID: 33850357 PMCID: PMC8033244 DOI: 10.4103/iju.iju_330_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 08/23/2020] [Indexed: 11/10/2022]
Abstract
Introduction: Optimal patient selection plays a vital role in management of renal tumors with the introduction of nephron-sparing approaches and active surveillance. A reliable and accurate diagnostic biomarker will be a useful adjunct to decision-making. We studied the diagnostic accuracy of urinary aquaporin-1 (uAQP-1), an upcoming urinary biomarker, for renal cell carcinoma. Materials and Methods: In this prospective biomarker study, urine samples were obtained preoperatively from 36 patients with an imaged renal mass suggestive of RCC and 24 healthy age-matched controls, chosen from among voluntary kidney donors. uAQP-1 concentrations were estimated with a sensitive and specific enzyme-linked immunosorbent assay (ELISA) and normalized by estimation of urinary creatinine. The Mann–Whitney U-test was used to compare differences between any two groups. A receiver operator characteristic (ROC) curve was plotted to analyze the diagnostic accuracy of uAQP-1 for RCC. Results: The median uAQP-1 concentration among the cases and controls was 8.78 ng/mg creatinine (interquartile range [IQR]: 5.56–12.67) and 9.52 ng/mg creatinine (IQR: 5.55–12.45), respectively. There was no significant difference in uAQP-1 concentrations between the two groups. ROC analysis showed that, for a cutoff value of 8 ng/mg creatinine, the sensitivity and specificity of uAQP-1 as a diagnostic test were 47.2% and 66.7%, respectively, and area under the curve was 0.52 (95% confidence interval: 0.42–0.62). Conclusions: uAQP-1 concentrations did not discriminate between healthy individuals and patients with RCC. The results of this study suggest that uAQP-1 may not be a suitable diagnostic biomarker for RCC in the study population.
Collapse
Affiliation(s)
- Abhilash Cheriyan
- Department of Urology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Arun Jose Nellickal
- Department of Clinical Biochemistry, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Nirmal Thampi John
- Department of Urology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Lakshmanan Jeyaseelan
- Department of Biostatistics, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Santosh Kumar
- Department of Urology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Antony Devasia
- Department of Urology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Nitin Kekre
- Department of Urology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| |
Collapse
|
49
|
Manetti AC, Maiese A, Paolo MD, De Matteis A, La Russa R, Turillazzi E, Frati P, Fineschi V. MicroRNAs and Sepsis-Induced Cardiac Dysfunction: A Systematic Review. Int J Mol Sci 2020; 22:321. [PMID: 33396834 PMCID: PMC7794809 DOI: 10.3390/ijms22010321] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Sepsis is a severe condition characterized by systemic inflammation. One of the most involved organs in sepsis is the heart. On the other hand, heart failure and dysfunction are some of the most leading causes of death in septic patients. miRNAs are short single-strand non-coding ribonucleic acids involved in the regulation of gene expression on a post-transcriptional phase, which means they are a part of the epigenetic process. Recently, researchers have found that miRNA expression in tissues and blood differs depending on different conditions. Because of this property, their use as serum sepsis biomarkers has also been explored. A narrative review is carried out to gather and summarize what is known about miRNAs' influence on cardiac dysfunction during sepsis. When reviewing the literature, we found at least 77 miRNAs involved in cardiac inflammation and dysfunction during sepsis. In the future, miRNAs may be used as early sepsis-induced cardiac dysfunction biomarkers or as new drug targets. This could help clinicians to early detect, prevent, and treat cardiac damage. The potential role of miRNAs as new diagnostic tools and therapeutic strategies worth deepening the complex network between non-coding RNA and biological pathways. Additional studies are needed to further investigate their role in sepsis-induced myocardium injury.
Collapse
Affiliation(s)
- Alice Chiara Manetti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.C.M.); (A.M.); (M.D.P.); (E.T.)
| | - Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.C.M.); (A.M.); (M.D.P.); (E.T.)
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
| | - Marco Di Paolo
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.C.M.); (A.M.); (M.D.P.); (E.T.)
| | - Alessandra De Matteis
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy;
| | - Raffaele La Russa
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy;
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.C.M.); (A.M.); (M.D.P.); (E.T.)
| | - Paola Frati
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy;
| | - Vittorio Fineschi
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy;
| |
Collapse
|
50
|
Ghosh S, Khanam R, Acharya Chowdhury A. The Evolving Roles of Bacopa monnieri as Potential Anti-Cancer Agent: A Review. Nutr Cancer 2020; 73:2166-2176. [PMID: 33148034 DOI: 10.1080/01635581.2020.1841248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The intermingled interrelationship of Bacopa monnieri and human health dates backs to the ancient times in the history of ayurveda making the plant an enriched source of alternative drug development in a nontoxic manner. In recent years, research on the biological effects of Bacopa monnieri has flourished as promising neuroprotective, memory boosting and more importantly as both chemopreventive and anti-neoplastic agent. Each naturally synthesized chemical constituent identified from Bacopa monnieri leaf extract with different solvents, has significant anti-metastatic, anti-angiogenic and anti-proliferative activity on different type of cancer cells. In this context, a substantial literature survey allows a deep understanding of the involvement of specific bioactive molecules along with the whole plant extract of Bacopa monnieri with their divergent effective molecular pathways. This comprehensive review covers literature up to the year 2020 highlighting all the anticancer efficacy along with signaling pathways activated by secondary metabolites found in bacopa plant.
Collapse
Affiliation(s)
- Sudeepa Ghosh
- Department of Biotechnology, JIS University, Kolkata, West Bengal, India
| | - Rahmat Khanam
- Department of Biotechnology, JIS University, Kolkata, West Bengal, India
| | | |
Collapse
|