1
|
Kulkarni AD, Mukarrama T, Barlow BR, Kim J. Recent advances in non-invasive in vivo tracking of cell-based cancer immunotherapies. Biomater Sci 2025; 13:1939-1959. [PMID: 40099377 PMCID: PMC11980607 DOI: 10.1039/d4bm01677g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Immunotherapy has been at the forefront of cancer treatment research in recent years due to an increased understanding of the immune system's role in cancer and the substantial benefits it has demonstrated compared to conventional treatment methods. In particular, immune cell-based approaches utilizing T cells, natural killer (NK) cells, macrophages, and more have shown great potential as cancer treatments. While these treatments hold promise, there are still numerous issues that limit their clinical translation, including a lack of understanding of their mechanisms and inconsistent responses to treatment. Traditionally, tissue or blood samples are collected as a means of monitoring treatment progression. However, these in vitro diagnostics are invasive and provide limited information about the real-time status of the treatment or its long-term effectiveness. To address these limitations, novel non-invasive imaging modalities have been developed. These include optical imaging, X-ray computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET) and single-photon emission computed tomography (SPECT), and photoacoustic (PA) imaging. This review focuses on methods for tracking cell-based cancer immunotherapies using these in vivo imaging modalities, thereby enhancing real-time monitoring of their therapeutic effect and predictions of their long-term efficacy.
Collapse
Affiliation(s)
- Anika D Kulkarni
- Department of Biomedical Engineering, University of California, Davis, Davis, 95616, USA.
| | - Tasneem Mukarrama
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, 95817, USA
| | - Brendan R Barlow
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, 95817, USA
| | - Jinhwan Kim
- Department of Biomedical Engineering, University of California, Davis, Davis, 95616, USA.
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, 95817, USA
| |
Collapse
|
2
|
Nguyen VP, Karoukis AJ, Qian W, Chen L, Perera ND, Yang D, Zhang Q, Zhe J, Henry J, Liu B, Zhang W, Fahim AT, Wang X, Paulus YM. Multimodal Imaging-Guided Stem Cell Ocular Treatment. ACS NANO 2024; 18:14893-14906. [PMID: 38801653 PMCID: PMC11804834 DOI: 10.1021/acsnano.3c10632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Stem cell therapies are gaining traction as promising treatments for a variety of degenerative conditions. Both clinical and preclinical studies of regenerative medicine are hampered by the lack of technologies that can evaluate the migration and behavior of stem cells post-transplantation. This study proposes an innovative method to longitudinally image in vivo human-induced pluripotent stem cells differentiated to retinal pigment epithelium (hiPSC-RPE) cells by multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence imaging powered by ultraminiature chain-like gold nanoparticle cluster (GNC) nanosensors. The GNC exhibits an optical absorption peak in the near-infrared regime, and the 7-8 nm size in diameter after disassembly enables renal excretion and improved safety as well as biocompatibility. In a clinically relevant rabbit model, GNC-labeled hiPSC-RPE cells migrated to RPE degeneration areas and regenerated damaged tissues. The hiPSC-RPE cells' distribution and migration were noninvasively, longitudinally monitored for 6 months with exceptional sensitivity and spatial resolution. This advanced platform for cellular imaging has the potential to enhance regenerative cell-based therapies.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Athanasios J. Karoukis
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Wei Qian
- IMRA America Inc., Ann Arbor, MI 48105, USA
| | - Lisheng Chen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Nirosha D. Perera
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qitao Zhang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Josh Zhe
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jessica Henry
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Bing Liu
- IMRA America Inc., Ann Arbor, MI 48105, USA
| | - Wei Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Abigail T. Fahim
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
3
|
Nguyen VP, Zhe J, Hu J, Ahmed U, Paulus YM. Molecular and cellular imaging of the eye. BIOMEDICAL OPTICS EXPRESS 2024; 15:360-386. [PMID: 38223186 PMCID: PMC10783915 DOI: 10.1364/boe.502350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 01/16/2024]
Abstract
The application of molecular and cellular imaging in ophthalmology has numerous benefits. It can enable the early detection and diagnosis of ocular diseases, facilitating timely intervention and improved patient outcomes. Molecular imaging techniques can help identify disease biomarkers, monitor disease progression, and evaluate treatment responses. Furthermore, these techniques allow researchers to gain insights into the pathogenesis of ocular diseases and develop novel therapeutic strategies. Molecular and cellular imaging can also allow basic research to elucidate the normal physiological processes occurring within the eye, such as cell signaling, tissue remodeling, and immune responses. By providing detailed visualization at the molecular and cellular level, these imaging techniques contribute to a comprehensive understanding of ocular biology. Current clinically available imaging often relies on confocal microscopy, multi-photon microscopy, PET (positron emission tomography) or SPECT (single-photon emission computed tomography) techniques, optical coherence tomography (OCT), and fluorescence imaging. Preclinical research focuses on the identification of novel molecular targets for various diseases. The aim is to discover specific biomarkers or molecular pathways associated with diseases, allowing for targeted imaging and precise disease characterization. In parallel, efforts are being made to develop sophisticated and multifunctional contrast agents that can selectively bind to these identified molecular targets. These contrast agents can enhance the imaging signal and improve the sensitivity and specificity of molecular imaging by carrying various imaging labels, including radionuclides for PET or SPECT, fluorescent dyes for optical imaging, or nanoparticles for multimodal imaging. Furthermore, advancements in technology and instrumentation are being pursued to enable multimodality molecular imaging. Integrating different imaging modalities, such as PET/MRI (magnetic resonance imaging) or PET/CT (computed tomography), allows for the complementary strengths of each modality to be combined, providing comprehensive molecular and anatomical information in a single examination. Recently, photoacoustic microscopy (PAM) has been explored as a novel imaging technology for visualization of different retinal diseases. PAM is a non-invasive, non-ionizing radiation, and hybrid imaging modality that combines the optical excitation of contrast agents with ultrasound detection. It offers a unique approach to imaging by providing both anatomical and functional information. Its ability to utilize molecularly targeted contrast agents holds great promise for molecular imaging applications in ophthalmology. In this review, we will summarize the application of multimodality molecular imaging for tracking chorioretinal angiogenesis along with the migration of stem cells after subretinal transplantation in vivo.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Josh Zhe
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Justin Hu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Umayr Ahmed
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
4
|
Lam WS, Lam WH, Lee PF, Jaaman SH. Biophotonics as a new application in optical technology: A bibliometric analysis. Heliyon 2023; 9:e23011. [PMID: 38076099 PMCID: PMC10703716 DOI: 10.1016/j.heliyon.2023.e23011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024] Open
Abstract
Biophotonics procures wide practicability in life sciences and medicines. The contribution of biophotonics is well recognized in various Nobel Prizes. Therefore, this paper aims to conduct a bibliometric analysis of biophotonics publications. The scientific database used is the Web of Science database. Harzing's Publish or Perish and VOSviewer are the bibliometric tools used in this analysis. This study found an increasing trend in the number of publications in recent years as the number of publications peaked at 347 publications in 2020. Most of the documents are articles (3361 publications) and proceeding papers (1632 publications). The top three subject areas are Optics (3206 publications), Engineering (1706 publications) and Radiology, Nuclear Medicine, and Medical Imaging (1346 publications). The United States has the highest number of publications (2041 publications) and citation impact (38.07 citations per publication; h-index: 125). The top three publication titles are Proceedings of SPIE (920 publications), Journal of Biomedical Optics (599 publications), and Proceedings of the Society of Photo Optical Instrumentation Engineers SPIE (245 publications). The potential areas for future research include to overcome the optical penetration depth issue and to develop publicly available biosensors for the detection of common diseases.
Collapse
Affiliation(s)
- Weng Siew Lam
- Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Weng Hoe Lam
- Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Pei Fun Lee
- Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Saiful Hafizah Jaaman
- Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| |
Collapse
|
5
|
Pichardo AH, Littlewood J, Taylor A, Wilm B, Lévy R, Murray P. Multispectral optoacoustic tomography is more sensitive than micro-computed tomography for tracking gold nanorod labelled mesenchymal stromal cells. JOURNAL OF BIOPHOTONICS 2023; 16:e202300109. [PMID: 37431566 PMCID: PMC7616740 DOI: 10.1002/jbio.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Tracking the fate of therapeutic cell types is important for assessing their safety and efficacy. Bioluminescence imaging (BLI) is an effective cell tracking technique, but poor spatial resolution means it has limited ability to precisely map cells in vivo in 3D. This can be overcome by using a bimodal imaging approach that combines BLI with a technique capable of generating high-resolution images. Here we compared the effectiveness of combining either multispectral optoacoustic tomography (MSOT) or micro-computed tomography (micro-CT) with BLI for tracking the fate of luciferase+ human mesenchymal stromal cells (MSCs) labelled with gold nanorods. Following subcutaneous administration in mice, the MSCs could be readily detected with MSOT but not with micro-CT. We conclude that MSOT is more sensitive than micro-CT for tracking gold nanorod-labelled cells in vivo and depending on the route of administration, can be used effectively with BLI to track MSC fate in mice.
Collapse
Affiliation(s)
- Alejandra Hernandez Pichardo
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-clinical Imaging, University of Liverpool, Liverpool, UK
| | - James Littlewood
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- iThera Medical GmbH, Munich, Germany
| | - Arthur Taylor
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-clinical Imaging, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-clinical Imaging, University of Liverpool, Liverpool, UK
| | - Raphaël Lévy
- Université Sorbonne Paris Nord and Université de Paris, INSERM, LVTS, Paris, France
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-clinical Imaging, University of Liverpool, Liverpool, UK
| |
Collapse
|
6
|
Dziedzic DSM, Mogharbel BF, Irioda AC, Stricker PEF, Woiski TD, Machado TN, Bezerra Jr AG, Athayde Teixeira de Carvalho K. Laser Ablated Albumin Functionalized Spherical Gold Nanoparticles Indicated for Stem Cell Tracking. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1034. [PMID: 36770041 PMCID: PMC9919444 DOI: 10.3390/ma16031034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Cell tracking in cell-based therapy applications helps distinguish cell participation among paracrine effect, neovascularization, and matrix deposition. This preliminary study examined the cellular uptake of gold nanoparticles (AuNPs), observing cytotoxicity and uptake of different sizes and AuNPs concentrations in Adipose-derived stromal cells (ASCs). ASCs were incubated for 24 h with Laser ablated Albumin functionalized spherical AuNPs (LA-AuNPs), with average sizes of 2 nm and 53 nm in diameter, in four concentrations, 127 µM, 84 µM, 42 µM, and 23 µM. Cytotoxicity was examined by Live/Dead assay, and erythrocyte hemolysis, and the effect on the cytoskeleton was investigated by immunocytochemistry for β-actin. The LA-AuNPs were internalized by the ASCs in a size and concentration-dependent manner. Clusters were observed as dispersed small ones in the cytosol, and as a sizeable perinuclear cluster, without significant harmful effects on the cells for up to 2 weeks. The Live/Dead and hemolysis percentage results complemented the observations that the larger 53 nm LA-AuNPs in the highest concentrated solution significantly lowered cell viability. The demonstrated safety, cellular uptake, and labelling persistency with LA-AuNPs, synthesized without the combination of chemical solutions, support their use for cell tracking in tissue engineering applications.
Collapse
Affiliation(s)
- Dilcele Silva Moreira Dziedzic
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba 80230-901, PR, Brazil
| | - Bassam Felipe Mogharbel
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba 80230-901, PR, Brazil
| | - Ana Carolina Irioda
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba 80230-901, PR, Brazil
| | - Priscila Elias Ferreira Stricker
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba 80230-901, PR, Brazil
| | - Thiago Demetrius Woiski
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba 80230-901, PR, Brazil
| | - Thiago Neves Machado
- Physics Department, Federal University of Technology, Curitiba 80230-901, PR, Brazil
| | | | - Katherine Athayde Teixeira de Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba 80230-901, PR, Brazil
| |
Collapse
|
7
|
Huang J, Bao H, Li X, Zhang Z. In vivo
CT imaging tracking of stem cells labeled with Au nanoparticles. VIEW 2022. [DOI: 10.1002/viw.20200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jie Huang
- CAS Key Laboratory of Nano‐Bio Interface, Division of Nanobiomedicine Suzhou Institute of Nano‐Tech and Nano‐bionics, Chinese Academy of Sciences Suzhou China
- School of Nano‐Tech and Nano‐Bionics University of Science and Technology of China Hefei China
| | - Hongying Bao
- CAS Key Laboratory of Nano‐Bio Interface, Division of Nanobiomedicine Suzhou Institute of Nano‐Tech and Nano‐bionics, Chinese Academy of Sciences Suzhou China
- School of Nano‐Tech and Nano‐Bionics University of Science and Technology of China Hefei China
| | - Xiaodi Li
- CAS Key Laboratory of Nano‐Bio Interface, Division of Nanobiomedicine Suzhou Institute of Nano‐Tech and Nano‐bionics, Chinese Academy of Sciences Suzhou China
- School of Nano‐Tech and Nano‐Bionics University of Science and Technology of China Hefei China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano‐Bio Interface, Division of Nanobiomedicine Suzhou Institute of Nano‐Tech and Nano‐bionics, Chinese Academy of Sciences Suzhou China
- School of Nano‐Tech and Nano‐Bionics University of Science and Technology of China Hefei China
| |
Collapse
|
8
|
Bekhet MA, Ali AA, Kharshoum RM, El-Ela FIA, Salem HF. Intranasal Niosomal in situ Gel as a Novel Strategy for Improving Citicoline Efficacy and Brain Delivery in Treatment of Epilepsy: In vitro and ex vivo characterization and in vivo pharmacodynamics investigation. J Pharm Sci 2022; 111:2258-2269. [DOI: 10.1016/j.xphs.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
|
9
|
Bao H, Li Y, Yu C, Li X, Wang Y, Gao L, Huang J, Zhang Z. DNA-coated gold nanoparticles for tracking hepatocyte growth factor secreted by transplanted mesenchymal stem cells in pulmonary fibrosis therapy. Biomater Sci 2021; 10:368-375. [PMID: 34897301 DOI: 10.1039/d1bm01362a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The identification of paracrine factors secreted by transplanted mesenchymal stem cells (MSCs) during the treatment of idiopathic pulmonary fibrosis (IPF) is essential for understanding the role of MSCs in therapy. Herein, we report a facile and efficient strategy for in vivo tracking the secretion of hepatocyte growth factor (HGF) in MSCs during IPF therapy. In our strategy, a novel nanoflare tracer consisting of gold nanoparticles (AuNPs), complementary sequences and dye-labeled recognition sequences is developed. Briefly, the AuNPs are functionalized with oligonucleotide complementary sequences hybridized to the organic dye-labeled recognition sequences, where the organic fluorophores are in close proximity to the AuNPs. In the absence of targets, the dye and AuNPs are separated from each other, inducing the quenching of the fluorescence signal. However, in the presence of targets, the recognition sequences gradually fall off from the AuNPs, causing the fluorescence signal to rise. In brief, in vivo monitoring of the dynamic expression of HGF mRNA in transplanted MSCs during IPF therapy in the current work may provide new insight into the paracrine process of the transplanted MSCs, thereby advancing the MSC-based IPF therapy toward clinical applications.
Collapse
Affiliation(s)
- Hongying Bao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xiaodi Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yujie Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Li Gao
- School of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
10
|
Mundy DC, Goldberg JL. Nanoparticles as Cell Tracking Agents in Human Ocular Cell Transplantation Therapy. CURRENT OPHTHALMOLOGY REPORTS 2021. [DOI: 10.1007/s40135-021-00275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Chandrasekaran R, Madheswaran T, Tharmalingam N, Bose RJ, Park H, Ha DH. Labeling and tracking cells with gold nanoparticles. Drug Discov Today 2020; 26:94-105. [PMID: 33130336 DOI: 10.1016/j.drudis.2020.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/03/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Gold nanoparticles (AuNPs) have garnered much attention as contrast agents for computerized tomography (CT) because of their facile synthesis and surface functionalization, in addition to their significant X-ray attenuation and minimal cytotoxicity. Cell labeling using AuNPs and tracking of the labeled cells using CT has become a time-efficient and cost-effective method. Actively targeted AuNPs can enhance CT contrast and sensitivity, and further reduce the radiation dosage needed during CT imaging. In this review, we summarize the state-of-the-art use of AuNPs in CT for cell tracking, including the precautionary steps necessary for their use and the difficulty in translating the process into clinical use.
Collapse
Affiliation(s)
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, No. 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Nagendran Tharmalingam
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Rajendran Jc Bose
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea; Masonic Medical Research Institute, Utica, NY, USA
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - Don-Hyung Ha
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Siddique S, Chow JCL. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1700. [PMID: 32872399 PMCID: PMC7559738 DOI: 10.3390/nano10091700] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Nanomaterials, such as nanoparticles, nanorods, nanosphere, nanoshells, and nanostars, are very commonly used in biomedical imaging and cancer therapy. They make excellent drug carriers, imaging contrast agents, photothermal agents, photoacoustic agents, and radiation dose enhancers, among other applications. Recent advances in nanotechnology have led to the use of nanomaterials in many areas of functional imaging, cancer therapy, and synergistic combinational platforms. This review will systematically explore various applications of nanomaterials in biomedical imaging and cancer therapy. The medical imaging modalities include magnetic resonance imaging, computed tomography, positron emission tomography, single photon emission computerized tomography, optical imaging, ultrasound, and photoacoustic imaging. Various cancer therapeutic methods will also be included, including photothermal therapy, photodynamic therapy, chemotherapy, and immunotherapy. This review also covers theranostics, which use the same agent in diagnosis and therapy. This includes recent advances in multimodality imaging, image-guided therapy, and combination therapy. We found that the continuous advances of synthesis and design of novel nanomaterials will enhance the future development of medical imaging and cancer therapy. However, more resources should be available to examine side effects and cell toxicity when using nanomaterials in humans.
Collapse
Affiliation(s)
- Sarkar Siddique
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
13
|
Abstract
Recent developments within micro-computed tomography (μCT) imaging have combined to extend our capacity to image tissue in three (3D) and four (4D) dimensions at micron and sub-micron spatial resolutions, opening the way for virtual histology, live cell imaging, subcellular imaging and correlative microscopy. Pivotal to this has been the development of methods to extend the contrast achievable for soft tissue. Herein, we review the new capabilities within the field of life sciences imaging, and consider how future developments in this field could further benefit the life sciences community.
Collapse
Affiliation(s)
- Shelley D Rawson
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Jekaterina Maksimcuka
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Philip J Withers
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Sarah H Cartmell
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
14
|
Ning X, Bao H, Liu X, Fu H, Wang W, Huang J, Zhang Z. Long-term in vivo CT tracking of mesenchymal stem cells labeled with Au@BSA@PLL nanotracers. NANOSCALE 2019; 11:20932-20941. [PMID: 31660568 DOI: 10.1039/c9nr05637h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human mesenchymal stem cells (hMSCs) transplantation has attracted considerable interest for the treatment of pulmonary injury. Noninvasive and long-term tracking of hMSCs after transplantation in vivo, which is important for our understanding of the stem cell therapy, still remains a big challenge. Herein, we report on the development of a novel gold nanoparticle-based nanotracer to track by CT imaging the transplantation of hMSCs in vivo. Gold nanoparticles (AuNPs) were synthesized on bovine serum albumin (BSA) via an in situ growth method and modified with a poly-l-lysine (PLL) layer, yielding Au@BSA@PLL nanotracers with enhanced biocompatibility and intracellular uptake. Au@BSA@PLL nanotracers were explored for in vitro and in vivo tracking of hMSCs with computer tomography (CT). Our results showed that the endocytosis of Au@BSA@PLL by hMSCs was as high as ∼293 pg per cell. Meanwhile, the nanotracers had a negligible influence on the viability, proliferation, and osteogenic and adipogenic differentiation of the labeled hMSCs. Using a pulmonary fibrosis injury mouse model induced by bleomycin, the labeled hMSCs could be tracked by CT imaging up to 23 d after transplanted in vivo, suggesting the feasibility of Au@BSA@PLL as a potential cellular nanotracer for noninvasive and long-term CT tracking of hMSCs in lung tissue repair.
Collapse
Affiliation(s)
- Xinyu Ning
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China. and School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Hongying Bao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xiaoyun Liu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Han Fu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Weizhi Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
15
|
Bao H, Xia Y, Yu C, Ning X, Liu X, Fu H, Chen Z, Huang J, Zhang Z. CT/Bioluminescence Dual-Modal Imaging Tracking of Mesenchymal Stem Cells in Pulmonary Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904314. [PMID: 31565866 DOI: 10.1002/smll.201904314] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Human mesenchymal stem cells (hMSCs), due to their immune regulation and collateral secretion effects, are currently explored for potential therapy of idiopathic pulmonary fibrosis (IPF). Understanding the migration, homing, functions, and survival of transplanted hMSCs in vivo is critical to successful IPF treatment. Therefore, it is highly desired to develop noninvasive and effective imaging technologies to track the transplanted hMSCs, providing experimental basis for improving the efficacy of hMSCs in the treatment of IPF. The rational design and development of a dual-labeling strategy are reported by integrating gold nanoparticle (AuNP)-based computed tomography (CT) nanotracers and red-emitting firefly luciferase (RfLuc)-based bioluminescence (BL) tags for CT/BL multimodal imaging tracking of the transplanted hMSCs in a murine model of IPF. In this approach, the CT nanotracer is prepared by sequential coupling of AuNPs with polyethylene glycol and trans-activator of transcription (TAT) peptide (Au@TAT), and employed it to monitor the location and distribution of the transplanted hMSCs in vivo by CT imaging, while RfLuc is used to monitor hMSCs viability by BLI. This facile strategy allows for visualization of the transplanted hMSCs in vivo, thereby enabling profound understanding of the role of hMSCs in the IPF treatment, and advancing stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Hongying Bao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Yuyang Xia
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xinyu Ning
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiaoyun Liu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Han Fu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhongjin Chen
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
16
|
Ma DJ, Lim MS, Park UC, Park JB, Ji SY, Yu HG. Magnetic Iron Oxide Nanoparticle Labeling of Photoreceptor Precursors for Magnetic Resonance Imaging. Tissue Eng Part C Methods 2019; 25:532-542. [PMID: 31418341 DOI: 10.1089/ten.tec.2019.0136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPACT STATEMENT This study describes the methods and results of superparamagnetic iron oxide nanoparticle (SPION) labeling and magnetic resonance imaging (MRI) tracking of human embryonic stem cell-derived photoreceptor precursors transplanted into the subretinal space of Royal College of Surgeons rats. SPION labeling and MRI tracking provide information about the biodistribution of transplanted photoreceptor precursors, which is necessary for improving the functional benefits of cell therapy for degenerative retinal diseases.
Collapse
Affiliation(s)
- Dae Joong Ma
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Retinal Degeneration Research Lab, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Mi-Sun Lim
- R&D Center, Jeil Pharmaceutical Co., Ltd., Yongin-si, Republic of Korea.,Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Un Chul Park
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Retinal Degeneration Research Lab, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Jung-Bum Park
- Retinal Degeneration Research Lab, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - So Yeon Ji
- R&D Center, Jeil Pharmaceutical Co., Ltd., Yongin-si, Republic of Korea.,Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hyeong Gon Yu
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Retinal Degeneration Research Lab, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea.,Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Sahle FF, Kim S, Niloy KK, Tahia F, Fili CV, Cooper E, Hamilton DJ, Lowe TL. Nanotechnology in regenerative ophthalmology. Adv Drug Deliv Rev 2019; 148:290-307. [PMID: 31707052 PMCID: PMC7474549 DOI: 10.1016/j.addr.2019.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
Abstract
In recent years, regenerative medicine is gaining momentum and is giving hopes for restoring function of diseased, damaged, and aged tissues and organs and nanotechnology is serving as a catalyst. In the ophthalmology field, various types of allogenic and autologous stem cells have been investigated to treat some ocular diseases due to age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and corneal and lens traumas. Nanomaterials have been utilized directly as nanoscaffolds for these stem cells to promote their adhesion, proliferation and differentiation or indirectly as vectors for various genes, tissue growth factors, cytokines and immunosuppressants to facilitate cell reprogramming or ocular tissue regeneration. In this review, we reviewed various nanomaterials used for retina, cornea, and lens regenerations, and discussed the current status and future perspectives of nanotechnology in tracking cells in the eye and personalized regenerative ophthalmology. The purpose of this review is to provide comprehensive and timely insights on the emerging field of nanotechnology for ocular tissue engineering and regeneration.
Collapse
Affiliation(s)
- Fitsum Feleke Sahle
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Sangyoon Kim
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Kumar Kulldeep Niloy
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Faiza Tahia
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Cameron V Fili
- Department of Comparative Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Emily Cooper
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - David J Hamilton
- Department of Comparative Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
18
|
Salem HF, Kharshoum RM, Abou-Taleb HA, Naguib DM. Brain targeting of resveratrol through intranasal lipid vesicles labelled with gold nanoparticles: in vivo evaluation and bioaccumulation investigation using computed tomography and histopathological examination. J Drug Target 2019; 27:1127-1134. [PMID: 31094230 DOI: 10.1080/1061186x.2019.1608553] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Resveratrol is a promising neuroprotective agent against neurodegenerative disorders such as Alzheimer's disease. Resveratrol-loaded transferosomes and nanoemulsions were developed and labelled with gold nanoparticles (GNPs). The water maze test was utilised to identify the effect on spatial memory recovery. The treated rats were examined for cellular uptake and bioaccumulation of drug in the brain using computed tomography (CT) and histopathological examination utilising GNPs as a biomarker. Compared with nanoemulsions, transferosomes displayed higher permeation of up to 81.29 ± 2.64% and higher fluorescence intensity with p < .05. Transferosomes significantly enhanced behavioural acquisition and spatial memory function in the amnesic rats compared with both the nanoemulsion formulation and the pure drug. CT effectively demonstrated the accumulation of GNPs in the brains of all treated rats, while superior accumulation of GNPs was observed in the rats that received the transferosome formulation. The histopathology also demonstrated GNP accumulation in the nuclei and cytoplasm in the brain tissues of both the transferosome- and nanoemulsion-treated groups. Therefore, the developed transferosomes may be considered as a well-designed brain targeting system that might further be applied for targeting many drugs to be used in the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Beni-Suef University , Beni-Suef , Egypt
| | - Rasha M Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Beni-Suef University , Beni-Suef , Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Nahda University (NUB) , Beni-Suef , Egypt
| | - Demiana M Naguib
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Nahda University (NUB) , Beni-Suef , Egypt
| |
Collapse
|
19
|
Ding SLS, Koh AEH, Kumar S, Ali Khan MS, Alzahrani B, Mok PL. Genetically-modified human mesenchymal stem cells to express erythropoietin enhances differentiation into retinal photoreceptors: An in-vitro study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 195:33-38. [PMID: 31060031 DOI: 10.1016/j.jphotobiol.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
Dysfunctional or death of retinal photoreceptors is an irreversible phenomenon that is closely associated with a broad range of retinal degenerative diseases, such as retinitis pigmentosa and age-related macular degeneration (AMD), resulting in successive loss of visual function and blindness. In search for viable treatment for retinal degenerative diseases, mesenchymal stem cells (MSCs) has demonstrated promising therapeutic capabilities to repair and replace damaged photoreceptor cells in both in vitro and in vivo conditions. Nevertheless, the dearth of MSC differentiation capacity into photoreceptors has limited its use in cell replacement therapy. Erythropoietin (EPO) has vital role in early neural retinal cell differentiation and demonstrated rescue potential on dying photoreceptor cells. Hence, we aimed to evaluate the differentiation capacity of MSCs into photoreceptor cells in the presence of human EPO protein. We derived the MSC from human Wharton's jelly of umbilical cord and transduced the cells with lentivirus particles encoding EPO and green fluorescent protein (GFP) as reporter gene. The transduced cells were selectively cultured and induced to differentiate into photoreceptors by exposing to photoreceptor differentiation cocktail. Our preliminary results showed that transduced cells exposed to induction medium had an enhanced differentiation capacity when compared to non-transduced cells. Our results demonstrated a novel strategy to increase the yield of in vitro photoreceptor differentiation and may be potentially useful in improving the efficiency of stem cell transplantation for ocular disorders.
Collapse
Affiliation(s)
- Suet Lee Shirley Ding
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohammed Safwan Ali Khan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.
| |
Collapse
|
20
|
Ding SSL, Subbiah SK, Khan MSA, Farhana A, Mok PL. Empowering Mesenchymal Stem Cells for Ocular Degenerative Disorders. Int J Mol Sci 2019; 20:E1784. [PMID: 30974904 PMCID: PMC6480671 DOI: 10.3390/ijms20071784] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) have been employed in numerous pre-clinical and clinical settings for various diseases. MSCs have been used in treating degenerative disorders pertaining to the eye, for example, age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and optic neuritis. Despite the known therapeutic role and mechanisms of MSCs, low cell precision towards the targeted area and cell survivability at tissue needing repair often resulted in a disparity in therapeutic outcomes. In this review, we will discuss the current and feasible strategy options to enhance treatment outcomes with MSC therapy. We will review the application of various types of biomaterials and advances in nanotechnology, which have been employed on MSCs to augment cellular function and differentiation for improving treatment of visual functions. In addition, several modes of gene delivery into MSCs and the types of associated therapeutic genes that are important for modulation of ocular tissue function and repair will be highlighted.
Collapse
Affiliation(s)
- Shirley Suet Lee Ding
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohammed Safwan Ali Khan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas University, College Station, Texas 77843, USA.
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.
| |
Collapse
|
21
|
Evaluation of Toxicity of Chemically Synthesised Gold Nanoparticles Against Eudrilus eugeniae. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1440-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Masse F, Ouellette M, Lamoureux G, Boisselier E. Gold nanoparticles in ophthalmology. Med Res Rev 2018; 39:302-327. [DOI: 10.1002/med.21509] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Florence Masse
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Mathieu Ouellette
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Guillaume Lamoureux
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Elodie Boisselier
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| |
Collapse
|