1
|
Pei Z, Cao Y, Qi X, Li J, Tian J, Zhang Q, Liu L, Cai X, Wu P. Enhancing efficacy and mitigating toxicity of Semen Strychni: From traditional practices to modern pharmaceutical innovations. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119515. [PMID: 39983805 DOI: 10.1016/j.jep.2025.119515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/10/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Semen Strychni (Maqianzi), the seeds of Strychnos nux-vomica L. (family Loganiaceae), is a traditional Chinese herbal medicine known for its anti-inflammatory, analgesic, and anti-tumor properties. However, the clinical application of Semen Strychni has been seriously limited due to its severe central nervous system toxicity and narrow therapeutic window. AIM OF THE STUDY The research aims to explore the ancient and modern techniques for mitigating toxicity and enhancing efficacy of Semen Strychni, such as processing with auxiliary materials, combined use with herbs, dosage forms and so on. The study seeks to provide a reference for in-depth research and safe clinical use while exploring future development directions and application prospects. MATERIALS AND METHODS Relevant information from 1957 to 2024 via databases was meticulously collected using the keywords "Semen Strychni", "reduce toxicity and increase efficacy", "preparations" and so on from esteemed scientific databases such as CNKI, PubMed, Google Scholar, and Baidu Scholar, as well as doctoral and master's dissertations and classic texts on Chinese herbs. RESULTS Many chemical constituents have been identified from Semen Strychni, including alkaloids, terpenoids, organic acids, and others. The toxic effects of Semen Strychni on the nerves, immune, and other systems have also been observed. Existing research has firmly established that brucine and strychnine are the primary sources of its toxicity. To mitigate these risks, the toxicity of Semen Strychni should be reduced prior to use. The most common detoxification strategies include processing and the combined use with other herbs in prescriptions. Furthermore, the development of novel dosage forms offers a new approach to enhance the safety and efficacy of Semen Strychni. However, these methods still possess some limitations, which should be validated and optimized in more diverse experimental and clinical studies. CONCLUSIONS This review serves to emphasize the urgency of addressing the toxicity concerns of Semen Strychni before considering its clinical application, and systematically summarizes various detoxification strategies employed to date. This study provides valuable insights for enhancing the efficacy and mitigating the toxicity of Semen Strychni. Further research is required to fully elucidate the composition variations and mechanisms existing in these attenuation methods. Such research endeavors contribute to the modernization and standardization of Semen Strychni usage and are of great significance for improving the safety of clinical applications.
Collapse
Affiliation(s)
- Zihan Pei
- School of Chinese Medical Sciences and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yinsheng Cao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Xinyu Qi
- School of Chinese Medical Sciences and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jinying Li
- School of Chinese Medical Sciences and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jiaxuan Tian
- School of Chinese Medical Sciences and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Qiyao Zhang
- School of Chinese Medical Sciences and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Liang Liu
- School of Chinese Medical Sciences and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Xiong Cai
- School of Chinese Medical Sciences and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Ping Wu
- School of Chinese Medical Sciences and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
2
|
Wang X, Yue J, Guo S, Rahmatulla A, Li S, Liu Y, Chen Y. Dissolving microneedles: A transdermal drug delivery system for the treatment of rheumatoid arthritis. Int J Pharm 2025; 671:125206. [PMID: 39799999 DOI: 10.1016/j.ijpharm.2025.125206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder that impacts around 1% of the global population. Up to 20% of people become disabled within a year, which has a severely negative impact on their health and quality of life. RA has a complicated pathogenic mechanism, which initially affects small joints and progresses to larger ones over time. It can damage the skin, eyes, heart, kidney, and lung. Oral medications, intra-articular injections, and other treatments are being used; nevertheless, they have drawbacks, including low bioavailability, numerous adverse effects, and poor patient compliance. Dissolving microneedles (DMNs) are a safe and painless method for transdermal drug delivery, achieved through their ability to physically penetrate the epidermal barrier. They enable targeted drug delivery, significantly enhancing the bioavailability of medications and improving patient compliance. DMNs are particularly effective in delivering both lipophilic and high molecular weight biomolecules. The superior bioavailability of DMNs is demonstrated by the fact that low-dose DMN administration can achieve up to 25.8 times higher bioavailability compared to oral administration. This paper provides a comprehensive review of recent advancements in the use of DMNs for RA treatment, encompassing various materials (such as hyaluronic acid, chitosan, etc.), fabrication techniques (such as the two-step casting method, photopolymerization), and performance evaluations (including morphology, mechanical properties, skin penetration capability, solubility, and pharmacodynamics). Additionally, a thorough safety assessment has been conducted, revealing that DMNs cause minimal skin irritation and exhibit low cytotoxicity, ensuring their safety for clinical application. DMNs provide a highly effective and promising alternative to oral and injectable drug delivery systems, offering a novel therapeutic approach for RA patients that significantly improves treatment outcomes and enhances their quality of life.
Collapse
Affiliation(s)
- Xueni Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Jiang Yue
- Department of Endocrinology and Metabolism Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Shijie Guo
- Shengzhou Silk Protein Biotechnology Application Research Institute Zhejiang China
| | - Aysha Rahmatulla
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Shuangshuang Li
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Yang Liu
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China.
| |
Collapse
|
3
|
Weng PW, Lu HT, Rethi L, Liu CH, Wong CC, Rethi L, Wu KCW, Jheng PR, Nguyen HT, Chuang AEY. Alleviating rheumatoid arthritis with a photo-pharmacotherapeutic glycan-integrated nanogel complex for advanced percutaneous delivery. J Nanobiotechnology 2024; 22:646. [PMID: 39428483 PMCID: PMC11492540 DOI: 10.1186/s12951-024-02877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
The prospective of percutaneous drug delivery (PDD) mechanisms to address the limitations of oral and injectable treatment for rheumatoid arthritis (RA) is increasing. These limitations encompass inadequate compliance among patients and acute gastrointestinal side effects. However, the skin's intrinsic layer can frequently hinder the percutaneous dispersion of RA medications, thus mitigating the efficiency of drug delivery. To circumvent this constraint, we developed a strontium ranelate (SrR)-loaded alginate (ALG) phototherapeutic hydrogel to assess its effectiveness in combating RA. Our studies revealed that this SrR-loaded ALG hydrogel incorporating photoelectrically responsive molybdenum disulfide nanoflowers (MoS2 NFs) and photothermally responsive polypyrrole nanoparticles (Ppy NPs) to form ALG@SrR-MoS2 NFs-Ppy NPs demonstrated substantial mechanical strength, potentially enabling delivery of hydrophilic therapeutic agents into the skin and significantly impeding the progression of RA. Comprehensive biochemical, histological, behavioral, and radiographic analyses in an animal model of zymosan-induced RA demonstrated that the application of these phototherapeutic ALG@SrR-MoS2 NFs-Ppy NPs effectively reduced inflammation, increased the presence of heat shock proteins, regulatory cluster of differentiation M2 macrophages, and alleviated joint degeneration associated with RA. As demonstrated by our findings, treating RA and possibly other autoimmune disorders with this phototherapeutic hydrogel system offers a distinctive, highly compliant, and therapeutically efficient method.
Collapse
Affiliation(s)
- Pei-Wei Weng
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, New Taipei City, Taiwan
| | - Hsien-Tsung Lu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Chin-Chean Wong
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekha Rethi
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Kevin C-W Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City, 350, Taiwan
- Department of Chemical Engineering, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei, 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu T Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, 111 Hsing-Long Road, Sec. 3, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
4
|
Yang LJ, Han T, Liu RN, Shi SM, Luan SY, Meng SN. Plant-derived natural compounds: A new frontier in inducing immunogenic cell death for cancer treatment. Biomed Pharmacother 2024; 177:117099. [PMID: 38981240 DOI: 10.1016/j.biopha.2024.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Immunogenic cell death (ICD) can activate adaptive immune response in the host with normal immune system. Some synthetic chemotherapeutic drugs and natural compounds have shown promising results in cancer treatment by triggering the release of damage-associated molecules (DAMPs) to trigger ICD. However, most chemotherapeutic drugs exhibit non-selective cytotoxicity and may also induce and promote metastasis, thereby significantly reducing their clinical efficacy. Among the natural compounds that can induce ICD, plant-derived compounds account for the largest proportion, which are of increasing value in the treatment of cancer. Understanding which plant-derived natural compounds can induce ICD and how they induce ICD is crucial for developing strategies to improve chemotherapy outcomes. In this review, we focus on the recent findings regarding plant-derived natural compounds that induce ICD according to the classification of flavonoids, alkaloids, glycosides, terpenoids and discuss the potential mechanisms including endoplasmic reticulum (ER) stress, DNA damage, apoptosis, necroptosis autophagy, ferroptosis. In addition, plant-derived natural compounds that can enhance the ICD induction ability of conventional therapies for cancer treatment is also elaborated. The rational use of plant-derived natural compounds to induce ICD is helpful for the development of new cancer treatment methods.
Collapse
Affiliation(s)
- Li-Juan Yang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ting Han
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ruo-Nan Liu
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shu-Ming Shi
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shi-Yun Luan
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Sheng-Nan Meng
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
5
|
Kadian V, Rao R. Enhancing anti-inflammatory effect of brucine nanohydrogel using rosemary oil: a promising strategy for dermal delivery in arthritic inflammation. 3 Biotech 2024; 14:157. [PMID: 38766324 PMCID: PMC11099000 DOI: 10.1007/s13205-024-03997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Brucine (BRU), an active constituent of Strychnos nux-vomica L., is one of the potential agents to control subside swelling in arthritis. However, its hydrophobic nature, poor permeation, shorter half-life, narrow therapeutic window, and higher toxicity impede its clinical applications. Hence, this investigation was aimed to develop and evaluate novel BRU loaded β-cyclodextrin (β-CD) nanosponges (BRUNs) hydrogel consisting rosemary essential oil (RO), which have been tailored for delayed release, enhanced skin permeation, and reduced irritation, while retaining anti-oxidant and anti-inflammatory activities of this bioactive. Firstly, BRUNs were fabricated by melt technique and characterized appropriately. BRUNs6 demonstrated two fold enhancement in BRU solubility (441.692 ± 38.674) with minimum particle size (322.966 ± 54.456) having good PDI (0.571 ± 0.091) and zeta potential (-14.633 ± 6.357). In vitro release results demonstrated delayed release of BRU from BRUNs6 (67 ± 4.25%) over 24 h through molecular diffusion mechanism. Further, preserved anti-inflammatory (53.343 ± 0.191%) and antioxidant potential (60.269 ± 0.073%) of bioactive was observed in BRUNs6. Hence, this Ns batch was engrossed with Carbopol®934 hydrogel with RO and characterized. In vitro (release and anti-inflammatory activity), ex-vivo (skin permeability) and in vivo (carrageenan-induced inflammation) assays along with irritation study were conducted for fabricated hydrogels. Results revealed that in vitro release of BRU was further delayed from Ns hydrogel with RO (56.45 ± 3.01%) following Fickian mechanism. Considerable enhancement in skin permeability (60.221 ± 0.322 µg/cm2/h) and preservation of anti-inflammatory activity (94.736 ± 2.002%) was also observed in BRUNs6 hydrogel containing RO. The irritation of BRU was found reduced (half) after its entrapped in Ns. Further, as a proof of concept, BRUNs6 hydrogel with RO effectively reduced (75.757 ± 0.944%) carrageenan-induced inflammation in rat model in comparison to pure BRU (54.914 ± 1.081%). Hence, BRUNs hydrogel with RO can be considered as a promising alternative for dermal delivery of BRU in arthritis.
Collapse
Affiliation(s)
- Varsha Kadian
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001 India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001 India
| |
Collapse
|
6
|
Zhang Q, Wang G, Xu B. Brucine alleviates fibroblast-like synoviocytes dysfunction and inflammation by regulating YY1 during rheumatoid arthritis. Chem Biol Drug Des 2024; 103:e14472. [PMID: 38458967 DOI: 10.1111/cbdd.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 03/10/2024]
Abstract
Brucine is a weak alkaline indole alkaloid with wide pharmacological activities and has been identified to protect against rheumatoid arthritis (RA) process. Circular RNAs (circRNAs) are also reported to be involved in the pathogenesis of RA. Here, we aimed to probe the role and mechanism of Brucine and circ_0139658 in RA progression. The fibroblast-like synoviocytes of RA (RA-FLSs) were isolated for functional analysis. Cell proliferation, apoptosis, invasion, migration, as well as inflammatory response were evaluated by CCK-8 assay, EdU assay, flow cytometry, transwell assay, and ELISA analysis, respectively. qRT-PCR and western blotting analyses were utilized to measure the levels of genes and proteins. The binding between miR-653-5p and circ_0139658 or Yin Yang 1 (YY1), was verified using dual-luciferase reporter and RNA pull-down assays. Brucine suppressed the proliferation, migration, and invasion of RA-FLSs, and alleviated inflammation by reducing the release of pro-inflammatory factors and macrophage M1 polarization. RA-FLSs showed increased circ_0139658 and YY1 levels and decreased miR-653-5p levels. Circ_0139658 is directly bound to miR-653-5p to regulate YY1 expression. Brucine treatment suppressed circ_0139658 and YY1 expression but increased YY1 expression in RA-FLSs. Functionally, circ_0139658 overexpression reversed the suppressing effects of Brucine on RA-FLS dysfunction and inflammation. Moreover, circ_0139658 silencing alleviated the dysfunction and inflammation in RA-FLSs, which were reverted by YY1 overexpression. Brucine suppressed the proliferation, migration, invasion, and inflammation in RA-FLSs by decreasing YY1 via circ_0139658/miR-653-5p axis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of TCM, Changzhou Cancer Hospital, Changzhou, China
| | - Gaodan Wang
- Department of TCM, Changzhou Cancer Hospital, Changzhou, China
| | - Bin Xu
- Department of TCM, Changzhou Cancer Hospital, Changzhou, China
| |
Collapse
|
7
|
Uysal I, Tezcaner A, Evis Z. Methods to improve antibacterial properties of PEEK: A review. Biomed Mater 2024; 19:022004. [PMID: 38364280 DOI: 10.1088/1748-605x/ad2a3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
As a thermoplastic and bioinert polymer, polyether ether ketone (PEEK) serves as spine implants, femoral stems, cranial implants, and joint arthroplasty implants due to its mechanical properties resembling the cortical bone, chemical stability, and radiolucency. Although there are standards and antibiotic treatments for infection control during and after surgery, the infection risk is lowered but can not be eliminated. The antibacterial properties of PEEK implants should be improved to provide better infection control. This review includes the strategies for enhancing the antibacterial properties of PEEK in four categories: immobilization of functional materials and functional groups, forming nanocomposites, changing surface topography, and coating with antibacterial material. The measuring methods of antibacterial properties of the current studies of PEEK are explained in detail under quantitative, qualitative, andin vivomethods. The mechanisms of bacterial inhibition by reactive oxygen species generation, contact killing, trap killing, and limited bacterial adhesion on hydrophobic surfaces are explained with corresponding antibacterial compounds or techniques. The prospective analysis of the current studies is done, and dual systems combining osteogenic and antibacterial agents immobilized on the surface of PEEK are found the promising solution for a better implant design.
Collapse
Affiliation(s)
- Idil Uysal
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Ayşen Tezcaner
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Zafer Evis
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
8
|
Prabha J, Kumar M, Kumar D, Chopra S, Bhatia A. Nano-platform Strategies of Herbal Components for the Management of Rheumatoid Arthritis: A Review on the Battle for Next-Generation Formulations. Curr Drug Deliv 2024; 21:1082-1105. [PMID: 37622715 DOI: 10.2174/1567201821666230825102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that initially affects small joints and then spreads to the bigger joints. It also affects other organs of the body such as lungs, eyes, kidneys, heart, and skin. In RA, there is destruction of cartilage and joints, and ligaments and tendons become brittle. Damage to the joints leads to abnormalities and bone degradation, which may be quite painful for the patient. METHOD The nano-carriers such as liposomes, phytosomes, nanoparticles, microcapsules, and niosomes are developed to deliver the encapsulated phytoconstituents to targeted sites for the better management of RA. RESULTS The phytoconstituents loaded nano-carriers have been used in order to increase bioavailability, stability and reduce the dose of an active compound. In one study, the curcumin-loaded phytosomes increase the bioavailability of curcumin and also provides relief from RA symptoms. The drug-loaded nano-carriers are the better option for the management of RA. CONCLUSION In conclusion, there are many anti-arthritic herbal and synthetic medicine available in the market that are currently used in the treatment of RA. However, chronic use of these medications may result in a variety of side effects. Because therapy for RA is frequently necessary for the rest of ones life. The use of natural products may be a better option for RA management. These phytoconstituents, however, have several disadvantages, including limited bioavailability, low stability, and the need for a greater dosage. These problems can be rectified by using nano-technology.
Collapse
Affiliation(s)
- Jyoti Prabha
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh - 201313, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| |
Collapse
|
9
|
Liu W, Tang X, Fan C, He G, Wang X, Liang X, Bao X. Chemical constituents, pharmacological action, antitumor application, and toxicity of Strychnine Semen from Strychnons pierriana A.W.Hill.: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116748. [PMID: 37348797 DOI: 10.1016/j.jep.2023.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried and mature seeds of Strychnons pierriana A.W.Hill. have been called Strychnine Semen(S. Semen). It have been used in traditional Chinese medicine for nearly 400 years. In recent decades, scholars at home and abroad have widely used S. Semen in the treatment of tumor diseases, showing good anti-tumor effects. In this paper, the modern research achievements of S. Semen are reviewed, including traditional uses, phytochemistry, pharmacology, and toxicology. AIM OF THE STUDY In recent years, the research on S. Semen has increased gradually, especially the research on its anti-tumor. This paper not only reviewed the traditional uses, chemical constituents and pharmacological activities of S. Semen, but also comprehensively listed the mechanisms of Strychnos in the treatment of different tumors, providing a review for further research and development of Strychnos resources. MATERIALS AND METHODS A systematic review of the literature on Fuzi was performed using several resources, namely classic books on Chinese herbal medicine and various scientific databases, such as PubMed, the Web of Science, and the China Knowledge Resource Integrated databases. RESULTS The main constituents of S. Semen include alkaloids, terpenoids, steroids, and their glycosides. Modern studies have proved that S. Semen has a wide range of pharmacological effects, including anti-inflammatory and analgesic, anti-thrombotic, myocardial cell protection, immune regulation, nerve excitation, and anti-tumor effects. Among them, the anti-tumor effect has been the focus of research in recent years. S. Semen have a certain therapeutic effect on many kinds of tumors, such as liver cancer, colon cancer, and stomach cancer in the digestive system, breast, cervical, and ovarian cancer in the reproductive system, myeloma and leukemia in the blood system, and those in the nervous system and the immune system. CONCLUSION Strychnine has an inhibitory effect on a variety of tumors. However, modern studies of strychnine are incomplete, and more in-depth studies are needed on its stronger bioactive constituents and potential pharmacological effects. The antitumor effect of Strychnine is worth further exploration.
Collapse
Affiliation(s)
- Weiran Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintian Tang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengyu Fan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guannan He
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoxin Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaodong Liang
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xia Bao
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
10
|
Wu M, Hu Y, Xu M, Fu L, Li C, Wu J, Sun X, Wang W, Wang S, Wang T, Ding W, Li P. Transdermal delivery of brucine-encapsulated liposomes significantly enhances anti-tumor outcomes in treating triple-negative breast cancer. BIOMATERIALS ADVANCES 2023; 153:213566. [PMID: 37536027 DOI: 10.1016/j.bioadv.2023.213566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
Triple-negative breast cancer (TNBC) is always the most challenging breast cancer subtype. Herein, brucine, encapsulated in peptide-modified liposomes, was proposed for treating TNBC by transdermal delivery. For the TD peptide-modified brucine-loaded liposome (Bru-TD-Lip) we developed, it presents high encapsulation efficiency of brucine and stability. In vitro, Bru-TD-Lip shows the enhanced percutaneous permeability of brucine, is able to readily enter TNBC cells, and significantly inhibits the proliferation, migration, and invasion of these cells. In vivo, through transdermal delivery, Bru-TD-Lip presents good biosafety and anti-tumor efficacy. The transdermal delivery of Bru-TD-Lip effectively targets and inhibits subcutaneous mammary carcinogenesis in female nude mice. Compared with oral administration, the transdermal delivery significantly reduces the damage of brucine to major organs and enhances the antitumor outcomes of brucine in treating TNBC. This study provides a new therapeutic strategy for treating triple-negative breast cancer by brucine.
Collapse
Affiliation(s)
- Min Wu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Yi Hu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230022, China
| | - Mengran Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Lijuan Fu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jingjing Wu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Xin Sun
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Wenshen Wang
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230022, China
| | - Shaozhen Wang
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230022, China
| | - Ting Wang
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China.
| | - Weiping Ding
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China; School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Ping Li
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China.
| |
Collapse
|
11
|
Niu J, Yuan M, Gao P, Wang L, Qi Y, Chen J, Bai K, Fan Y, Liu X. Microemulsion-Based Keratin-Chitosan Gel for Improvement of Skin Permeation/Retention and Activity of Curcumin. Gels 2023; 9:587. [PMID: 37504466 PMCID: PMC10379975 DOI: 10.3390/gels9070587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Curcumin (Cur) is a kind of polyphenol with a variety of topical pharmacological properties including antioxidant, analgesic and anti-inflammatory activities. However, its low water solubility and poor skin bioavailability limit its effectiveness. In the current study, we aimed to develop microemulsion-based keratin-chitosan gel for the improvement of the topical activity of Cur. The curcumin-loaded microemulsion (CME) was formulated and then loaded into the keratin-chitosan (KCS) gel to form the CME-KCS gel. The formulated CME-KCS gel was evaluated for its characterization, in vitro release, in vitro skin permeation and in vivo activity. The results showed that the developed CME-KCS gel had an orange-yellow and gel-like appearance. The particle size and zeta potential of the CME-KCS gel were 186.45 ± 0.75 nm and 9.42 ± 0.86 mV, respectively. The CME-KCS gel showed desirable viscoelasticity, spreadability, bioadhesion and controlled drug release, which was suitable for topical application. The in vitro skin permeation and retention study showed that the CME-KCS gel had better in vitro skin penetration than the Cur solution and achieved maximum skin drug retention (3.75 ± 0.24 μg/cm2). In vivo experimental results confirmed that the CME-KCS gel was more effective than curcumin-loaded microemulsion (Cur-ME) in analgesic and anti-inflammatory activities. In addition, the CME-KCS gel did not cause any erythema or edema based on a mice skin irritation test. These findings indicated that the developed CME-KCS gel could improve the skin penetration and retention of Cur and could become a promising formulation for topical delivery to treat local diseases.
Collapse
Affiliation(s)
- Jiangxiu Niu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Ming Yuan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Panpan Gao
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Liye Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yueheng Qi
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Jingjing Chen
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Kaiyue Bai
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yanli Fan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Xianming Liu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
12
|
Chen X, Xiao H, Shi X, Zhao Q, Xu X, Fan P, Xiao D. Bibliometric analysis and visualization of transdermal drug delivery research in the last decade: global research trends and hotspots. Front Pharmacol 2023; 14:1173251. [PMID: 37397493 PMCID: PMC10313210 DOI: 10.3389/fphar.2023.1173251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Transdermal delivery has become a crucial field in pharmaceutical research. There has been a proliferation of innovative methods for transdermal drug delivery. In recent years, the number of publications regarding transdermal drug delivery has been rising rapidly. To investigate the current research trends and hotspots in transdermal drug delivery, a comprehensive bibliometric analysis was performed. Methods: An extensive literature review was conducted to gather information on transdermal drug delivery that had been published between 2003 and 2022. The articles were obtained from the Web of Science (WOS) and the National Center for Biotechnology Information (NCBI) databases. Subsequently, the collected data underwent analysis and visualization using a variety of software tools. This approach enables a deeper exploration of the hotspots and emerging trends within this particular research domain. Results: The results showed that the number of articles published on transdermal delivery has increased steadily over the years, with a total of 2,555 articles being analyzed. The most frequently cited articles were related to the optimization of drug delivery and the use of nanotechnology in transdermal drug delivery. The most active countries in the field of transdermal delivery research were the China, United States, and India. Furthermore, the hotspots over the past 2 decades were identified (e.g., drug therapy, drug delivery, and pharmaceutical preparations and drug design). The shift in research focus reflects an increasing emphasis on drug delivery and control release, rather than simply absorption and penetration, and suggests a growing interest in engineering approaches to transdermal drug delivery. Conclusion: This study provided a comprehensive overview of transdermal delivery research. The research indicated that transdermal delivery would be a rapidly evolving field with many opportunities for future research and development. Moreover, this bibliometric analysis will help researchers gain insights into transdermal drug delivery research's hotspots and trends accurately and quickly.
Collapse
Affiliation(s)
- Xinghan Chen
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Burns and Plastic Surgery, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Haitao Xiao
- Department of Burns and Plastic Surgery, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Xiujun Shi
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiao Zhao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xuewen Xu
- Department of Burns and Plastic Surgery, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Ping Fan
- Department of Pharmacy, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
13
|
Shen L, Lv X, Yang X, Deng S, Liu L, Zhou J, Zhu Y, Ma H. Bufotenines-loaded liposome exerts anti-inflammatory, analgesic effects and reduce gastrointestinal toxicity through altering lipid and bufotenines metabolism. Biomed Pharmacother 2022; 153:113492. [DOI: 10.1016/j.biopha.2022.113492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022] Open
|
14
|
Haroun M, Elsewedy HS, Shehata TM, Tratrat C, Al Dhubiab BE, Venugopala KN, Almostafa MM, Kochkar H, Elnahas HM. Significant of injectable brucine PEGylated niosomes in treatment of MDA cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Liang Y, Duan M, Yi W, Zhang T, Wang Y, Wu Z, Tang H. Ion-pair compounds of diacerein for enhancing skin permeability in vitro: the compatibility-permeability relationship of counter ion and diacerein. Drug Deliv 2022; 29:499-505. [PMID: 35147054 PMCID: PMC8843160 DOI: 10.1080/10717544.2022.2032877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This research aimed to investigate how the relationship between counter ion and diacerein (DCN) exerts an effect on the skin penetration of DCN ion-pair compounds. After the ion-pair compounds were formed by DCN and organic amines with different functional groups, the hydrogen bond of these compounds was confirmed by Fourier-transform infrared (FTIR) spectroscopy and molecular docking. The skin of porcine ears was employed to conduct the in vitro skin penetration, DCN - triethanolamine was the most potential candidate with the Q24h of 7.89 ± 0.38 µg/cm2 among organic amines with different functional groups. Whereas among the homologous fatty amine, the most permeable compound was DCN - lauryl amine with the Q24h of 11.28 ± 0.48 µg/cm2. Molecular simulation was employed to explore the relationship between counter ion and DCN. It was revealed by the bind energy curve that DCN had the strongest compatibility with triethanolamine among organic amines and laurylamine (N12) among fatty amines. It was amazingly found that the in vitro permeation fluxes of DCN ion-pair compounds would increase with enhancing the compatibility of counter ion and DCN. These findings broadened our understanding of how the relationship between drug and counter ion affects the skin penetration of ion-pair compounds.
Collapse
Affiliation(s)
- Yan Liang
- Department of Pharmacy, School of Chemistry, Xiangtan University, Xiangtan, China
| | - Manzhen Duan
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Wei Yi
- Department of Pharmacy, School of Chemistry, Xiangtan University, Xiangtan, China
| | - Teng Zhang
- Department of Pharmacy, School of Chemistry, Xiangtan University, Xiangtan, China
| | - Yonggang Wang
- Department of Pharmacy, School of Chemistry, Xiangtan University, Xiangtan, China
| | - Zhiming Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Huaibo Tang
- Department of Pharmacy, School of Chemistry, Xiangtan University, Xiangtan, China
| |
Collapse
|
16
|
Mu P, Feng J, Hu Y, Xiong F, Ma X, Tian L. Botanical Drug Extracts Combined With Biomaterial Carriers for Osteoarthritis Cartilage Degeneration Treatment: A Review of 10 Years of Research. Front Pharmacol 2022; 12:789311. [PMID: 35173609 PMCID: PMC8841352 DOI: 10.3389/fphar.2021.789311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a long-term chronic arthrosis disease which is usually characterized by pain, swelling, joint stiffness, reduced range of motion, and other clinical manifestations and even results in disability in severe cases. The main pathological manifestation of OA is the degeneration of cartilage. However, due to the special physiological structure of the cartilage, once damaged, it is unable to repair itself, which is one of the challenges of treating OA clinically. Abundant studies have reported the application of cartilage tissue engineering in OA cartilage repair. Among them, cell combined with biological carrier implantation has unique advantages. However, cell senescence, death and dedifferentiation are some problems when cultured in vitro. Botanical drug remedies for OA have a long history in many countries in Asia. In fact, botanical drug extracts (BDEs) have great potential in anti-inflammatory, antioxidant, antiaging, and other properties, and many studies have confirmed their effects. BDEs combined with cartilage tissue engineering has attracted increasing attention in recent years. In this review, we will explain in detail how cartilage tissue engineering materials and BDEs play a role in cartilage repair, as well as the current research status.
Collapse
Affiliation(s)
- Panyun Mu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Feng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yimei Hu
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yimei Hu,
| | - Feng Xiong
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xu Ma
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linling Tian
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Abdallah MH, Lila ASA, Unissa R, Elsewedy HS, Elghamry HA, Soliman MS. Brucine-Loaded Ethosomal Gel: Design, Optimization, and Anti-inflammatory Activity. AAPS PharmSciTech 2021; 22:269. [PMID: 34762193 DOI: 10.1208/s12249-021-02113-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Brucine, one of the natural medications obtained from Nux vomica seeds, is used as an anti-inflammatory drug. Several investigations were performed to overcome its drawbacks, which will affect significantly its pharmaceutical formulation. The goal of the current investigation was to design, optimize, and evaluate the anti-inflammatory performance of BRU ethosomal gel. Brucineethosomal formulations were prepared using thin film hydration method and optimized by central composite design approach using three independent variables (lecithin concentration, cholesterol concentration, and ethanol percentage) and three response variables (vesicular size, encapsulation efficiency, and skin permeation). The optimized formulation was examined for its stability and then incorporated into HPMC gel to get BRU ethosomal gel. The obtained BRU-loaded ethosomal gel was evaluated for its physical properties, in vitro release, and ex vivo permeation and skin irritation. Finally, carrageenan-induced rat hind paw edema test was adopted for the anti-inflammatory activity. The developed BRU ethosomal gel exhibited good physical characteristics comparable with the conventional developed BRU gel. In vitro release of BRU from ethosomal gel was effectively extended for 6 h. Permeation of BRU from ethosomes was significantly higher than all formulations (p < 0.05), since it recorded steady state transdermal flux value 0.548 ± 0.03 μg/cm2 h with enhancement ratio 2.73 ± 0.23. Eventually, BRU ethosomal gel exhibited potent anti-inflammatory activity as manifested by a significant decrease in rat hind paw inflammation following 24 h. In conclusion, the study emphasized the prospective of ethosomal gel as a fortunate carrier for intensifying the anti-inflammatory effect of Brucine.
Collapse
|
18
|
Du G, He P, Zhao J, He C, Jiang M, Zhang Z, Zhang Z, Sun X. Polymeric microneedle-mediated transdermal delivery of melittin for rheumatoid arthritis treatment. J Control Release 2021; 336:537-548. [PMID: 34237400 DOI: 10.1016/j.jconrel.2021.07.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 11/28/2022]
Abstract
Transdermal drug delivery systems for rheumatoid arthritis (RA) have been receiving increasing attention as they can potentially overcome drawbacks which exist in traditional oral or injection strategies, including low patient compliance and serious gastrointestinal side effects. However, transdermal delivery of RA drugs especially biological drugs suffers from low drug delivery efficiency due to the robust skin barrier. Herein, we fabricated melittin-loaded hyaluronic acid (HA) microneedles and investigated their capacity for inhibiting RA. We showed that melittin-loaded HA microneedles possessed high mechanical strength for successful delivery of melittin into the skin and effectively inhibited RA progression in adjuvant induced both rodent and murine models, as shown by results in histological, paw swelling and arthritis score. Furthermore, after modifying HA with cross-linkable groups, the fabricated microneedles with sustained release properties could further improve the therapeutic potency. Cytokine and T cell analysis in the paws and lymphatic organs indicated that the application of microneedles suppressed the levels of pro-inflammation cytokines including IL-17 and TNF-α, and increased the percentage of regulatory CD4 T cells. Our study revealed that polymeric microneedle-mediated transdermal delivery of melittin could serve as a new therapy with high compliance and good therapeutic efficacy for RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Penghui He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Jiaxuan Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Chunting He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Min Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Zhihua Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zhibing Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
19
|
Sharma G, Alle M, Chakraborty C, Kim JC. Strategies for transdermal drug delivery against bone disorders: A preclinical and clinical update. J Control Release 2021; 336:375-395. [PMID: 34175368 DOI: 10.1016/j.jconrel.2021.06.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/01/2022]
Abstract
The transdermal drug delivery system is an exceptionally safe and well-tolerable therapeutic approach that has immense potential for delivering active components against bone-related pathologies. However, its use is limited in the current clinical practices due to the low skin permeability of most active drugs in the formulation. Thus, innovations in the methodologies of skin permeation enhancement techniques are suggested to overcome this limitation. Although various transdermal drug delivery systems are studied to date, there are insufficient studies comparing the therapeutic efficacy of transdermal delivery systems to oral delivery systems. Thus, creating a decision-making dilemma between oral or transdermal therapies. Therefore, a timely review is inevitable to develop a platform for future researchers to develop next-generation transdermal drug delivery strategies against skeletal diseases that must be convenient and cost-effective for the patients with improved therapeutic efficacy. Here, we will outline the most recent strategies that can overcome the choice limitation of the drug and enhance the transdermal adsorption of various types of drugs to treat bone disorders. For the first time, in this review paper, we will highlight the preclinical and clinical studies on the different transdermal delivery methods. Thus, providing insight into the current therapeutic approaches and suggesting new directions for the advancements in transdermal drug delivery systems against bone disorders.
Collapse
Affiliation(s)
- Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal 700126, India
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
20
|
Song X, Wang Y, Chen H, Jin Y, Wang Z, Lu Y, Wang Y. Dosage-efficacy relationship and pharmacodynamics validation of brucine dissolving microneedles against rheumatoid arthritis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Lin J, Gao L, Lin Y, Wang S, Yang Z, Ren S, Chen M, Wu B. Pharmacokinetics-Based Chronoefficacy of Semen Strychni and Tripterygium Glycoside Tablet Against Rheumatoid Arthritis. Front Pharmacol 2021; 12:673263. [PMID: 34108880 PMCID: PMC8181759 DOI: 10.3389/fphar.2021.673263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis is a systemic autoimmune disease characterized by synovial inflammation and bone destruction. Identifying drugs with time-varying efficacy and toxicity, and elucidating the mechanisms would help to improve treatment efficacy and reduce adverse effects. Here, we aimed to determine the chronoefficacy of semen strychni (SS) and tripterygium glycoside tablet (TGT) against rheumatoid arthritis in mice, and to investigate a potential role of circadian pharmacokinetics in generating chronoefficacy. SS extract and TGT suspension were prepared with ultrasonication. Effects of SS and TGT on collagen-induced arthritis (CIA) were evaluated by measuring TNF-α and IL-6 levels. SS dosed at ZT18 was more effective in protecting against CIA than drug dosed at ZT6 (i.e., lower levels of key inflammatory factors at ZT18 than at ZT6). This was accompanied by higher systemic exposure levels of strychnine and brucine (two main putative active ingredients of SS) in ZT18-treated than in ZT6-treated CIA mice. TGT dosing at ZT2 showed a better efficacy against CIA as compared to herb doing at ZT14. Consistently, ZT2 dosing generated a higher exposure of triptolide (a main putative active ingredient of TGT) as compared to ZT14 dosing in CIA mice. Moreover, strychnine, brucine, and triptolide significantly inhibited the proliferation of fibroblast-like synoviocytes, and reduced the production of TNF-α and IL-6 and the mRNAs of TNF-α, IL-6, COX-2, and iNOS, suggesting that they possessed an anti-arthritis activity. In conclusion, SS and TGT display chronoefficacy against rheumatoid arthritis in mice, that is attributed to circadian pharmacokinetics of main active ingredients. Our findings have implications for improving treatment outcomes of SS and TGT via timed delivery.
Collapse
Affiliation(s)
- Jingpan Lin
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Gao
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanke Lin
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuai Wang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zemin Yang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shujing Ren
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Xiang JY, Chi YY, Han JX, Xiang H, Xie Q. The Toxicity and Attenuation Methods of Toxic Chinese Materia Medica for its Reasonable Application: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:41-67. [PMID: 33416023 DOI: 10.1142/s0192415x21500038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Over a millennia, traditional Chinese medicine (TCM) has been used to treat various diseases in China. In recent years, more and more Chinese materia medica (CMM) have been studied in scientific research projects, applied in clinical practice, and their extracts have even appeared in some health products. However, the toxicity of some CMM is often overlooked, including hepatotoxicity, nephrotoxicity, neurotoxicity, cardiotoxicity, etc. In this review, the toxic components and their toxicological mechanisms of some toxic CMM were listed according to the chemical structure classification of toxic components. Afterwards, the traditional methods (processing and compatibility) and modern methods (structural modification, biotransformation, etc.) of attenuation of CMM were discussed. Since ancient times, it has been said that "fight fire with fire, fight poison with poison," and toxic CMM are of great significance in the treatment of difficult and severe diseases. The rational application of toxic CMM and their components in clinical practice was also exemplified in this review. While the pharmacological effects of TCMs have been emphasized, the scientific attenuation and rational application of toxic components should be concerned. We hope this review can provide a reference for future related research.
Collapse
Affiliation(s)
- Jun-Yan Xiang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Yan-Yu Chi
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Jin-Xin Han
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Hongyu Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China.,National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P. R. China.,School of Life Sciences, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Qiuhong Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China.,National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P. R. China.,School of Life Sciences, Jilin University, Changchun, Jilin 130012, P. R. China
| |
Collapse
|
23
|
Qindeel M, Ullah MH, Fakhar-Ud-Din, Ahmed N, Rehman AU. Recent trends, challenges and future outlook of transdermal drug delivery systems for rheumatoid arthritis therapy. J Control Release 2020; 327:595-615. [PMID: 32920080 DOI: 10.1016/j.jconrel.2020.09.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
At present, several drug molecules have been used for the treatment of rheumatoid arthritis (RA). However, the utilization of these compounds through the oral and parenteral route is limited due to low bioavailability, rapid metabolism, poor absorption, first-pass effect, and serious adverse effects. A transdermal delivery system is an appealing option in this scenario, as it possesses the proficiency to overcome drawbacks associated with the oral and parenteral route. With the innovation of several enhancement strategies, many therapeutic agents have been administered transdermally, proposing an exceptional approach to treat RA. The present article provides an insight into the etiology and pathophysiology of RA. The challenges of the transdermal route and the strategies to improve those problems are described. The current advances in increasing the transdermal efficiency of the therapeutics against RA are discussed. Limitations and advantages regarding the state of the art transdermal delivery system and future outlook are also summarized.
Collapse
Affiliation(s)
- Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Fakhar-Ud-Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
24
|
Zhang D, Lyu JT, Zhang B, Zhang XM, Jiang H, Lin ZJ. Comparative efficacy, safety and cost of oral Chinese patent medicines for rheumatoid arthritis: a Bayesian network meta-analysis. BMC Complement Med Ther 2020; 20:210. [PMID: 32631398 PMCID: PMC7339567 DOI: 10.1186/s12906-020-03004-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/26/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a common inflammatory disease with a substantial burden for society and economic worldwide. Chinese patent medicines (CPMs) have gained attention as alternative remedies due to they can exert the satisfactory therapeutic effects via holistic regulation. Currently, several oral Chinese patent medicines are routinely recommended for managing and treating RA. Therefore, a network meta-analysis (NMA), which tries to synthesize evidences for a decision making by evaluating the comparative effectiveness of multiple interventions against the same disease, was undertaken to identify the optimal intervention according to their efficacy in clinical treatment and symptom remission, safety profile and daily cost. METHODS Randomized controlled trials (RCTs) regarding CPMs to treat RA were comprehensive retrieved from 3 foreign databases and 4 Chinese databases, and the retrieved results were last updated on January 10, 2019. The bias of the selected trials was assessed by two individuals independently through RoB2. A random-effects model was adopted during the meta-analytic procedures, and outcomes concerning efficacy and safety were evaluated as odds ratios (OR), mean differences (MD) and 95% credible intervals (CI) utilizing Stata 14.1 and WinBUGS 1.4.3 software. Furthermore, the cluster analysis and comprehensive investigation were preformed concerning the comparative efficacy, safety and cost of oral CPMs. RESULTS One hundred sixteen RCTs involving 10,213 individuals met the inclusion criteria and were enrolled into current NMA. The results from existing evidence indicated that Biqi capsule and Yuxuebi capsule probably had a favorable balance in consideration of benefits, tolerability and daily cost. Furthermore, as the least expensive choice, glucosides of Tripterygium Wilfordii tablet was associated with displaying a trend of relieving joint tenderness, joint swelling, and morning stiffness for patients with RA. CONCLUSION Biqi capsule, Yuxuebi capsule and glucosides of Tripterygium Wilfordii tablet were recommended for treating RA based on the favorable benefits in both clinical efficacy and symptoms, and they, meanwhile, might be associated with the more tolerable and acceptable therapeutic alternative in terms of safety profile and daily cost. Nevertheless, the additional results from high-quality, multi-center and head-to-head trials would be pivotal for supporting our findings.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jin-Tao Lyu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Bing Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiao-Meng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hao Jiang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhi-Jian Lin
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| |
Collapse
|
25
|
Lu L, Huang R, Wu Y, Jin JM, Chen HZ, Zhang LJ, Luan X. Brucine: A Review of Phytochemistry, Pharmacology, and Toxicology. Front Pharmacol 2020; 11:377. [PMID: 32308621 PMCID: PMC7145893 DOI: 10.3389/fphar.2020.00377] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Brucine, a weak alkaline indole alkaloid, is one of the main bioactive and toxic constituents of Nux-vomica. Modern pharmacology studies and clinical practice demonstrate that brucine possesses wide pharmacological activities, such as anti-tumor, anti-inflammatory, analgesic, and the effects on cardiovascular system and nervous system, etc. However, its central nervous system toxicity severely limits its clinical application. Herein, the physicochemical properties, pharmacological activities, and toxicity of brucine were reviewed, and the novel strategies to address the toxicity issues were discussed, aiming to bring new insights into further research and application of this active component.
Collapse
Affiliation(s)
- Lu Lu
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Huang
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Wu
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin-Mei Jin
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Li-Jun Zhang, ; Xin Luan,
| | - Xin Luan
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Li-Jun Zhang, ; Xin Luan,
| |
Collapse
|
26
|
Karami S, Shamshiri S, Abdollahi M, Rahimi R. An Evidence-based Review of Medicinal Plants used in Traditional Persian Medicine for Treatment of Osteoarthritis. Curr Drug Discov Technol 2020; 18:244-271. [PMID: 32178613 DOI: 10.2174/1570163817666200316105658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 11/22/2022]
Abstract
Osteoarthritis (OA) is known to be the leading cause of pain and disability in the elderly. The prevalence of this disease in adults over 60 years was 9.6% in men and 18% in women. The therapeutic goals of this disease generally include pain relief with the least side effects, improvement of articular function and improvement of life, in which pharmacological and nonpharmacological treatments are performed in different protocols. Due to the common side effects of pain relievers and complaints after invasive joint surgeries, there is a growing interest in the use of Traditional and Complementary protocols in OA treatment. In this paper, different sources of Traditional Persian Medicine (TPM) were searched to obtain any evidence evaluating any medicinal plants in the management of OA. Over 250 effective medicinal plants for the treatment of OA have been introduced in these sources, and by searching electronic databases including PubMed and Scopus, we have found that of these plants, 39 have direct or indirect evidence in the treatment of this complication by different mechanism of actions such as effect on Body mass index (BMI), obesity and dyslipidemia, anti-inflammatory, anti-nociceptive and antioxidant activity. The most important medicinal plants with direct evidence in the management of OA are Allium sativum, Commiphora mukul, Linum usitatissimum, Matricaria chamomilla, Nigella sativa, Zingiber officinale, and Piper nigrum. Medicinal plants seem to be a valuable source for discovering and identifying new drugs for treatment of OA; however, since most of the studies are preclinical, further clinical trials are required to achieve more conclusive results.
Collapse
Affiliation(s)
- Soodeh Karami
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Shamshiri
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Tang M, Zhu WJ, Yang ZC, He CS. Brucine inhibits TNF-α-induced HFLS-RA cell proliferation by activating the JNK signaling pathway. Exp Ther Med 2019; 18:735-740. [PMID: 31258709 DOI: 10.3892/etm.2019.7582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/22/2018] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) is a diffuse connective tissue disease. Brucine selectively inhibits cell immunity, immune hypersensitivity and induces apoptosis. The current study aimed to investigate effects of brucine on human fibroblast-like synoviocytes (HFLS) of RA and to clarify associated molecular mechanisms. HFLS-RA were treated with tumor necrosis factor (TNF)-α prior to treatment with brucine at carrying concentrations. Cell Counting Kit-8 assays were performed to evaluate HFLS-RA proliferation. Western blot assays were employed to examine c-Jun N-terminal kinase (JNK) expression and phosphorylation in TNF-α-induced HFLS-RA. An association between brucine treatment and JNK phosphorylation was assessed by employing a linear regression analysis. The results suggested that low doses of brucine (0.125 and 0.25 mg/ml) significantly reversed proliferation effects induced by TNF-α, however, final cell viabilities were increased compared with the untreated control (P>0.05 and P<0.05, respectively). High brucine doses (≥0.5 mg/ml) significantly reversed TNF-α-induced proliferation and further inhibited viability compared with the untreated control (P<0.05). Regarding JNK expression, there were no significant differences among the brucine treatment, and between the Control and the TNF-α groups (P>0.05). Brucine treatment significantly decreased JNK phosphorylation compared with the TNF-α group (P<0.05). JNK specific inhibitor, SP600125, significantly inhibited brucine-induced cell viability enhancement compared with the brucine-treated groups without inhibitor (P<0.05). A linear regression analysis suggested that brucine was associated with JNK phosphorylation in TNF-α-treated HFLS-RA. In conclusion, brucine significantly inhibited TNF-α-induced HFLS-RA proliferation by activating the JNK signaling pathway. Therefore, brucine may have potential clinical applications in the treatment of RA.
Collapse
Affiliation(s)
- Min Tang
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei-Ji Zhu
- The Health Center Hospital of Tongtan, Luzhou, Sichuan 646000, P.R. China
| | - Zu-Cheng Yang
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Cheng-Song He
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
28
|
Wu P, Hu S, Liang Q, Guo W, Xia Y, Shuai C, Li Y. A polymer scaffold with drug-sustained release and antibacterial activity. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1581194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ping Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China
- Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, China
| | - Shi Hu
- Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, China
| | - Qin Liang
- Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, China
| | - Wang Guo
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Yang Xia
- Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
- Jiangxi University of Science and Technology, Ganzhou, China
| | - Yongmin Li
- Hunan Key Laboratory of Chinese Medicine Oncology, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China
| |
Collapse
|
29
|
Ma JB, Qiu HW, Rui QH, Liao YF, Chen YM, Xu J, Zhang Y, Zhu Y, Zhao YG. Enhanced cleanup efficiency hydroxy functionalized-magnetic graphene oxide and its comparison with magnetic carboxyl-graphene for PRiME pass-through cleanup of strychnine and brucine in human plasma samples. Anal Chim Acta 2018; 1020:41-50. [DOI: 10.1016/j.aca.2018.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/04/2018] [Accepted: 03/07/2018] [Indexed: 12/19/2022]
|
30
|
Effect of Ultrasound-Enhanced Transdermal Drug Delivery Efficiency of Nanoparticles and Brucine. BIOMED RESEARCH INTERNATIONAL 2018; 2017:3273816. [PMID: 29349071 PMCID: PMC5733966 DOI: 10.1155/2017/3273816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/04/2017] [Indexed: 12/30/2022]
Abstract
Brucine is the active component in traditional Chinese medicine “Ma-Qian-Zi” (Strychnos nux-vomica Linn), with capabilities of analgesic, anti-inflammatory, anti-tumor and so on. It is crucial how to break through the impact of cuticle skin which reduces the penetration of drugs to improve drug transmission rate. The aim of this study is to improve the local drug concentration by using ultrasound. We used fresh porcine skin to study the effects of ultrasound on the transdermal absorption of brucine under the influence of various acoustic parameters, including frequency, amplitude and irradiation time. The transdermal conditions of yellow-green fluorescent nanoparticles and brucine in skin samples were observed by laser confocal microscopy and ultraviolet spectrophotometry. The results show that under ultrasonic conditions, the permeability of the skin to the fluorescent label and brucine (e.g., the depth and concentration of penetration) is increased compared to its passive diffusion permeability. The best ultrasound penetration can make the penetration depth of more than 110 microns, fluorescent nanoparticles and brucine concentration increased to 2-3 times. This work will provide supportive data on how the brucine is better used for transdermal drug delivery (TDD).
Collapse
|