1
|
Yin Y, Cao Y, Zhou Y, Xu Z, Luo P, Yang B, He Q, Yan H, Yang X. Downregulation of DDIT4 levels with borneol attenuates hepatotoxicity induced by gilteritinib. Biochem Pharmacol 2025; 236:116869. [PMID: 40081769 DOI: 10.1016/j.bcp.2025.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Gilteritinib, a multi-target kinase inhibitor, is currently used as standard therapy for acute myeloid leukemia. However, approximately half of the patients encounter liver-related adverse effects during the treatment with gilteritinib, which limiting its clinical applications. The underlying mechanisms of gilteritinib-induced hepatotoxicity and the development of strategies to prevent this toxicity are not well-reported. In our study, we utilized JC-1 dye, and MitoSOX to demonstrate that gilteritinib treatment leads to hepatocytes undergoing p53-mediated mitochondrial apoptosis. Furthermore, qRT-PCR analysis revealed that DNA damage-inducible transcript 4 (DDIT4), a downstream target of p53, was upregulated following gilteritinib administration and was identified as a key factor in gilteritinib-induced hepatotoxicity. After drug screening and western blot analysis, borneol, a bicyclic monoterpenoid, was found to decrease the protein level of DDIT4. This is the first compound found to downregulate DDIT4 levels and ameliorate hepatic injury caused by gilteritinib. Our findings suggest that high levels of DDIT4 are the primary driver behind gilteritinib-induced liver injury, and that borneol could potentially be a clinically safe and feasible therapeutic strategy by inhibiting DDIT4 levels.
Collapse
Affiliation(s)
- Yiming Yin
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Yashi Cao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Yourong Zhou
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018 Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018 Zhejiang, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China.
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018 Zhejiang, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100 Zhejiang, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China.
| |
Collapse
|
2
|
Brown G. Cell Lineage Affiliation During Hematopoiesis. Int J Mol Sci 2025; 26:3346. [PMID: 40244205 PMCID: PMC11989489 DOI: 10.3390/ijms26073346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
By the mid-1960s, hematopoietic stem cells (HSCs) were well described. They generate perhaps the most complex array of functionally mature cells in an adult organism. HSCs and their descendants have been studied extensively, and findings have provided principles that have been applied to the development of many cell systems. However, there are uncertainties about the process of HSC development. They center around when and how HSCs become affiliated with a single-cell lineage. A longstanding view is that this occurs late in development and stepwise via a series of committed oligopotent progenitor cells, which eventually give rise to unipotent progenitors. A very different view is that lineage affiliation can occur as early as within HSCs, and the development of these cells to a mature end cell is then a continuous process. A key consideration is the extent to which lineage-affiliated HSCs self-renew to make a major contribution to hematopoiesis. This review examines the above aspects in relation to our understanding of hematopoiesis.
Collapse
Affiliation(s)
- Geoffrey Brown
- Department of Biomedical Sciences, School of Infection, Inflammation, and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Baharom F, Hermans D, Delamarre L, Seder RA. Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment. Nat Rev Immunol 2025; 25:195-211. [PMID: 39433884 DOI: 10.1038/s41577-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
T cells have a critical role in mediating antitumour immunity. The success of immune checkpoint inhibitors (ICIs) for cancer treatment highlights how enhancing endogenous T cell responses can mediate tumour regression. However, mortality remains high for many cancers, especially in the metastatic setting. Based on advances in the genetic characterization of tumours and identification of tumour-specific antigens, individualized therapeutic cancer vaccines targeting mutated tumour antigens (neoantigens) are being developed to generate tumour-specific T cells for improved therapeutic responses. Early clinical trials using individualized neoantigen vaccines for patients with advanced disease had limited clinical efficacy despite demonstrated induction of T cell responses. Therefore, enhancing T cell activity by improving the magnitude, quality and breadth of T cell responses following vaccination is one current goal for improving outcome against metastatic tumours. Another major consideration is how T cells can be further optimized to function within the tumour microenvironment (TME). In this Perspective, we focus on neoantigen vaccines and propose a new approach, termed Vax-Innate, in which vaccination through intravenous delivery or in combination with tumour-targeting immune modulators may improve antitumour efficacy by simultaneously increasing the magnitude, quality and breadth of T cells while transforming the TME into a largely immunostimulatory environment for T cells.
Collapse
Affiliation(s)
| | - Dalton Hermans
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Robert A Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Zhu AZ, Ma Z, Wolff EV, Lin Z, Gao ZJ, Li X, Du W. HES1 is required for mouse fetal hematopoiesis. Stem Cell Res Ther 2024; 15:235. [PMID: 39075526 PMCID: PMC11287931 DOI: 10.1186/s13287-024-03836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/06/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Hematopoiesis in mammal is a complex and highly regulated process in which hematopoietic stem cells (HSCs) give rise to all types of differentiated blood cells. Previous studies have shown that hairy and enhancer of split (HES) repressors are essential regulators of adult HSC development downstream of Notch signaling. METHODS In this study, we investigated the role of HES1, a member of HES family, in fetal hematopoiesis using an embryonic hematopoietic specific Hes1 conditional knockout mouse model by using phenotypic flow cytometry, histopathology analysis, and functional in vitro colony forming unit (CFU) assay and in vivo bone marrow transplant (BMT) assay. RESULTS We found that loss of Hes1 in early embryonic stage leads to smaller embryos and fetal livers, decreases hematopoietic stem progenitor cell (HSPC) pool, results in defective multi-lineage differentiation. Functionally, fetal hematopoietic cells deficient for Hes1 exhibit reduced in vitro progenitor activity and compromised in vivo repopulation capacity in the transplanted recipients. Further analysis shows that fetal hematopoiesis defects in Hes1fl/flFlt3Cre embryos are resulted from decreased proliferation and elevated apoptosis, associated with de-repressed HES1 targets, p27 and PTEN in Hes1-KO fetal HSPCs. Finally, pharmacological inhibition of p27 or PTEN improves fetal HSPCs function both in vitro and in vivo. CONCLUSION Together, our findings reveal a previously unappreciated role for HES1 in regulating fetal hematopoiesis, and provide new insight into the differences between fetal and adult HSC maintenance.
Collapse
Affiliation(s)
- Anthony Z Zhu
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, 5117 Center Ave, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Zhilin Ma
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Emily V Wolff
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, 5117 Center Ave, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Zichen Lin
- Master of Science in Medical Science, Boston University School of Medicine Graduate Master Program, Boston, MA, USA
| | - Zhenxia J Gao
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, 5117 Center Ave, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Xue Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Wei Du
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, 5117 Center Ave, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
5
|
Lap CJ, Abrahim MS, Nassereddine S. Perspectives and challenges of small molecule inhibitor therapy for FLT3-mutated acute myeloid leukemia. Ann Hematol 2024; 103:2215-2229. [PMID: 37975931 DOI: 10.1007/s00277-023-05545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous clonal disease characterized overall by an aggressive clinical course. The underlying genetic abnormalities present in leukemic cells contribute significantly to the AML phenotype. Mutations in FMS-like tyrosine kinase 3 (FLT3) are one of the most common genetic abnormalities identified in AML, and the presence of these mutations strongly influences disease presentation and negatively impacts prognosis. Since mutations in FLT3 were identified in AML, they have been recognized as a valid therapeutic target resulting in decades of research to develop effective small molecule inhibitor treatment that could improve outcome for these patients. Despite the approval of several FLT3 inhibitors over the last couple of years, the treatment of patients with FLT3-mutated AML remains challenging and many questions still need to be addressed. This review will provide an up-to-date overview of our current understanding of FLT3-mutated AML and discuss what the current status is of the available FLT3 inhibitors for the day-to-day management of this aggressive disease.
Collapse
Affiliation(s)
- Coen J Lap
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Marwa Sh Abrahim
- The George Washington Cancer Center, George Washington University, Washington, DC, USA
| | - Samah Nassereddine
- The George Washington Cancer Center, George Washington University, Washington, DC, USA.
| |
Collapse
|
6
|
Karagiannis K, Gannavaram S, Verma C, Pacheco-Fernandez T, Bhattacharya P, Nakhasi HL, Satoskar AR. Dual-scRNA-seq analysis reveals rare and uncommon parasitized cell populations in chronic L. donovani infection. Cell Rep 2023; 42:113097. [PMID: 37682713 DOI: 10.1016/j.celrep.2023.113097] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Although phagocytic cells are documented targets of Leishmania parasites, it is unclear whether other cell types can be infected. Here, we use unbiased single-cell RNA sequencing (scRNA-seq) to simultaneously analyze host cell and Leishmania donovani transcriptomes to identify and annotate parasitized cells in spleen and bone marrow in chronically infected mice. Our dual-scRNA-seq methodology allows the detection of heterogeneous parasitized populations. In the spleen, monocytes and macrophages are the dominant parasitized cells, while megakaryocytes, basophils, and natural killer (NK) cells are found to be unexpectedly infected. In the bone marrow, the hematopoietic stem cells (HSCs) expressing phagocytic receptors FcγR and CD93 are the main parasitized cells. Additionally, we also detect parasitized cycling basal cells, eosinophils, and macrophages in chronically infected mice. Flow cytometric analysis confirms the presence of parasitized HSCs. Our unbiased dual-scRNA-seq method identifies rare, parasitized cells, potentially implicated in pathogenesis, persistence, and protective immunity, using a non-targeted approach.
Collapse
Affiliation(s)
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | | | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Abhay R Satoskar
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Brown G. Hematopoietic and Chronic Myeloid Leukemia Stem Cells: Multi-Stability versus Lineage Restriction. Int J Mol Sci 2022; 23:13570. [PMID: 36362357 PMCID: PMC9655164 DOI: 10.3390/ijms232113570] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 07/30/2023] Open
Abstract
There is compelling evidence to support the view that the cell-of-origin for chronic myeloid leukemia is a hematopoietic stem cell. Unlike normal hematopoietic stem cells, the progeny of the leukemia stem cells are predominantly neutrophils during the disease chronic phase and there is a mild anemia. The hallmark oncogene for chronic myeloid leukemia is the BCR-ABLp210 fusion gene. Various studies have excluded a role for BCR-ABLp210 expression in maintaining the population of leukemia stem cells. Studies of BCR-ABLp210 expression in embryonal stem cells that were differentiated into hematopoietic stem cells and of the expression in transgenic mice have revealed that BCR-ABLp210 is able to veer hematopoietic stem and progenitor cells towards a myeloid fate. For the transgenic mice, global changes to the epigenetic landscape were observed. In chronic myeloid leukemia, the ability of the leukemia stem cells to choose from the many fates that are available to normal hematopoietic stem cells appears to be deregulated by BCR-ABLp210 and changes to the epigenome are also important. Even so, we still do not have a precise picture as to why neutrophils are abundantly produced in chronic myeloid leukemia.
Collapse
MESH Headings
- Mice
- Animals
- Fusion Proteins, bcr-abl/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Hematopoietic Stem Cells/metabolism
- Mice, Transgenic
- Leukemia, Myeloid, Acute/metabolism
Collapse
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences, School of Biomedical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
8
|
Zhang Z, Bossila EA, Li L, Hu S, Zhao Y. Central gene transcriptional regulatory networks shaping monocyte development in bone marrow. Front Immunol 2022; 13:1011279. [PMID: 36304450 PMCID: PMC9595600 DOI: 10.3389/fimmu.2022.1011279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The development of monocytes in bone marrow is a complex process with multiple steps. We used RNA-seq data to analyze the transcriptome profiles in developing stages of monocytes, including hematopoietic stem cells (HSCs), common myeloid progenitors (CMPs), granulocyte-monocyte progenitors (GMPs), and monocytes. We found that genes related to potassium and other cation transmembrane activities and ion binding were upregulated during the differentiation of HSCs into CMPs. Protein transport and membrane surface functional molecules were significantly upregulated in the GMP stage. The CD42RAC and proteasome pathways are significantly upregulated during the development of HSCs into monocytes. Transcription factors Ank1, Runx2, Hmga2, Klf1, Nfia, and Bmyc were upregulated during the differentiation of HSCs into CMPs; Gfi1 and Hmgn2 were highly expressed during the differentiation of CMPs into GMPs; Seventeen transcription factors including Foxo1, Cdkn2d, Foxo3, Ep300, Pias1, Nfkb1, Creb1, Bcl6, Ppp3cb, Stat5b, Nfatc4, Mef2a, Stat6, Ifnar2, Irf7, Irf5, and Cebpb were identified as potentially involved in the development of GMPs into monocytes in mice and humans. In metabolism pathway regulation, HSCs have high glucose, lipid, and nucleic acid metabolism activities; CMPs mainly up regulate the TCA cycle related genes; and GMPs have extremely active metabolisms, with significantly elevated pentose phosphate pathway, TCA cycle, histidine metabolism, and purine metabolism. In the monocyte phase, the tricarboxylic acid (TCA) cycle is reduced, and the anaerobic glycolysis process becomes dominated. Overall, our studies offer the kinetics and maps of gene transcriptional expressions and cell metabolisms during monocyte development in bone marrow.
Collapse
Affiliation(s)
- Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo, Egypt
| | - Ling Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
| |
Collapse
|
9
|
Recent Advances in the Development of Anti-FLT3 CAR T-Cell Therapies for Treatment of AML. Biomedicines 2022; 10:biomedicines10102441. [PMID: 36289703 PMCID: PMC9598885 DOI: 10.3390/biomedicines10102441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Following the success of the anti-CD19 chimeric antigen receptor (CAR) T-cell therapies against B-cell malignancies, the CAR T-cell approach is being developed towards other malignancies like acute myeloid leukemia (AML). Treatment options for relapsed AML patients are limited, and the upregulation of the FMS-like tyrosine kinase 3 (FLT3) in malignant T-cells is currently not only being investigated as a prognostic factor, but also as a target for new treatment options. In this review, we provide an overview and discuss different approaches of current anti-FLT3 CAR T-cells under development. In general, these therapies are effective both in vitro and in vivo, however the safety profile still needs to be further investigated. The first clinical trials have been initiated, and the community now awaits clinical evaluation of the approach of targeting FLT3 with CAR T-cells.
Collapse
|
10
|
Brown G. Lessons to cancer from studies of leukemia and hematopoiesis. Front Cell Dev Biol 2022; 10:993915. [PMID: 36204679 PMCID: PMC9531023 DOI: 10.3389/fcell.2022.993915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The starting point to describing the origin and nature of any cancer must be knowledge about how the normal counterpart tissue develops. New principles to the nature of hematopoietic stem cells have arisen in recent years. In particular, hematopoietic stem cells can “choose” a cell lineage directly from a spectrum of the end-cell options, and are, therefore, a heterogeneous population of lineage affiliated/biased cells. These cells remain versatile because the developmental trajectories of hematopoietic stem and progenitor cells are broad. From studies of human acute myeloid leukemia, leukemia is also a hierarchy of maturing or partially maturing cells that are sustained by leukemia stem cells at the apex. This cellular hierarchy model has been extended to a wide variety of human solid tumors, by the identification of cancer stem cells, and is termed the cancer stem cell model. At least, two genomic insults are needed for cancer, as seen from studies of human childhood acute lymphoblastic leukemia. There are signature mutations for some leukemia’s and some relate to a transcription factor that guides the cell lineage of developing hematopoietic stem/progenitor cells. Similarly, some oncogenes restrict the fate of leukemia stem cells and their offspring to a single maturation pathway. In this case, a loss of intrinsic stem cell versatility seems to be a property of leukemia stem cells. To provide more effective cures for leukemia, there is the need to find ways to eliminate leukemia stem cells.
Collapse
|
11
|
Flt3 Signaling in B Lymphocyte Development and Humoral Immunity. Int J Mol Sci 2022; 23:ijms23137289. [PMID: 35806293 PMCID: PMC9267047 DOI: 10.3390/ijms23137289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
The Class III receptor tyrosine kinase Flt3 and its ligand, the Flt3-ligand (FL), play an integral role in regulating the proliferation, differentiation, and survival of multipotent hematopoietic and lymphoid progenitors from which B cell precursors derive in bone marrow (BM). More recently, essential roles for Flt3 signaling in the regulation of peripheral B cell development and affinity maturation have come to light. Experimental findings derived from a multitude of mouse models have reinforced the importance of molecular and cellular regulation of Flt3 and FL in lymphohematopoiesis and adaptive immunity. Here, we provide a comprehensive review of the current state of the knowledge regarding molecular and cellular regulation of Flt3/FL and the roles of Flt3 signaling in hematopoietic stem cell (HSC) activation, lymphoid development, BM B lymphopoiesis, and peripheral B cell development. Cumulatively, the literature has reinforced the importance of Flt3 signaling in B cell development and function. However, it has also identified gaps in the knowledge regarding Flt3-dependent developmental-stage specific gene regulatory circuits essential for steady-state B lymphopoiesis that will be the focus of future studies.
Collapse
|
12
|
Safi F, Dhapola P, Warsi S, Sommarin M, Erlandsson E, Ungerbäck J, Warfvinge R, Sitnicka E, Bryder D, Böiers C, Thakur RK, Karlsson G. Concurrent stem- and lineage-affiliated chromatin programs precede hematopoietic lineage restriction. Cell Rep 2022; 39:110798. [PMID: 35545037 DOI: 10.1016/j.celrep.2022.110798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/20/2021] [Accepted: 04/15/2022] [Indexed: 01/06/2023] Open
Abstract
The emerging notion of hematopoietic stem and progenitor cells (HSPCs) as a low-primed cloud without sharply demarcated gene expression programs raises the question on how cellular-fate options emerge and at which stem-like stage lineage priming is initiated. Here, we investigate single-cell chromatin accessibility of Lineage-, cKit+, and Sca1+ (LSK) HSPCs spanning the early differentiation landscape. Application of a signal-processing algorithm to detect transition points corresponding to massive alterations in accessibility of 571 transcription factor motifs reveals a population of LSK FMS-like tyrosine kinase 3 (Flt3)intCD9high cells that concurrently display stem-like and lineage-affiliated chromatin signatures, pointing to a simultaneous gain of both lympho-myeloid and megakaryocyte-erythroid programs. Molecularly and functionally, these cells position between stem cells and committed progenitors and display multi-lineage capacity in vitro and in vivo but lack self-renewal activity. This integrative molecular analysis resolves the heterogeneity of cells along hematopoietic differentiation and permits investigation of chromatin-mediated transition between multipotency and lineage restriction.
Collapse
Affiliation(s)
- Fatemeh Safi
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Parashar Dhapola
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Sarah Warsi
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Mikael Sommarin
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Eva Erlandsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Jonas Ungerbäck
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Rebecca Warfvinge
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Ewa Sitnicka
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Charlotta Böiers
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Ram Krishna Thakur
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden.
| | - Göran Karlsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden.
| |
Collapse
|
13
|
Brown G. The Social Norm of Hematopoietic Stem Cells and Dysregulation in Leukemia. Int J Mol Sci 2022; 23:ijms23095063. [PMID: 35563454 PMCID: PMC9105962 DOI: 10.3390/ijms23095063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/25/2022] Open
Abstract
The hematopoietic cell system is a complex ecosystem that meets the steady-state and emergency needs of the production of the mature blood cell types. Steady-state hematopoiesis replaces worn out cells, and the hematopoietic system is highly adaptive to needs during, for example, an infection or bleeding. Hematopoiesis is highly integrated and the cell hierarchy behaves in a highly social manner. The social tailoring of hematopoietic stem cells to needs includes the generation of cells that are biased towards a cell lineage; these cells remain versatile and can still adopt a different pathway having made a lineage “choice”, and some cytokines instruct the lineage fate of hematopoietic stem and progenitor cells. Leukemia stem cells, which may well often arise from the transformation of a hematopoietic stem cell, sustain the hierarchy of cells for leukemia. Unlike hematopoietic stem cells, the offspring of leukemia stem cells belongs to just one cell lineage. The human leukemias are classified by virtue of their differentiating or partially differentiating cells belonging to just one cell lineage. Some oncogenes set the fate of leukemia stem cells to a single lineage. Therefore, lineage restriction may be largely an attribute whereby leukemia stem cells escape from the normal cellular society. Additional antisocial behaviors are that leukemia cells destroy and alter bone marrow stromal niches, and they can create their own niches.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
14
|
Specific inflammatory osteoclast precursors induced during chronic inflammation give rise to highly active osteoclasts associated with inflammatory bone loss. Bone Res 2022; 10:36. [PMID: 35396510 PMCID: PMC8993801 DOI: 10.1038/s41413-022-00206-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/12/2021] [Accepted: 01/17/2022] [Indexed: 12/17/2022] Open
Abstract
Elevated osteoclast (OC) activity is a major contributor to inflammatory bone loss (IBL) during chronic inflammatory diseases. However, the specific OC precursors (OCPs) responding to inflammatory cues and the underlying mechanisms leading to IBL are poorly understood. We identified two distinct OCP subsets: Ly6ChiCD11bhi inflammatory OCPs (iOCPs) induced during chronic inflammation, and homeostatic Ly6ChiCD11blo OCPs (hOCPs) which remained unchanged. Functional and proteomic characterization revealed that while iOCPs were rare and displayed low osteoclastogenic potential under normal conditions, they expanded during chronic inflammation and generated OCs with enhanced activity. In contrast, hOCPs were abundant and manifested high osteoclastogenic potential under normal conditions but generated OCs with low activity and were unresponsive to the inflammatory environment. Osteoclasts derived from iOCPs expressed higher levels of resorptive and metabolic proteins than those generated from hOCPs, highlighting that different osteoclast populations are formed by distinct precursors. We further identified the TNF-α and S100A8/A9 proteins as key regulators that control the iOCP response during chronic inflammation. Furthermore, we demonstrated that the response of iOCPs but not that of hOCPs was abrogated in tnf-α-/- mice, in correlation with attenuated IBL. Our findings suggest a central role for iOCPs in IBL induction. iOCPs can serve as potential biomarkers for IBL detection and possibly as new therapeutic targets to combat IBL in a wide range of inflammatory conditions.
Collapse
|
15
|
Marins-Dos-Santos A, Ayres-Silva JDP, Antunes D, Moreira CJDC, Pelajo-Machado M, Alfaro D, Zapata AG, Bonomo AC, Savino W, de Meis J, Farias-de-Oliveira DA. Oral Trypanosoma cruzi Acute Infection in Mice Targets Primary Lymphoid Organs and Triggers Extramedullary Hematopoiesis. Front Cell Infect Microbiol 2022; 12:800395. [PMID: 35402296 PMCID: PMC8990980 DOI: 10.3389/fcimb.2022.800395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/24/2022] [Indexed: 12/03/2022] Open
Abstract
During the acute phase of Chagas disease, Trypanosoma cruzi circulation through the bloodstream leads to high tissue parasitism in the host. In primary lymphoid organs, progenitor cell reduction paralleled transient immunosuppression. Herein we showed that acute oral infection in mice promotes diffuse parasitism in bone marrow cells at 14 and 21 days post-infection (dpi), with perivascular regions, intravascular regions, and regions near the bone being target sites of parasite replication. Phenotypic analysis of hematopoietic differentiation in the bone marrow of infected mice showed that the cell number in the tissue is decreased (lineage-negative and lineage-positive cells). Interestingly, analysis of hematopoietic branching points showed that hematopoietic stem and progenitor cells (HSPCs) were significantly increased at 14 dpi. In addition, the pool of progenitors with stem plasticity (HSC-MPP3), as well as multipotent progenitors (MPPs) such as MPP4, also showed this pattern of increase. In contrast, subsequent progenitors that arise from MPPs, such as common lymphoid progenitors (CLPs), lymphoid-primed MPPs (LMPPs), and myeloid progenitors, were not enhanced; conversely, all presented numeric decline. Annexin V staining revealed that cell death increase in the initial hematopoietic branching point probably is not linked to CLPs and that myeloid progenitors decreased at 14 and 21 dpi. In parallel, our investigation provided clues that myeloid progenitor decrease could be associated with an atypical expression of Sca-1 in this population leading to a remarkable increase on LSK-like cells at 14 dpi within the HSPC compartment. Finally, these results led us to investigate HSPC presence in the spleen as a phenomenon triggered during emergency hematopoiesis due to mobilization or expansion of these cells in extramedullary sites. Splenocyte analysis showed a progressive increase in HSPCs between 14 and 21 dpi. Altogether, our study shows that the bone marrow is a target tissue in T. cruzi orally infected mice, leading to a hematopoietic disturbance with LSK-like cell bias accounting on HSPCs possibly affecting myeloid progenitor numbers. The LMPP and CLP reduction converges with defective thymocyte development. Lastly, it is tempting to speculate that the extramedullary hematopoiesis seen in the spleen is a mechanism involved in the hematological maintenance reported during the acute phase of oral T. cruzi infection.
Collapse
Affiliation(s)
- Alessandro Marins-Dos-Santos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Dina Antunes
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Marcelo Pelajo-Machado
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Pathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - David Alfaro
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Agustín G. Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Adriana Cesar Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Wilson Savino, ; ; Désio Aurélio Farias-de-Oliveira, ;
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Désio Aurélio Farias-de-Oliveira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Wilson Savino, ; ; Désio Aurélio Farias-de-Oliveira, ;
| |
Collapse
|
16
|
Oncogenes and the Origins of Leukemias. Int J Mol Sci 2022; 23:ijms23042293. [PMID: 35216407 PMCID: PMC8875247 DOI: 10.3390/ijms23042293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Self-maintaining hematopoietic stem cells are a cell population that is primarily ‘at risk’ to malignant transformation, and the cell-of-origin for some leukemias. Tissue-specific stem cells replenish the different types of functional cells within a particular tissue to meet the demands of an organism. For hematopoietic stem cells, this flexibility is important to satisfy the changing requirements for a certain type of immune cell, when needed. From studies of the natural history of childhood acute lymphoblastic leukemia, an initial oncogenic and prenatal insult gives rise to a preleukemic clone. At least a second genomic insult is needed that gives rise to a leukemia stem cell: this cell generates a hierarchy of leukemia cells. For some leukemias, there is evidence to support the concept that one of the genomic insults leads to dysregulation of the tissue homeostatic role of hematopoietic stem cells so that the hierarchy of differentiating leukemia cells belongs to just one cell lineage. Restricting the expression of particular oncogenes in transgenic mice to hematopoietic stem and progenitor cells led to different human-like lineage-restricted leukemias. Lineage restriction is seen for human leukemias by virtue of their sub-grouping with regard to a phenotypic relationship to just one cell lineage.
Collapse
|
17
|
Almotiri A, Alzahrani H, Menendez-Gonzalez JB, Abdelfattah A, Alotaibi B, Saleh L, Greene A, Georgiou M, Gibbs A, Alsayari A, Taha S, Thomas LA, Shah D, Edkins S, Giles P, Stemmler MP, Brabletz S, Brabletz T, Boyd AS, Siebzehnrubl FA, Rodrigues NP. Zeb1 modulates hematopoietic stem cell fates required for suppressing acute myeloid leukemia. J Clin Invest 2021; 131:129115. [PMID: 33108352 PMCID: PMC7773410 DOI: 10.1172/jci129115] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Zeb1, a zinc finger E-box binding homeobox epithelial-mesenchymal transition (EMT) transcription factor, confers properties of "stemness," such as self-renewal, in cancer. Yet little is known about the function of Zeb1 in adult stem cells. Here, we used the hematopoietic system as a well-established paradigm of stem cell biology to evaluate Zeb1-mediated regulation of adult stem cells. We employed a conditional genetic approach using the Mx1-Cre system to specifically knock out (KO) Zeb1 in adult hematopoietic stem cells (HSCs) and their downstream progeny. Acute genetic deletion of Zeb1 led to rapid-onset thymic atrophy and apoptosis-driven loss of thymocytes and T cells. A profound cell-autonomous self-renewal defect and multilineage differentiation block were observed in Zeb1-KO HSCs. Loss of Zeb1 in HSCs activated transcriptional programs of deregulated HSC maintenance and multilineage differentiation genes and of cell polarity consisting of cytoskeleton-, lipid metabolism/lipid membrane-, and cell adhesion-related genes. Notably, epithelial cell adhesion molecule (EpCAM) expression was prodigiously upregulated in Zeb1-KO HSCs, which correlated with enhanced cell survival, diminished mitochondrial metabolism, ribosome biogenesis, and differentiation capacity and an activated transcriptomic signature associated with acute myeloid leukemia (AML) signaling. ZEB1 expression was downregulated in AML patients, and Zeb1 KO in the malignant counterparts of HSCs - leukemic stem cells (LSCs) - accelerated MLL-AF9- and Meis1a/Hoxa9-driven AML progression, implicating Zeb1 as a tumor suppressor in AML LSCs. Thus, Zeb1 acts as a transcriptional regulator in hematopoiesis, critically coordinating HSC self-renewal, apoptotic, and multilineage differentiation fates required to suppress leukemic potential in AML.
Collapse
Affiliation(s)
- Alhomidi Almotiri
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom.,College of Applied Medical Sciences-Dawadmi, Shaqra University, Dawadmi, Saudi Arabia
| | - Hamed Alzahrani
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | | | - Ali Abdelfattah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Badi Alotaibi
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Lubaid Saleh
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Adelle Greene
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Mia Georgiou
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Alex Gibbs
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Amani Alsayari
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Sarab Taha
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Leigh-Anne Thomas
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Dhruv Shah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Sarah Edkins
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, United Kingdom
| | - Peter Giles
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, United Kingdom
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Ashleigh S Boyd
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, Royal Free Hospital, and.,Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Florian A Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| |
Collapse
|
18
|
Oncogenes, Proto-Oncogenes, and Lineage Restriction of Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22189667. [PMID: 34575830 PMCID: PMC8470404 DOI: 10.3390/ijms22189667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/03/2023] Open
Abstract
In principle, an oncogene is a cellular gene (proto-oncogene) that is dysfunctional, due to mutation and fusion with another gene or overexpression. Generally, oncogenes are viewed as deregulating cell proliferation or suppressing apoptosis in driving cancer. The cancer stem cell theory states that most, if not all, cancers are a hierarchy of cells that arises from a transformed tissue-specific stem cell. These normal counterparts generate various cell types of a tissue, which adds a new dimension to how oncogenes might lead to the anarchic behavior of cancer cells. It is that stem cells, such as hematopoietic stem cells, replenish mature cell types to meet the demands of an organism. Some oncogenes appear to deregulate this homeostatic process by restricting leukemia stem cells to a single cell lineage. This review examines whether cancer is a legacy of stem cells that lose their inherent versatility, the extent that proto-oncogenes play a role in cell lineage determination, and the role that epigenetic events play in regulating cell fate and tumorigenesis.
Collapse
|
19
|
Brown G. Hematopoietic Stem Cells: Nature and Niche Nurture. BIOENGINEERING (BASEL, SWITZERLAND) 2021; 8:bioengineering8050067. [PMID: 34063400 PMCID: PMC8155961 DOI: 10.3390/bioengineering8050067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
Like all cells, hematopoietic stem cells (HSCs) and their offspring, the hematopoietic progenitor cells (HPCs), are highly sociable. Their capacity to interact with bone marrow niche cells and respond to environmental cytokines orchestrates the generation of the different types of blood and immune cells. The starting point for engineering hematopoiesis ex vivo is the nature of HSCs, and a longstanding premise is that they are a homogeneous population of cells. However, recent findings have shown that adult bone marrow HSCs are really a mixture of cells, with many having lineage affiliations. A second key consideration is: Do HSCs "choose" a lineage in a random and cell-intrinsic manner, or are they instructed by cytokines? Since their discovery, the hematopoietic cytokines have been viewed as survival and proliferation factors for lineage committed HPCs. Some are now known to also instruct cell lineage choice. These fundamental changes to our understanding of hematopoiesis are important for placing niche support in the right context and for fabricating an ex vivo environment to support HSC development.
Collapse
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences, School of Biomedical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
20
|
Abstract
Classifying the hematological malignancies by assigning cells to their normal counterpart and describing the nature of disease progression are entirely reliant on an accurate picture for the development of the multifarious types of blood and immune cells. In recent years, our understanding of the complex relationships between the various hematopoietic stem cell-derived cell lineages has undergone substantial revision. There has been similar progress in how we describe the nature of the "target" cells that genetic insults transform to give rise to the hematological malignancies. Here I describe how both longstanding and new information has influenced classifying, for diagnosis, the hematological malignancies.
Collapse
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
21
|
Ji B, Cai H, Yang Y, Peng F, Song M, Sun K, Yan F, Liu Y. Hybrid membrane camouflaged copper sulfide nanoparticles for photothermal-chemotherapy of hepatocellular carcinoma. Acta Biomater 2020; 111:363-372. [PMID: 32434082 DOI: 10.1016/j.actbio.2020.04.046] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Biomimetic nanoparticles (NPs) coated with cell membranes show enhanced biocompatibility and specificity for homotypic cells, and have gained considerable attention for targeted anti-tumor therapy. We constructed cancer cell-macrophage hybrid membrane-coated near infrared (NIR)-responsive hollow copper sulfide nanoparticles encapsulating sorafenib and surface modified with anti-VEGFR (CuS-SF@CMV NPs). These CuS-SF@CMV NPs expressed the characteristic membrane proteins of both cancer cells and macrophages, and selectively accumulated in cancer cells in vitro and tumors in vivo, compared to the CuS NPs. In addition, the CuS-SF@CMV NPs achieved synergistic photo-thermal and chemotherapy in cancer cells upon NIR irradiation, with 94.3% inhibition of tumor growth in a murine hepatoma model. While the initial increase in temperature rapidly killed the tumor cells, sorafenib and the anti-VEGFR antibody sustained the tumor killing effect by respectively inhibiting tumor cell proliferation and angiogenesis via the Ras/Raf/MEK/ERK and PI3K/AKT pathways. Taken together, the CuS-SF@CMV NPs have immune evasion, tumor cell targeting and drug loading capacities, along with an inherent photo-thermal conversion ability, making them ideal for synergistic photo-thermal/chemo therapy against HCC. STATEMENT OF SIGNIFICANCE: We created cancer cell-macrophage hybrid membrane-coated hollow CuS NPs encapsulating sorafenib and surface modified with anti-VEGFR antibodies (CuS-SF@CMV). These CuS-SF@CMV NPs enhanced synergistic PTT and chemotherapy against hepatoma cells through homotypic cell targeting, immune escape and inhibition of a tumorigenic signaling pathway. A long-term inhibition of tumor growth and metastasis was achieved owing to the rapid destruction of the cancer cells through photo-thermal conversion by the CuS NPs, and sustained clearance of the tumor cells by sorafenib and anti-VEGFR antibodies. Our findings suggest that CuS-SF@CMV NPs present great treating effects in preclinical models of HCC, providing the framework for further study in clinical trials to improve patient outcome in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Hongqiao Cai
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Yang Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Fenghui Peng
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Meiyu Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin street, Changchun 130012, China
| | - Kaiju Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin street, Changchun 130012, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin street, Changchun 130012, China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China.
| |
Collapse
|
22
|
Sommer C, Cheng HY, Nguyen D, Dettling D, Yeung YA, Sutton J, Hamze M, Valton J, Smith J, Djuretic I, Chaparro-Riggers J, Sasu BJ. Allogeneic FLT3 CAR T Cells with an Off-Switch Exhibit Potent Activity against AML and Can Be Depleted to Expedite Bone Marrow Recovery. Mol Ther 2020; 28:2237-2251. [PMID: 32592688 DOI: 10.1016/j.ymthe.2020.06.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/13/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
Patients with relapsed or refractory acute myeloid leukemia (AML) have a dismal prognosis and limited treatment options. Chimeric antigen receptor (CAR) T cells have achieved unprecedented clinical responses in patients with B cell leukemias and lymphomas and could prove highly efficacious in AML. However, a significant number of patients with AML may not receive treatment with an autologous product due to manufacturing failures associated with low lymphocyte counts or rapid disease progression while the therapeutic is being produced. We report the preclinical evaluation of an off-the-shelf CAR T cell therapy targeting Fms-related tyrosine kinase 3 (FLT3) for the treatment of AML. Single-chain variable fragments (scFvs) targeting various epitopes in the extracellular region of FLT3 were inserted into CAR constructs and tested for their ability to redirect T cell specificity and effector function to FLT3+ AML cells. A lead CAR, exhibiting minimal tonic signaling and robust activity in vitro and in vivo, was selected and then modified to incorporate a rituximab-responsive off-switch in cis. We found that allogeneic FLT3 CAR T cells, generated from healthy-donor T cells, eliminate primary AML blasts but are also active against mouse and human hematopoietic stem and progenitor cells, indicating risk of myelotoxicity. By employing a surrogate CAR with affinity to murine FLT3, we show that rituximab-mediated depletion of FLT3 CAR T cells after AML eradication enables bone marrow recovery without compromising leukemia remission. These results support clinical investigation of allogeneic FLT3 CAR T cells in AML and other FLT3+ hematologic malignancies.
Collapse
MESH Headings
- Animals
- Bone Marrow/immunology
- Bone Marrow/metabolism
- Disease Models, Animal
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Mice
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- T-Cell Antigen Receptor Specificity
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
- Xenograft Model Antitumor Assays
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/immunology
Collapse
Affiliation(s)
- Cesar Sommer
- Allogene Therapeutics, Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA.
| | - Hsin-Yuan Cheng
- Allogene Therapeutics, Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Duy Nguyen
- Allogene Therapeutics, Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Danielle Dettling
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Yik Andy Yeung
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Janette Sutton
- Allogene Therapeutics, Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Moustafa Hamze
- Formerly Cellectis SA, 8 rue de la Croix Jarry, 75013 Paris, France
| | - Julien Valton
- Cellectis, Inc., 430 East 29th Street, New York, NY 10016, USA
| | - Julianne Smith
- Cellectis, Inc., 430 East 29th Street, New York, NY 10016, USA
| | - Ivana Djuretic
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Javier Chaparro-Riggers
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Barbra J Sasu
- Allogene Therapeutics, Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA.
| |
Collapse
|
23
|
Brown G. Towards a New Understanding of Decision-Making by Hematopoietic Stem Cells. Int J Mol Sci 2020; 21:ijms21072362. [PMID: 32235353 PMCID: PMC7178065 DOI: 10.3390/ijms21072362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Cells within the hematopoietic stem cell compartment selectively express receptors for cytokines that have a lineage(s) specific role; they include erythropoietin, macrophage colony-stimulating factor, granulocyte colony-stimulating factor, granulocyte/macrophage colony-stimulating factor and the ligand for the fms-like tyrosine kinase 3. These hematopoietic cytokines can instruct the lineage fate of hematopoietic stem and progenitor cells in addition to ensuring the survival and proliferation of cells that belong to a particular cell lineage(s). Expression of the receptors for macrophage colony-stimulating factor and granulocyte colony-stimulating factor is positively autoregulated and the presence of the cytokine is therefore likely to enforce a lineage bias within hematopoietic stem cells that express these receptors. In addition to the above roles, macrophage colony-stimulating factor and granulocyte/macrophage colony-stimulating factor are powerful chemoattractants. The multiple roles of some hematopoietic cytokines leads us towards modelling hematopoietic stem cell decision-making whereby these cells can 'choose' just one lineage fate and migrate to a niche that both reinforces the fate and guarantees the survival and expansion of cells as they develop.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
24
|
Lineage Decision-Making within Normal Haematopoietic and Leukemic Stem Cells. Int J Mol Sci 2020; 21:ijms21062247. [PMID: 32213936 PMCID: PMC7139697 DOI: 10.3390/ijms21062247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 11/20/2022] Open
Abstract
To produce the wide range of blood and immune cell types, haematopoietic stem cells can “choose” directly from the entire spectrum of blood cell fate-options. Affiliation to a single cell lineage can occur at the level of the haematopoietic stem cell and these cells are therefore a mixture of some pluripotent cells and many cells with lineage signatures. Even so, haematopoietic stem cells and their progeny that have chosen a particular fate can still “change their mind” and adopt a different developmental pathway. Many of the leukaemias arise in haematopoietic stem cells with the bulk of the often partially differentiated leukaemia cells belonging to just one cell type. We argue that the reason for this is that an oncogenic insult to the genome “hard wires” leukaemia stem cells, either through development or at some stage, to one cell lineage. Unlike normal haematopoietic stem cells, oncogene-transformed leukaemia stem cells and their progeny are unable to adopt an alternative pathway.
Collapse
|
25
|
Are Leukaemic Stem Cells Restricted to a Single Cell Lineage? Int J Mol Sci 2019; 21:ijms21010045. [PMID: 31861691 PMCID: PMC6981580 DOI: 10.3390/ijms21010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer-stem-cell theory states that most, if not all, cancers arise from a stem/uncommitted cell. This theory revolutionised our view to reflect that cancer consists of a hierarchy of cells that mimic normal cell development. Elegant studies of twins who both developed acute lymphoblastic leukaemia in childhood revealed that at least two genomic insults are required for cancer to develop. These ‘hits’ do not appear to confer a growth advantage to cancer cells, nor do cancer cells appear to be better equipped to survive than normal cells. Cancer cells created by investigators by introducing specific genomic insults generally belong to one cell lineage. For example, transgenic mice in which the LIM-only 2 (LMO2, associated with human acute T-lymphoblastic leukaemia) and BCR-ABLp210 (associated with human chronic myeloid leukaemia) oncogenes were active solely within the haematopoietic stem-cell compartment developed T-lymphocyte and neutrophil lineage-restricted leukaemia, respectively. This recapitulated the human form of these diseases. This ‘hardwiring’ of lineage affiliation, either throughout leukaemic stem cell development or at a particular stage, is different to the behaviour of normal haematopoietic stem cells. While normal cells directly commit to a developmental pathway, they also remain versatile and can develop into a terminally differentiated cell that is not part of the initial lineage. Many cancer stem cells do not have this versatility, and this is an essential difference between normal and cancer stem cells. In this report, we review findings that support this notion.
Collapse
|
26
|
Di Marcantonio D, Sykes SM. Flow Cytometric Analysis of Mitochondrial Reactive Oxygen Species in Murine Hematopoietic Stem and Progenitor Cells and MLL-AF9 Driven Leukemia. J Vis Exp 2019:10.3791/59593. [PMID: 31545325 PMCID: PMC7239511 DOI: 10.3791/59593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We present a flow cytometric approach for analyzing mitochondrial ROS in various live bone marrow (BM)-derived stem and progenitor cell populations from healthy mice as well as mice with AML driven by MLL-AF9. Specifically, we describe a two-step cell staining process, whereby healthy or leukemia BM cells are first stained with a fluorogenic dye that detects mitochondrial superoxides, followed by staining with fluorochrome-linked monoclonal antibodies that are used to distinguish various healthy and malignant hematopoietic progenitor populations. We also provide a strategy for acquiring and analyzing the samples by flow cytometry. The entire protocol can be carried out in a timeframe as short as 3-4 h. We also highlight the key variables to consider as well as the advantages and limitations of monitoring ROS production in the mitochondrial compartment of live hematopoietic and leukemia stem and progenitor subpopulations using fluorogenic dyes by flow cytometry. Furthermore, we present data that mitochondrial ROS abundance varies among distinct healthy HSPC sub-populations and leukemia progenitors and discuss the possible applications of this technique in hematologic research.
Collapse
Affiliation(s)
| | - Stephen M Sykes
- Blood Cell Development and Function Program, Fox Chase Cancer Center;
| |
Collapse
|
27
|
Brown G, Ceredig R. Modeling the Hematopoietic Landscape. Front Cell Dev Biol 2019; 7:104. [PMID: 31275935 PMCID: PMC6591273 DOI: 10.3389/fcell.2019.00104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022] Open
Abstract
Some time ago, we proposed a continuum-like view of the lineages open to hematopoietic stem cells (HSCs); each HSC self-renews or chooses from the spectrum of all end-cell options and can then "merely" differentiate. Having selected a cell lineage, an individual HSC may still "step sideways" to an alternative, albeit closely related, fate: HSC and their progeny therefore remain versatile. The hematopoietic cytokines erythropoietin, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, granulocyte/macrophage colony-stimulating factor and ligand for the fms-like tyrosine kinase 3 instruct cell lineage. Sub-populations of HSCs express each of the cytokine receptors that are positively auto-regulated upon cytokine binding. Many years ago, Waddington proposed that the epigenetic landscape played an important role in cell lineage choice. This landscape is dynamic and unstable especially regarding DNA methylation patterns across genomic DNA. This may underlie the receptor diversity of HSC and their decision-making.
Collapse
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences - Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
28
|
Klein F, von Muenchow L, Capoferri G, Heiler S, Alberti-Servera L, Rolink H, Engdahl C, Rolink M, Mitrovic M, Cvijetic G, Andersson J, Ceredig R, Tsapogas P, Rolink A. Accumulation of Multipotent Hematopoietic Progenitors in Peripheral Lymphoid Organs of Mice Over-expressing Interleukin-7 and Flt3-Ligand. Front Immunol 2018; 9:2258. [PMID: 30364182 PMCID: PMC6191501 DOI: 10.3389/fimmu.2018.02258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022] Open
Abstract
Interleukin-7 (IL-7) and Flt3-ligand (FL) are two cytokines important for the generation of B cells, as manifested by the impaired B cell development in mice deficient for either cytokine or their respective receptors and by the complete block in B cell differentiation in the absence of both cytokines. IL-7 is an important survival and proliferation factor for B cell progenitors, whereas FL acts on several early developmental stages, prior to B cell commitment. We have generated mice constitutively over-expressing both IL-7 and FL. These double transgenic mice develop splenomegaly and lymphadenopathy characterized by tremendously enlarged lymph nodes even in young animals. Lymphoid, myeloid and dendritic cell numbers are increased compared to mice over-expressing either of the two cytokines alone and the effect on their expansion is synergistic, rather than additive. B cell progenitors, early progenitors with myeloid and lymphoid potential (EPLM), common lymphoid progenitors (CLP) and lineage−, Sca1+, kit+ (LSK) cells are all increased not only in the bone marrow but also in peripheral blood, spleen and even lymph nodes. When transplanted into irradiated wild-type mice, lymph node cells show long-term multilineage reconstitution, further confirming the presence of functional hematopoietic progenitors therein. Our double transgenic mouse model shows that sustained and combined over-expression of IL-7 and FL leads to a massive expansion of most bone marrow hematopoietic progenitors and to their associated presence in peripheral lymphoid organs where they reside and potentially differentiate further, thus leading to the synergistic increase in mature lymphoid and myeloid cell numbers. The present study provides further in vivo evidence for the concerted action of IL-7 and FL on lymphopoiesis and suggests that extramedullary niches, including those in lymph nodes, can support the survival and maintenance of hematopoietic progenitors that under physiological conditions develop exclusively in the bone marrow.
Collapse
Affiliation(s)
- Fabian Klein
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Lilly von Muenchow
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Giuseppina Capoferri
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Stefan Heiler
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Llucia Alberti-Servera
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Hannie Rolink
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Corinne Engdahl
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Michael Rolink
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Mladen Mitrovic
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Grozdan Cvijetic
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Jan Andersson
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Rhodri Ceredig
- Discipline of Physiology, College of Medicine & Nursing Health Science, National University of Ireland, Galway, Ireland
| | - Panagiotis Tsapogas
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Antonius Rolink
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| |
Collapse
|
29
|
The Making of Hematopoiesis: Developmental Ancestry and Environmental Nurture. Int J Mol Sci 2018; 19:ijms19072122. [PMID: 30037064 PMCID: PMC6073875 DOI: 10.3390/ijms19072122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/02/2023] Open
Abstract
Evidence from studies of the behaviour of stem and progenitor cells and of the influence of cytokines on their fate determination, has recently led to a revised view of the process by which hematopoietic stem cells and their progeny give rise to the many different types of blood and immune cells. The new scenario abandons the classical view of a rigidly demarcated lineage tree and replaces it with a much more continuum-like view of the spectrum of fate options open to hematopoietic stem cells and their progeny. This is in contrast to previous lineage diagrams, which envisaged stem cells progressing stepwise through a series of fairly-precisely described intermediate progenitors in order to close down alternative developmental options. Instead, stem and progenitor cells retain some capacity to step sideways and adopt alternative, closely related, fates, even after they have “made a lineage choice.” The stem and progenitor cells are more inherently versatile than previously thought and perhaps sensitive to lineage guidance by environmental cues. Here we examine the evidence that supports these views and reconsider the meaning of cell lineages in the context of a continuum model of stem cell fate determination and environmental modulation.
Collapse
|
30
|
Taylor SJ, Duyvestyn JM, Dagger SA, Dishington EJ, Rinaldi CA, Dovey OM, Vassiliou GS, Grove CS, Langdon WY. Preventing chemotherapy-induced myelosuppression by repurposing the FLT3 inhibitor quizartinib. Sci Transl Med 2018; 9:9/402/eaam8060. [PMID: 28794285 DOI: 10.1126/scitranslmed.aam8060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/19/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023]
Abstract
We describe an approach to inhibit chemotherapy-induced myelosuppression. We found that short-term exposure of mice to the FLT3 inhibitor quizartinib induced the transient quiescence of multipotent progenitors (MPPs). This property of quizartinib conferred marked protection to MPPs in mice receiving fluorouracil or gemcitabine. The protection resulted in the rapid recovery of bone marrow and blood cellularity, thus preventing otherwise lethal myelosuppression. A treatment strategy involving quizartinib priming that protected wild-type bone marrow progenitors, but not leukemic cells, from fluorouracil provided a more effective treatment than conventional induction therapy in mouse models of acute myeloid leukemia. This strategy has the potential to be extended for use in other cancers where FLT3 inhibition does not adversely affect the effectiveness of chemotherapy. Thus, the addition of quizartinib to cancer treatment regimens could markedly improve cancer patient survival and quality of life.
Collapse
Affiliation(s)
- Samuel J Taylor
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Johanna M Duyvestyn
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Samantha A Dagger
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Emma J Dishington
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Catherine A Rinaldi
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Oliver M Dovey
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - George S Vassiliou
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Carolyn S Grove
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia.,PathWest Department of Haematology, Queen Elizabeth II Medical Centre, Nedlands, Western Australia 6009, Australia.,Department of Haematology, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
| | - Wallace Y Langdon
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
31
|
Brown G, Tsapogas P, Ceredig R. The changing face of hematopoiesis: a spectrum of options is available to stem cells. Immunol Cell Biol 2018; 96:898-911. [DOI: 10.1111/imcb.12055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/26/2018] [Accepted: 04/02/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences; Institute of Immunology and Immunotherapy; College of Medical and Dental Sciences; University of Birmingham; Edgbaston Birmingham UK
| | - Panagiotis Tsapogas
- Developmental and Molecular Immunology; Department of Biomedicine; University of Basel; Basel Switzerland
| | - Rhodri Ceredig
- Discipline of Physiology; College of Medicine & Nursing Health Science; National University of Ireland; Galway Ireland
| |
Collapse
|
32
|
Acute Myeloid Leukaemia: New Targets and Therapies. Int J Mol Sci 2017; 18:ijms18122577. [PMID: 29189736 PMCID: PMC5751180 DOI: 10.3390/ijms18122577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
|
33
|
Tsapogas P, Mooney CJ, Brown G, Rolink A. The Cytokine Flt3-Ligand in Normal and Malignant Hematopoiesis. Int J Mol Sci 2017; 18:E1115. [PMID: 28538663 PMCID: PMC5485939 DOI: 10.3390/ijms18061115] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022] Open
Abstract
The cytokine Fms-like tyrosine kinase 3 ligand (FL) is an important regulator of hematopoiesis. Its receptor, Flt3, is expressed on myeloid, lymphoid and dendritic cell progenitors and is considered an important growth and differentiation factor for several hematopoietic lineages. Activating mutations of Flt3 are frequently found in acute myeloid leukemia (AML) patients and associated with a poor clinical prognosis. In the present review we provide an overview of our current knowledge on the role of FL in the generation of blood cell lineages. We examine recent studies on Flt3 expression by hematopoietic stem cells and its potential instructive action at early stages of hematopoiesis. In addition, we review current findings on the role of mutated FLT3 in leukemia and the development of FLT3 inhibitors for therapeutic use to treat AML. The importance of mouse models in elucidating the role of Flt3-ligand in normal and malignant hematopoiesis is discussed.
Collapse
Affiliation(s)
- Panagiotis Tsapogas
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel 4058, Switzerland.
| | - Ciaran James Mooney
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
| | - Geoffrey Brown
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
| | - Antonius Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel 4058, Switzerland.
| |
Collapse
|