1
|
Brown G. Cell Lineage Affiliation During Hematopoiesis. Int J Mol Sci 2025; 26:3346. [PMID: 40244205 PMCID: PMC11989489 DOI: 10.3390/ijms26073346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
By the mid-1960s, hematopoietic stem cells (HSCs) were well described. They generate perhaps the most complex array of functionally mature cells in an adult organism. HSCs and their descendants have been studied extensively, and findings have provided principles that have been applied to the development of many cell systems. However, there are uncertainties about the process of HSC development. They center around when and how HSCs become affiliated with a single-cell lineage. A longstanding view is that this occurs late in development and stepwise via a series of committed oligopotent progenitor cells, which eventually give rise to unipotent progenitors. A very different view is that lineage affiliation can occur as early as within HSCs, and the development of these cells to a mature end cell is then a continuous process. A key consideration is the extent to which lineage-affiliated HSCs self-renew to make a major contribution to hematopoiesis. This review examines the above aspects in relation to our understanding of hematopoiesis.
Collapse
Affiliation(s)
- Geoffrey Brown
- Department of Biomedical Sciences, School of Infection, Inflammation, and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Nanni J, Azzali I, Papayannidis C, Mulè A, Audisio E, Martelli MP, Scappini B, Chiusolo P, Cambò B, Candoni A, Lunghi M, Albano F, Olivieri A, Fracchiolla N, Bernardi M, Romani C, Rigolin GM, Giannini MB, Bocchia M, Todisco E, Cilloni D, Bochicchio MT, Ottaviani E, Mattei A, Zamagni F, Valli I, Volpi R, Marconi G, Petracci E, Martinelli G. Upfront intensive treatment analysis of the Italian Cohort Study on FLT3-mutated AML patients (FLAM): The impact of a FLT3 inhibitor addition to standard chemotherapy in the real-life setting. Cancer 2025; 131:e35824. [PMID: 40159434 PMCID: PMC11955083 DOI: 10.1002/cncr.35824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/08/2025] [Accepted: 01/29/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND The addition of a FLT3 inhibitor (FLT3i) to standard chemotherapy to treat fit newly diagnosed (ND) patients with FLT3-mutated acute myeloid leukemia (AML) represents the standard of care resulting from clinical trial results. However, evidence regarding FLT3i adoption in routine clinical practice is still scarce. METHODS Clinical data are reported from 394 ND patients with FLT3-mutated AML enrolled in the retrospective observational Italian Cohort Study on FLT3-mutated patients with AML and treated with an upfront intensive regimen with (FLT3i group, n = 92) or without (CT group, n = 302) the addition of a FLT3i. RESULTS With a median follow-up time of 34.5 months, an effectiveness benefit obtained by FLT3i incorporation both in terms of overall survival (median, 34.9 in the FLT3i vs 12.7 months in the CT group, p < .01) and relapse-free survival (median, 18.9 in the FLT3i vs 7.6 months in the CT group, p = .01) was documented, with a higher composite complete remission rate (75.4% in the FLT3i vs 62.4% in the CT group, p = .052). FLT3i benefit seemed to be independent from the transplant rate. CONCLUSIONS In conclusion, the benefit of FLT3i addition to upfront intensive treatment in newly diagnosed FLT3-mutated AML patients was confirmed in a large, real-life cohort study.
Collapse
Affiliation(s)
- Jacopo Nanni
- Dipartimento di Scienze Mediche e ChirurgicheIstituto di Ematologia “Seràgnoli”University of BolognaBolognaItaly
| | - Irene Azzali
- IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori” (IRST)Meldola (FC)Italy
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaIstituto di Ematologia “Seràgnoli”BolognaItaly
| | - Antonino Mulè
- U.O.C. di OncoematologiaA.O.O.R. Villa Sofia – CervelloPalermoItaly
| | - Ernesta Audisio
- SC Ematologia 2Dipartmento di Ematologia e OncologiaAO Città della Salute e della ScienzaTorinoItaly
| | - Maria Paola Martelli
- Institute of Hematology and Center for Hemato‐Oncology ResearchUniversity of Perugia and Santa Maria della Misericordia HospitalPerugiaItaly
| | | | - Patrizia Chiusolo
- Dipartimento di Scienze Radiologiche ed EmatologicheUniversità Cattolica del Sacro CuoreRomaItaly
| | - Benedetta Cambò
- Department of Medicine and SurgeryHematology and BMT UnitUniversity of ParmaParmaItaly
| | - Anna Candoni
- Clinica Ematologica Azienda Sanitaria Universitaria Integrata di UdineUdineItaly
| | - Monia Lunghi
- Division of HematologyDepartment of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
| | - Francesco Albano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe‐J)Hematology and Stem Cell Transplantation UnitUniversity of Bari “Aldo Moro”BariItaly
| | | | - Nicola Fracchiolla
- Fondazione IRCCS Ca’ Granda‐Ospedale Maggiore Policlinico di MilanoMilanoItaly
| | - Massimo Bernardi
- IRCCSOspedale San Raffaele s.r.l U.O. Ematologia e TMO MilanoMilanoItaly
| | - Claudio Romani
- SC Ematologia e CTMOAzienda Ospedaliera BrotzuCagliariItaly
| | | | | | | | - Elisabetta Todisco
- European Institute of OncologyMilanoItaly
- S.C. di Ematologia e Trapianto di Cellule Staminali EmopoieticheOspedale di Busto ArsizioASST Valle OlonaBusto Arsizio (VA)Italy
| | - Daniela Cilloni
- Dipartimento di Scienze Cliniche e BiologicheUniversità di TorinoS.S.D Terapia onco‐ematologica intensiva e trapianto CSEAOU San Luigi GonzagaOrbassano (TO)Italy
| | | | - Emanuela Ottaviani
- Dipartimento di Scienze Mediche e ChirurgicheIstituto di Ematologia “Seràgnoli”University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaIstituto di Ematologia “Seràgnoli”BolognaItaly
| | - Agnese Mattei
- IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori” (IRST)Meldola (FC)Italy
| | - Federica Zamagni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori” (IRST)Meldola (FC)Italy
| | - Irene Valli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori” (IRST)Meldola (FC)Italy
| | - Roberta Volpi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori” (IRST)Meldola (FC)Italy
| | - Giovanni Marconi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori” (IRST)Meldola (FC)Italy
| | - Elisabetta Petracci
- IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori” (IRST)Meldola (FC)Italy
| | | | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori” (IRST)Meldola (FC)Italy
| |
Collapse
|
3
|
Peterlin P, Gaschet J, Turlure P, Gourin MP, Dumas PY, Thepot S, Berceanu A, Park S, Hospital MA, Cluzeau T, Torregrosa-Diaz JM, Drevon L, Sapena R, Chermat F, Ades L, Dimicoli-Salazar S, Jullien M, Fenaux P, Chevallier P. FLT3 ligand kinetic profile predicts response to treatment in patients with high-risk myelodysplastic syndrome/ chronic myelomonocytic leukemia receiving CPX-351: a study from the Groupe Francophone des Myélodysplasies. Haematologica 2025; 110:980-984. [PMID: 39568426 PMCID: PMC11959229 DOI: 10.3324/haematol.2024.286025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Affiliation(s)
- Pierre Peterlin
- Clinical Hematology, Nantes University Hospital, Nantes, France; CRCI2NA UMR INSERM 1307CNRS 6075 - Nantes Université - Angers University, Nantes.
| | - Joëlle Gaschet
- CRCI2NA UMR INSERM 1307CNRS 6075 - Nantes Université - Angers University, Nantes
| | - Pascal Turlure
- Clinical Hematology, Limoges University Hospital, Limoges
| | | | - Pierre-Yves Dumas
- Clinical Hematology, Bordeaux University Hospital Haut-Lévêque, Pessac
| | | | - Ana Berceanu
- Clinical Hematology, Besançon University Hospital, Besançon
| | - Sophie Park
- Clinical Hematology, Grenoble University Hospital, Grenoble
| | | | | | | | - Louis Drevon
- Clinical Hematology, Saint Louis Hospital, Paris
| | - Rosa Sapena
- Groupe Francophone des Myélodysplasies, Paris
| | | | - Lionel Ades
- Clinical Hematology, Saint Louis Hospital, Paris
| | | | - Maxime Jullien
- Clinical Hematology, Nantes University Hospital, Nantes, France; CRCI2NA UMR INSERM 1307CNRS 6075 - Nantes Université - Angers University, Nantes
| | | | - Patrice Chevallier
- Clinical Hematology, Nantes University Hospital, Nantes, France; CRCI2NA UMR INSERM 1307CNRS 6075 - Nantes Université - Angers University, Nantes
| |
Collapse
|
4
|
Heidari F, Kazemi-Sefat NA, Feizollahi P, Gerdabi S, Pourfathollah AA, Ebtekar M. Effect of FLT3 ligand on the gene expression of TIM-3, HIF1-α, and TNF-α in an acute myeloid leukemia cell line. Mol Biol Rep 2025; 52:313. [PMID: 40085277 DOI: 10.1007/s11033-025-10396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Acute Myeloid Leukemia (AML) pathogenesis is driven by the dysregulation of various cell signaling pathways, including the FMS-Like Tyrosine Kinase 3 (FLT3) pathway and its ligand (FLT3L). These pathways play a critical role in promoting cell survival, proliferation, and resistance to apoptosis, contributing to leukemogenesis. In this study, we investigated the effects of FLT3L on the expression of key genes associated with immune regulation, hypoxia, and inflammation-TIM-3, HIF-1α, and TNF-α-in the THP-1 cell line, a well-established model for AML research. METHODS THP-1 cells were cultured under standard conditions and treated with varying concentrations of FLT3L, alongside PMA as a positive control. Quantitative RT-PCR was employed to measure the expression levels of TIM-3, HIF-1α, and TNF-α genes after 48 h of treatment. RESULTS Our findings demonstrated that specific concentrations of FLT3L significantly upregulated the expression of TIM-3, HIF-1α, and TNF-α in THP-1 cells. This suggests that FLT3L not only influences cell proliferation and survival but also modulates pathways related to immune evasion, hypoxia adaptation, and inflammatory responses, which are hallmarks of leukemia progression. CONCLUSION These results highlight the pivotal role of FLT3L in regulating the expression of genes associated with AML pathogenesis, particularly those involved in hypoxia (HIF-1α), immune checkpoint regulation (TIM-3), and inflammation (TNF-α). The findings underscore the potential of targeting the FLT3 pathway as a therapeutic strategy in AML. Further studies are warranted to elucidate the underlying molecular mechanisms and explore their clinical implications for improving patient outcomes.
Collapse
MESH Headings
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- Hepatitis A Virus Cellular Receptor 2/genetics
- Hepatitis A Virus Cellular Receptor 2/metabolism
- THP-1 Cells
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Cell Line, Tumor
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Signal Transduction/genetics
- Signal Transduction/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Cell Survival/drug effects
- Cell Survival/genetics
Collapse
Affiliation(s)
- Fatemeh Heidari
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14155-114, Iran
| | - Nazanin Atieh Kazemi-Sefat
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14155-114, Iran
| | - Parisa Feizollahi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14155-114, Iran
| | - Sajjad Gerdabi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14155-114, Iran
| | - Ali Akbar Pourfathollah
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14155-114, Iran
| | - Masoumeh Ebtekar
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14155-114, Iran.
| |
Collapse
|
5
|
Gorecki L, Reznickova E, Krystof V, Rezacova M, Ceckova M, Korabecny J. Strategies for the treatment of acute myeloid leukemia with FLT3 mutations: a patent review. Expert Opin Ther Pat 2025; 35:137-164. [PMID: 39718422 DOI: 10.1080/13543776.2024.2446224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/09/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION Approximately one-third of all AML patients have a mutation in the Fms-like tyrosine kinase 3 (FLT3) gene, which is associated with a poor prognosis in these individuals. The 2017 approval of midostaurin, the first FLT3 inhibitor, spurred extensive development of more potent and selective inhibitors with an improved safety profile. AREAS COVERED This review analyzes patent inventions for the treatment of AML using FLT3 inhibitors, covering developments from the earliest to the most recent, disclosed in 2024. Our search using the global Espacenet database identified numerous compounds with low nanomolar inhibitory concentrations against FLT3-ITD and FLT3-TKD mutants. These compounds have shown promise in preclinical studies. Co-inhibition strategies and combinatorial therapies to overcome resistance and enhance anti-leukemic efficacy are also discussed. EXPERT OPINION Recent patents highlight advances in the field of FLT3 inhibitors with a focus on overcoming resistance, improving selectivity and potency. Future strategies may include third-generation inhibitors such as type III allosteric inhibitors, irreversible inhibitors, or PROTACs. Personalized medicine approaches utilizing genetic profiling to tailor therapies are emphasized. Exploration of novel combination regimens with emerging therapies like CAR T-cell therapy, immune checkpoint inhibitors, and small molecules targeting critical AML pathways is ongoing to further enhance anti-leukemic efficacy.
Collapse
Affiliation(s)
- Lukas Gorecki
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Reznickova
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Vladimir Krystof
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Martina Rezacova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Hradec Kralove, Czech Republic
| | - Martina Ceckova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
6
|
Mu Y, Ohno Y, Mochizuki M, Kawai K, Goto M, Ogura T, Takahashi R, Ito M, Ito R. Human dendritic cell differentiation in hematopoietic stem cell-transplanted NOG hFLT3L Tg/mFlt3 KO humanized mice. Immunol Lett 2024; 270:106943. [PMID: 39536946 DOI: 10.1016/j.imlet.2024.106943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Human immune system-reconstituted humanized mice are useful animal models to study human immunology in vivo. Human hematopoietic stem cell-transferred NOG mice are well recognized as humanized immune system models with reconstitution of mature lymphoid lineage cells such as T and B cells. However, human myeloid lineage cells including dendritic cells (DCs) do not fully differentiate in conventional NOG mice. DCs play a crucial role in adaptive immunity through antigen presentation to T cells to acquire antigen specificity. In this study, we established a novel humanized mouse with human DC differentiation. To induce DCs, we generated human Fms-like tyrosine kinase 3 ligand (hFLT3L) transgenic NOG (hFLT3L-Tg) mice and transferred human CD34+ hematopoietic stem cells (HSC) into them. Unexpectedly, low frequency of human cell engraftment was observed in the hFLT3L-Tg mice after HPC reconstitution. In the Tg mice, mouse CD11b+Gr1- myeloid cells were markedly expanded in the bone marrow due to the cross-reaction between hFLT3L and mouse Flt3 receptor, and these myeloid leukemia-like cells interfered with the engraftment of human hematopoietic cells in hFLT3L-Tg mice. To avoid this cross-reaction, we further generated NOG FLT3 receptor KO (mFlt3 KO) mice by CRISPR/Cas9 technique, and the KO mice combined with hFLT3L Tg mice to create hFLT3L Tg/mFlt3 KO (FL Tg/KO) mice. Mouse CD11b+Gr1- leukemia-like cells did not proliferate in FL Tg/KO mice due to blockade of the FLT3 signals in mouse leukocytes. After human HSC transplantation, human CD45+ cells were successfully engrafted in FL Tg/KO mice. Furthermore, major subsets of human DC populations, cDC1, cDC2, and pDC, and skin Langerhans cells were significantly differentiated in FL Tg/KO mice. Therefore, these humanized mouse models are potentially valuable in the investigation of DC-mediated human adaptive immune responses in vivo.
Collapse
Affiliation(s)
- Yunmei Mu
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, 55901, USA
| | - Yusuke Ohno
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Misa Mochizuki
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Kenji Kawai
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Motohito Goto
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Tomoyuki Ogura
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Riichi Takahashi
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Mamoru Ito
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Ryoji Ito
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan.
| |
Collapse
|
7
|
Chen J, Wu J, Guo N, Song Y, Li L, Wang B, Li J, Hou M, Yin H, Zhang M, Kong Y, Wu X, Li R, Wu L, Gao Q, Dong R. Evaluation of drug-drug interactions of a novel potent FLT3 inhibitor SKLB1028 in healthy subjects. Clin Transl Sci 2024; 17:e70063. [PMID: 39533673 PMCID: PMC11557726 DOI: 10.1111/cts.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
SKLB1028 is a novel multi-target protein kinase inhibitor under investigation for the treatment of FLT3-ITD mutated acute myeloid leukemia. Based on the preclinical characterization of SKLB1028 metabolism, three drug-drug interaction clinical studies were performed to investigate the effects of itraconazole, rifampin (CYP3A4 inhibitor and inducer, respectively), and gemfibrozil (CYP2C8 inhibitor) on the metabolism of SKLB1028. Fourteen healthy Chinese male subjects were enrolled in each study. In Study 1, subjects were administered a single dose of SKLB1028 (100 mg on days 1 and 11) and multiple doses of itraconazole (200 mg twice daily on day 8 and 200 mg once daily from days 9 to 18). Itraconazole was given with a loading dose on Day 8 and the total administration of itraconazole was 11 days. In Study 2, subjects were administered a single dose of SKLB1028 (100 mg on days 1 and 12) and multiple doses of gemfibrozil (600 mg twice daily from days 8 to 19). In Study 3, subjects were administered a single dose of SKLB1028 (150 mg on days 1 and 15) and multiple doses of rifampin (600 mg once daily from day 8 to 22). Itraconazole increased the AUC and Cmax of SKLB1028 by approximately 28% and 41%, respectively. Compared to the single drug, co-administration with gemfibrozil increased the AUC of SKLB1028 by ~26% and the Cmax by ~21%. Co-administration with rifampin reduced the AUC of SKLB1028 by ~30%, while the Cmax did not change significantly. All treatments were well tolerated in all three studies.
Collapse
Affiliation(s)
- Jingcheng Chen
- Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Jingxuan Wu
- Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Nini Guo
- CSPC Zhongqi Pharmaceutical Technology (SJZ) Co., Ltd.ShijiazhuangHebei ProvinceChina
| | - Yuqin Song
- Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Lijun Li
- Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Bingyan Wang
- Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Jiangshuo Li
- Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Mengyu Hou
- Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Hang Yin
- Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Meijuan Zhang
- Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yanhong Kong
- Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Xiaofang Wu
- Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Ran Li
- Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Le Wu
- Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Qiannan Gao
- Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Ruihua Dong
- Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
8
|
Mzizi Y, Mbambara S, Moetlhoa B, Mahapane J, Mdanda S, Sathekge M, Kgatle M. Ionising radiation exposure-induced regulation of selected biomarkers and their impact in cancer and treatment. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1469897. [PMID: 39498386 PMCID: PMC11532091 DOI: 10.3389/fnume.2024.1469897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024]
Abstract
Ionising radiation (IR) is a form of energy that travels as electromagnetic waves or particles. While it is vital in medical and occupational health settings, IR can also damage DNA, leading to mutations, chromosomal aberrations, and transcriptional changes that disrupt the functions of certain cell regulators, genes, and transcription factors. These disruptions can alter functions critical for cancer development, progression, and treatment response. Additionally, IR can affect various cellular proteins and their regulators within different cell signalling pathways, resulting in physiological changes that may promote cancer development, progression, and resistance to treatment. Understanding these impacts is crucial for developing strategies to mitigate the harmful effects of IR exposure and improve cancer treatment outcomes. This review focuses on specific genes and protein biomarkers regulated in response to chronic IR exposure, and how their regulation impacts disease onset, progression, and treatment response.
Collapse
Affiliation(s)
- Yonwaba Mzizi
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Saidon Mbambara
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Biomedical Sciences, Tropical Diseases Research Centre, Ndola, Zambia
| | - Boitumelo Moetlhoa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Johncy Mahapane
- Department of Radiography, University of Pretoria, Pretoria, South Africa
| | - Sipho Mdanda
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mankgopo Kgatle
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
9
|
Bruno S, Borsi E, Patuelli A, Bandini L, Mancini M, Forte D, Nanni J, Barone M, Grassi A, Cristiano G, Venturi C, Robustelli V, Atzeni G, Mosca C, De Santis S, Monaldi C, Poletti A, Terragna C, Curti A, Cavo M, Soverini S, Ottaviani E. Tracking Response and Resistance in Acute Myeloid Leukemia through Single-Cell DNA Sequencing Helps Uncover New Therapeutic Targets. Int J Mol Sci 2024; 25:10002. [PMID: 39337490 PMCID: PMC11432296 DOI: 10.3390/ijms251810002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic neoplasia with a complex polyclonal architecture. Among driver lesions, those involving the FLT3 gene represent the most frequent mutations identified at diagnosis. The development of tyrosine kinase inhibitors (TKIs) has improved the clinical outcomes of FLT3-mutated patients (Pt). However, overcoming resistance to these drugs remains a challenge. To unravel the molecular mechanisms underlying therapy resistance and clonal selection, we conducted a longitudinal analysis using a single-cell DNA sequencing approach (MissionBioTapestri® platform, San Francisco, CA, USA) in two patients with FLT3-mutated AML. To this end, samples were collected at the time of diagnosis, during TKI therapy, and at relapse or complete remission. For Pt #1, disease resistance was associated with clonal expansion of minor clones, and 2nd line TKI therapy with gilteritinib provided a proliferative advantage to the clones carrying NRAS and KIT mutations, thereby responsible for relapse. In Pt #2, clonal architecture was less complex, and 1st line TKI therapy with midostaurin was able to eradicate the leukemic clones. Our results corroborate previous findings about clonal selection driven by TKIs, highlighting the importance of a deeper characterization of individual clonal architectures for choosing the best treatment plan for personalized approaches aimed at optimizing outcomes.
Collapse
Affiliation(s)
- Samantha Bruno
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy; (A.P.); (L.B.); (D.F.); (J.N.); (A.G.); (G.C.); (C.V.); (G.A.); (C.M.); (S.D.S.); (C.M.); (A.P.); (M.C.); (S.S.)
| | - Enrica Borsi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero, Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 940138 Bologna, Italy; (E.B.); (M.M.); (M.B.); (V.R.); (C.T.); (A.C.); (E.O.)
| | - Agnese Patuelli
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy; (A.P.); (L.B.); (D.F.); (J.N.); (A.G.); (G.C.); (C.V.); (G.A.); (C.M.); (S.D.S.); (C.M.); (A.P.); (M.C.); (S.S.)
| | - Lorenza Bandini
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy; (A.P.); (L.B.); (D.F.); (J.N.); (A.G.); (G.C.); (C.V.); (G.A.); (C.M.); (S.D.S.); (C.M.); (A.P.); (M.C.); (S.S.)
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero, Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 940138 Bologna, Italy; (E.B.); (M.M.); (M.B.); (V.R.); (C.T.); (A.C.); (E.O.)
| | - Manuela Mancini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero, Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 940138 Bologna, Italy; (E.B.); (M.M.); (M.B.); (V.R.); (C.T.); (A.C.); (E.O.)
| | - Dorian Forte
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy; (A.P.); (L.B.); (D.F.); (J.N.); (A.G.); (G.C.); (C.V.); (G.A.); (C.M.); (S.D.S.); (C.M.); (A.P.); (M.C.); (S.S.)
| | - Jacopo Nanni
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy; (A.P.); (L.B.); (D.F.); (J.N.); (A.G.); (G.C.); (C.V.); (G.A.); (C.M.); (S.D.S.); (C.M.); (A.P.); (M.C.); (S.S.)
| | - Martina Barone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero, Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 940138 Bologna, Italy; (E.B.); (M.M.); (M.B.); (V.R.); (C.T.); (A.C.); (E.O.)
| | - Alessandra Grassi
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy; (A.P.); (L.B.); (D.F.); (J.N.); (A.G.); (G.C.); (C.V.); (G.A.); (C.M.); (S.D.S.); (C.M.); (A.P.); (M.C.); (S.S.)
| | - Gianluca Cristiano
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy; (A.P.); (L.B.); (D.F.); (J.N.); (A.G.); (G.C.); (C.V.); (G.A.); (C.M.); (S.D.S.); (C.M.); (A.P.); (M.C.); (S.S.)
| | - Claudia Venturi
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy; (A.P.); (L.B.); (D.F.); (J.N.); (A.G.); (G.C.); (C.V.); (G.A.); (C.M.); (S.D.S.); (C.M.); (A.P.); (M.C.); (S.S.)
| | - Valentina Robustelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero, Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 940138 Bologna, Italy; (E.B.); (M.M.); (M.B.); (V.R.); (C.T.); (A.C.); (E.O.)
| | - Giulia Atzeni
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy; (A.P.); (L.B.); (D.F.); (J.N.); (A.G.); (G.C.); (C.V.); (G.A.); (C.M.); (S.D.S.); (C.M.); (A.P.); (M.C.); (S.S.)
| | - Cristina Mosca
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy; (A.P.); (L.B.); (D.F.); (J.N.); (A.G.); (G.C.); (C.V.); (G.A.); (C.M.); (S.D.S.); (C.M.); (A.P.); (M.C.); (S.S.)
| | - Sara De Santis
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy; (A.P.); (L.B.); (D.F.); (J.N.); (A.G.); (G.C.); (C.V.); (G.A.); (C.M.); (S.D.S.); (C.M.); (A.P.); (M.C.); (S.S.)
| | - Cecilia Monaldi
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy; (A.P.); (L.B.); (D.F.); (J.N.); (A.G.); (G.C.); (C.V.); (G.A.); (C.M.); (S.D.S.); (C.M.); (A.P.); (M.C.); (S.S.)
| | - Andrea Poletti
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy; (A.P.); (L.B.); (D.F.); (J.N.); (A.G.); (G.C.); (C.V.); (G.A.); (C.M.); (S.D.S.); (C.M.); (A.P.); (M.C.); (S.S.)
| | - Carolina Terragna
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero, Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 940138 Bologna, Italy; (E.B.); (M.M.); (M.B.); (V.R.); (C.T.); (A.C.); (E.O.)
| | - Antonio Curti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero, Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 940138 Bologna, Italy; (E.B.); (M.M.); (M.B.); (V.R.); (C.T.); (A.C.); (E.O.)
| | - Michele Cavo
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy; (A.P.); (L.B.); (D.F.); (J.N.); (A.G.); (G.C.); (C.V.); (G.A.); (C.M.); (S.D.S.); (C.M.); (A.P.); (M.C.); (S.S.)
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero, Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 940138 Bologna, Italy; (E.B.); (M.M.); (M.B.); (V.R.); (C.T.); (A.C.); (E.O.)
| | - Simona Soverini
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy; (A.P.); (L.B.); (D.F.); (J.N.); (A.G.); (G.C.); (C.V.); (G.A.); (C.M.); (S.D.S.); (C.M.); (A.P.); (M.C.); (S.S.)
| | - Emanuela Ottaviani
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero, Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 940138 Bologna, Italy; (E.B.); (M.M.); (M.B.); (V.R.); (C.T.); (A.C.); (E.O.)
| |
Collapse
|
10
|
Ruglioni M, Crucitta S, Luculli GI, Tancredi G, Del Giudice ML, Mechelli S, Galimberti S, Danesi R, Del Re M. Understanding mechanisms of resistance to FLT3 inhibitors in adult FLT3-mutated acute myeloid leukemia to guide treatment strategy. Crit Rev Oncol Hematol 2024; 201:104424. [PMID: 38917943 DOI: 10.1016/j.critrevonc.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
The presence of FLT3 mutations, including the most common FLT3-ITD (internal tandem duplications) and FLT3-TKD (tyrosine kinase domain), is associated with an unfavorable prognosis in patients affected by acute myeloid leukemia (AML). In this setting, in recent years, new FLT3 inhibitors have demonstrated efficacy in improving survival and treatment response. Nevertheless, the development of primary and secondary mechanisms of resistance poses a significant obstacle to their efficacy. Understanding these mechanisms is crucial for developing novel therapeutic approaches to overcome resistance and improve the outcomes of patients. In this context, the use of novel FLT3 inhibitors and the combination of different targeted therapies have been studied. This review provides an update on the molecular alterations involved in the resistance to FLT3 inhibitors, and describes how the molecular monitoring may be used to guide treatment strategy in FLT3-mutated AML.
Collapse
Affiliation(s)
- Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Gaspare Tancredi
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Maria Livia Del Giudice
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Sandra Mechelli
- Unit of Internal Medicine 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Sara Galimberti
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Romano Danesi
- Department of Oncology and Hemato-Oncology, University of Milan, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
11
|
Tolcher AW, Brody JD, Rajakumaraswamy N, Kuhne M, Trowe T, Dauki AM, Pai S, Han L, Lin KW, Petrarca M, Kummar S. Phase I Study of GS-3583, an FMS-like Tyrosine Kinase 3 Agonist Fc Fusion Protein, in Patients with Advanced Solid Tumors. Clin Cancer Res 2024; 30:2954-2963. [PMID: 38295150 PMCID: PMC11247315 DOI: 10.1158/1078-0432.ccr-23-2808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE GS-3583, an FMS-like tyrosine kinase 3 (FLT3) agonist Fc fusion protein, expanded conventional dendritic cells (cDC) in the periphery of healthy volunteers, suggesting potential for GS-3583 to increase cDCs in the tumor microenvironment and promote T cell-mediated antitumor activity in cancer patients. This phase Ib open-label study assessed GS-3583 in adults with advanced solid tumors. PATIENTS AND METHODS Multiple escalating doses of GS-3583 (standard 3+3 design) were administered intravenously on days 1 and 15 of cycle 1 and day 1 of each subsequent 28-day cycle for up to 52 weeks. Dose-limiting toxicity (DLT) was evaluated during the first 28 days of GS-3583 at each dose level. RESULTS Thirteen participants enrolled in four dose-escalation cohorts, after which the study was terminated following safety review. Median (range) age was 71 (44-79), and 7 (54%) participants were male. There were no DLTs. Seven participants had grade ≥3 AEs; 2 participants had grade 5 AEs, including a second primary malignancy (acute myeloid leukemia) considered treatment-related. Dose-dependent increase in GS-3583 serum exposure was observed in the dose range of 2-20 mg with GS-3583 accumulation at higher dose levels. Expansions of cDCs occurred at all four doses with a dose-dependent trend in the durability of the cDC expansion. CONCLUSIONS GS-3583 was relatively well tolerated and induced dose-dependent expansion of cDCs in the periphery of patients with advanced solid tumors. However, development of a second primary malignancy provides a cautionary tale for the FLT3 agonist mechanism. See related commentary by Raeder and Drazer, p. 2857.
Collapse
Affiliation(s)
| | - Joshua D. Brody
- Icahn School of Medicine at Mount Sinai, New York, New York.
| | | | | | | | | | | | - Ling Han
- Gilead Sciences, Inc., Foster City, California.
| | - Kai-Wen Lin
- Gilead Sciences, Inc., Foster City, California.
| | | | | |
Collapse
|
12
|
Liu J, Gu J. Importance of PTM of FLT3 in acute myeloid leukemia. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1199-1207. [PMID: 38915288 PMCID: PMC11399421 DOI: 10.3724/abbs.2024112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase expressed in hematopoietic cells. Internal-tandem duplication domain (ITD) mutation and tyrosine kinase domain (TKD) mutation are the two most common mutations in acute myeloid leukemia (AML). Post-translational modifications (PTMs) of FLT3, such as glycosylation and ubiquitination, have been shown to impact various aspects of the protein in both wild-type (WT) and mutant forms of FLT3. In this review, we describe how the glycosylation status of FLT3 affects its subcellular localization, which significantly impacts the activation of downstream signaling, and the impact of specific ubiquitination on FLT3 function and stability, which may be associated with disease progression. Moreover, potential novel therapeutic strategies involving a combination of FLT3 tyrosine kinase inhibitors and drugs targeting glycosylation or ubiquitination are discussed.
Collapse
Affiliation(s)
- Jianwei Liu
- />Division of Regulatory GlycobiologyInstitute of Molecular Biomembrane and GlycobiologyTohoku Medical and Pharmaceutical University4-4-1 KomatsushimaAoba-kuSendai Miyagi981-8558Japan
| | - Jianguo Gu
- />Division of Regulatory GlycobiologyInstitute of Molecular Biomembrane and GlycobiologyTohoku Medical and Pharmaceutical University4-4-1 KomatsushimaAoba-kuSendai Miyagi981-8558Japan
| |
Collapse
|
13
|
Tecik M, Adan A. Emerging DNA Methylome Targets in FLT3-ITD-Positive Acute Myeloid Leukemia: Combination Therapy with Clinically Approved FLT3 Inhibitors. Curr Treat Options Oncol 2024; 25:719-751. [PMID: 38696033 PMCID: PMC11222205 DOI: 10.1007/s11864-024-01202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 07/04/2024]
Abstract
OPINION STATEMENT The internal tandem duplication (ITD) mutation of the FMS-like receptor tyrosine kinase 3 (FLT3-ITD) is the most common mutation observed in approximately 30% of acute myeloid leukemia (AML) patients. It represents poor prognosis due to continuous activation of downstream growth-promoting signaling pathways such as STAT5 and PI3K/AKT. Hence, FLT3 is considered an attractive druggable target; selective small FLT3 inhibitors (FLT3Is), such as midostaurin and quizartinib, have been clinically approved. However, patients possess generally poor remission rates and acquired resistance when FLT3I used alone. Various factors in patients could cause these adverse effects including altered epigenetic regulation, causing mainly abnormal gene expression patterns. Epigenetic modifications are required for hematopoietic stem cell (HSC) self-renewal and differentiation; however, critical driver mutations have been identified in genes controlling DNA methylation (such as DNMT3A, TET2, IDH1/2). These regulators cause leukemia pathogenesis and affect disease diagnosis and prognosis when they co-occur with FLT3-ITD mutation. Therefore, understanding the role of different epigenetic alterations in FLT3-ITD AML pathogenesis and how they modulate FLT3I's activity is important to rationalize combinational treatment approaches including FLT3Is and modulators of methylation regulators or pathways. Data from ongoing pre-clinical and clinical studies will further precisely define the potential use of epigenetic therapy together with FLT3Is especially after characterized patients' mutational status in terms of FLT3 and DNA methlome regulators.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey.
| |
Collapse
|
14
|
Momenilandi M, Lévy R, Sobrino S, Li J, Lagresle-Peyrou C, Esmaeilzadeh H, Fayand A, Le Floc'h C, Guérin A, Della Mina E, Shearer D, Delmonte OM, Yatim A, Mulder K, Mancini M, Rinchai D, Denis A, Neehus AL, Balogh K, Brendle S, Rokni-Zadeh H, Changi-Ashtiani M, Seeleuthner Y, Deswarte C, Bessot B, Cremades C, Materna M, Cederholm A, Ogishi M, Philippot Q, Beganovic O, Ackermann M, Wuyts M, Khan T, Fouéré S, Herms F, Chanal J, Palterer B, Bruneau J, Molina TJ, Leclerc-Mercier S, Prétet JL, Youssefian L, Vahidnezhad H, Parvaneh N, Claeys KG, Schrijvers R, Luka M, Pérot P, Fourgeaud J, Nourrisson C, Poirier P, Jouanguy E, Boisson-Dupuis S, Bustamante J, Notarangelo LD, Christensen N, Landegren N, Abel L, Marr N, Six E, Langlais D, Waterboer T, Ginhoux F, Ma CS, Tangye SG, Meyts I, Lachmann N, Hu J, Shahrooei M, Bossuyt X, Casanova JL, Béziat V. FLT3L governs the development of partially overlapping hematopoietic lineages in humans and mice. Cell 2024; 187:2817-2837.e31. [PMID: 38701783 PMCID: PMC11149630 DOI: 10.1016/j.cell.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
FMS-related tyrosine kinase 3 ligand (FLT3L), encoded by FLT3LG, is a hematopoietic factor essential for the development of natural killer (NK) cells, B cells, and dendritic cells (DCs) in mice. We describe three humans homozygous for a loss-of-function FLT3LG variant with a history of various recurrent infections, including severe cutaneous warts. The patients' bone marrow (BM) was hypoplastic, with low levels of hematopoietic progenitors, particularly myeloid and B cell precursors. Counts of B cells, monocytes, and DCs were low in the patients' blood, whereas the other blood subsets, including NK cells, were affected only moderately, if at all. The patients had normal counts of Langerhans cells (LCs) and dermal macrophages in the skin but lacked dermal DCs. Thus, FLT3L is required for B cell and DC development in mice and humans. However, unlike its murine counterpart, human FLT3L is required for the development of monocytes but not NK cells.
Collapse
Affiliation(s)
- Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Steicy Sobrino
- Laboratory of Chromatin and Gene Regulation During Development, Paris Cité University, UMR1163 INSERM, Imagine Institute, Paris, France; Laboratory of Human Lymphohematopoiesis, INSERM, Imagine Institute, Paris, France
| | - Jingwei Li
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Chantal Lagresle-Peyrou
- Paris Cité University, Imagine Institute, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Hossein Esmaeilzadeh
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Allergy and Clinical Immunology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Antoine Fayand
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Sorbonne University, AP-HP, Tenon Hospital, Department of Internal Medicine, Paris, France
| | - Corentin Le Floc'h
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| | - Erika Della Mina
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| | - Debra Shearer
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ahmad Yatim
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Kevin Mulder
- Gustave Roussy Cancer Campus, Villejuif, France; Paris-Saclay University, Ile-de-France, France
| | - Mathieu Mancini
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Adeline Denis
- Laboratory of Human Lymphohematopoiesis, INSERM, Imagine Institute, Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Karla Balogh
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Sarah Brendle
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Hassan Rokni-Zadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Majid Changi-Ashtiani
- School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Boris Bessot
- Paris Cité University, Imagine Institute, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Cassandre Cremades
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Omer Beganovic
- Laboratoire d'Onco-hématologie, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Mania Ackermann
- Hannover Medical School, Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover, Germany; Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Margareta Wuyts
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | | | - Sébastien Fouéré
- Groupe Hospitalier Saint-Louis, Lariboisière, Fernand-Widal, CeGIDD, AP-HP, Paris, France
| | - Florian Herms
- Dermatology Department, Paris-Cité University, INSERM 976, Saint Louis Hospital, Paris, France
| | - Johan Chanal
- Dermatology Department, Cochin Hospital, INSERM U1016, AP-HP, Paris, France
| | - Boaz Palterer
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie Bruneau
- Department of Pathology, Necker Hospital for Sick Children, AP-HP, Paris-Cité University, Paris, France
| | - Thierry J Molina
- Department of Pathology, Necker Hospital for Sick Children, AP-HP, Paris-Cité University, Paris, France
| | - Stéphanie Leclerc-Mercier
- Department of Pathology, Necker Hospital for Sick Children, AP-HP, Paris-Cité University, Paris, France
| | - Jean-Luc Prétet
- Papillomavirus National Reference Center, Besançon Hospital, Besançon, France
| | - Leila Youssefian
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hassan Vahidnezhad
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nima Parvaneh
- Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Marine Luka
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Philippe Pérot
- Pathogen Discovery Laboratory, Institut Pasteur, Paris Cité University, Paris, France
| | - Jacques Fourgeaud
- Paris Cité University, URP 7328 FETUS, Paris, France; Microbiology Department, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Céline Nourrisson
- Clermont Auvergne University, INSERM U1071, M2iSH, USC INRAE 1382, CHU Clermont-Ferrand, 3IHP, Department of Parasitology-Mycology, Clermont-Ferrand, France; National Reference Center for Cryptosporidiosis, Microsporidia and Other Digestive Protozoa, Clermont-Ferrand, France
| | - Philippe Poirier
- Clermont Auvergne University, INSERM U1071, M2iSH, USC INRAE 1382, CHU Clermont-Ferrand, 3IHP, Department of Parasitology-Mycology, Clermont-Ferrand, France; National Reference Center for Cryptosporidiosis, Microsporidia and Other Digestive Protozoa, Clermont-Ferrand, France
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neil Christensen
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Centre for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Emmanuelle Six
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - David Langlais
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Tim Waterboer
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France; Paris-Saclay University, Ile-de-France, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Pediatrics, Leuven University Hospitals, Leuven, Belgium
| | - Nico Lachmann
- Hannover Medical School, Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover, Germany; Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Jiafen Hu
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mohammad Shahrooei
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium; Specialized Immunology Laboratory of Dr. Shahrooei, Tehran, Iran
| | - Xavier Bossuyt
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
| |
Collapse
|
15
|
Wang M, Chen S, He X, Yuan Y, Wei X. Targeting inflammation as cancer therapy. J Hematol Oncol 2024; 17:13. [PMID: 38520006 PMCID: PMC10960486 DOI: 10.1186/s13045-024-01528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
16
|
Hu X, Cao D, Zhou Z, Wang Z, Zeng J, Hong WX. Single-cell transcriptomic profiling reveals immune cell heterogeneity in acute myeloid leukaemia peripheral blood mononuclear cells after chemotherapy. Cell Oncol (Dordr) 2024; 47:97-112. [PMID: 37615858 PMCID: PMC10899424 DOI: 10.1007/s13402-023-00853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
PURPOSE Acute myeloid leukaemia (AML) is a heterogeneous disease characterised by the rapid clonal expansion of abnormally differentiated myeloid progenitor cells residing in a complex microenvironment. However, the immune cell types, status, and genome profile of the peripheral blood mononuclear cell (PBMC) microenvironment in AML patients after chemotherapy are poorly understood. In order to explore the immune microenvironment of AML patients after chemotherapy, we conducted this study for providing insights into precision medicine and immunotherapy of AML. METHODS In this study, we used single-cell RNA sequencing (scRNA-seq) to analyse the PBMC microenvironment from five AML patients treated with different chemotherapy regimens and six healthy donors. We compared the cell compositions in AML patients and healthy donors, and performed gene set enrichment analysis (GSEA), CellPhoneDB, and copy number variation (CNV) analysis. RESULTS Using scRNA-seq technology, 91,772 high quality cells of 44,950 PBMCs from AML patients and 46,822 PBMCs from healthy donors were classified as 14 major cell clusters. Our study revealed the sub-cluster diversity of T cells, natural killer (NK) cells, monocytes, dendritic cells (DCs), and haematopoietic stem cell progenitors (HSC-Prog) in AML patients under chemotherapy. NK cells and monocyte-DCs showed significant changes in transcription factor expression and chromosome copy number variation (CNV). We also observed significant heterogeneity in CNV and intercellular interaction networks in HSC-Prog cells. CONCLUSION Our results elucidated the PBMC single-cell landscape and provided insights into precision medicine and immunotherapy for treating AML.
Collapse
Affiliation(s)
- Xuqiao Hu
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen Institute of Dermatology, Shenzhen, China.
- Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China.
| | - Dongyan Cao
- Department of Biliary-Pancreatic Surgery, the Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenru Zhou
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen Institute of Dermatology, Shenzhen, China
- Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Zhaoyang Wang
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen Institute of Dermatology, Shenzhen, China
- Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Jieying Zeng
- Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Wen-Xu Hong
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen Institute of Dermatology, Shenzhen, China.
| |
Collapse
|
17
|
Schuster LC, Syed AP, Tirier SM, Steiger S, Seufert I, Becker H, Duque-Afonso J, Ma T, Ogawa S, Mallm JP, Lübbert M, Rippe K. Progenitor-like cell type of an MLL-EDC4 fusion in acute myeloid leukemia. Blood Adv 2023; 7:7079-7083. [PMID: 37820244 PMCID: PMC10694518 DOI: 10.1182/bloodadvances.2022009096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Affiliation(s)
- Linda C. Schuster
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems, Heidelberg University, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Afzal P. Syed
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems, Heidelberg University, Heidelberg, Germany
- Single Cell Open Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan M. Tirier
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Steiger
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems, Heidelberg University, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Isabelle Seufert
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems, Heidelberg University, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Heiko Becker
- Department of Medicine I, University Freiburg Medical Center, Freiburg, Germany
| | - Jesus Duque-Afonso
- Department of Medicine I, University Freiburg Medical Center, Freiburg, Germany
| | - Tobias Ma
- Department of Medicine I, University Freiburg Medical Center, Freiburg, Germany
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Jan-Philipp Mallm
- Center for Quantitative Analysis of Molecular and Cellular Biosystems, Heidelberg University, Heidelberg, Germany
- Single Cell Open Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Lübbert
- Department of Medicine I, University Freiburg Medical Center, Freiburg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
18
|
Kazi JU, Al Ashiri L, Purohit R, Rönnstrand L. Understanding the Role of Activation Loop Mutants in Drug Efficacy for FLT3-ITD. Cancers (Basel) 2023; 15:5426. [PMID: 38001685 PMCID: PMC10670458 DOI: 10.3390/cancers15225426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The type III receptor tyrosine kinase FLT3 is a pivotal kinase for hematopoietic progenitor cell regulation, with significant implications in acute myeloid leukemia (AML) through mutations like internal tandem duplication (ITD). This study delves into the structural intricacies of FLT3, the roles of activation loop mutants, and their interaction with tyrosine kinase inhibitors. Coupled with this, the research leverages molecular contrastive learning and protein language modeling to examine interactions between small molecule inhibitors and FLT3 activation loop mutants. Utilizing the ConPLex platform, over 5.7 million unique FLT3 activation loop mutants-small molecule pairs were analyzed. The binding free energies of three inhibitors were assessed, and cellular apoptotic responses were evaluated under drug treatments. Notably, the introduction of the Xepto50 scoring system provides a nuanced metric for drug efficacy. The findings underscore the modulation of molecular interactions and cellular responses by Y842 mutations in FLT3-KD, highlighting the need for tailored therapeutic approaches in FLT3-ITD-related malignancies.
Collapse
Affiliation(s)
- Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Lund University Cancer Centre (LUCC), Lund University, 22381 Lund, Sweden
| | - Lina Al Ashiri
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Lund University Cancer Centre (LUCC), Lund University, 22381 Lund, Sweden
| | - Rituraj Purohit
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India;
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Lund University Cancer Centre (LUCC), Lund University, 22381 Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, 22185 Lund, Sweden
| |
Collapse
|
19
|
Abdel-Aziz AK, Dokla EME, Saadeldin MK. FLT3 inhibitors and novel therapeutic strategies to reverse AML resistance: An updated comprehensive review. Crit Rev Oncol Hematol 2023; 191:104139. [PMID: 37717880 DOI: 10.1016/j.critrevonc.2023.104139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations occur in almost 30% of acute myeloid leukemia (AML) patients. Despite the initial clinical efficacy of FLT3 inhibitors, many treated AML patients with mutated FLT3 eventually relapse. This review critically discusses the opportunities and challenges of FLT3-targeted therapies and sheds light on their drug interactions as well as potential biomarkers. Furthermore, we focus on the molecular mechanisms underlying the resistance of FLT3 internal tandem duplication (FLT3-ITD) AMLs to FLT3 inhibitors alongside novel therapeutic strategies to reverse resistance. Notably, dynamic heterogeneous patterns of clonal selection and evolution contribute to the resistance of FLT3-ITD AMLs to FLT3 inhibitors. Ongoing preclinical research and clinical trials are actively directed towards devising rational "personalized" or "patient-tailored" combinatorial therapeutic regimens to effectively treat patients with FLT3 mutated AML.
Collapse
Affiliation(s)
- Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Smart Health Initiative, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mona Kamal Saadeldin
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Leahy Drive, Notre Dame, IN 46556, USA
| |
Collapse
|
20
|
Chang Y, Hummel SN, Jung J, Jin G, Deng Q, Bao X. Engineered hematopoietic and immune cells derived from human pluripotent stem cells. Exp Hematol 2023; 127:14-27. [PMID: 37611730 PMCID: PMC10615717 DOI: 10.1016/j.exphem.2023.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
For the past decade, significant advances have been achieved in human hematopoietic stem cell (HSC) transplantation for treating various blood diseases and cancers. However, challenges remain with the quality control, amount, and cost of HSCs and HSC-derived immune cells. The advent of human pluripotent stem cells (hPSCs) may transform HSC transplantation and cancer immunotherapy by providing a cost-effective and scalable cell source for fundamental studies and translational applications. In this review, we discuss the current developments in the field of stem cell engineering for hematopoietic stem and progenitor cell (HSPC) differentiation and further differentiation of HSPCs into functional immune cells. The key advances in stem cell engineering include the generation of HSPCs from hPSCs, genetic modification of hPSCs, and hPSC-derived HSPCs for improved function, further differentiation of HPSCs into functional immune cells, and applications of cell culture platforms for hematopoietic cell manufacturing. Current challenges impeding the translation of hPSC-HSPCs and immune cells as well as further directions to address these challenges are also discussed.
Collapse
Affiliation(s)
- Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Sydney N Hummel
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Juhyung Jung
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Qing Deng
- Purdue University Institute for Cancer Research, West Lafayette, Indiana; Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana.
| |
Collapse
|
21
|
Jayaprakash Demirel K, Wu R, Neves Guimaraes A, Demirel I. The role of NLRP3 in regulating gingival epithelial cell responses evoked by Aggregatibacter actinomycetemcomitans. Cytokine 2023; 169:156316. [PMID: 37541072 DOI: 10.1016/j.cyto.2023.156316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) has myriads of virulence factors among which leukotoxin provides A. actinomycetemcomitans with the advantage to thrive in the surrounding hostile environment and evade host immune defences. The NLRP3 inflammasome has been associated with periodontal disease development. However, our understanding of the involvement of caspase-1, caspase-4, and NLRP3 in the release of IL-1β and other inflammatory mediators from gingival epithelial cells during a A. actinomycetemcomitans infection is limited. The aim of this study was to investigate how the inflammasome-associated proteins caspase-1, caspase-4 and NLRP3 regulate the immune response of gingival epithelial cells during a A. actinomycetemcomitans infection. Human gingival epithelial cells (Ca9-22) deficient in NLRP3, caspase-1 or caspase-4 were created using CRISPR/Cas9. Gingival epithelial cells were stimulated with the A. actinomycetemcomitans low-leukotoxic strain NCTC9710 or the highly leukotoxic JP2 strain HK 165 for 6, 12 and 24 h. The results showed that the JP2 strain HK1651 induced higher IL-1β and IL-1RA release and mediated more epithelial cell death compared to the NCTC9710 strain. These findings were found to be capsase-1, caspase-4 and NLRP3-dependant. A targeted protein analysis of inflammation-related proteins showed that the expression of 37 proteins were identified as being significantly altered after HK1651 infection compared to unstimulated Cas9 and NLRP3-deficient cells. Of the 37 proteins, 23 of these inflammation-related proteins released by NLRP3-deficient cells differed significantly compared to Cas9 cells after infection. This suggests that NLRP3 has a broad effect on the inflammatory response in gingival epithelial cells.
Collapse
Affiliation(s)
- Kartheyaene Jayaprakash Demirel
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Department of Odontological Research, Public Dental Service, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Rongrong Wu
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Alessandra Neves Guimaraes
- Department of Odontological Research, Public Dental Service, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Department of Periodontology and Implantology, Public Dental Service, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
22
|
Dimitrakopoulou D, Khwatenge CN, James-Zorn C, Paiola M, Bellin EW, Tian Y, Sundararaj N, Polak EJ, Grayfer L, Barnard D, Ohta Y, Horb M, Sang Y, Robert J. Advances in the Xenopus immunome: Diversification, expansion, and contraction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104734. [PMID: 37172665 PMCID: PMC10230362 DOI: 10.1016/j.dci.2023.104734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/18/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Xenopus is a genus of African clawed frogs including two species, X. tropicalis and X. laevis that are extensively used in experimental biology, immunology, and biomedical studies. The availability of fully sequenced and annotated Xenopus genomes is strengthening genome-wide analyses of gene families and transgenesis to model human diseases. However, inaccuracies in genome annotation for genes involved in the immune system (i.e., immunome) hamper immunogenetic studies. Furthermore, advanced genome technologies (e.g., single-cell and RNA-Seq) rely on well-annotated genomes. The annotation problems of Xenopus immunome include a lack of established orthology across taxa, merged gene models, poor representation in gene pages on Xenbase, misannotated genes and missing gene IDs. The Xenopus Research Resource for Immunobiology in collaboration with Xenbase and a group of investigators are working to resolve these issues in the latest versions of genome browsers. In this review, we summarize the current problems of previously misannotated gene families that we have recently resolved. We also highlight the expansion, contraction, and diversification of previously misannotated gene families.
Collapse
Affiliation(s)
- Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Collins N Khwatenge
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA
| | - Christina James-Zorn
- Xenbase, Division of Developmental Biology, Cincinnti Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Eleanor Wise Bellin
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yun Tian
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA
| | - Nivitha Sundararaj
- Xenbase, Division of Developmental Biology, Cincinnti Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Emma J Polak
- Biology Department, Worcester State University, MA, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Daron Barnard
- Biology Department, Worcester State University, MA, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marko Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Yongming Sang
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA.
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
23
|
Ezelarab HAA, Ali TFS, Abbas SH, Hassan HA, Beshr EAM. Indole-based FLT3 inhibitors and related scaffolds as potential therapeutic agents for acute myeloid leukemia. BMC Chem 2023; 17:73. [PMID: 37438819 DOI: 10.1186/s13065-023-00981-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Fms-like tyrosine kinase 3 (FLT3) mutation mechanisms are among the most common genetic abnormalities detected in about 30% of acute myeloid leukemia (AML) patients. These mutations are accompanied by poor clinical response, although all these progressions in identifying and interpreting biological AML bio-targets. Several small structured FLT3 inhibitors have been ameliorated to struggle against AML. Despite all these developments regarding these inhibitors, the Overall survival rate is about five years or more in less than one-third of diagnosed AML patients. Midostaurin was the first FDA-approved FLT3 inhibitor in 2017 in the United States and Europe for AML remedy. Next, Gilteritinib was an FDA-approved FLT3 inhibitor in 2018 and in the next year, Quizartinib was approved an as FLT3 inhibitor in Japan. Interestingly, indole-based motifs had risen as advantaged scaffolds with unusual multiple kinase inhibitory activity. This review summarises indole-based FLT3 inhibitors and related scaffolds, including FDA-approved drugs, clinical candidates, and other bioactive compounds. Furthermore, their chemotypes, mechanism of action, and interaction mode over both wild and mutated FLT3 target proteins had been judgmentally discussed. Therefore, this review could offer inspiring future perspectives into the finding of new FLT3-related AML therapies.
Collapse
Affiliation(s)
- Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
24
|
Chuprin J, Buettner H, Seedhom MO, Greiner DL, Keck JG, Ishikawa F, Shultz LD, Brehm MA. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 2023; 20:192-206. [PMID: 36635480 PMCID: PMC10593256 DOI: 10.1038/s41571-022-00721-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited. Humanized mice, a term that refers to immunodeficient mice co-engrafted with human tumours and immune components, provide several advantages for immuno-oncology research. In this Review, we discuss the benefits and challenges of the currently available humanized mice, including specific interactions between engrafted human tumours and immune components, the development and survival of human innate immune populations in these mice, and approaches to study mice engrafted with matched patient tumours and immune cells. We highlight the latest advances in the generation of humanized mouse models, with the aim of providing a guide for their application to immuno-oncology studies with potential for clinical translation.
Collapse
Affiliation(s)
- Jane Chuprin
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell and Cancer Biology, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hannah Buettner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Surgery, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mina O Seedhom
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | - Michael A Brehm
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
25
|
Chaszczewska-Markowska M, Górna K, Bogunia-Kubik K, Brzecka A, Kosacka M. The Influence of Comorbidities on Chemokine and Cytokine Profile in Obstructive Sleep Apnea Patients: Preliminary Results. J Clin Med 2023; 12:jcm12030801. [PMID: 36769452 PMCID: PMC9918226 DOI: 10.3390/jcm12030801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) is frequently associated with a chronic inflammatory state and cardiovascular/metabolic complications. The aim of this study was to evaluate the influence of certain comorbidities on a panel of 45 chemokines and cytokines in OSA patients with special regard to their possible association with cardiovascular diseases. MATERIAL AND METHODS This cross-sectional study was performed on 61 newly diagnosed OSA patients. For the measurement of the plasma concentration of chemokines and cytokines, the magnetic bead-based multiplex assay for the Luminex® platform was used. RESULTS In the patients with concomitant COPD, there were increased levels of pro-inflammatory cytokines (CCL11, CD-40 ligand) and decreased anti-inflammatory cytokine (IL-10), while in diabetes, there were increased levels of pro-inflammatory cytokines (IL-6, TRIAL). Obesity was associated with increased levels of both pro-inflammatory (IL-13) and anti-inflammatory (IL-1RA) cytokines. Hypertension was associated with increased levels of both pro-inflammatory (CCL3) and anti-inflammatory (IL-10) cytokines. Increased daytime pCO2, low mean nocturnal SaO2, and the oxygen desaturation index were associated with increased levels of pro-inflammatory cytokines (CXCL1, PDGF-AB, TNF-α, and IL-15). CONCLUSIONS In OSA patients with concomitant diabetes and COPD, elevated levels of certain pro-inflammatory and decreased levels of certain anti-inflammatory cytokines may favor the persistence of a chronic inflammatory state with further consequences. Nocturnal hypoxemia, frequent episodes of desaturation, and increased daytime pCO2 are factors contributing to the chronic inflammatory state in OSA patients.
Collapse
Affiliation(s)
- Monika Chaszczewska-Markowska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Katarzyna Górna
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
- Correspondence:
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, 53-439 Wroclaw, Poland
| | - Monika Kosacka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, 53-439 Wroclaw, Poland
| |
Collapse
|
26
|
Tecik M, Adan A. Therapeutic Targeting of FLT3 in Acute Myeloid Leukemia: Current Status and Novel Approaches. Onco Targets Ther 2022; 15:1449-1478. [PMID: 36474506 PMCID: PMC9719701 DOI: 10.2147/ott.s384293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/19/2022] [Indexed: 08/13/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is mutated in approximately 30% of acute myeloid leukemia (AML) patients. The presence of FLT3-ITD (internal tandem duplication, 20-25%) mutation and, to a lesser extent, FLT3-TKD (tyrosine kinase domain, 5-10%) mutation is associated with poorer diagnosis and therapy response since the leukemic cells become hyperproliferative and resistant to apoptosis after continuous activation of FLT3 signaling. Targeting FLT3 has been the focus of many pre-clinical and clinical studies. Hence, many small-molecule FLT3 inhibitors (FLT3is) have been developed, some of which are approved such as midostaurin and gilteritinib to be used in different clinical settings, either in combination with chemotherapy or alone. However, many questions regarding the best treatment strategy remain to be answered. On the other hand, various FLT3-dependent and -independent resistance mechanisms could be evolved during FLT3i therapy which limit their clinical impact. Therefore, identifying molecular mechanisms of resistance and developing novel strategies to overcome this obstacle is a current interest in the field. In this review, recent studies of approved FLT3i and knowledge about major resistance mechanisms of clinically approved FLT3i's will be discussed together with novel treatment approaches such as designing novel FLT3i and dual FLT3i and combination strategies including approved FLT3i plus small-molecule agents targeting altered molecules in the resistant cells to abrogate resistance. Moreover, how to choose an appropriate FLT3i for the patients will be summarized based on what is currently known from available clinical data. In addition, strategies beyond FLT3i's including immunotherapeutics, small-molecule FLT3 degraders, and flavonoids will be summarized to highlight potential alternatives in FLT3-mutated AML therapy.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
27
|
Korobova ZR, Arsentieva NA, Liubimova NE, Batsunov OK, Dedkov VG, Gladkikh AS, Sharova AA, Adish Z, Chernykh EI, Kaschenko VA, Ratnikov VA, Gorelov VP, Stanevich OV, Kulikov AN, Pevtsov DE, Totolian AA. Cytokine Profiling in Different SARS-CoV-2 Genetic Variants. Int J Mol Sci 2022; 23:14146. [PMID: 36430621 PMCID: PMC9692520 DOI: 10.3390/ijms232214146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
This study is a successor of our previous work concerning changes in the chemokine profile in infection that are associated with different SARS-CoV-2 genetic variants. The goal of our study was to take into account both the virus and the host immune system by assessing concentrations of cytokines in patients infected with different SARS-CoV-2 variants (ancestral Wuhan strain, Alpha, Delta and Omicron). Our study was performed on 340 biological samples taken from COVID-19 patients and healthy donors in the timespan between May 2020 and April 2022. We performed genotyping of the virus in nasopharyngeal swabs, which was followed by assessment of cytokines' concentration in blood plasma. We noted that out of nearly 30 cytokines, only four showed stable elevation independently of the variant (IL-6, IL-10, IL-18 and IL-27), and we believe them to be 'constant' markers for COVID-19 infection. Cytokines that were studied as potential biomarkers lose their diagnostic value as the virus evolves, and the specter of potential targets for predictive models is narrowing. So far, only four cytokines (IL-6, IL-10, IL-18, and IL-27) showed a consistent rise in concentrations independently of the genetic variant of the virus. Although we believe our findings to be of scientific interest, we still consider them inconclusive; further investigation and comparison of immune responses to different variants of SARS-CoV-2 is required.
Collapse
Affiliation(s)
- Zoia R. Korobova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | | | - Natalia E. Liubimova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Oleg K. Batsunov
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Vladimir G. Dedkov
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Anna S. Gladkikh
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Alena A. Sharova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Zhansaya Adish
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 13/5, Kurgalzhynskoye Road, Nur-Sultan 010000, Kazakhstan
| | - Ekaterina I. Chernykh
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
| | - Victor A. Kaschenko
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
- Department of Faculty Surgery, Saint Petersburg State University, Universitetskaya Naberezhnaya, 7/9, 199034 Saint Petersburg, Russia
| | - Vyacheslav A. Ratnikov
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
- Scientific, Clinical and Educational Center “Radiation Diagnostics and Nuclear Medicine” of the Institute of High Medical Technologies, Saint Petersburg State University, Universitetskaya Naberezhnaya, 7/9, 199034 Saint Petersburg, Russia
| | - Victor P. Gorelov
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
| | - Oksana V. Stanevich
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Alexandr N. Kulikov
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Dmitry E. Pevtsov
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Areg A. Totolian
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| |
Collapse
|
28
|
Paiola M, Ma S, Robert J. Evolution and Potential Subfunctionalization of Duplicated fms-Related Class III Receptor Tyrosine Kinase flt3s and Their Ligands in the Allotetraploid Xenopus laevis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:960-969. [PMID: 36130129 PMCID: PMC9512362 DOI: 10.4049/jimmunol.2200201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/29/2022] [Indexed: 11/06/2022]
Abstract
The fms-related tyrosine kinase 3 (Flt3) and its ligand (Flt3lg) are important regulators of hematopoiesis and dendritic cell (DC) homeostasis with unsettled coevolution. Gene synteny and deduced amino acid sequence analyses identified conserved flt3 gene orthologs across all jawed vertebrates. In contrast, flt3lg orthologs were not retrieved in ray-finned fish, and the gene locus exhibited more variability among species. Interestingly, duplicated flt3/flt3lg genes were maintained in the allotetraploid Xenopus laevis Comparison of modeled structures of X. laevis Flt3 and Flt3lg homoeologs with the related diploid Xenopus tropicalis and with humans indicated a higher conformational divergence between the homoeologous pairs than their respective counterparts. The distinctive developmental and tissue expression patterns of Flt3 and Flt3lg homoeologs in tadpoles and adult frogs suggest a subfunctionalization of these homoeologs. To characterize Flt3 cell surface expression, X. laevis-tagged rFlt3lg.S and rFlt3lg.L were produced. Both rFlt3lg.S and rFlt3lg.L bind in vitro Flt3.S and Flt3.L and can trigger Erk1/2 signaling, which is consistent with a partial overlapping function between homoeologs. In spleen, Flt3.S/L cell surface expression was detected on a fraction of B cells and a population of MHC class IIhigh/CD8+ leukocytes phenotypically similar to the recently described dual follicular/conventional DC-like XL cells. Our result suggests that 1) Flt3lg.S and Flt3lg.L are both involved in XL cell homeostasis and that 2) XL cells have hematopoietic origin. Furthermore, we detected surface expression of the macrophage/monocyte marker Csf1r.S on XL cells as in mammalian and chicken DCs, which points to a common evolutionary origin in vertebrate DCs.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Siyuan Ma
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
29
|
Abstract
Hematopoietic stem cell (HSC) regeneration is the remarkable process by which extremely rare, normally inactive cells of the bone marrow can replace an entire organ if called to do so by injury or harnessed by transplantation. HSC research is arguably the first quantitative single-cell science and the foundation of adult stem cell biology. Bone marrow transplant is the oldest and most refined technique of regenerative medicine. Here we review the intertwined history of the discovery of HSCs and bone marrow transplant, the molecular and cellular mechanisms of HSC self-renewal, and the use of HSCs and their derivatives for cell therapy.
Collapse
Affiliation(s)
- Mitch Biermann
- Department of Medicine, University of California San Diego, La Jolla, California 92093
| | - Tannishtha Reya
- Department of Medicine, University of California San Diego, La Jolla, California 92093
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
30
|
Della Verde G, Mochizuki M, Lorenz V, Roux J, Xu L, Ramin-Wright L, Pfister O, Kuster GM. Fms-like tyrosine kinase 3 is a regulator of the cardiac side population in mice. Life Sci Alliance 2021; 5:5/3/e202101112. [PMID: 34903561 PMCID: PMC8711848 DOI: 10.26508/lsa.202101112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Fms-like tyrosine kinase 3 (Flt3) is a regulator of hematopoietic progenitor cells and a target of tyrosine kinase inhibitors. Flt3-targeting tyrosine kinase inhibitors can have cardiovascular side effects. Flt3 and its ligand (Flt3L) are expressed in the heart, but little is known about their physiological functions. Here, we show that cardiac side population progenitor cells (SP-CPCs) from mice produce and are responsive to Flt3L. Compared with wild-type, flt3L-/- mice have less SP-CPCs with less contribution of CD45-CD34+ cells and lower expression of genes related to epithelial-to-mesenchymal transition, cardiovascular development and stem cell differentiation. Upon culturing, flt3L-/- SP-CPCs show increased proliferation and less vasculogenic commitment, whereas Akt phosphorylation is lower. Notably, proliferation and differentiation can be partially restored towards wild-type levels in the presence of alternative receptor tyrosine kinase-activating growth factors signaling through Akt. The lower vasculogenic potential of flt3L-/- SP-CPCs reflects in decreased microvascularisation and lower systolic function of flt3L-/- hearts. Thus, Flt3 regulates phenotype and function of murine SP-CPCs and contributes to cellular and molecular properties that are relevant for their cardiovasculogenic potential.
Collapse
Affiliation(s)
- Giacomo Della Verde
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Michika Mochizuki
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Vera Lorenz
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Julien Roux
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lifen Xu
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Leandra Ramin-Wright
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Otmar Pfister
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Gabriela M Kuster
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland .,Department of Cardiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
31
|
FLT3-ITD transduces autonomous growth signals during its biosynthetic trafficking in acute myelogenous leukemia cells. Sci Rep 2021; 11:22678. [PMID: 34811450 PMCID: PMC8608843 DOI: 10.1038/s41598-021-02221-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) in hematopoietic cells binds to its ligand at the plasma membrane (PM), then transduces growth signals. FLT3 gene alterations that lead the kinase to assume its permanently active form, such as internal tandem duplication (ITD) and D835Y substitution, are found in 30–40% of acute myelogenous leukemia (AML) patients. Thus, drugs for molecular targeting of FLT3 mutants have been developed for the treatment of AML. Several groups have reported that compared with wild-type FLT3 (FLT3-wt), FLT3 mutants are retained in organelles, resulting in low levels of PM localization of the receptor. However, the precise subcellular localization of mutant FLT3 remains unclear, and the relationship between oncogenic signaling and the mislocalization is not completely understood. In this study, we show that in cell lines established from leukemia patients, endogenous FLT3-ITD but not FLT3-wt clearly accumulates in the perinuclear region. Our co-immunofluorescence assays demonstrate that Golgi markers are co-localized with the perinuclear region, indicating that FLT3-ITD mainly localizes to the Golgi region in AML cells. FLT3-ITD biosynthetically traffics to the Golgi apparatus and remains there in a manner dependent on its tyrosine kinase activity. Tyrosine kinase inhibitors, such as quizartinib (AC220) and midostaurin (PKC412), markedly decrease FLT3-ITD retention and increase PM levels of the mutant. FLT3-ITD activates downstream in the endoplasmic reticulum (ER) and the Golgi apparatus during its biosynthetic trafficking. Results of our trafficking inhibitor treatment assays show that FLT3-ITD in the ER activates STAT5, whereas that in the Golgi can cause the activation of AKT and ERK. We provide evidence that FLT3-ITD signals from the early secretory compartments before reaching the PM in AML cells.
Collapse
|
32
|
Xu H, Cai L, Hufnagel S, Cui Z. Intranasal vaccine: Factors to consider in research and development. Int J Pharm 2021; 609:121180. [PMID: 34637935 DOI: 10.1016/j.ijpharm.2021.121180] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
Most existing vaccines for human use are administered by needle-based injection. Administering vaccines needle-free intranasally has numerous advantages over by needle-based injection, but there are only a few intranasal vaccines that are currently approved for human use, and all of them are live attenuated influenza virus vaccines. Clearly, there are immunological as well as non-immunological challenges that prevent vaccine developers from choosing the intranasal route of administration. We reviewed current approved intranasal vaccines and pipelines and described the target of intranasal vaccines, i.e. nose and lymphoid tissues in the nasal cavity. We then analyzed factors unique to intranasal vaccines that need to be considered when researching and developing new intranasal vaccines. We concluded that while the choice of vaccine formulations, mucoadhesives, mucosal and epithelial permeation enhancers, and ligands that target M-cells are important, safe and effective intranasal mucosal vaccine adjuvants are needed to successfully develop an intranasal vaccine that is not based on live-attenuated viruses or bacteria. Moreover, more effective intranasal vaccine application devices that can efficiently target a vaccine to lymphoid tissues in the nasal cavity as well as preclinical animal models that can better predict intranasal vaccine performance in clinical trials are needed to increase the success rate of intranasal vaccines in clinical trials.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Lucy Cai
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephanie Hufnagel
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
33
|
França TT, Al-Sbiei A, Bashir G, Mohamed YA, Salgado RC, Barreiros LA, Maria da Silva Napoleão S, Weber CW, Fernandes Severo Ferreira J, Aranda CS, Prando C, de Barros Dorna MB, Jurisica I, Fernandez-Cabezudo MJ, Ochs HD, Condino-Neto A, Al-Ramadi BK, Cabral-Marques O. CD40L modulates transcriptional signatures of neutrophils in the bone marrow associated with development and trafficking. JCI Insight 2021; 6:e148652. [PMID: 34255742 PMCID: PMC8410015 DOI: 10.1172/jci.insight.148652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neutrophils are produced in the BM in a process called granulopoiesis, in which progenitor cells sequentially develop into mature neutrophils. During the developmental process, which is finely regulated by distinct transcription factors, neutrophils acquire the ability to exit the BM, properly distribute throughout the body, and migrate to infection sites. Previous studies have demonstrated that CD40 ligand (CD40L) influences hematopoiesis and granulopoiesis. Here, we investigate the effect of CD40L on neutrophil development and trafficking by performing functional and transcriptome analyses. We found that CD40L signaling plays an essential role in the early stages of neutrophil generation and development in the BM. Moreover, CD40L modulates transcriptional signatures, indicating that this molecule enables neutrophils to traffic throughout the body and to migrate in response to inflammatory signals. Thus, our study provides insights into the complex relationships between CD40L signaling and granulopoiesis, and it suggests a potentially novel and nonredundant role of CD40L signaling in neutrophil development and function.
Collapse
Affiliation(s)
- Tábata Takahashi França
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ashraf Al-Sbiei
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Yassir Awad Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Ranieri Coelho Salgado
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Lucila Akune Barreiros
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Cristina Worm Weber
- Pediatric Allergy & Immunology Clinic, Caxias do Sul, Rio Grande do Sul, Brazil
| | | | - Carolina Sanchez Aranda
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Carolina Prando
- Faculdades Pequeno Príncipe, Pelé Pequeno Principe Research Intitute, Curitiba, Paraná, Brazil.,Hospital Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Mayra B de Barros Dorna
- Division of Allergy and Immunology, Department of Pediatrics, Children's Institute, Hospital das Clínicas, São Paulo, São Paulo, Brazil
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Krembil Research Institute, University Health Network, Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontaro, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maria J Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, Washington, USA
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, Abu Dhabi, United Arab Emirates.,Zayed Center for Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, São Paulo, Brazil.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil.,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Sottoriva K, Pajcini KV. Notch Signaling in the Bone Marrow Lymphopoietic Niche. Front Immunol 2021; 12:723055. [PMID: 34394130 PMCID: PMC8355626 DOI: 10.3389/fimmu.2021.723055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Lifelong mammalian hematopoiesis requires continuous generation of mature blood cells that originate from Hematopoietic Stem and Progenitor Cells (HSPCs) situated in the post-natal Bone Marrow (BM). The BM microenvironment is inherently complex and extensive studies have been devoted to identifying the niche that maintains HSPC homeostasis and supports hematopoietic potential. The Notch signaling pathway is required for the emergence of the definitive Hematopoietic Stem Cell (HSC) during embryonic development, but its role in BM HSC homeostasis is convoluted. Recent work has begun to explore novel roles for the Notch signaling pathway in downstream progenitor populations. In this review, we will focus an important role for Notch signaling in the establishment of a T cell primed sub-population of Common Lymphoid Progenitors (CLPs). Given that its activation mechanism relies primarily on cell-to-cell contact, Notch signaling is an ideal means to investigate and define a novel BM lymphopoietic niche. We will discuss how new genetic model systems indicate a pre-thymic, BM-specific role for Notch activation in early T cell development and what this means to the paradigm of lymphoid lineage commitment. Lastly, we will examine how leukemic T-cell acute lymphoblastic leukemia (T-ALL) blasts take advantage of Notch and downstream lymphoid signals in the pathological BM niche.
Collapse
Affiliation(s)
- Kilian Sottoriva
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Kostandin V Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
35
|
Nishikawa Y, Fukaya T, Fukui T, Uto T, Takagi H, Nasu J, Miyanaga N, Riethmacher D, Choijookhuu N, Hishikawa Y, Amano M, Sato K. Congenital Deficiency of Conventional Dendritic Cells Promotes the Development of Atopic Dermatitis-Like Inflammation. Front Immunol 2021; 12:712676. [PMID: 34394115 PMCID: PMC8356667 DOI: 10.3389/fimmu.2021.712676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a common pruritic inflammatory skin disease characterized by impaired epidermal barrier function and dysregulation of Thelper-2 (TH2)-biased immune responses. While the lineage of conventional dendritic cells (cDCs) are implicated to play decisive roles in T-cell immune responses, their requirement for the development of AD remains elusive. Here, we describe the impact of the constitutive loss of cDCs on the progression of AD-like inflammation by using binary transgenic (Tg) mice that constitutively lacked CD11chi cDCs. Unexpectedly, the congenital deficiency of cDCs not only exacerbates the pathogenesis of AD-like inflammation but also elicits immune abnormalities with the increased composition and function of granulocytes and group 2 innate lymphoid cells (ILC2) as well as B cells possibly mediated through the breakdown of the Fms-related tyrosine kinase 3 ligand (Flt3L)-mediated homeostatic feedback loop. Furthermore, the constitutive loss of cDCs accelerates skin colonization of Staphylococcus aureus (S. aureus), that associated with disease flare. Thus, cDCs maintains immune homeostasis to prevent the occurrence of immune abnormalities to maintain the functional skin barrier for mitigating AD flare.
Collapse
Affiliation(s)
- Yotaro Nishikawa
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Dermatology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomohiro Fukaya
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Takehito Fukui
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomofumi Uto
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Hideaki Takagi
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Junta Nasu
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Noriaki Miyanaga
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Dieter Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Narantsog Choijookhuu
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoshitaka Hishikawa
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Amano
- Department of Dermatology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
36
|
Pulte ED, Norsworthy KJ, Wang Y, Xu Q, Qosa H, Gudi R, Przepiorka D, Fu W, Okusanya OO, Goldberg KB, De Claro RA, Farrell AT, Pazdur R. FDA Approval Summary: Gilteritinib for Relapsed or Refractory Acute Myeloid Leukemia with a FLT3 Mutation. Clin Cancer Res 2021; 27:3515-3521. [PMID: 33632926 PMCID: PMC8506653 DOI: 10.1158/1078-0432.ccr-20-4271] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022]
Abstract
On November 28, 2018, the FDA approved gilteritinib (Xospata; Astellas), a small-molecule FMS-like tyrosine kinase 3 (FLT3) inhibitor, for treatment of relapsed or refractory acute myeloid leukemia with a FLT3 mutation as detected by an FDA-approved test. In the ADMIRAL study, patients were randomized 2:1 to receive gilteritinib or standard chemotherapy and stratified by response to first-line treatment and intensity of prespecified chemotherapy. Efficacy was established on interim analysis on the basis of complete remission (CR) + CR with partial hematologic recovery (CRh) rate, duration of CR + CRh, and conversion from transfusion dependence to transfusion independence in 138 patients in the gilteritinib arm. With median follow-up of 4.6 months [95% confidence interval (CI), 2.8-15.8 months] at interim analysis, the CR + CRh rate was 21% (95% CI, 15%-29%), median duration of CR + CRh was 4.6 months (range, 0.1-15.8+), and conversion from transfusion dependence to transfusion independence was 31%. Revised labeling approved on May 29, 2019 included the results of the final analysis, showing an improvement in overall survival (OS) with gilteritinib compared with chemotherapy (HR, 0.64; 95% CI, 0.49-0.83; one-sided P = 0.0004; median OS, 9.3 vs. 5.6 months). The OS benefit was observed in both high and low chemotherapy intensity subgroups. Labeling includes a boxed warning for differentiation syndrome and warnings for posterior reversible encephalopathy syndrome, QT prolongation, pancreatitis, and embryo-fetal toxicity. Safe use requires frequent monitoring of electrocardiograms and blood chemistries. Assessments of long-term safety are pending.
Collapse
Affiliation(s)
- E Dianne Pulte
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland.
| | | | - Yaping Wang
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland
| | - Qing Xu
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland
| | - Hisham Qosa
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland
| | - Ramadevi Gudi
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland
| | - Donna Przepiorka
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland
| | - Wentao Fu
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland
| | | | | | - R Angelo De Claro
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland
| | - Ann T Farrell
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland
| | - Richard Pazdur
- Oncology Center of Excellence, FDA, Silver Spring, Maryland
| |
Collapse
|
37
|
Richardson S, Medhavi F, Tanner T, Lundy S, Omosun Y, Igietseme JU, Carroll D, Eko FO. Cellular Basis for the Enhanced Efficacy of the Fms-Like Tyrosine Kinase 3 Ligand (FL) Adjuvanted VCG-Based Chlamydia abortus Vaccine. Front Immunol 2021; 12:698737. [PMID: 34249004 PMCID: PMC8264281 DOI: 10.3389/fimmu.2021.698737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
Efficacious vaccines are needed to control genital chlamydial diseases in humans and the veterinary industry. We previously reported a C. abortus (Cab) vaccine comprising recombinant Vibrio cholerae ghosts (rVCG) expressing the conserved and immunogenic N-terminal region of the Cab polymorphic membrane protein D (rVCG-Pmp18.1) protein that protected mice against intravaginal challenge. In this study, we investigated the immunomodulatory effect of the hematopoietic progenitor activator cytokine, Fms-like tyrosine kinase 3-ligand (FL) when co-administered with the rVCG-Pmp18.1 vaccine as a strategy to enhance the protective efficacy and the potential mechanism of immunomodulation. Groups of female C57BL/6J mice were immunized and boosted twice intranasally (IN) with rVCG-PmpD18.1 with and without FL or purified rPmp18.1 or rVCG-gD2 (antigen control) or PBS (medium) per mouse. The results revealed that co-administration of the vaccine with FL enhanced antigen-specific cellular and humoral immune responses and protected against live Cab genital infection. Comparative analysis of immune cell phenotypes infiltrating mucosal and systemic immune inductive tissue sites following immunization revealed that co-administration of rVCG-Pmp18.1 with FL significantly enhanced the number of macrophages, dendritic and NK cells, γδ and NK T cells in the spleen (systemic) and iliac lymph nodes (ILN) draining the genital tract (mucosal) tissues compared to rVCG-Pmp18.1 alone. Furthermore, FL enhanced monocyte infiltration in the ILN, while CD19+ B cells and CD4+ T cells were enhanced in the spleen. These results indicate that the immunomodulatory effect of FL is associated with its ability to mobilize innate immune cells and subsequent activation of robust antigen-specific immune effectors in mucosal and systemic lymphoid tissues.
Collapse
Affiliation(s)
- Shakyra Richardson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Fnu Medhavi
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Tayhlor Tanner
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Stephanie Lundy
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Yusuf Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Joseph U. Igietseme
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Darin Carroll
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Francis O. Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
38
|
Shi Y, He Z, Bei L, Tao H, Ding B, Tao S, Wang C, Yu L. High expression of TARP correlates with inferior FLT3 mutations in non-adolescents and young adults with acute myeloid leukaemia. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2021; 26:380-387. [PMID: 33971801 DOI: 10.1080/16078454.2021.1917915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Acute myeloid leukaemia (AML) is a haematopoietic malignancy with a dismal outcome. Consequently, risk stratification based on more effective prognostic biomarkers is crucial to make accurate therapy decisions. T cell receptor gamma alternative reading frame protein (TARP) has been reported in prostate and breast cancers, but its correlation with AML remains unclear. METHODS Differential expression of TARP mRNA in different AML subtypes was analysed using the UALCAN online platform. Its relationship with baseline clinical attributes, survival and efficacy were analysed based on three GSE1159, GSE425 and GSE6891 microarray datasets downloaded from Gene Expression Omnibus (GEO) and Oncomine databases. Quantitative real-time PCR was performed to determine mRNA levels of TARP in bone marrow mononuclear cells (BMMCs) isolated from AML patients. RESULTS TARP was significantly overexpressed in AML patients. In AML, relatively low TARP expression was associated with the CBFβ-MYH11 fusion gene. The proportion of FLT3 mutations was significantly higher in non-adolescent and young adult (non-AYA, >39 years of age) AML patients who had high TARP levels but not in AYA (15-39 years) patients. High expression of TARP was related to poor outcome by univariate analysis but not by multivariate analysis and unsatisfactory therapeutic effects, which could be overcome by haematopoietic stem cell transplantation (HSCT). CONCLUSION Our findings suggest that TARP might be a potential prognostic marker of AML and serve as a promising immunotherapeutic target.
Collapse
Affiliation(s)
- Yuye Shi
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Zhengmei He
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Liye Bei
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Hong Tao
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Banghe Ding
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Shandong Tao
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Liang Yu
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
39
|
Lyadova I, Gerasimova T, Nenasheva T. Macrophages Derived From Human Induced Pluripotent Stem Cells: The Diversity of Protocols, Future Prospects, and Outstanding Questions. Front Cell Dev Biol 2021; 9:640703. [PMID: 34150747 PMCID: PMC8207294 DOI: 10.3389/fcell.2021.640703] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Macrophages (Mφ) derived from induced pluripotent stem cells (iMphs) represent a novel and promising model for studying human Mφ function and differentiation and developing new therapeutic strategies based on or oriented at Mφs. iMphs have several advantages over the traditionally used human Mφ models, such as immortalized cell lines and monocyte-derived Mφs. The advantages include the possibility of obtaining genetically identical and editable cells in a potentially scalable way. Various applications of iMphs are being developed, and their number is rapidly growing. However, the protocols of iMph differentiation that are currently used vary substantially, which may lead to differences in iMph differentiation trajectories and properties. Standardization of the protocols and identification of minimum required conditions that would allow obtaining iMphs in a large-scale, inexpensive, and clinically suitable mode are needed for future iMph applications. As a first step in this direction, the current review discusses the fundamental basis for the generation of human iMphs, performs a detailed analysis of the generalities and the differences between iMph differentiation protocols currently employed, and discusses the prospects of iMph applications.
Collapse
Affiliation(s)
- Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
40
|
Fathi AT, Stein EM, DiNardo CD, Levis MJ, Montesinos P, Botton S. Differentiation syndrome with lower-intensity treatments for acute myeloid leukemia. Am J Hematol 2021; 96:735-746. [PMID: 33625753 DOI: 10.1002/ajh.26142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Differentiation Syndrome (DS) has been identified in a subset of patients undergoing treatment with novel classes of differentiating therapies for acute myeloid leukemia (AML) such as IDH and FLT3 inhibitors. While DS is a well-known treatment-related complication in acute promyelocytic leukemia (APL), efforts are still ongoing to standardize diagnostic and treatment parameters for DS in AML. Though the rates of incidence vary, many of the signs and symptoms of DS are common between APL and AML. So, DS can lead to fatal complications in AML, but prompt management is usually effective and rarely necessitates interruption or discontinuation of AML therapy.
Collapse
Affiliation(s)
- Amir T. Fathi
- Massachusetts General Hospital Cancer Center Boston Massachusetts USA
- Harvard Medical School Boston Massachusetts USA
| | - Eytan M. Stein
- Memorial Sloan Kettering Cancer Center New York New York USA
- Weill Cornell Medical College New York New York USA
| | | | - Mark J. Levis
- Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University Baltimore Maryland USA
| | | | | |
Collapse
|
41
|
Gilteritinib: potent targeting of FLT3 mutations in AML. Blood Adv 2021; 4:1178-1191. [PMID: 32208491 DOI: 10.1182/bloodadvances.2019000174] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/26/2020] [Indexed: 01/13/2023] Open
Abstract
Since the discovery of FMS-like tyrosine kinase-3 (FLT3)-activating mutations as genetic drivers in acute myeloid leukemia (AML), investigators have tried to develop tyrosine kinase inhibitors that could effectively target FLT3 and alter the disease trajectory. Giltertinib (formerly known as ASP2215) is a novel compound that entered the field late, but moved through the developmental process with remarkable speed. In many ways, this drug's rapid development was facilitated by the large body of knowledge gained over the years from efforts to develop other FLT3 inhibitors. Single-agent gilteritinib, a potent and selective oral FLT3 inhibitor, improved the survival of patients with relapsed or refractory FLT3-mutated AML compared with standard chemotherapy. This continues to validate the approach of targeting FLT3 itself and establishes a new backbone for testing combination regimens. This review will frame the preclinical and clinical development of gilteritinib in the context of the lessons learned from its predecessors.
Collapse
|
42
|
Westermann J, Bullinger L. Precision medicine in myeloid malignancies. Semin Cancer Biol 2021; 84:153-169. [PMID: 33895273 DOI: 10.1016/j.semcancer.2021.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Myeloid malignancies have always been at the forefront of an improved understanding of the molecular pathogenesis of cancer. In accordance, over the last years, basic research focusing on the aberrations underlying malignant transformation of myeloid cells has provided the basis for precision medicine approaches and subsequently has led to the development of powerful therapeutic strategies. In this review article, we will recapitulate what has happened since in the 1980s the use of all-trans retinoic acid (ATRA), as a first targeted cancer therapy, has changed one of the deadliest leukemia subtypes, acute promyelocytic leukemia (APL), into one that can be cured without classical chemotherapy today. Similarly, imatinib, the first molecularly designed cancer therapy, has revolutionized the management of chronic myeloid leukemia (CML). Thus, targeted treatment approaches have become the paradigm for myeloid malignancy, but many questions still remain unanswered, especially how identical mutations can be associated with different phenotypes. This might be linked to the impact of the cell of origin, gene-gene interactions, or the tumor microenvironment including the immune system. Continuous research in the field of myeloid neoplasia has started to unravel the molecular pathways that are not only crucial for initial treatment response, but also resistance of leukemia cells under therapy. Ongoing studies focusing on leukemia cell vulnerabilities do already point to novel (targetable) "Achilles heels" that can further improve myeloid cancer therapy.
Collapse
Affiliation(s)
- Jörg Westermann
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
43
|
Zhao H, Chen C, Chen X, Yang C, Zhang D, Li Y, Zhao H, He J. The Collective Effect of MIP-3α and FL Promotes Dendritic Cell Function Within the Immune Microenvironment of Murine Liver Cancer. Front Oncol 2021; 11:646527. [PMID: 33842360 PMCID: PMC8032989 DOI: 10.3389/fonc.2021.646527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma is a highly malignant and lethal tumor. In addition to surgery, immunotherapy is currently a more effective treatment for hepatocellular carcinoma. The tumor immune microenvironment (TIME) largely determines the efficacy of cancer immunotherapy. Based on the universal targeting of TIME modulators in clinical treatment, TIME modulators are promising targets for tumor immunotherapy. We investigated the effect of a double gene expression vector (recombinant galactose-terminal glycol-poly-L-lysine coupled MIP-3α-FL) on dendritic cells (DCs) regulation within the TIME of mice with liver cancer. H22 cells were transfected with a recombinant MIP-3α-FL plasmid to induce DCs differentiation and chemotaxis. The effects of transfection were investigated by flow cytometry following the modified Boyden’s method. Cytokine-induced killer (CIK) cells co-culture revealed changes in the antigen presentation ability of DCs. Further, tumor-bearing mice were injected with the recombinant double gene vector via the tail vein. We compared the survival time, tumor volume, weight of the mice, as well as the number and phenotype of tumor-infiltrating DCs (TIDCs) between groups. The supernatant of transfected H22 cells promoted the phenotypic maturation of DCs, enhancing their chemotaxis. Further, treated DCs promoted the cytokine secretion and killing ability of CIK cells. The survival time of mice injected with the double gene vector was significantly prolonged, while their tumor weight and volume were relatively reduced. Flow cytometry revealed that the number of TIDCs (as well as CD80 and CD86 expression) in the MouseMIP-3α-FL group, were significantly higher than in the control group. The combination of MIP-3α and FL can significantly promote DCs aggregation, maturation, and enhance their antigen presentation ability. The coupling of the double gene vector with glycosylated polylysine can improve the precise targeting of the liver and inhibit tumor growth in vivo, providing a novel approach for immune therapy in liver cancer.
Collapse
Affiliation(s)
- Haichao Zhao
- Graduate School, Shanxi Medical University, Taiyuan, China.,Department of Hepatobiliary Surgery, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Changzhou Chen
- Graduate School, Shanxi Medical University, Taiyuan, China
| | - Xidong Chen
- Graduate School, Shanxi Medical University, Taiyuan, China
| | - Chuanli Yang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Donglin Zhang
- Graduate School, Shanxi Medical University, Taiyuan, China
| | - Yanjun Li
- Graduate School, Shanxi Medical University, Taiyuan, China.,Department of Hepatobiliary Surgery, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Haoliang Zhao
- Graduate School, Shanxi Medical University, Taiyuan, China.,Department of Hepatobiliary Surgery, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jiefeng He
- Graduate School, Shanxi Medical University, Taiyuan, China.,Department of Hepatobiliary Surgery, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
44
|
Abstract
Aberrant FLT3 receptor signaling is common in acute myeloid leukemia (AML) and has important implications for the biology and clinical management of the disease. Patients with FLT3-mutated AML frequently present with critical illness, are more likely to relapse after treatment, and have worse clinical outcomes than their FLT3 wild type counterparts. The clinical management of FLT3-mutated AML has been transformed by the development of FLT3 inhibitors, which are now in use in the frontline and relapsed/refractory settings. However, many questions regarding the optimal approach to the treatment of these patients remain. In this paper, we will review the rationale for targeting the FLT3 receptor in AML, the impact of FLT3 mutation on patient prognosis, the current standard of care approaches to FLT3-mutated AML management, and the diverse array of FLT3 inhibitors in use and under investigation. We will also explore new opportunities and strategies for targeting the FLT3 receptor. These include targeting the receptor in patients with non-canonical FLT3 mutations or wild type FLT3, pairing FLT3 inhibitors with other novel therapies, using minimal residual disease (MRD) testing to guide the targeting of FLT3, and novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Alexander J Ambinder
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Levis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Abstract
PURPOSE OF THE REVIEW Infant leukemia is a rare, distinct subgroup of pediatric acute leukemias diagnosed in children under 1 year of age and characterized by unique, aggressive biology. Here, we review its clinical presentation, underlying molecular biology, current treatment strategies, and novel therapeutic approaches. RECENT FINDINGS Infant leukemias are associated with high-risk molecular features and high rates of chemotherapy resistance. International collaborative clinical trials have led to better understanding of the underlying molecular biology, refined risk-based stratification, and investigated the use of hematopoietic stem cell transplantation. However, intensification of chemotherapy has failed to improve outcomes, and current regimens are associated with significant treatment-related and long-term toxicities. Infants with leukemia remain a challenging group to treat. We must continue collaborative efforts to move beyond traditional cytotoxic chemotherapy, incorporate molecularly targeted strategies and immunotherapy, and increase access to clinical trials to improve outcomes for this high-risk group of patients.
Collapse
|
46
|
Jacobs CF, Eldering E, Kater AP. Kinase inhibitors developed for treatment of hematologic malignancies: implications for immune modulation in COVID-19. Blood Adv 2021; 5:913-925. [PMID: 33560402 PMCID: PMC7871903 DOI: 10.1182/bloodadvances.2020003768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are used to target dysregulated signaling pathways in virtually all hematologic malignancies. Many of the targeted signaling pathways are also essential in nonmalignant immune cells. The current coronavirus severe acute respiratory syndrome coronavirus 2 pandemic catalyzed clinical exploration of TKIs in the treatment of the various stages of COVID-19, which are characterized by distinct immune-related complications. Most of the reported effects of TKIs on immune regulation have been explored in vitro, with different class-specific drugs having nonoverlapping target affinities. Moreover, many of the reported in vivo effects are based on artificial animal models or on observations made in symptomatic patients with a hematologic malignancy who often already suffer from disturbed immune regulation. Based on in vitro and clinical observations, we attempt to decipher the impact of the main TKIs approved or in late-stage development for the treatment of hematological malignancies, including inhibitors of Bruton's tyrosine kinase, spleen tyrosine kinase, BCR-Abl, phosphatidylinositol 3-kinase/ mammalian target of rapamycin, JAK/STAT, and FMS-like tyrosine kinase 3, to provide a rationale for how such inhibitors could modify clinical courses of diseases, such as COVID-19.
Collapse
Affiliation(s)
- Chaja F Jacobs
- Department of Experimental Immunology and
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Amsterdam, The Netherlands; and
| | - Eric Eldering
- Department of Experimental Immunology and
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Amsterdam, The Netherlands; and
- Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
| | - Arnon P Kater
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Amsterdam, The Netherlands; and
- Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Amberger DC, Schmetzer HM. Dendritic Cells of Leukemic Origin: Specialized Antigen-Presenting Cells as Potential Treatment Tools for Patients with Myeloid Leukemia. Transfus Med Hemother 2021; 47:432-443. [PMID: 33442338 DOI: 10.1159/000512452] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022] Open
Abstract
The prognosis of elderly patients with acute myeloid leukemia (AML) and high-grade myelodysplastic syndrome (MDS) is limited due to the lack of therapy options and high relapse rates. Dendritic cell (DC)-based immunotherapy seems to be a promising treatment tool. DC are potent antigen-presenting cells and play a pivotal role on the interface of the innate and the adaptive immune system. Myeloid leukemia blasts can be converted to DC of leukemic origin (DCleu), expressing costimulatory molecules along with the whole leukemic antigen repertoire of individual patients. These generated DCleu are potent stimulators of various immune reactive cells and increase antileukemic immunity ex vivo. Here we review the generating process of DC/DCleu from leukemic peripheral blood mononuclear cells as well as directly from leukemic whole blood with "minimized" Kits to simulate physiological conditions ex vivo. The purpose of adoptive cell transfer of DC/DCleu as a vaccination strategy is discussed. A new potential therapy option with Kits for patients with myeloid leukemia, which would render an adoptive DC/DCleu transfer unnecessary, is presented. In summary, DC/DCleu-based therapies seem to be promising treatment tools for patients with AML or MDS but ongoing research including trials in animals and humans have to be performed.
Collapse
Affiliation(s)
| | - Helga Maria Schmetzer
- Department of Medicine III, University Hospital, Hematopoetic Cell Transplantation, Munich, Germany
| |
Collapse
|
48
|
Kedarisetty CK, Kumar A, Sarin SK. Insights into the Role of Granulocyte Colony-Stimulating Factor in Severe Alcoholic Hepatitis. Semin Liver Dis 2021; 41:67-78. [PMID: 33764486 DOI: 10.1055/s-0040-1719177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alcohol use disorder is the predominant cause of chronic liver disease globally. The standard of care for the treatment of alcoholic hepatitis, corticosteroids, has been shown to provide a therapeutic response in ∼60% of carefully selected patients with a short-term survival benefit. The patients who do not respond to steroids, or are ineligible due to infections or very severe disease, have little options other than liver transplantation. There is, thus, a large unmet need for new therapeutic strategies for this large and sick group of patients. Granulocyte colony stimulating factor (G-CSF) has been shown to favorably modulate the intrahepatic immune milieu and stimulate the regenerative potential of the liver. Initial studies have shown encouraging results with G-CSF in patients with severe alcoholic hepatitis. It has also been found to help steroid nonresponsive patients. There is, however, a need for careful selection of patients, regular dose monitoring and close observation for adverse events of G-CSF. In this review, we analyze the basis of the potential benefits, clinical studies, cautions and challenges in the use of G-CSF in alcoholic hepatitis.
Collapse
Affiliation(s)
- Chandan Kumar Kedarisetty
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.,Department of Hepatology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Anupam Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.,Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
49
|
Peterlin P, Gaschet J, Guillaume T, Garnier A, Eveillard M, Le Bourgeois A, Cherel M, Debord C, Le Bris Y, Theisen O, Godon C, Mahé B, Dubruille V, Wuilleme S, Touzeau C, Gastinne T, Blin N, Lok A, Tessoulin B, Le Gouill S, Moreau P, Béné MC, Chevallier P. A new cytokine-based dynamic stratification during induction is highly predictive of survivals in acute myeloid leukemia. Cancer Med 2020; 10:642-648. [PMID: 33369136 PMCID: PMC7877358 DOI: 10.1002/cam4.3648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/29/2020] [Accepted: 11/19/2020] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to assess the potential impact of the kinetics of serum levels of seven cytokines during induction in acute myeloid leukemia (AML) patients. Indeed, the role of cytokines, in the pathophysiology and response to therapy of AML patients, remains under investigation. Here, we report on the impact of peripheral levels of two cytokines, the Fms‐like tyrosine kinase 3 ligand (FL) and interleukin‐6 (IL‐6), evaluated during first‐line intensive induction. A new risk stratification can be proposed, which supersedes the ELN 2017 classification to predict survivals in AML patients by examining the kinetic profile of these cytokines during the induction phase. It segregates three groups of, respectively, high‐risk, characterized by a stagnation of low FL levels, intermediate risk, with dynamic increasing FL levels and high IL‐6 at day 22, and favorable risk with increasing FL levels but low IL‐6 at day 22.
Collapse
Affiliation(s)
- Pierre Peterlin
- Hematology Clinic, CHU, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Joelle Gaschet
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Thierry Guillaume
- Hematology Clinic, CHU, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Marion Eveillard
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Hematology Biology, CHU, Nantes, France
| | | | - Michel Cherel
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine Unit, ICO Cancer Center Gauducheau, Saint Herblain, France
| | | | - Yannick Le Bris
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Hematology Biology, CHU, Nantes, France
| | | | | | | | | | | | | | | | | | - Anne Lok
- Hematology Clinic, CHU, Nantes, France
| | | | - Steven Le Gouill
- Hematology Clinic, CHU, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Philippe Moreau
- Hematology Clinic, CHU, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Marie-C Béné
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Hematology Biology, CHU, Nantes, France
| | - Patrice Chevallier
- Hematology Clinic, CHU, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| |
Collapse
|
50
|
Carter JL, Hege K, Yang J, Kalpage HA, Su Y, Edwards H, Hüttemann M, Taub JW, Ge Y. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther 2020; 5:288. [PMID: 33335095 PMCID: PMC7746731 DOI: 10.1038/s41392-020-00361-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and the second most common form of acute leukemia in children. Despite this, very little improvement in survival rates has been achieved over the past few decades. This is partially due to the heterogeneity of AML and the need for more targeted therapeutics than the traditional cytotoxic chemotherapies that have been a mainstay in therapy for the past 50 years. In the past 20 years, research has been diversifying the approach to treating AML by investigating molecular pathways uniquely relevant to AML cell proliferation and survival. Here we review the development of novel therapeutics in targeting apoptosis, receptor tyrosine kinase (RTK) signaling, hedgehog (HH) pathway, mitochondrial function, DNA repair, and c-Myc signaling. There has been an impressive effort into better understanding the diversity of AML cell characteristics and here we highlight important preclinical studies that have supported therapeutic development and continue to promote new ways to target AML cells. In addition, we describe clinical investigations that have led to FDA approval of new targeted AML therapies and ongoing clinical trials of novel therapies targeting AML survival pathways. We also describe the complexity of targeting leukemia stem cells (LSCs) as an approach to addressing relapse and remission in AML and targetable pathways that are unique to LSC survival. This comprehensive review details what we currently understand about the signaling pathways that support AML cell survival and the exceptional ways in which we disrupt them.
Collapse
Affiliation(s)
- Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA.,MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Katie Hege
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hasini A Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA. .,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA. .,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|