1
|
Anitua E, Reparaz I, de la Fuente M, Hamdan Alkhraisat M. Stability of BTI Devices for Plasma Rich in Growth Factors (PRGF) Eye Drop Delivery Under Varying Storage and Handling Conditions. Biomedicines 2025; 13:1105. [PMID: 40426932 PMCID: PMC12109242 DOI: 10.3390/biomedicines13051105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Purpose: To evaluate the sterility and biological functionality of platelet lysate eye drops stored in BTI ophthalmic devices for PRGF delivery under different storage conditions and simulated use scenarios. Methods: Eye drops were prepared using platelet lysate and stored in BTI tubes under three different conditions: ≤-15 °C, 2-8 °C, and room temperature (RT) for 72 h. Simulated use was performed for 72 h with controlled drop dispensing. Bacterial contamination was assessed according to European Pharmacopoeia sterility testing principles. The biological activity of the eye drops was assessed using in vitro proliferation assays with primary human keratocytes (HKs) and human corneal epithelial cells (HCEs). Statistical analyses were performed to compare the effects of different storage conditions and application scenarios. Results: No bacterial contamination was detected in platelet lysate eye drops stored under any of the conditions tested, regardless of simulated use. Proliferation assays showed that eye drops enhanced the growth of HK and HCE cells compared to the control medium. No significant differences in proliferation were observed between storage conditions. Conclusions: Platelet lysate eye drops maintain sterility and biological functionality when stored in BTI ophthalmic devices at ≤-15 °C, 2-8 °C and RT for up to 72 h of simulated use. These results support the feasibility of using BTI eye drop devices in clinical settings while ensuring safety and efficacy.
Collapse
Affiliation(s)
- Eduardo Anitua
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute, 01007 Vitoria, Spain; (I.R.); (M.d.l.F.); (M.H.A.)
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Iraia Reparaz
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute, 01007 Vitoria, Spain; (I.R.); (M.d.l.F.); (M.H.A.)
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - María de la Fuente
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute, 01007 Vitoria, Spain; (I.R.); (M.d.l.F.); (M.H.A.)
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Mohammad Hamdan Alkhraisat
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute, 01007 Vitoria, Spain; (I.R.); (M.d.l.F.); (M.H.A.)
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
- Department of Oral and Maxillofacial Surgery, Oral Medicine and Periodontology Faculty of Dentistry, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
2
|
Chen X, Zhang C, Peng F, Wu L, Zhuo D, Wang L, Zhang M, Li Z, Tian L, Jie Y, Huang Y, Yang X, Li X, Lei F, Cheng Y. Identification of glutamine as a potential therapeutic target in dry eye disease. Signal Transduct Target Ther 2025; 10:27. [PMID: 39837870 PMCID: PMC11751114 DOI: 10.1038/s41392-024-02119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025] Open
Abstract
Dry eye disease (DED) is a prevalent inflammatory condition significantly impacting quality of life, yet lacks effective pharmacological therapies. Herein, we proposed a novel approach to modulate the inflammation through metabolic remodeling, thus promoting dry eye recovery. Our study demonstrated that co-treatment with mesenchymal stem cells (MSCs) and thymosin beta-4 (Tβ4) yielded the best therapeutic outcome against dry eye, surpassing monotherapy outcomes. In situ metabolomics through matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) revealed increased glutamine levels in cornea following MSC + Tβ4 combined therapy. Inhibition of glutamine reversed the anti-inflammatory, anti-apoptotic, and homeostasis-preserving effects observed with combined therapy, highlighting the critical role of glutamine in dry eye therapy. Clinical cases and rodent model showed elevated expression of glutaminase (GLS1), an upstream enzyme in glutamine metabolism, following dry eye injury. Mechanistic studies indicated that overexpression and inhibition of GLS1 counteracted and enhanced, respectively, the anti-inflammatory effects of combined therapy, underscoring GLS1's pivotal role in regulating glutamine metabolism. Furthermore, single-cell sequencing revealed a distinct subset of pro-inflammatory and pro-fibrotic corneal epithelial cells in the dry eye model, while glutamine treatment downregulated those subclusters, thereby reducing their inflammatory cytokine secretion. In summary, glutamine effectively ameliorated inflammation and the occurrence of apoptosis by downregulating the pro-inflammatory and pro-fibrotic corneal epithelial cells subclusters and the related IκBα/NF-κB signaling. The present study suggests that glutamine metabolism plays a critical, previously unrecognized role in DED and proposes an attractive strategy to enhance glutamine metabolism by inhibiting the enzyme GLS1 and thus alleviating inflammation-driven DED progression.
Collapse
Affiliation(s)
- Xiaoniao Chen
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China.
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China.
| | - Chuyue Zhang
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Fei Peng
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Lingling Wu
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Deyi Zhuo
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Min Zhang
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Zhaohui Li
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinji Yang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoqi Li
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fengyang Lei
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yu Cheng
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Harrell CR, Djonov V, Volarevic A, Arsenijevic A, Volarevic V. Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Dependent Attenuation of Tear Hyperosmolarity and Immune Cell-Driven Inflammation in the Eyes of Patients with Dry Eye Disease. Diseases 2024; 12:269. [PMID: 39589943 PMCID: PMC11592843 DOI: 10.3390/diseases12110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Dry eye disease (DED) is a chronic condition characterized by a decrease in tear production or an increase in tear evaporation, leading to inflammation and damage of the ocular surface. Dysfunction of ion channels, tear hyperosmolarity and immune cell-driven inflammation create a vicious circle responsible for the pathological changes in the eyes of DED patients. Mesenchymal stem cells (MSCs) are adult, rapidly proliferating stem cells that produce a large number of immunoregulatory, angiomodulatory, and growth factors that efficiently reduce tear hyperosmolarity-induced pathological changes, inhibit harmful immune response, and provide trophic support to the injured corneal and conjuctival epithelial cells, goblet cells and acinar cells in lacrimal glands of DED patients. METHODS An extensive research in the literature was implemented in order to elucidate the role of MSCs in the attenuation of tear hyperosmolarity and eye inflammation in patients suffering from DED. RESULTS Findings obtained in preclinical and pilot clinical studies demonstrated that MSCs reduced tear hyperomsolaity-induced pathological changes and suppressed immune cell-driven eye inflammation. Additionally, MSC-based therapy managed to successfully address the most severe DED-related conditions and complications. CONCLUSIONS MSCs should be considered as potentially new therapeutic agents for the treatment of severe DED.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA;
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland;
| | - Ana Volarevic
- Department of Psychology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
| | - Aleksandar Arsenijevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
| | - Vladislav Volarevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
- Faculty of Pharmacy Novi Sad, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| |
Collapse
|
4
|
Yi S, Kim J, Kim MJ, Yae CG, Kim KH, Kim HK. Development of human amniotic epithelial cell-derived extracellular vesicles as cell-free therapy for dry eye disease. Ocul Surf 2024; 34:370-380. [PMID: 39332677 DOI: 10.1016/j.jtos.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/16/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
PURPOSE This study aimed to investigate the therapeutic potential of extracellular vesicles (EVs) derived from human amniotic epithelial cells (hAEC-EVs) for Dry Eye Disease (DED) treatment. METHODS Highly purified EVs were isolated from the culture supernatants of hAECs, which obtained from term placenta and characterized. Proteomic contents were analyzed for assessing its biological function related to the therapeutic potentials for DED. Subsequently, we examined the therapeutic efficacy of hAEC-EVs on human corneal epithelial cells exposed to hyperosmotic stress and in an experimental DED mouse model induced by desiccation stress. RESULTS Proteomic analysis of hAEC-EVs revealed proteins linked to cell proliferation and anti-inflammatory responses. We demonstrated efficient uptake of hAEC-EVs by ocular surface cells. Under DED conditions, EV treatment increased corneal epithelial cell proliferation and migration, and concurrently reducing inflammatory cytokines. In the DED mouse model, hAEC-EVs showed significant improvements in corneal staining score, tear secretion, corneal irregularity, and conjunctival goblet cell density. Additionally, hAEC-EVs exhibited a mitigating effect on ocular surface inflammation induced by desiccation. CONCLUSIONS These findings suggest that hAEC-EVs hold potential as a cell-free therapy for corneal epithelial defects and ocular surface diseases, presenting a promising treatment option for DED.
Collapse
Affiliation(s)
- Soojin Yi
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea; Bio-Medical Institute, Kyungpook National University Hospital, Jung-gu, Daegu, Republic of Korea; Department of Biomedical Science, The Graduate School, Kyungpook National University, Jung-gu, Daegu, Republic of Korea
| | - Jeongho Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea; Bio-Medical Institute, Kyungpook National University Hospital, Jung-gu, Daegu, Republic of Korea
| | - Mi Ju Kim
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea
| | - Che Gyem Yae
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea.
| | - Hong Kyun Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea; Bio-Medical Institute, Kyungpook National University Hospital, Jung-gu, Daegu, Republic of Korea.
| |
Collapse
|
5
|
Kollros L, Torres-Netto EA, Lu NJ, Hillen M, Hafezi F. Visual rehabilitation with mini scleral contact lenses in scarred corneas. J Fr Ophtalmol 2024; 47:104235. [PMID: 38905773 DOI: 10.1016/j.jfo.2024.104235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/22/2024] [Indexed: 06/23/2024]
Abstract
PURPOSE To present a case series of patients with corneal scars who were successfully fitted with mini scleral contact lenses (mSCL). METHODS Case series study. RESULTS Six eyes of six patients with corneal scars were fitted with mSCLs. All scars were situated in the visual axis within the scotopic pupillary zone. The sizes of the scars varied, with the smallest being confined to a central corneal area (case 5) and the largest covering the entire visual axis (case 2). In addition to compromising corneal transparency, these scars also induced significant corneal irregularities, especially in cases 1, 3, and 4. The average corrected distance visual acuity (CDVA) with spectacles was 20/80, with a range of 20/200 to 20/40. With the use of mSCLs, CDVA improved to an average of 20/25, ranging from 20/40 to 20/16. The mean visual acuity improvement observed was five optotype lines, with a range of 3 to 7 lines. CONCLUSION Corneas with scars often exhibit increased higher-order aberrations (HOA), and affected patients not only experience reduced vision but also suffer from seriously reduced optical quality and optical phenomena such as photophobia. Utilizing mSCLs in such individuals can significantly enhance visual acuity and improve optical side effects resulting from corneal opacity and irregularity.
Collapse
Affiliation(s)
- L Kollros
- ELZA Institute, Dietikon, Zurich, Switzerland; Institute of Optometry, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Olten, Switzerland.
| | - E A Torres-Netto
- ELZA Institute, Dietikon, Zurich, Switzerland; Ocular Cell Biology Group, Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - N-J Lu
- ELZA Institute, Dietikon, Zurich, Switzerland; School of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - M Hillen
- ELZA Institute, Dietikon, Zurich, Switzerland
| | - F Hafezi
- ELZA Institute, Dietikon, Zurich, Switzerland; Ocular Cell Biology Group, Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland; USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA; Department of Ophthalmology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Wolska E, Sadowska K. Drug Release from Lipid Microparticles-Insights into Drug Incorporation and the Influence of Physiological Factors. Pharmaceutics 2024; 16:545. [PMID: 38675206 PMCID: PMC11054813 DOI: 10.3390/pharmaceutics16040545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to assess the impact of physiological factors, namely tear fluid and lysozyme enzyme, as well as surfactant polysorbate, on the release profile from solid lipid microparticles (SLM), in the form of dispersion intended for ocular application. Indomethacin (Ind) was used as a model drug substance and a release study was performed by applying the dialysis bag method. Conducting release studies taking into account physiological factors is expected to improve development and screening studies, as well as support the regulatory assessment of this multi-compartment lipid dosage form. The effect of the lysozyme was directly related to its effect on lipid microparticles, as it occurred only in their presence (no effect on the solubility of Ind). Polysorbate also turned out to be an important factor interacting with the SLM surface, which determined the release of Ind from SLM. However, in study models without tear fluid or lysozyme, the release of Ind did not exceed 60% within 96 h. Ultimately, only the simultaneous application of artificial tear fluid, lysozyme, and polysorbate allowed for the release of 100% of Ind through the SLM dispersion. The examination of the residues after the release studies indicated the possibility of releasing 100% of Ind from SLM without complete degradation of the microparticles' matrix. The incubation of SLM with tear fluid confirmed a similar influence of physiological factors contained in tear fluid on the surface structure of SLM as that observed during the in vitro studies.
Collapse
Affiliation(s)
- Eliza Wolska
- Department of Pharmaceutical Technology, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Karolina Sadowska
- Student Chapter of the International Society of Pharmaceutical Engineering (ISPE), Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
7
|
Møller-Hansen M. Mesenchymal stem cell therapy in aqueous deficient dry eye disease. Acta Ophthalmol 2023; 101 Suppl 277:3-27. [PMID: 37840443 DOI: 10.1111/aos.15739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
ENGLISH SUMMARY Dry eye disease (DED) is characterized by ocular dryness, irritation and blurred vision and has a significant impact on the patient's quality of life. This condition can be particularly severe in patients with aqueous deficient dry eye disease (ADDE) due to Sjögren's syndrome (SS), an autoimmune disease that affects the lacrimal and salivary glands. Current treatments for ADDE are often limited to symptomatic relief. A literature review was conducted to explore the current surgical interventions used or tested in humans with ADDE (I). These interventions include procedures involving the eyelids and tear ducts, transplantation of amniotic membrane or salivary glands, injections around the tear ducts and cell-based injections into the lacrimal gland (LG). Each treatment has its advantages and disadvantages; however, treating dry eyes in patients with SS presents a particular challenge due to the systemic nature of the disease. Moreover, there is a need for new therapeutic options. Mesenchymal stem cells (MSCs) are a type of stem cell that have shown promise in regenerating damaged tissue and reducing inflammation in various diseases. Previous studies in animal models have suggested that MSCs could be effective in treating ADDE. Thus, this thesis aims to investigate the safety and efficacy of injecting MSCs into the LG as a treatment option for patients with ADDE secondary to SS. The study also aims to see this treatment in light of existing and novel investigational treatment options. The clinical studies conducted for this thesis are the first of their kind in humans. MSCs derived from healthy donors' adipose tissue (ASCs) were cultured in a laboratory, frozen and thawed ready for use. In the safety study, we performed the first human trial involving the administration of a single injection of ASCs into the LG of one eye in seven patients suffering from severe ADDE (II). The primary objective was to test the safety of this treatment, while the secondary objective was to assess improvements in subjective and objective signs of dry eye. The results of the trial showed no serious side effects within 4 months of follow-up after treatment. On average, there was a 40% reduction in dry eye symptoms assessed with the Ocular Surface Disease Index (OSDI) questionnaire. Additionally, in the treated eye, there was a significant decrease in tear osmolarity, an increase in tear film stability and an increase in tear production. To further investigate the efficacy of this treatment, our research group performed a clinical, randomized study aiming to compare the ASC injection into the LG with the injection of a vehicle (the excipient in which the ASCs are dissolved) and observation (no intervention) (III). The study involved 20 subjects receiving ASC injection, 20 subjects receiving vehicle injection and 14 patients being observed without intervention. The subjects were examined to assess the outcomes with a 12-month follow-up after treatment. Both intervention groups showed a significant reduction in subjective dry eye symptoms of approximately 40%. This improvement was evident at the 1-week follow-up and persisted until the 12-month follow-up. The observation group did not experience any change in OSDI score. The ASCs group exhibited a significant mean increase in non-invasive tear break-up time (NIKBUT) of 6.48 s (149%) at the four-week follow-up, which was significantly higher than that in the vehicle group (p = 0.04). Moreover, the ASCs group showed a significant increase in NIKBUT compared to that in the observation group at the 12-month follow-up (p = 0.004). In both the ASCs and vehicle group, a significant increase in Schirmer test scores at the 4-month follow-up and the 12-month follow-up was observed. In conclusion, this thesis contributes valuable findings with a new treatment option for patients with dry eye disease. Injection of ASCs into the LG was shown to be safe and to improve subjective dry eye symptoms and specifically the tear film stability in patients with ADDE due to SS. Compared to other treatment modalities of ADDE, this treatment has greater potential, as ASCs could potentially be used as an anti-inflammatory therapeutic option for managing DED of other causes as well. RESUMÉ (DANISH SUMMARY): Tørre øjne, karakteriseret ved tørhedsfornemmelse og irritation af øjnene samt sløret syn, har en betydelig indvirkning på patientens livskvalitet. Denne tilstand kan vaere saerligt alvorlig hos patienter med nedsat tåreproduktion (ADDE) som følge af Sjögrens syndrom (SS), en autoimmun sygdom, der påvirker tårekirtlerne og spytkirtlerne. Nuvaerende behandlinger for ADDE er ofte begraenset til symptomlindring. Vi gennemførte en litteraturgennemgang for at undersøge, hvilke nuvaerende kirurgiske behandlingsmetoder, der anvendes eller testes hos patienter med ADDE (I). Disse interventioner inkluderer procedurer, der involverer øjenlåg og tårekanaler, transplantation af amnionhinde eller spytkirtler, injektioner omkring tårekanalerne samt cellebaserede injektioner i tårekirtlen. Hver behandling har sine fordele og ulemper, men behandling af tørre øjne hos patienter med SS udgør en saerlig udfordring på grund af sygdommens systemiske udbredning, og der er behov for nye behandlingsmuligheder. Mesenkymale stamceller (MSCs) er en type stamcelle, der har vist lovende resultater med hensyn til at regenerere beskadiget vaev og reducere inflammation i forskellige sygdomme. Tidligere undersøgelser i dyremodeller har indikeret, at MSCs kan vaere en effektiv behandling af ADDE. Denne afhandling har til formål at undersøge sikkerheden og effekten af injektion af MSCs i tårekirtlen som en mulig behandling til patienter med ADDE som følge af SS. Afhandlingen sigter også mod at sammenligne denne behandling med andre eksisterende, kirurgiske behandlingsmuligheder af ADDE. Som led i dette projekt udførte vi de første kliniske forsøg af sin art i mennesker. MSCs fra raske donorers fedtvaev (ASCs) blev dyrket i et laboratorium, frosset ned og er optøet klar til brug. Det første mål var at teste sikkerheden ved denne behandling og sekundaert at undersøge behandlingens effekt. For at undersøge dette modtog syv forsøgspersoner med svaer ADDE én injektion med ASCs i tårekirtlen på det ene øje (II). Resultaterne af forsøget viste ingen alvorlige bivirkninger inden for fire måneders opfølgning efter behandlingen. I gennemsnit fandt vi yderligere en 40% reduktion i symptomer på tørre øjne vurderet med et spørgeskema, og en markant stigning i tåreproduktionen og af tårefilmens stabilitet i det behandlede øje. For yderligere at undersøge effekten af denne behandling udførte vi et klinisk, randomiseret forsøg med det formål at sammenligne injektion af ASCs i tårekirtlen med injektion af en kontrolopløsning (vaesken, hvor stamcellerne var opløst) og observation (ingen intervention) (III). Studiet omfattede 20 forsøgspersoner, der modtog ASC-injektion, 20 forsøgspersoner, der modtog injektion af kontrolopløsningen, og 14 forsøgspersoner i observationsgruppen. Forsøgspersonerne blev undersøgt med en opfølgningstid på 12 måneder efter behandling. Begge interventionsgrupper viste en betydelig reduktion på ca. 40% i subjektive symptomer på tørre øjne. Denne forbedring var betydelig allerede ved opfølgning efter en uge og varede ved 12 måneder efter behandling. Observationsgruppen oplevede ingen betydelig aendring i symptomer. ASCs gruppen viste desuden en signifikant stigning i tårefilmsstabiliteten (NIKBUT) på 6,48 sekunder (149%) ved opfølgning efter fire uger, hvilket var markant højere end efter injektion af kontrolopløsning (p = 0,04). Desuden viste ASCs gruppen en betydelig stigning i NIKBUT sammenlignet med observationsgruppen ved opfølgning efter 12 måneder (p = 0,004). Både injektion af ASCs og kontrolopløsning medførte en betydelig stigning i tåreproduktionen ved opfølgning fire måneder og 12 måneder efter behandling. Denne afhandling bidrager med vigtige resultater inden for en ny behandlingsmulighed af tørre øjne. Injektion af ASCs i tårekirtlen viste sig at vaere sikker, forbedrede subjektive symptomer på tørre øjne og øgede saerligt tårfilmens stabilitet hos patienter med ADDE på grund af SS. Sammenlignet med andre behandlingsmuligheder for ADDE har denne behandling vist et stort potentiale. ASCs kan muligvis også bruges som en anti-inflammatorisk behandling af tørre øjne af andre årsager i fremtiden.
Collapse
Affiliation(s)
- Michael Møller-Hansen
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Sharun K, Chandran D, Manjusha KM, Mankuzhy PD, Kumar R, Pawde AM, Dhama K, El-Husseiny HM, Amarpal. Advances and prospects of platelet-rich plasma therapy in veterinary ophthalmology. Vet Res Commun 2023; 47:1031-1045. [PMID: 36607500 DOI: 10.1007/s11259-022-10064-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
In the recent decades, there has been a significant uptick on the use of platelet-rich plasma (PRP) as a better alternative for ophthalmologic therapies in pathologies, primarily of the ocular surface. PRP is a class of liquid platelet concentrate containing a supra-physiological concentration of platelets in a relatively small amount of plasma. Its potential to heal various tissues has piqued interest in its therapeutic application as a biomaterial in regenerative medicine. It is currently a popular therapeutic agent in plastic surgery, cardiothoracic surgery, reconstructive surgery, and even oral and maxillofacial surgery. Based on the data from in vitro and in vivo studies, it can be concluded that PRP possesses adequate therapeutic potential in ocular pathologies, especially those involving cornea. In addition, the high concentrations of growth factors (TGF-β, VEGF, EGF) present in the PRP accelerate the healing of the corneal epithelium. PRP has great therapeutic prospects in veterinary ophthalmology as a regenerative therapeutic modality. However, several variables are yet to be defined and standardized that can directly affect the efficacy of PRP application in different ophthalmic conditions. There is a shortage of research on the use of PRP in ocular surface defects compared to the number of studies and reports on the use of autologous and allogeneic serum eye drops. Therefore, a data-driven approach is required to generate consensus/guidelines for the preparation, characterization, and therapeutic use of PRP in veterinary ophthalmology. This review aims to inform readers of the latest research on PRP, including its preparation methods, physiological and biochemical properties, clinical applications in veterinary ophthalmology, and their safety and efficacy.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, 642109, India
| | - K M Manjusha
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Pratheesh D Mankuzhy
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, 183-0054, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, 13736, Toukh, Egypt
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
9
|
Wróbel-Dudzińska D, Przekora A, Kazimierczak P, Ćwiklińska-Haszcz A, Kosior-Jarecka E, Żarnowski T. The Comparison between the Composition of 100% Autologous Serum and 100% Platelet-Rich Plasma Eye Drops and Their Impact on the Treatment Effectiveness of Dry Eye Disease in Primary Sjogren Syndrome. J Clin Med 2023; 12:jcm12093126. [PMID: 37176566 PMCID: PMC10179661 DOI: 10.3390/jcm12093126] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
PURPOSE The aim of the study was to compare the difference in composition between 100% autologous serum (AS) and 100% platelet-rich plasma (PRP) eye drops and assess their impact on the clinical outcomes after the treatment of severe dry eye (DE) in primary Sjogren Syndrome patients (pSS). MATERIALS AND METHODS This is an interventional, non-randomized, comparative, three-month study. 22 patients with severe DE in pSS were treated with 100% AS (22 eyes) and 100% PRP (22 eyes) eye drops 5 times per day in monotherapy mode. The quantifications of growth factors (GFs) such as fibroblast growth factor (FGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), nerve growth factor (NGF), transforming growth factor (TGF-b), insulin-like growth factor (IGF), fibronectin, and substance p in hemoderivates were done. The main outcome measures were: Ocular Surface Disease Index (OSDI), Best Corrected Visual Acuity (BCVA), the Schirmer test, tear break-up time (TBUT), corneal and conjunctival staining according to the Oxford scale, conjunctival hyperaemia, and Meibomian gland parameters. The results were compared at baseline, 1 month, and 3 months following the treatment. The clinical results were correlated with the concentration of GFs in the biological tear substitutes. RESULTS Significant differences were observed in the concentration of FGF (4.42 ± 0.86 vs. 15.96 ± 7.63, p < 0.0001), EGF (4.98 ± 0.97 vs. 39.06 ± 20.18, p < 0.0001), fibronectin (929.6 ± 111.5 vs. 823.64 ± 98.49, p = 0.0005), VEGF (175.45 ± 65.93 vs. 717.35 ± 488.15, p < 0.0001), PDGF AB (619.6 ± 117.30 vs. 349.66 ± 79.82, p < 0.0001), NGF (85.22 ± 23.49 vs. 8.29 ± 9.06, p < 0.0001), PDGF (935.38 ± 434.26 vs. 126.66 ± 54.41, p < 0.0001), substance p (112.58 ± 27.28 vs. 127.51 ± 26.56, p = 0.0125) in PRP compared to AS. The level of TGF-β was undoubtedly higher in AS than in PRP (1031.37 ± 330.23 vs. 726.03 ± 298.95, p = 0.0004). No significant differences between AS and PRP were observed in the concentration of IGF. Therapy with blood products relieved the signs and symptoms in pSS DE patients. There was a statistically significant improvement in BCVA, the Schirmer test, TBUT, Meibomian gland parameters, and the reduction of the OSDI scores, Oxford staining, and conjunctiva hyperaemia in each of the groups. However, the clinical changes were more significant in the PRP group. There were numerous correlations between the level of GFs and the mean change in clinical outcomes. No adverse events were reported. CONCLUSIONS Despite the fact that blood derivatives differ in composition, they seem to be effective and safe in the treatment of severe DE in pSS patients. The signs and symptoms of DE were reduced in both groups, but only the mean change in OSDI was statistically significant. A greater reduction in OSDI scores was observed in the PRP group. The obtained results and the composition of haemoderivates may indicate the superiority of PRP in relieving the symptoms of DE in pSS patients compared to AS.
Collapse
Affiliation(s)
- Dominika Wróbel-Dudzińska
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 20-059 Lublin, Poland
| | - Agata Przekora
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, 20-059 Lublin, Poland
| | - Paulina Kazimierczak
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, 20-059 Lublin, Poland
| | | | - Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 20-059 Lublin, Poland
| | - Tomasz Żarnowski
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
10
|
Shekari F, Abyadeh M, Meyfour A, Mirzaei M, Chitranshi N, Gupta V, Graham SL, Salekdeh GH. Extracellular Vesicles as reconfigurable therapeutics for eye diseases: Promises and hurdles. Prog Neurobiol 2023; 225:102437. [PMID: 36931589 DOI: 10.1016/j.pneurobio.2023.102437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
A large number of people worldwide suffer from visual impairment. However, most available therapies rely on impeding the development of a particular eye disorder. Therefore, there is an increasing demand for effective alternative treatments, specifically regenerative therapies. Extracellular vesicles, including exosomes, ectosomes, or microvesicles, are released by cells and play a potential role in regeneration. Following an introduction to EV biogenesis and isolation methods, this integrative review provides an overview of our current knowledge about EVs as a communication paradigm in the eye. Then, we focused on the therapeutic applications of EVs derived from conditioned medium, biological fluid, or tissue and highlighted some recent developments in strategies to boost the innate therapeutic potential of EVs by loading various kinds of drugs or being engineered at the level of producing cells or EVs. Challenges faced in the development of safe and effective translation of EV-based therapy into clinical settings for eye diseases are also discussed to pave the road toward reaching feasible regenerative therapies required for eye-related complications.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | | | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | | |
Collapse
|
11
|
Finburgh EN, Mauduit O, Noguchi T, Bu JJ, Abbas AA, Hakim DF, Bellusci S, Meech R, Makarenkova HP, Afshari NA. Role of FGF10/FGFR2b Signaling in Homeostasis and Regeneration of Adult Lacrimal Gland and Corneal Epithelium Proliferation. Invest Ophthalmol Vis Sci 2023; 64:21. [PMID: 36715672 PMCID: PMC9896866 DOI: 10.1167/iovs.64.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Purpose Fibroblast growth factor 10 (FGF10) is involved in eye, meibomian, and lacrimal gland (LG) development, but its function in adult eye structures remains unknown. This study aimed to characterize the role of FGF10 in homeostasis and regeneration of adult LG and corneal epithelium proliferation. Methods Quantitative reverse transcription PCR was used for analysis of FGF10 expression in both early postnatal and adult mouse LG, and RNA sequencing was used to analyze gene expression during LG inflammation. FGF10 was injected into the LG of two mouse models of Sjögren's syndrome and healthy controls. Flow cytometry, BrdU cell proliferation assay, immunostaining, and hematoxylin and eosin staining were used to evaluate the effects of FGF10 injection on inflammation and cell proliferation in vivo. Mouse and human epithelial cell cultures were treated with FGF10 in vitro, and cell viability was assessed using WST-8 and adenosine triphosphate (ATP) quantification assays. Results The level of Fgf10 mRNA expression was lower in adult LG compared to early postnatal LG and was downregulated in chronic inflammation. FGF10 injection into diseased LGs significantly increased cell proliferation and decreased the number of B cells. Mouse and human corneal epithelial cell cultures treated with FGF10 showed significantly higher cell viability and greater cell proliferation. Conclusions FGF10 appears to promote regeneration in damaged adult LGs. These findings have therapeutic potential for developing new treatments for dry eye disease targeting the ability of the cornea and LG to regenerate.
Collapse
Affiliation(s)
- Emma N Finburgh
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, California, United States
| | - Olivier Mauduit
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | - Takako Noguchi
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, California, United States
| | - Jennifer J Bu
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, California, United States
| | - Anser A Abbas
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, California, United States
| | - Dominic F Hakim
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, California, United States
| | - Saverio Bellusci
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany
| | - Robyn Meech
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | - Natalie A Afshari
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
12
|
Jackson CJ, Naqvi M, Gundersen KG, Utheim TP. Role of stem cells in regenerative treatment of dry eye disease caused by lacrimal gland dysfunction. Acta Ophthalmol 2022; 101:360-375. [PMID: 36564971 DOI: 10.1111/aos.15629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/06/2022] [Accepted: 12/11/2022] [Indexed: 12/25/2022]
Abstract
An ageing population and increased screen use in younger people have contributed to a rise in incidence of dry eye disease (DED). Quality of life can be significantly affected by DED, with patients experiencing eye dryness, burning, pain and sensitivity to light. If left untreated, DED may progress to cause lasting damage to the delicate cell layers of the ocular surface. The aqueous-deficient form of DED is characterized by decreased tear volume. This can occur through underlying disease or damage to the lacrimal gland (LG), which results in increased inflammation at the ocular surface and decreased tear secretion. Regenerative therapy for treatment of aqueous-deficient DED would ideally restore LG function without causing adverse side effects and be feasible in terms of cost, production and practical application in the clinic. In this review, we evaluate research directed at the development of clinical procedures for regeneration of the LG using various stem cell types and their products. We also discuss work identifying potential therapeutic targets that may alter pathways to effect healing and ameliorate development of DED. Finally, we discuss shortcomings and recommend future avenues for research. These include determination of the best tissue of origin for mesenchymal cells and transference of knowledge gleaned from animal studies to clinical investigations.
Collapse
Affiliation(s)
- Catherine J Jackson
- Ifocus, Haugesund, Norway.,Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Maria Naqvi
- Department of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | | | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway.,Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.,Department of Ophthalmology, Vestre Viken Hospital Trust, Drammen, Norway.,Faculty of Medicine, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,The Faculty of Health Sciences, Department of Quality and Health Technology, University of Stavanger, Stavanger, Norway.,Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway.,National Centre for Optics, Vision and Eye Care, Faculty of Health Sciences, Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, Kongsberg, Norway.,The Faculty of Health and Sport Sciences, Department of Health and Nursing Science, University of Agder, Grimstad, Norway.,Department of Computer Science, Oslo Metropolitan University, Oslo, Norway.,The Norwegian Dry Eye Clinic, Oslo, Norway
| |
Collapse
|
13
|
Innate immunity dysregulation in aging eye and therapeutic interventions. Ageing Res Rev 2022; 82:101768. [PMID: 36280210 DOI: 10.1016/j.arr.2022.101768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 01/31/2023]
Abstract
The prevalence of eye diseases increases considerably with age, resulting in significant vision impairment. Although the pathobiology of age-related eye diseases has been studied extensively, the contribution of immune-related changes due to aging remains elusive. In the eye, tissue-resident cells and infiltrating immune cells regulate innate responses during injury or infection. But due to aging, these cells lose their protective functions and acquire pathological phenotypes. Thus, dysregulated ocular innate immunity in the elderly increases the susceptibility and severity of eye diseases. Herein, we emphasize the impact of aging on the ocular innate immune system in the pathogenesis of infectious and non-infectious eye diseases. We discuss the role of age-related alterations in cellular metabolism, epigenetics, and cellular senescence as mechanisms underlying altered innate immune functions. Finally, we describe approaches to restore protective innate immune functions in the aging eye. Overall, the review summarizes our current understanding of innate immune functions in eye diseases and their dysregulation during aging.
Collapse
|
14
|
Jongkhajornpong P, Anothaisintawee T, Lekhanont K, Numthavaj P, McKay G, Attia J, Thakkinstian A. Short-term Efficacy and Safety of Biological Tear Substitutes and Topical Secretagogues for Dry Eye Disease: A Systematic Review and Network Meta-analysis. Cornea 2022; 41:1137-1149. [PMID: 34924549 PMCID: PMC9365259 DOI: 10.1097/ico.0000000000002943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The purpose of this study was to assess short-term efficacy and safety of tear promotion eye drops (biological tear substitutes and topical secretagogues) for treating dry eye disease. METHODS Randomized controlled trials comparing short-term effects of biological tear substitutes or topical secretagogues versus placebo or other topical dry eye treatments in adults with dry eye disease were identified from the MEDLINE, Embase, Scopus, ClinicalTrials.gov , and World Health Organization International Clinical Trials Registry Platform databases. Pairwise meta-analysis and network meta-analysis were performed. Outcomes were ocular symptoms, ocular surface staining, tear break-up time, Schirmer test, and adverse events. The certainty of evidence was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluations approach. RESULTS Thirty-nine randomized controlled trials (3693 patients) were eligible. Using artificial tears as a reference, autologous platelet lysate was the most effective treatment for lowering ocular surface disease index (unstandardized mean difference [USMD] -31.85; 95% confidence interval [CI]: -43.19 to -20.51) and platelet rich plasma showed the most reduction in corneal fluorescein staining scores (standardized mean difference -2.52; 95% CI: -3.23 to -1.82). Cord blood serum was the most effective treatment for increasing tear break-up time (USMD 2.67; 95% CI: 0.53-4.82), and eledoisin was superior to others in improving Schirmer scores (USMD 2.28; 95% CI: 0.14-4.42). Most interventions did not significantly increase ocular adverse events compared with artificial tears. CONCLUSIONS Biological tear substitutes, including autologous serum, autologous platelet lysate, platelet rich plasma, and cord blood serum, might be the most effective treatment among tear promotion eye drops in relieving dry eye symptoms without increasing adverse events. However, there remains uncertainty around these findings because of low/very low certainty of evidence.
Collapse
Affiliation(s)
- Passara Jongkhajornpong
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Ophthalmology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thunyarat Anothaisintawee
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Family Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kaevalin Lekhanont
- Department of Ophthalmology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pawin Numthavaj
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Gareth McKay
- Centre for Public Health, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland; and
| | - John Attia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Ammarin Thakkinstian
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
Corneal Regeneration Using Adipose-Derived Mesenchymal Stem Cells. Cells 2022; 11:cells11162549. [PMID: 36010626 PMCID: PMC9406486 DOI: 10.3390/cells11162549] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Adipose-derived stem cells are a subtype of mesenchymal stem cell that offers the important advantage of being easily obtained (in an autologous manner) from low invasive procedures, rendering a high number of multipotent stem cells with the potential to differentiate into several cellular lineages, to show immunomodulatory properties, and to promote tissue regeneration by a paracrine action through the secretion of extracellular vesicles containing trophic factors. This secretome is currently being investigated as a potential source for a cell-free based regenerative therapy for human tissues, which would significantly reduce the involved costs, risks and law regulations, allowing for a broader application in real clinical practice. In the current article, we will review the existing preclinical and human clinical evidence regarding the use of such adipose-derived mesenchymal stem cells for the regeneration of the three main layers of the human cornea: the epithelium (derived from the surface ectoderm), the stroma (derived from the neural crest mesenchyme), and the endothelium (derived from the neural crest cells).
Collapse
|
16
|
Veernala I, Jaffet J, Fried J, Mertsch S, Schrader S, Basu S, Vemuganti G, Singh V. Lacrimal gland regeneration: The unmet challenges and promise for dry eye therapy. Ocul Surf 2022; 25:129-141. [PMID: 35753665 DOI: 10.1016/j.jtos.2022.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
DED (Dry eye disease) is a common multifactorial disease of the ocular surface and the tear film. DED has gained attention globally, with millions of people affected.. Although treatment strategies for DED have shifted towards Tear Film Oriented Therapy (TFOT), all the existing strategies fall under standard palliative care when addressed as a long-term goal. Therefore, different approaches have been explored by various groups to uncover alternative treatment strategies that can contribute to a full regeneration of the damaged lacrimal gland. For this, multiple groups have investigated the role of lacrimal gland (LG) cells in DED based on their regenerating, homing, and differentiating capabilities. In this review, we discuss in detail therapeutic mechanisms and regenerative strategies that can potentially be applied for lacrimal gland regeneration as well as their therapeutic applications. This review mainly focuses on Aqueous Deficiency Dry Eye Disease (ADDE) caused by lacrimal gland dysfunction and possible future treatment strategies. The current key findings from cell and tissue-based regenerative therapy modalities that could be utilised to achieve lacrimal gland tissue regeneration are summarized. In addition, this review summarises the available literature from in vitro to in vivo animal studies, their limitations in relation to lacrimal gland regeneration and the possible clinical applications. Finally, current issues and unmet needs of cell-based therapies in providing complete lacrimal gland tissue regeneration are discussed.
Collapse
Affiliation(s)
- Induvahi Veernala
- School of Medical Sciences, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, 500046, India
| | - Jilu Jaffet
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Jasmin Fried
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Sayan Basu
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India
| | - Geeta Vemuganti
- School of Medical Sciences, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, 500046, India.
| | - Vivek Singh
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India.
| |
Collapse
|
17
|
Rodriguez-Garcia A, Babayan-Sosa A, Ramirez-Miranda A, Santa Cruz-Valdes C, Hernandez-Quintela E, Hernandez-Camarena JC, Ramos-Betancourt N, Velasco-Ramos R, Ruiz-Lozano RE. A Practical Approach to Severity Classification and Treatment of Dry Eye Disease: A Proposal from the Mexican Dry Eye Disease Expert Panel. Clin Ophthalmol 2022; 16:1331-1355. [PMID: 35520107 PMCID: PMC9061212 DOI: 10.2147/opth.s351898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
Dry eye disease (DED) has a higher prevalence than many important systemic disorders like cardiovascular disease and diabetes mellitus, representing a significant quality of life burden for the affected patients. It is a common reason for consultation in general eye clinics worldwide. Nowadays, the diagnostic and therapeutic approach at the high corneal and ocular surface specialty level should be reserved for cases of severe and chronic dry eye disease associated with systemic autoimmune diseases or complicated corneal and ocular surface pathologies. In such cases, the diagnostic and therapeutic approach is often complex, elaborate, time-consuming, and costly due to the use of extensive dry eye questionnaires, noninvasive electronic diagnostic equipment, and clinical laboratory and ancillary tests. However, other eye care specialists attend a fair amount of DED cases; therefore, its diagnosis, classification, and management should be simple, practical, achievable, and effective. Considering that many patients attending non-specialized dry eye clinics would benefit from better ophthalmological attention, we decided to elaborate a practical DED classification system based on disease severity to help clinicians discriminate cases needing referral to subspecialty clinics from those they could attend. Additionally, we propose a systematic management approach and general management considerations to improve patients' therapeutic outcomes according to disease severity.
Collapse
Affiliation(s)
- Alejandro Rodriguez-Garcia
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences, Cornea and External Disease Service, Monterrey, Mexico
| | - Alejandro Babayan-Sosa
- Cornea and Refractive Surgery Service, Fundación Hospital Nuestra Señora de la Luz, I. A. P, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Arturo Ramirez-Miranda
- Cornea and Refractive Surgery Service, Instituto de Oftalmología Conde de Valenciana, I.A.P, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Concepcion Santa Cruz-Valdes
- Cornea and Refractive Surgery Service, Instituto de Oftalmología Conde de Valenciana, I.A.P, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | | | - Julio C Hernandez-Camarena
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences, Cornea and External Disease Service, Monterrey, Mexico
| | | | - Regina Velasco-Ramos
- Cornea and Refractive Surgery Service, Fundación Hospital Nuestra Señora de la Luz, I. A. P, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Raul E Ruiz-Lozano
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences, Cornea and External Disease Service, Monterrey, Mexico
| |
Collapse
|
18
|
Vaiciuliene R, Rylskyte N, Baguzyte G, Jasinskas V. Risk factors for fluctuations in corneal endothelial cell density (Review). Exp Ther Med 2022; 23:129. [PMID: 34970352 PMCID: PMC8713183 DOI: 10.3892/etm.2021.11052] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022] Open
Abstract
The cornea is a transparent, avascular and abundantly innervated tissue through which light rays are transmitted to the retina. The innermost layer of the cornea, also known as the endothelium, consists of a single layer of polygonal endothelial cells that serve an important role in preserving corneal transparency and hydration. The average corneal endothelial cell density (ECD) is the highest at birth (~3,000 cells/mm2), which then decrease to ~2,500 cells/mm2 at adulthood. These endothelial cells have limited regenerative potential and the minimum (critical) ECD required to maintain the pumping function of the endothelium is 400-500 cells/mm2. ECD < the critical value can result in decreased corneal transparency, development of corneal edema and reduced visual acuity. The condition of the corneal endothelium can be influenced by a number of factors, including systemic diseases, such as diabetes or atherosclerosis, eye diseases, such as uveitis or dry eye disease (DED) and therapeutic ophthalmological interventions. The aim of the present article is to review the impact of the most common systemic disorders (pseudoexfoliation syndrome, diabetes mellitus, cardiovascular disease), eye diseases (DED, uveitis, glaucoma, intraocular lens dislocation) and widely performed ophthalmic interventions (cataract surgery, intraocular pressure-lowering surgeries) on corneal ECD.
Collapse
Affiliation(s)
- Renata Vaiciuliene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Neda Rylskyte
- Faculty of Medicine, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | - Gabija Baguzyte
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Vytautas Jasinskas
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
19
|
Schröder HC, Wang X, Neufurth M, Wang S, Müller WEG. Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:83-130. [PMID: 35697938 DOI: 10.1007/978-3-031-01237-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, inorganic polyphosphate (polyP) has attracted increasing attention as a biomedical polymer or biomaterial with a great potential for application in regenerative medicine, in particular in the fields of tissue engineering and repair. The interest in polyP is based on two properties of this physiological polymer that make polyP stand out from other polymers: polyP has morphogenetic activity by inducing cell differentiation through specific gene expression, and it functions as an energy store and donor of metabolic energy, especially in the extracellular matrix or in the extracellular space. No other biopolymer applicable in tissue regeneration/repair is known that is endowed with this combination of properties. In addition, polyP can be fabricated both in the form of a biologically active coacervate and as biomimetic amorphous polyP nano/microparticles, which are stable and are activated by transformation into the coacervate phase after contact with protein/body fluids. PolyP can be used in the form of various metal salts and in combination with various hydrogel-forming polymers, whereby (even printable) hybrid materials with defined porosities and mechanical and biological properties can be produced, which can even be loaded with cells for 3D cell printing or with drugs and support the growth and differentiation of (stem) cells as well as cell migration/microvascularization. Potential applications in therapy of bone, cartilage and eye disorders/injuries and wound healing are summarized and possible mechanisms are discussed.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
20
|
Therapeutic Potential of „Derived-Multiple Allogeneic Proteins Paracrine Signaling-D-Mapps” in the Treatment of Dry Eye Disease. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2019-0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Abstract
Dry eye disease (DED) is a chronic inflammatory disease of the lacrimal system and ocular surface. Considering the important role of inflammation in DED development, the main treatment strategy has shifted from hydration and lubrication of dry ocular surface to the immunomodulation and immunoregulationapproach that should address the main pathologic processes responsible for disease progression. Due to their capacity for production of immunosuppressive factors, mesenchymal stem cells (MSCs) and their secretome have been considered as potentially new agents in DED therapy. We recently developed an immunomodulatory ophthalmic solution “derived- Multiple Allogeneic Proteins Paracrine Signaling (d-MAPPS)” which activity is relied on immunosuppressive capacity of MSC-derived secretome. d-MAPPS contains MSC-derived exosomes, growth factors and immunosuppressive cytokines that are able to efficiently suppress generation of inflammatory phenotype in T cells and macrophages. Herewith, we demonstrated that d-MAPPS protected human corneal epithelial cells from chemical injury and efficiently alleviated ocular discomfort and pain in 131 DED patients during the 12-month follow-up, indicating d-MAPPS eye drops as potentially new remedy for the treatment of DED patients.
Collapse
|
21
|
Rush SW, Chain J, Das H. Corneal Epithelial Stem Cell Supernatant in the Treatment of Severe Dry Eye Disease: A Pilot Study. Clin Ophthalmol 2021; 15:3097-3107. [PMID: 34295148 PMCID: PMC8291803 DOI: 10.2147/opth.s322079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To report the subjective assessment of topical self-administered, cadaver-derived corneal epithelial stem cell supernatant for treatment of severe dry eye disease (DED). METHODS Thirty-four eyes of 17 patients with advanced DED as defined by Standardized Patient Evaluation of Eye Dryness (SPEEDTM) questionnaire ≥14, Ocular Surface Disease Index (OSDI©) score ≥40 and documented attempt of at least six conventional dry eye therapies were enrolled into a prospective clinical trial at a single private practice institution. Treatment consisted of patient self-administered topical instillation of the corneal epithelial stem cell-derived product four times daily in both eyes for 12 weeks. Patient-reported outcome measures (PROMs) were taken with the SPEEDTM questionnaire (the main outcome variable), OSDI© score and visual analog score (VAS; UNC Dry Eye Management Scale©), and objective clinical measurements were taken with best-corrected visual acuity (BCVA), corneal topographic index measurements and tear film osmolarity. These measurements were compared at baseline versus the endpoint at completion of the 12-week treatment. RESULTS All 34 eyes tolerated the treatment without any adverse events or significant side effects. Compared with baseline, both the SPEEDTM questionnaire and the VAS significantly improved at the conclusion of the 12-week treatment (p = 0.0054 and p = 0.0202, respectively). The OSDI© improved by an average of 10.9 points after the treatment but was not statistically significant (p = 0.1409). There were no significant changes in any of the objective clinical measurements. None of the study subjects failed to complete the treatment course, experienced decrease in any of the PROMs or lost one or more lines of BCVA during the follow-up period. CONCLUSION Topical corneal epithelial stem cell-derived supernatant that can be self-administered by the patient shows promise at improving patient symptoms and quality of life in the setting of severe DED that is unresponsive to conventional therapies.
Collapse
Affiliation(s)
- Sloan W Rush
- Panhandle Eye Group, Amarillo, TX, 79106, USA
- Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | | | - Hiranmoy Das
- Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| |
Collapse
|
22
|
Ahani-Nahayati M, Niazi V, Moradi A, Pourjabbar B, Roozafzoon R, Baradaran-Rafii A, Keshel SH. Cell-based therapy for ocular disorders: A promising frontier. Curr Stem Cell Res Ther 2021; 17:147-165. [PMID: 34161213 DOI: 10.2174/1574888x16666210622124555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
As the ocular disorders causing long-term blindness or optical abnormalities of the ocular tissue affect the quality of life of patients to a large extent, awareness of their corresponding pathogenesis and the earlier detection and treatment need more consideration. Though current therapeutics result in desirable outcomes, they do not offer an inclusive solution for development of visual impairment to blindness. Accordingly, stem cells, because of their particular competencies, have gained extensive attention for application in regenerative medicine of ocular diseases. In the last decades, a wide spectrum of stem cells surrounding mesenchymal stem/stromal cells (MSC), neural stem cells (NSCs), and embryonic/induced pluripotent stem cells (ESCs/iPSCs) accompanied by Müller glia, ciliary epithelia-derived stem cells, and retinal pigment epithelial (RPE) stem cells have been widely investigated to report their safety and efficacy in preclinical models and also human subjects. In this regard, in the first interventions, RPE cell suspensions were successfully utilized to ameliorate visual defects of the patients suffering from age-related macular degeneration (AMD) after subretinal transplantation. Herein, we will explain the pathogenesis of ocular diseases and highlight the novel discoveries and recent findings in the context of stem cell-based therapies in these disorders, focusing on the in vivo reports published during the last decade.
Collapse
Affiliation(s)
- Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
23
|
Scalinci SZ, Pacella E, Battagliola ET. Prolonged face mask use might worsen dry eye symptoms. Indian J Ophthalmol 2021; 69:1508-1510. [PMID: 34011730 PMCID: PMC8302327 DOI: 10.4103/ijo.ijo_2641_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Purpose: The aim of this study was to explore whether prolonged and consistent face mask use might be associated with worsening of dry eye symptoms in patients with dry eye disease (DED). Methods: Subjects with a previous diagnosis of DED. Their OSDI scores were compared with those recorded in Fall 2019 using the Wilcoxon paired test. Participants were stratified by face mask use: heavy (Group A) or standard (Group B) face mask users. Heavy use was defined as wearing any type of face mask for at least 6 hours a day, at least 5 days per week in the last 2 months. Results: 67 subjects (mean age: 45.27 ± 10.06 SD years, 40% males and 60% females). Median OSDI score in Fall 2019: 18.75. Median OSDI in Spring 2020: 20.83. The Hodges-Lehmann median difference was 2.09 (95% CI [1.05, 4.17]) (P < 0.0001). The population was then stratified into heavy and standard face mask users: Group A included heavy users (31 subjects; mean age: 42.81 ± 10.48 SD years; 35% males and 65% females), Group B included standard users (36 subjects; mean age: 47.39 ± 9.31 SD years; 44% males and 56% females). The Hodges-Lehmann median difference was 5.21 (95% CI [3.13, 7.29]) in Group A (P < 0.0001), and 1.04 (95% [0, 2.08]) in Group B (P = 0.0177). Conclusion: Prolonged and consistent face mask use is associated with an increase in OSDI scores. Whether face mask use is responsible for the worsening of symptoms of DED remains to be elucidated.
Collapse
Affiliation(s)
| | - Elena Pacella
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
24
|
Jeong SY, Choi WH, Jeon SG, Lee S, Park JM, Park M, Lee H, Lew H, Yoo J. Establishment of functional epithelial organoids from human lacrimal glands. Stem Cell Res Ther 2021; 12:247. [PMID: 33883032 PMCID: PMC8059179 DOI: 10.1186/s13287-021-02133-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/01/2021] [Indexed: 11/29/2022] Open
Abstract
Background Tear deficiency due to lacrimal gland (LG) dysfunction is one of the major causes of dry eye disease (DED). Therefore, LG stem cell-based therapies have been extensively reported to regenerate injured lacrimal tissue; however, the number of stem cells in the LG tissue is low, and 2D long-term cultivation reduces the differentiation capacity of stem cells. Nevertheless, 3D LG organoids could be an alternative for a DED therapy because it is capable of prolonged growth while maintaining the characteristics of the LG tissue. Here, we report the development of LG organoids and their application as cell therapeutics. Methods Digested cells from human LG tissue were mixed with Matrigel and cultured in five different media modified from human prostate/salivary organoid culture media. After organoid formation, the growth, specific marker expression, and histological characteristics were analyzed to authenticate the formation of LG organoids. The secretory function of LG organoids was confirmed through calcium influx or proteomics analysis after pilocarpine treatment. To explore the curability of the developed organoids, mouse-derived LG organoids were fabricated and transplanted into the lacrimal tissue of a mouse model of DED. Results The histological features and specific marker expression of LG organoids were similar to those of normal LG tissue. In the pilocarpine-treated LG organoid, levels of internal Ca2+ ions and β-hexosaminidase, a lysosomal protein in tear fluid, were increased. In addition, the secreted proteins from pilocarpine-treated lacrimal organoids were identified through proteomics. More than 70% of the identified proteins were proven to exosome through gene ontology analysis. These results indicate that our developed organoid was pilocarpine reactive, demonstrating the function of LG. Additionally, we developed LG organoids from patients with Sjogren’s syndrome patients (SS) and confirmed that their histological features were similar to those of SS-derived LG tissue. Finally, we confirmed that the mouse LG organoids were well engrafted in the lacrimal tissue two weeks after transplantation. Conclusion This study demonstrates that the established LG organoids resemble the characteristics of normal LG tissue and may be used as a therapy for patients with DED. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02133-y.
Collapse
Affiliation(s)
- Sang Yun Jeong
- Department of Microbiology and CHA Organoid Research Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Woo Hee Choi
- Department of Microbiology and CHA Organoid Research Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.,ORGANOIDSCIENCES, Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Seong Gyeong Jeon
- Department of Microbiology and CHA Organoid Research Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sookon Lee
- Department of Rheumatology, Bundang CHA Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Jong-Moon Park
- Department of Pharmacology, Gacheon University, Incheon, Gyeonggi-do, Republic of Korea
| | - Mira Park
- Department of Ophthalmology, Bundang CHA Medical Center, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Hookeun Lee
- Department of Pharmacology, Gacheon University, Incheon, Gyeonggi-do, Republic of Korea
| | - Helen Lew
- Department of Ophthalmology, Bundang CHA Medical Center, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| | - Jongman Yoo
- Department of Microbiology and CHA Organoid Research Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea. .,ORGANOIDSCIENCES, Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
25
|
Villatoro AJ, Alcoholado C, Martín-Astorga MDC, Rico G, Fernández V, Becerra J. Characterization of the secretory profile and exosomes of limbal stem cells in the canine species. PLoS One 2020; 15:e0244327. [PMID: 33373367 PMCID: PMC7771867 DOI: 10.1371/journal.pone.0244327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/07/2020] [Indexed: 01/17/2023] Open
Abstract
Limbal stem cells (LSCs) are a quiescent cell population responsible for the renewal of the corneal epithelium. Their deficiency is responsible for the conjunctivization of the cornea that is seen in different ocular pathologies, both in humans and in the canine species. The canine species represents an interesting preclinical animal model in ocular surface pathologies. However, the role of LSCs in physiological and pathological conditions in canine species is not well understood. Our objective was to characterize for the first time the soluble factors and the proteomic profile of the secretome and exosomes of canine LSCs (cLSCs). In addition, given the important role that fibroblasts play in the repair of the ocular surface, we evaluated the influence of the secretome and exosomes of cLSCs on their proliferation in vitro. Our results demonstrated a secretory profile of cLSCs with high concentrations of MCP-1, IL-8, VEGF-A, and IL-10, as well as significant production of exosomes. Regarding the proteomic profile, 646 total proteins in the secretome and 356 in exosomes were involved in different biological processes. Functionally, the cLSC secretome showed an inhibitory effect on the proliferation of fibroblasts in vitro, which the exosomes did not. These results open the door to new studies on the possible use of the cLSC secretome or some of its components to treat certain pathologies of the ocular surface in canine species.
Collapse
Affiliation(s)
- Antonio J. Villatoro
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
- Instituto de Immunología Clínica y Terapia Celular (IMMUNESTEM), Málaga, Spain
| | - Cristina Alcoholado
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
- Biomedicine Research Institute of Malaga (IBIMA), Campus Universitario Teatinos, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain
| | - María del Carmen Martín-Astorga
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
| | - Gustavo Rico
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| | - Viviana Fernández
- Instituto de Immunología Clínica y Terapia Celular (IMMUNESTEM), Málaga, Spain
| | - José Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- * E-mail:
| |
Collapse
|
26
|
Thacker M, Tseng CL, Chang CY, Jakfar S, Chen HY, Lin FH. Mucoadhesive Bletilla striata Polysaccharide-Based Artificial Tears to Relieve Symptoms and Inflammation in Rabbit with Dry Eyes Syndrome. Polymers (Basel) 2020; 12:polym12071465. [PMID: 32629860 PMCID: PMC7407882 DOI: 10.3390/polym12071465] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/13/2020] [Accepted: 06/27/2020] [Indexed: 12/13/2022] Open
Abstract
Dry eye syndrome (DES) is a multifactorial disorder of the ocular surface affecting many people all over the world. However, there have been many therapeutic advancements for the treatment of DES, substantial long-term treatment remains a challenge. Natural plant-based polysaccharides have gained much importance in the field of tissue engineering for their excellent biocompatibility and unique physical properties. In this study, polysaccharides from a Chinese ground orchid, Bletilla striata, were successfully extracted and incorporated into the artificial tears for DES treatment due to its anti-inflammatory and mucoadhesive properties. The examination for physical properties such as refractive index, pH, viscosity and osmolality of the Bletilla striata polysaccharide (BSP) artificial tears fabricated in this study showed that it was in close association with that of the natural human tears. The reactive oxygen species (ROS) level and inflammatory gene expression tested in human corneal epithelium cells (HCECs) indicated that the low BSP concentrations (0.01–0.1% v/v) could effectively reduce inflammatory cytokines (TNF, IL8) and ROS levels in HCECs, respectively. Longer retention of the BSP-formulated artificial tears on the ocular surface is due to the mucoadhesive nature of BSP allowing lasting lubrication. Additionally, a rabbit’s DES model was created to evaluate the effect of BSP for treating dry eye. Schirmer test results exhibited the effectiveness of 0.1% (v/v) BSP-containing artificial tears in enhancing the tear volume in DES rabbits. This work combines the effectiveness of artificial tears and anti-inflammatory herb extract (BSP) to moisturize ocular surface and to relieve the inflammatory condition in DES rabbit, which further shows great potential of BSP in treating ocular surface diseases like DES in clinics in the future.
Collapse
Affiliation(s)
- Minal Thacker
- Graduate Institute of Biomedical Engineering, National Taiwan University, No.49, Fanglan Road, Daan District, Taipei 10051, Taiwan; (M.T.); (C.-Y.C.); (S.J.); (H.Y.C.)
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan;
| | - Chih-Yen Chang
- Graduate Institute of Biomedical Engineering, National Taiwan University, No.49, Fanglan Road, Daan District, Taipei 10051, Taiwan; (M.T.); (C.-Y.C.); (S.J.); (H.Y.C.)
| | - Subhaini Jakfar
- Graduate Institute of Biomedical Engineering, National Taiwan University, No.49, Fanglan Road, Daan District, Taipei 10051, Taiwan; (M.T.); (C.-Y.C.); (S.J.); (H.Y.C.)
| | - Hsuan Yu Chen
- Graduate Institute of Biomedical Engineering, National Taiwan University, No.49, Fanglan Road, Daan District, Taipei 10051, Taiwan; (M.T.); (C.-Y.C.); (S.J.); (H.Y.C.)
| | - Feng-Huei Lin
- Graduate Institute of Biomedical Engineering, National Taiwan University, No.49, Fanglan Road, Daan District, Taipei 10051, Taiwan; (M.T.); (C.-Y.C.); (S.J.); (H.Y.C.)
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
- Correspondence: ; Tel.: +886-928260400
| |
Collapse
|
27
|
Zakirova EY, Valeeva AN, Aimaletdinov AM, Nefedovskaya LV, Akhmetshin RF, Rutland CS, Rizvanov AA. Potential therapeutic application of mesenchymal stem cells in ophthalmology. Exp Eye Res 2019; 189:107863. [PMID: 31669045 DOI: 10.1016/j.exer.2019.107863] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/03/2019] [Accepted: 10/23/2019] [Indexed: 01/09/2023]
Abstract
At present a wide variety of methods have been proposed to treat eye disorders, drug therapies are most commonly used. It should be noted that effective treatment modalities especially for degeneration of the retina and optic nerve are lacking. In the last few years stem cell transplantation has been proposed as an alternative method. The opportunities that stem cells provide within clinical use are almost unlimited. These cells are presently applied to treat various traumatic and degenerative disorders due to their unique biologic properties. Stem cells have high proliferative capabilities and are a self-maintained population of cells capable of differentiating into different cell types. Thus, they are represent a very primary stage of a cell lineage. Their ability to differentiate into different pathways provides animals with great plasticity in the renewal of somatic cells in postnatal ontogenesis. Pre-clinical and clinical ophthalmology studies where mesenchymal stem cells are applied and various methods of their administration are discussed herein. In addition the safety and efficacy of using bone marrow- and adipose tissue-derived mesenchymal stem cells have been discussed.
Collapse
Affiliation(s)
| | - A N Valeeva
- Kazan Federal University, Kazan, Russia; Kazan State Medical University, Kazan, Russia
| | | | | | | | | | | |
Collapse
|
28
|
Menopause and Dry Eye Syndrome. Nurs Womens Health 2018; 23:71-78. [PMID: 30594503 DOI: 10.1016/j.nwh.2018.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/12/2018] [Accepted: 11/01/2018] [Indexed: 01/05/2023]
Abstract
Dry eye syndrome is a common ophthalmic complaint. Women, especially menopausal women with comorbidities, are at greater risk for developing dry eye syndrome and subsequent negative effects on their overall eye health. In this article, I review the anatomy and physiology of the ocular surface of the eye, pathophysiology of dry eyes and its complications, risk factors for menopausal women, and assessment tools that nurses can use. Implications for nursing practice are discussed, and a case example illustrates clinical points.
Collapse
|
29
|
Comparative analysis and characterization of soluble factors and exosomes from cultured adipose tissue and bone marrow mesenchymal stem cells in canine species. Vet Immunol Immunopathol 2018; 208:6-15. [PMID: 30712794 DOI: 10.1016/j.vetimm.2018.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 01/08/2023]
Abstract
The two main sources of mesenchymal stem cell (MSCs) in the canine species are bone marrow (cBM-MSCs) and adipose tissue (cAd-MSCs). The secretion of multitude bioactive molecules, included under the concept of secretome and found in the cultured medium, play a predominant role in the mechanism of action of these cells on tissue regeneration. Although certain features of its characterization are well documented, their secretory profiles remain unknown. We described and compared, for the first time, the secretory profile and exosomes characterization in standard monolayer culture of MSCs from both sources of the same donor as well as its immunomodulatory potential. We found that despite the similarity in surface immunophenotyping and trilineage differentiation, there are several differences in terms of proliferation rate and secretory profile. cAd-MSCs have advantages in proliferative capacity, whereas cBM-MSCs showed a significantly higher secretory production of some soluble factors (IL-10, IL-2, IL-6, IL-8, IL-12p40, IFN-γ, VEGF-A, NGF-β, TGF-β, NO and PGE2) and exosomes under the same standard culture conditions. Proteomics analysis confirm that cBM-MSCs exosomes have a greater number of characterized proteins involved in metabolic processes and in the regulation of biological processes compared to cAd-MSCs. On the other hand, secretome from both sources demonstrate similar immunomodulatory capacity when tested in mitogen stimulated lymphocyte reaction, but not in their exosomes at the dose used. Considering that the use of secretome open as a new therapeutic strategy for different diseases, without the need to implant cells, those biological differences should be considered, when choosing the MSCs source, for either cellular implantation or direct use of secretome for a specific clinical application.
Collapse
|
30
|
Villatoro AJ, Hermida-Prieto M, Fernández V, Fariñas F, Alcoholado C, Rodríguez-García MI, Mariñas-Pardo L, Becerra J. Allogeneic adipose-derived mesenchymal stem cell therapy in dogs with refractory atopic dermatitis: clinical efficacy and safety. Vet Rec 2018; 183:654. [DOI: 10.1136/vr.104867] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/18/2018] [Accepted: 08/05/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Antonio José Villatoro
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences; University of Málaga, IBIMA; Málaga Spain
- Cellular Therapy Unit; Instituto de Inmunología Clínica y Terapia Celular (IMMUNESTEM); Málaga Spain
| | | | - Viviana Fernández
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences; University of Málaga, IBIMA; Málaga Spain
- Cellular Therapy Unit; Instituto de Inmunología Clínica y Terapia Celular (IMMUNESTEM); Málaga Spain
| | - Fernando Fariñas
- Cellular Therapy Unit; Instituto de Inmunología Clínica y Terapia Celular (IMMUNESTEM); Málaga Spain
| | - Cristina Alcoholado
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences; University of Málaga, IBIMA; Málaga Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Madrid Spain
| | | | | | - José Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences; University of Málaga, IBIMA; Málaga Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Madrid Spain
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND; Málaga Spain
| |
Collapse
|
31
|
Preganglionic Parasympathetic Denervation Rabbit Model for Innervation Studies. Cornea 2018; 37 Suppl 1:S106-S112. [PMID: 30299370 DOI: 10.1097/ico.0000000000001747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE Tear secretion from the main lacrimal gland (LG) is mainly regulated by parasympathetic nerves. We performed several innervation studies to investigate lacrimation. METHODS In male rabbits, we performed a retrograde dye-tracing study of LG innervation, evaluated preganglionic parasympathetic denervation, and administered glial cell-derived neurotrophic factor (GDNF) in the surgical area after parasympathetic denervation. RESULTS Accumulation of fluorescent dye was observed in the pterygopalatine ganglion cells on the same side as the dye injection into the main LG. Fewer stained cells were observed in the cervical and trigeminal ganglia. After parasympathetic denervation surgery, tear secretion was decreased, and fluorescein and rose bengal staining scores were increased at day 1 after surgery and remained increased for 3 months on the denervated side only. Most of the effects in rabbits with parasympathetic denervation were not recovered by administration of GDNF. CONCLUSIONS The main LG is primarily innervated by parasympathetic nerves to stimulate tear secretion. After preganglionic parasympathetic denervation, lacrimation was decreased, resulting in dry eyes, and this was maintained for at least 3 months. Administration of GDNF only minimally altered the effects of denervation.
Collapse
|
32
|
Abstract
Background The purpose of this study was to analyze tear inflammatory cytokines of different subclasses of dry eye disease (DED) patients using Luminex technology. Material/Methods Forty-five DED patients including 20 Sjogren syndrome aqueous tear deficiency (SS-ATD) patients, 20 non-Sjogren syndrome aqueous tear deficiency (NSS-ATD) patients, 15 meibomian gland dysfunction (MGD) patients, and 15 normal participants were enrolled in this study. Concentrations of 11 inflammatory cytokines in tear samples of study participants were measured by Luminex assay; ELISA assay was further applied for validation. Results The levels of cytokines were mostly increased (TNF-α, IL-1α, IL-1β, IL-6, IL-8, IL-12P70, IL-13, IFN-γ, and MIP-1α) in DED patients compared with normal participants. And the levels of TNF-α, IL-6, IL-8, and IL-12P70 were significantly elevated in tears of the patient groups compared to tears of participants in the normal group (P<0.05). Statistical differences were also observed among the patient groups (SS-ATD, NSS-ATD, and MGD) for the level of IL-8 and TNF-α. The results of ELISA assay demonstrated the consistence with Luminex assay, confirming the practicality of Luminex technology for the analysis of multiple cytokines in DED patient tears. Conclusions The levels of inflammatory cytokines were mostly elevated in DED patients, and statistical differences of some cytokines were also found between SS-ATD, NSS-ATD, and MGD groups, suggesting that inflammatory cytokines could be potential supplements for the diagnosis of DED subclasses and therapeutic targets for DED patients.
Collapse
Affiliation(s)
- Hailan Zhao
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China (mainland)
| | - Qiushi Li
- Department of Ophthalmology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Mingxia Ye
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China (mainland)
| | - Jie Yu
- Department of Ophthalmology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|