1
|
Zeng H, Jin Z. The role of ferroptosis in Alzheimer's disease: Mechanisms and therapeutic potential (Review). Mol Med Rep 2025; 32:192. [PMID: 40341407 PMCID: PMC12076055 DOI: 10.3892/mmr.2025.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/27/2025] [Indexed: 05/10/2025] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by insidious onset and progressive symptom deterioration. It extends beyond a simple aging process, involving irreversible and progressive neurological degeneration that impairs brain function through multiple etiologies. Iron dysregulation is implicated in the pathophysiology of AD; however, the precise mechanisms remain unclear. Additionally, vitamin E and selenium are key in regulating ferroptosis through their antioxidant properties. The present review examined the mechanistic pathways by which ferroptosis contributes to AD, the regulatory roles of vitamin E, selenium, ferrostatin‑1, N‑acetylcysteine and curcumin, and their potential as therapeutic agents to mitigate neurodegeneration.
Collapse
Affiliation(s)
- Heng Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhaohui Jin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Catapano A, Cimmino F, Petrella L, Pizzella A, D'Angelo M, Ambrosio K, Marino F, Sabbatini A, Petrelli M, Paolini B, Lucchin L, Cavaliere G, Cristino L, Crispino M, Trinchese G, Mollica MP. Iron metabolism and ferroptosis in health and diseases: The crucial role of mitochondria in metabolically active tissues. J Nutr Biochem 2025; 140:109888. [PMID: 40057002 DOI: 10.1016/j.jnutbio.2025.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 03/30/2025]
Abstract
Iron is essential in various physiological processes, but its accumulation leads to oxidative stress and cell damage, thus iron homeostasis has to be tightly regulated. Ferroptosis is an iron-dependent non-apoptotic regulated cell death characterized by iron overload and reactive oxygen species accumulation. Mitochondria are organelles playing a crucial role in iron metabolism and involved in ferroptosis. MitoNEET, a protein of mitochondrial outer membrane, is a key element in this process. Ferroptosis, altering iron levels in several metabolically active organs, is linked to several non-communicable diseases. For example, iron overload in the liver leads to hepatic fibrosis and cirrhosis, accelerating non-alcholic fatty liver diseases progression, in the muscle cells contributes to oxidative damage leading to sarcopenia, and in the brain is associated to neurodegeneration. The aim of this review is to investigate the intricate balance of iron regulation focusing on the role of mitochondria and oxidative stress, and analyzing the ferroptosis implications in health and disease.
Collapse
Affiliation(s)
- Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Margherita D'Angelo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Katia Ambrosio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Francesca Marino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Annarita Sabbatini
- Dietetic and Clinical Nutrition Unit, IEO European Institute of Oncology IRCSS, Milan, Italy
| | - Massimiliano Petrelli
- Department of Clinical and Molecular Sciences, Clinic of Endocrinology and Metabolic Diseases, Università Politecnica delle Marche, Ancona, Italy
| | - Barbara Paolini
- Department of Innovation, experimentation and clinical research, Unit of dietetics and clinical nutrition, S. Maria Alle Scotte Hospital, University of Siena, Siena, Italy
| | - Lucio Lucchin
- Dietetics and Clinical Nutrition, Bolzano Health District, Bolzano, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
3
|
Jin J, Su D, Zhang J, Lam JST, Zhou J, Feng T. Iron deposition in subcortical nuclei of Parkinson's disease: A meta-analysis of quantitative iron-sensitive magnetic resonance imaging studies. Chin Med J (Engl) 2025; 138:678-692. [PMID: 38809051 PMCID: PMC11925423 DOI: 10.1097/cm9.0000000000003167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Iron deposition plays a crucial role in the pathophysiology of Parkinson's disease (PD), yet the distribution pattern of iron deposition in the subcortical nuclei has been inconsistent across previous studies. We aimed to assess the difference patterns of iron deposition detected by quantitative iron-sensitive magnetic resonance imaging (MRI) between patients with PD and patients with atypical parkinsonian syndromes (APSs), and between patients with PD and healthy controls (HCs). METHODS A systematic literature search was conducted on PubMed, Embase, and Web of Science databases to identify studies investigating the iron content in PD patients using the iron-sensitive MRI techniques (R2 * and quantitative susceptibility mapping [QSM]), up until May 1, 2023. The quality assessment of case-control and cohort studies was performed using the Newcastle-Ottawa Scale, whereas diagnostic studies were assessed using the Quality Assessment of Diagnostic Accuracy Studies-2. Standardized mean differences and summary estimates of sensitivity, specificity, and area under the curve (AUC) were calculated for iron content, using a random effects model. We also conducted the subgroup-analysis based on the MRI sequence and meta-regression. RESULTS Seventy-seven studies with 3192 PD, 209 multiple system atrophy (MSA), 174 progressive supranuclear palsy (PSP), and 2447 HCs were included. Elevated iron content in substantia nigra (SN) pars reticulata ( P <0.001) and compacta ( P <0.001), SN ( P <0.001), red nucleus (RN, P <0.001), globus pallidus ( P <0.001), putamen (PUT, P = 0.021), and thalamus ( P = 0.029) were found in PD patients compared with HCs. PD patients showed lower iron content in PUT ( P <0.001), RN ( P = 0.003), SN ( P = 0.017), and caudate nucleus ( P = 0.017) than MSA patients, and lower iron content in RN ( P = 0.001), PUT ( P <0.001), globus pallidus ( P = 0.004), SN ( P = 0.015), and caudate nucleus ( P = 0.001) than PSP patients. The highest diagnostic accuracy distinguishing PD from HCs was observed in SN (AUC: 0.85), and that distinguishing PD from MSA was found in PUT (AUC: 0.90). In addition, the best diagnostic performance was achieved in the RN for distinguishing PD from PSP (AUC: 0.86). CONCLUSIONS Quantitative iron-sensitive MRI could quantitatively detect the iron content of subcortical nuclei in PD and APSs, while it may be insufficient to accurately diagnose PD. Future studies are needed to explore the role of multimodal MRI in the diagnosis of PD. REGISTRISION PROSPERO (CRD42022344413).
Collapse
Affiliation(s)
- Jianing Jin
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Dongning Su
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Junjiao Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Joyce S. T. Lam
- Pacific Parkinson’s Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA 02131, United States
- Harvard Medical School, Boston, MA 02210, United States
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| |
Collapse
|
4
|
Shen Y, Zhang G, Wei C, Zhao P, Wang Y, Li M, Sun L. Potential role and therapeutic implications of glutathione peroxidase 4 in the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:613-631. [PMID: 38886929 PMCID: PMC11433915 DOI: 10.4103/nrr.nrr-d-23-01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxidative stress mediates excessive oxidative responses, and its involvement in Alzheimer's disease pathogenesis as a primary or secondary pathological event is widely accepted. As a member of the selenium-containing antioxidant enzyme family, glutathione peroxidase 4 reduces esterified phospholipid hydroperoxides to maintain cellular redox homeostasis. With the discovery of ferroptosis, the central role of glutathione peroxidase 4 in anti-lipid peroxidation in several diseases, including Alzheimer's disease, has received widespread attention. Increasing evidence suggests that glutathione peroxidase 4 expression is inhibited in the Alzheimer's disease brain, resulting in oxidative stress, inflammation, ferroptosis, and apoptosis, which are closely associated with pathological damage in Alzheimer's disease. Several therapeutic approaches, such as small molecule drugs, natural plant products, and non-pharmacological treatments, ameliorate pathological damage and cognitive function in Alzheimer's disease by promoting glutathione peroxidase 4 expression and enhancing glutathione peroxidase 4 activity. Therefore, glutathione peroxidase 4 upregulation may be a promising strategy for the treatment of Alzheimer's disease. This review provides an overview of the gene structure, biological functions, and regulatory mechanisms of glutathione peroxidase 4, a discussion on the important role of glutathione peroxidase 4 in pathological events closely related to Alzheimer's disease, and a summary of the advances in small-molecule drugs, natural plant products, and non-pharmacological therapies targeting glutathione peroxidase 4 for the treatment of Alzheimer's disease. Most prior studies on this subject used animal models, and relevant clinical studies are lacking. Future clinical trials are required to validate the therapeutic effects of strategies targeting glutathione peroxidase 4 in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yongchun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
5
|
Paul PS, Rathnam M, Khalili A, Cortez LM, Srinivasan M, Planel E, Cho JY, Wille H, Sim VL, Mok SA, Kar S. Temperature-Dependent Aggregation of Tau Protein Is Attenuated by Native PLGA Nanoparticles Under in vitro Conditions. Int J Nanomedicine 2025; 20:1999-2019. [PMID: 39968061 PMCID: PMC11834738 DOI: 10.2147/ijn.s494104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/01/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Hyperphosphorylation and aggregation of the microtubule-associated tau protein, which plays a critical role in many neurodegenerative diseases (ie, tauopathies) including Alzheimer's disease (AD), are known to be regulated by a variety of environmental factors including temperature. In this study we evaluated the effects of FDA-approved poly (D,L-lactide-co-glycolic) acid (PLGA) nanoparticles, which can inhibit amyloid-β aggregation/toxicity in cellular/animal models of AD, on temperature-dependent aggregation of 0N4R tau isoforms in vitro. Methods We have used a variety of biophysical (Thioflavin T kinetics, dynamic light scattering and asymmetric-flow field-flow fractionation), structural (fluorescence imaging and transmission electron microscopy) and biochemical (Filter-trap assay and detection of soluble protein) approaches, to evaluate the effects of native PLGA nanoparticles on the temperature-dependent tau aggregation. Results Our results show that the aggregation propensity of 0N4R tau increases significantly in a dose-dependent manner with a rise in temperature from 27°C to 40°C, as measured by lag time and aggregation rate. Additionally, the aggregation of 2N4R tau increases in a dose-dependent manner. Native PLGA significantly inhibits tau aggregation at all temperatures in a concentration-dependent manner, possibly by interacting with the aggregation-prone hydrophobic hexapeptide motifs of tau. Additionally, native PLGA is able to trigger disassembly of preformed 0N4R tau aggregates as a function of temperature from 27°C to 40°C. Conclusion These results, taken together, suggest that native PLGA nanoparticles can not only attenuate temperature-dependent tau aggregation but also promote disassembly of preformed aggregates, which increased with a rise of temperature. Given the evidence that temperature can influence tau pathology, we believe that native PLGA may have a unique potential to regulate tau abnormalities associated with AD-related pathology.
Collapse
Affiliation(s)
- Pallabi Sil Paul
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Mallesh Rathnam
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Aria Khalili
- Quantum and Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta, Canada
| | - Leonardo M Cortez
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Mahalashmi Srinivasan
- Department of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Emmanuel Planel
- Department of Psychiatry and Neurosciences, University of Laval, Quebec, Canada
| | - Jae-Young Cho
- Quantum and Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta, Canada
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Holger Wille
- Department of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Valerie L Sim
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Sue-Ann Mok
- Department of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Satyabrata Kar
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| |
Collapse
|
6
|
Yoo J, Lee J, Ahn B, Han J, Lim MH. Multi-target-directed therapeutic strategies for Alzheimer's disease: controlling amyloid-β aggregation, metal ion homeostasis, and enzyme inhibition. Chem Sci 2025; 16:2105-2135. [PMID: 39810997 PMCID: PMC11726323 DOI: 10.1039/d4sc06762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia, marked by progressive cognitive decline and memory impairment. Despite advances in therapeutic research, single-target-directed treatments often fall short in addressing the complex, multifactorial nature of AD. This arises from various pathological features, including amyloid-β (Aβ) aggregate deposition, metal ion dysregulation, oxidative stress, impaired neurotransmission, neuroinflammation, mitochondrial dysfunction, and neuronal cell death. This review illustrates their interrelationships, with a particular emphasis on the interplay among Aβ, metal ions, and AD-related enzymes, such as β-site amyloid precursor protein cleaving enzyme 1 (BACE1), matrix metalloproteinase 9 (MMP9), lysyl oxidase-like 2 (LOXL2), acetylcholinesterase (AChE), and monoamine oxidase B (MAOB). We further underscore the potential of therapeutic strategies that simultaneously inhibit Aβ aggregation and address other pathogenic mechanisms. These approaches offer a more comprehensive and effective method for combating AD, overcoming the limitations of conventional therapies.
Collapse
Affiliation(s)
- Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jimin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Byeongha Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul Seoul 02504 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
7
|
Kuziak A, Heczko P, Pietrzyk A, Strus M. Iron Homeostasis Dysregulation, Oro-Gastrointestinal Microbial Inflammatory Factors, and Alzheimer's Disease: A Narrative Review. Microorganisms 2025; 13:122. [PMID: 39858890 PMCID: PMC11767265 DOI: 10.3390/microorganisms13010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder that profoundly impacts cognitive function and the nervous system. Emerging evidence highlights the pivotal roles of iron homeostasis dysregulation and microbial inflammatory factors in the oral and gut microbiome as potential contributors to the pathogenesis of AD. Iron homeostasis disruption can result in excessive intracellular iron accumulation, promoting the generation of reactive oxygen species (ROS) and oxidative damage. Additionally, inflammatory agents produced by pathogenic bacteria may enter the body via two primary pathways: directly through the gut or indirectly via the oral cavity, entering the bloodstream and reaching the brain. This infiltration disrupts cellular homeostasis, induces neuroinflammation, and exacerbates AD-related pathology. Addressing these mechanisms through personalized treatment strategies that target the underlying causes of AD could play a critical role in preventing its onset and progression.
Collapse
Affiliation(s)
- Agata Kuziak
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 16 Street, 31-008 Cracow, Poland;
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Piotr Heczko
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Agata Pietrzyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Magdalena Strus
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| |
Collapse
|
8
|
Naik RA, Rajpoot R, Koiri RK, Bhardwaj R, Aldairi AF, Johargy AK, Faidah H, Babalghith AO, Hjazi A, Alsanie WF, Alamri AS, Alhomrani M, Alsharif A, Shkodina A, Singh SK. Dietary supplementation and the role of phytochemicals against the Alzheimer's disease: Focus on polyphenolic compounds. J Prev Alzheimers Dis 2025; 12:100004. [PMID: 39800464 DOI: 10.1016/j.tjpad.2024.100004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 05/02/2025]
Abstract
Alzheimer's disease is a complicated, multifaceted, neurodegenerative illness that places an increasing strain on healthcare systems. Due to increasing malfunction and death of nerve cells, the person suffering from Alzheimer's disease (AD) slowly and steadily loses their memories, cognitive functions and even their personality. Although medications may temporarily enhance memory, there are currently no permanent therapies that can halt or cure this irreversible neurodegenerative process. Nonetheless, fast progress in comprehending the cellular and molecular abnormalities responsible for neuronal degeneration has increased confidence in the development of viable prevention and treatments. All FDA-approved anti-AD medications have merely symptomatic effects and cannot cure the illness. This necessitates the pursuit of alternate treatments. Accumulating data shows that systemic neuroinflammation, oxidative stress and associated mitochondrial dysfunction play crucial roles in the etiology of AD and precede its clinical presentation. Therefore, innovative therapeutic approaches targeting these pathophysiological components of Alzheimer's disease are being explored aggressively in the present scenario. Phytochemicals such as resveratrol, curcumin, quercetin, genistein and catechins are prospective therapies owing to their capacity to alter key AD pathogenetic pathways, such as oxidative stress, neuroinflammation, and mitochondrial dysfunction. The use of new phytochemical delivery strategies would certainly provide the possibility to solve several issues with standard anti-AD medicines. In this review, the roles of phytophenolic compound-based treatment strategies for AD are discussed.
Collapse
Affiliation(s)
- Rayees Ahmad Naik
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya Sagar, Madhya Pradesh, 470003, India
| | - Roshni Rajpoot
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya Sagar, Madhya Pradesh, 470003, India
| | - Raj Kumar Koiri
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya Sagar, Madhya Pradesh, 470003, India
| | - Rima Bhardwaj
- Department of Chemistry Poona College, Savitribai Phule Pune University, Pune 411007, India
| | - Abdullah F Aldairi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ayman K Johargy
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hani Faidah
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O Babalghith
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Saudi Arabia
| | - Anastasiia Shkodina
- Department of Neurological diseases, Poltava State Medical University, Poltava, 36000, Ukraine.
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow, 226002, India.
| |
Collapse
|
9
|
Hong S, Wu S, Wan Z, Wang C, Guan X, Fu M, Liu C, Wu T, Zhong G, Zhou Y, Xiao Y, You Y, Chen S, Wang Y, Zhao H, Zhang Y, Lin J, Bai Y, Guo H. Associations between multiple metals exposure and cognitive function in the middle-aged and older adults from China: A cross-sectional study. ENVIRONMENTAL RESEARCH 2024; 263:120038. [PMID: 39305974 DOI: 10.1016/j.envres.2024.120038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 12/01/2024]
Abstract
The rapidly rising risk of cognitive decline is a serious challenge for the elderly. As the wide-distributed environmental chemicals, the effects of metals exposure on cognitive function have attracted much attention, but the results remain inclusive. This study aimed to investigate the roles of multiple metals co-exposure on cognition. We included a total of 6112 middle-aged and older participants, detected their plasma levels of 23 metals by using inductively coupled plasma mass spectrometry, and assessed their cognitive function by using the Mini-Mental State Examination (MMSE). The results showed that increased plasma levels of iron (Fe) and zinc (Zn) were positively associated with MMSE score, but the increased levels of nickel (Ni) and lead (Pb) were associated with decreased MMSE score (all FDR < 0.05). Subjects exposed to both high levels of Ni and Pb showed the lowest MMSE score [β (95% CI) = -0.310 (-0.519, -0.100)], suggesting that Ni and Pb had a synergistic toxic effect on cognitive function. In addition, the hazardous roles of Ni and Pb were mainly found among subjects with low plasma level of Zn, but were not significant among those with high-Zn level [Ni: β (95% CI) = -0.281 (-0.546, -0.015) vs. -0.146 (-0.351, 0.058); Pb: β (95% CI) = -0.410 (-0.651, -0.169) vs. -0.060 (-0.275, 0.155)], which suggested that Zn could attenuate the adverse effects of Pb and Ni on cognitive function. The cognitive function was gradually decreased among subjects with increased number of adverse exposures to the above four metals (Ptrend < 0.001). In conclusion, our findings revealed the individual, interactive, and combined effects of Fe, Ni, Pb, and Zn on cognitive function, which may provide new perspectives on cognitive protection, but further prospective cohort studies and biological researches are needed to validate these findings.
Collapse
Affiliation(s)
- Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Sheng Wu
- The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, 430015, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chenliang Liu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Tianhao Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shengli Chen
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuxi Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hui Zhao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yichi Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jie Lin
- Community Health Service Center of Shuiguohu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Yansen Bai
- Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, 511416, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
10
|
Navale GR, Ahmed I, Lim MH, Ghosh K. Transition Metal Complexes as Therapeutics: A New Frontier in Combatting Neurodegenerative Disorders through Protein Aggregation Modulation. Adv Healthc Mater 2024; 13:e2401991. [PMID: 39221545 DOI: 10.1002/adhm.202401991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative disorders (NDDs) are a class of debilitating diseases that progressively impair the protein structure and result in neurological dysfunction in the nervous system. Among these disorders, Alzheimer's disease (AD), prion diseases such as Creutzfeldt-Jakob disease (CJD), and Parkinson's disease (PD) are caused by protein misfolding and aggregation at the cellular level. In recent years, transition metal complexes have gained significant attention for their potential applications in diagnosing, imaging, and curing these NDDs. These complexes have intriguing possibilities as therapeutics due to their diverse ligand systems and chemical properties and can interact with biological systems with minimal detrimental effects. This review focuses on the recent progress in transition metal therapeutics as a new era of hope in the battle against AD, CJD, and PD by modulating protein aggregation in vitro and in vivo. It may shed revolutionary insights into unlocking new opportunities for researchers to develop metal-based drugs to combat NDDs.
Collapse
Affiliation(s)
- Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Imtiaz Ahmed
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
11
|
Ścibior A, Llopis J, Dobrakowski PP, Męcik-Kronenberg T. Magnesium (Mg) and Neurodegeneration: A Comprehensive Overview of Studies on Mg Levels in Biological Specimens in Humans Affected Some Neurodegenerative Disorders with an Update on Therapy and Clinical Trials Supplemented with Selected Animal Studies. Int J Mol Sci 2024; 25:12595. [PMID: 39684308 DOI: 10.3390/ijms252312595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases, characterized by neuron loss, are a group of neurological disorders that adversely affect the lives of millions of people worldwide. Although several medicines have been approved for managing neurodegenerative diseases, new therapies allowing for a significant slowdown in the progression of neurodegenerative syndromes are constantly being sought. Magnesium (Mg), a crucial mineral necessary for the functioning of organisms, is important to normal central nervous system (CNS) activity. Although the effects of this bioelement on the CNS are relatively well recognized, its role in the pathophysiology of neurological disorders in humans is not yet well characterized. Therefore, the main goal of this review is to collect data about a possible association between Mg and neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's Disease (PD), and Amyotrophic lateral sclerosis (ALS) in humans. Hence, the levels of Mg in blood, cerebrospinal fluid (CSF), urine, and hair from subjects with AD, PD, and ALS are compiled to detect possible variations in the levels of this mineral in the biological specimens of people with neurodegenerative illnesses. Additionally, the findings from an animal model are summarized to offer the reader a deeper insight into studies on Mg in the context of neuroprotection and neurodegeneration. Data provided in the present review indicate that Mg, due to its neuroprotective, antioxidant, anti-inflammatory, and mitochondrial-supportive properties, could be a potential therapeutic agent for AD, PD, and ALS. However, more epidemiological studies with standardized methods of dietary assessment and Mg measurement are necessary to recognize its exact role in neurodegenerative disorders. Moreover, extensive well-designed clinical trials are also needed to establish definitive therapeutic protocols and optimal dosages, and to ensure long-term safety of this mineral supplementation in AD, PD, and ALS patients.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów St. 1J, 20-708 Lublin, Poland
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, 18100 Armilla, Spain
- Sport and Health Research Centre, University of Granada, 18016 Granada, Spain
| | - Paweł P Dobrakowski
- Psychology Institute, Humanitas University in Sosnowiec, Jana Kilińskiego St. 43, 41-200 Sosnowiec, Poland
| | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 3 Maja St. 13, 41-800 Zabrze, Poland
- Collegium Medicum im. Dr Władysław Biegański, Jan Długosz University, Washington St. 4/8, 42-200 Częstochowa, Poland
| |
Collapse
|
12
|
Matošević A, Opsenica DM, Bartolić M, Maraković N, Stoilković A, Komatović K, Zandona A, Žunec S, Bosak A. Derivatives of Amodiaquine as Potent Human Cholinesterases Inhibitors: Implication for Treatment of Alzheimer's Disease. Molecules 2024; 29:5357. [PMID: 39598746 PMCID: PMC11596630 DOI: 10.3390/molecules29225357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
As some previously reported studies have proven that amodiaquine, in addition to its primary antimalarial activity, also has potential for new applications such as the inhibition of cholinesterases, in our study we focused on the evaluation of the influence of different substituents in the aminoquinoline part of the amodiaquine structure on the inhibition of human acetylcholinesterase and butyrylcholinesterase to investigate the possibility for their use as drugs for the treatment of AD. We synthesized a series of amodiaquine derivatives bearing H-, F-, CF3-, NO2-, CN-, CO2H- or CH3O- groups on the aminoquinoline ring, and determined that all of the tested derivatives were very potent inhibitors of both cholinesterases, with inhibition constants (Ki) in the nM and low μM range and with prominent selectivity (up to 300 times) for the inhibition of acetylcholinesterase. All compounds displayed an ability to chelate biometal ions Fe2+, Zn2+ and Cu2+ and an antioxidant power comparable to that of standard antioxidants. Most of the compounds were estimated to be able to cross the blood-brain barrier by passive transport and were nontoxic toward cells that represent the models of individual organs. Considering all these beneficial features, our study has singled out compound 5, the most potent AChE inhibitor with a CH3O- on C(7) position, followed by 6 and 14, compounds without substituent or hydroxyl groups in the C(17) position, respectively, as the most promising compounds from the series which could be considered as potential multi-target drugs for the treatment of AD.
Collapse
Affiliation(s)
- Ana Matošević
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| | - Dejan M. Opsenica
- Institute of Chemistry Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd, Serbia;
- Centre of Excellence in Environmental Chemistry and Engineering, Njegoševa 12, 11000 Belgrade, Serbia
| | - Marija Bartolić
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| | - Andriana Stoilković
- Institute of Chemistry Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd, Serbia;
| | - Katarina Komatović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Antonio Zandona
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| | - Anita Bosak
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| |
Collapse
|
13
|
Mayo P, Pascual J, Crisman E, Domínguez C, López MG, León R. Innovative pathological network-based multitarget approaches for Alzheimer's disease treatment. Med Res Rev 2024; 44:2367-2419. [PMID: 38678582 DOI: 10.1002/med.22045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/02/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and is a major health threat globally. Its prevalence is forecasted to exponentially increase during the next 30 years due to the global aging population. Currently, approved drugs are merely symptomatic, being ineffective in delaying or blocking the relentless disease advance. Intensive AD research describes this disease as a highly complex multifactorial disease. Disclosure of novel pathological pathways and their interconnections has had a major impact on medicinal chemistry drug development for AD over the last two decades. The complex network of pathological events involved in the onset of the disease has prompted the development of multitarget drugs. These chemical entities combine pharmacological activities toward two or more drug targets of interest. These multitarget-directed ligands are proposed to modify different nodes in the pathological network aiming to delay or even stop disease progression. Here, we review the multitarget drug development strategy for AD during the last decade.
Collapse
Affiliation(s)
- Paloma Mayo
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Jorge Pascual
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Enrique Crisman
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Cristina Domínguez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| |
Collapse
|
14
|
Lin N, Gao XY, Li X, Chu WM. Involvement of ubiquitination in Alzheimer's disease. Front Neurol 2024; 15:1459678. [PMID: 39301473 PMCID: PMC11412110 DOI: 10.3389/fneur.2024.1459678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
The hallmark pathological features of Alzheimer's disease (AD) consist of senile plaques, which are formed by extracellular β-amyloid (Aβ) deposition, and neurofibrillary tangles, which are formed by the hyperphosphorylation of intra-neuronal tau proteins. With the increase in clinical studies, the in vivo imbalance of iron homeostasis and the dysfunction of synaptic plasticity have been confirmed to be involved in AD pathogenesis. All of these mechanisms are constituted by the abnormal accumulation of misfolded or conformationally altered protein aggregates, which in turn drive AD progression. Proteostatic imbalance has emerged as a key mechanism in the pathogenesis of AD. Ubiquitination modification is a major pathway for maintaining protein homeostasis, and protein degradation is primarily carried out by the ubiquitin-proteasome system (UPS). In this review, we provide an overview of the ubiquitination modification processes and related protein ubiquitination degradation pathways in AD, focusing on the microtubule-associated protein Tau, amyloid precursor protein (APP), divalent metal transporter protein 1 (DMT1), and α-amino-3-hyroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. We also discuss recent advances in ubiquitination-based targeted therapy for AD, with the aim of contributing new ideas to the development of novel therapeutic interventions for AD.
Collapse
Affiliation(s)
- Nan Lin
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xi-Yan Gao
- The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiao Li
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Wen-Ming Chu
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Singh G, Kumar S, Panda SR, Kumar P, Rai S, Verma H, Singh YP, Kumar S, Srikrishna S, Naidu VGM, Modi G. Design, Synthesis, and Biological Evaluation of Ferulic Acid-Piperazine Derivatives Targeting Pathological Hallmarks of Alzheimer's Disease. ACS Chem Neurosci 2024; 15:2756-2778. [PMID: 39076038 DOI: 10.1021/acschemneuro.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia and is characterized by low levels of acetyl and butyrylcholine, increased oxidative stress, inflammation, accumulation of metals, and aggregations of Aβ and tau proteins. Current treatments for AD provide only symptomatic relief without impacting the pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multitarget molecules for AD, through extensive medicinal chemistry efforts, we have developed 13a, harboring the key functional groups to provide not only symptomatic relief but also targeting oxidative stress, able to chelate iron, inhibiting NLRP3, and Aβ1-42 aggregation in various AD models. 13a exhibited promising anticholinesterase activity against AChE (IC50 = 0.59 ± 0.19 μM) and BChE (IC50 = 5.02 ± 0.14 μM) with excellent antioxidant properties in DPPH assay (IC50 = 5.88 ± 0.21 μM) over ferulic acid (56.49 ± 0.62 μM). The molecular docking and dynamic simulations further corroborated the enzyme inhibition studies and confirmed the stability of these complexes. Importantly, in the PAMPA-BBB assay, 13a turned out to be a promising molecule that can efficiently cross the blood-brain barrier. Notably, 13a also exhibited iron-chelating properties. Furthermore, 13a effectively inhibited self- and metal-induced Aβ1-42 aggregation. It is worth mentioning that 13a demonstrated no symptom of cytotoxicity up to 30 μM concentration in PC-12 cells. Additionally, 13a inhibited the NLRP3 inflammasome and mitigated mitochondrial-induced reactive oxygen species and mitochondrial membrane potential damage triggered by LPS and ATP in HMC-3 cells. 13a could effectively reduce mitochondrial and cellular reactive oxygen species (ROS) in the Drosophila model of AD. Finally, 13a was found to be efficacious in reversing memory impairment in a scopolamine-induced AD mouse model in the in vivo studies. In ex vivo assessments, 13a notably modulates the levels of superoxide, catalase, and malondialdehyde along with AChE and BChE. These findings revealed that 13a holds promise as a potential candidate for further development in AD management.
Collapse
Affiliation(s)
- Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Samir Ranjan Panda
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Prabhat Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanskriti Rai
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Himanshu Verma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Yash Pal Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Saroj Kumar
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Saripella Srikrishna
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| |
Collapse
|
16
|
Xu Y, Xu M, Zhou C, Sun L, Cai W, Li X. Ferroptosis and its implications in treating cognitive impairment caused by aging: A study on the mechanism of repetitive transcranial magnetic stimulation. Exp Gerontol 2024; 192:112443. [PMID: 38697556 DOI: 10.1016/j.exger.2024.112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE Ferroptosis has been recognized as being closely associated with cognitive impairment. Research has established that Alzheimer's disease (AD)-associated proteins, such as amyloid precursor protein (APP) and phosphorylated tau, are involved in brain iron metabolism. These proteins are found in high concentrations within senile plaques and neurofibrillary tangles. Repetitive transcranial magnetic stimulation (rTMS) offers a non-pharmacological approach to AD treatment. This study aims to explore the potential therapeutic effects of rTMS on cognitive impairment through the modulation of the ferroptosis pathway, thereby laying both a theoretical and experimental groundwork for the application of rTMS in treating Alzheimer's disease. METHODS The study utilized senescence-accelerated mouse prone 8 (SAMP8) mice to model brain aging-related cognitive impairment, with senescence-accelerated-mouse resistant 1 (SAMR1) mice acting as controls. The SAMP8 mice were subjected to high-frequency rTMS at 25 Hz for durations of 14 and 28 days. Cognitive function was evaluated using behavioral tests. Resting-state functional magnetic resonance imaging (rs-fMRI) assessed alterations in cerebral activity by measuring the fractional amplitude of low-frequency fluctuations (fALFF) of the blood oxygen level-dependent signal. Neuronal recovery post-rTMS in the SAMP8 model was examined via HE and Nissl staining. Immunohistochemistry was employed to detect the expression of APP and Phospho-Tau (Thr231). Oxidative stress markers were quantified using biochemical assay kits. ELISA methods were utilized to measure hippocampal levels of Fe2+ and Aβ1-42. Finally, the expression of proteins related to the ferroptosis pathway was determined through western blot analysis. RESULTS The findings indicate that 25 Hz rTMS enhances cognitive function and augments cerebral activity in SAMP8 model mice. Treatment with rTMS in these mice resulted in diminished oxidative stress and safeguarded neurons against damage. Additionally, iron accumulation was mitigated, and the expression of ferroptosis pathway proteins Gpx4, system Xc-, and Nrf2 was elevated. CONCLUSIONS The Tau/APP-Fe-GPX4/system Xc-/Nrf2 pathway is implicated in the remedial effects of rTMS on cognitive dysfunction, offering a theoretical and experimental basis for employing rTMS in AD treatment.
Collapse
Affiliation(s)
- Yuya Xu
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China
| | - Mengrong Xu
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China
| | - Chengyu Zhou
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China
| | - Ling Sun
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China
| | - Wenqiang Cai
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China
| | - Xuling Li
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China.
| |
Collapse
|
17
|
Althagafy HS, Harakeh S, Azhari SA, Farsi RM, Al-Abbas NS, Shaer NA, Sharawi ZW, Almohaimeed HM, Hassanein EHM. Quetiapine attenuates cadmium neurotoxicity by suppressing oxidative stress, inflammation, and pyroptosis. Mol Biol Rep 2024; 51:660. [PMID: 38750264 DOI: 10.1007/s11033-024-09558-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Cadmium (Cd) is a heavy metal with extremely harmful toxic effects on the brain. Quetiapine (QTP) has unique neuroprotective effects with anti-inflammatory and antioxidant actions. However, its neuroprotective effect against Cd-induced neurotoxicity has not been previously studied. METHODS QTP was administered in 10 and 20 mg/kg doses, while Cd was given in a dose of 6.5 mg/kg. RESULTS In our study, QTP dose-dependently attenuated neuronal injury by downregulating p-tau and β-amyloid. QTP potently attenuates histological abrasions induced by Cd. QTP counteracted oxidative injury by decreasing neuronal MDA and increased GSH levels mediated by downregulating Keap1 and upregulating Nrf2 and HO-1. QTP mitigated inflammation by decreasing MPO and NO2 and neuronal cytokines TNF-α and IL-1β and upregulating IL-10 levels mediated by NF-κB downregulation. Additionally, QTP counteracted Cd-induced pyroptosis by downregulating caspase-1, ASC, and NLRP3 protein levels. CONCLUSION In conclusion, QTP mitigates neurotoxicity induced by Cd through suppression of inflammation, pyroptosis, and oxidative stress by controlling the NF-κB, Keap1/Nrf2, and pyroptosis signals.
Collapse
Affiliation(s)
- Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sheren A Azhari
- Department of Biological Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Reem M Farsi
- Department of Biological Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Nouf S Al-Abbas
- Jamoum University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Nehad A Shaer
- Department of Chemistry, Al Lieth University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Zeina W Sharawi
- Department of Biological Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| |
Collapse
|
18
|
Tavili E, Aziziyan F, Khajeh K. Inhibitors of amyloid fibril formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:291-340. [PMID: 38811084 DOI: 10.1016/bs.pmbts.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Many diseases are caused by misfolded and denatured proteins, leading to neurodegenerative diseases. In recent decades researchers have developed a variety of compounds, including polymeric inhibitors and natural compounds, antibodies, and chaperones, to inhibit protein aggregation, decrease the toxic effects of amyloid fibrils, and facilitate refolding proteins. The causes and mechanisms of amyloid formation are still unclear, and there are no effective treatments for Amyloid diseases. This section describes research and achievements in the field of inhibiting amyloid accumulation and also discusses the importance of various strategies in facilitating the removal of aggregates species (refolding) in the treatment of neurological diseases such as chemical methods like as, small molecules, metal chelators, polymeric inhibitors, and nanomaterials, as well as the use of biomolecules (peptide and, protein, nucleic acid, and saccharide) as amyloid inhibitors, are also highlighted.
Collapse
Affiliation(s)
- Elaheh Tavili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
19
|
Sun X, Zhou Y, Wang Z, Peng M, Wei X, Xie Y, Wen C, Liu J, Ye M. Biomolecular Condensates Decipher Molecular Codes of Cell Fate: From Biophysical Fundamentals to Therapeutic Practices. Int J Mol Sci 2024; 25:4127. [PMID: 38612940 PMCID: PMC11012904 DOI: 10.3390/ijms25074127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Cell fate is precisely modulated by complex but well-tuned molecular signaling networks, whose spatial and temporal dysregulation commonly leads to hazardous diseases. Biomolecular condensates (BCs), as a newly emerging type of biophysical assemblies, decipher the molecular codes bridging molecular behaviors, signaling axes, and clinical prognosis. Particularly, physical traits of BCs play an important role; however, a panoramic view from this perspective toward clinical practices remains lacking. In this review, we describe the most typical five physical traits of BCs, and comprehensively summarize their roles in molecular signaling axes and corresponding major determinants. Moreover, establishing the recent observed contribution of condensate physics on clinical therapeutics, we illustrate next-generation medical strategies by targeting condensate physics. Finally, the challenges and opportunities for future medical development along with the rapid scientific and technological advances are highlighted.
Collapse
Affiliation(s)
- Xing Sun
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China; (Y.X.); (C.W.)
| | - Yangyang Zhou
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| | - Zhiyan Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| | - Menglan Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| | - Xianhua Wei
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| | - Yifang Xie
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China; (Y.X.); (C.W.)
| | - Chengcai Wen
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China; (Y.X.); (C.W.)
| | - Jing Liu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China; (Y.X.); (C.W.)
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| |
Collapse
|
20
|
Martinez Pomier K, Ahmed R, Huang J, Melacini G. Inhibition of toxic metal-alpha synuclein interactions by human serum albumin. Chem Sci 2024; 15:3502-3515. [PMID: 38455030 PMCID: PMC10915811 DOI: 10.1039/d3sc06285f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024] Open
Abstract
Human serum albumin (HSA), the most abundant protein in plasma and cerebrospinal fluid, not only serves as a crucial carrier of various exogenous and endogenous ligands but also modulates the aggregation of amyloidogenic proteins, including alpha synuclein (αSyn), which is associated with Parkinson's disease and other α-synucleinopathies. HSA decreases αSyn toxicity through the direct binding to monomeric and oligomeric αSyn species. However, it is possible that HSA also sequesters metal ions that otherwise promote aggregation. Cu(ii) ions, for example, enhance αSyn fibrillization in vitro, while also leading to neurotoxicity by generating reactive oxygen species (ROS). However, it is currently unclear if and how HSA affects Cu(ii)-binding to αSyn. Using an integrated set of NMR experiments, we show that HSA is able to chelate Cu(ii) ions from αSyn more efficiently than standard chelators such as EDTA, revealing an unexpected cooperativity between the HSA metal-binding sites. Notably, fatty acid binding to HSA perturbs this cooperativity, thus interfering with the sequestration of Cu(ii) ions from αSyn. We also observed that glycation of HSA diminished Cu(ii)-binding affinity, while largely preserving the degree of cooperativity between the HSA metal-binding sites. Additionally, our results show that Cu(ii)-binding to HSA stabilizes the interactions of HSA with αSyn primarily at two different regions, i.e. the N-terminus, Tyr 39 and the majority of the C-terminus. Our study not only unveils the effect of fatty acid binding and age-related posttranslational modifications, such as glycation, on the neuroprotective mechanisms of HSA, but also highlights the potential of αSyn as a viable NMR-based sensor to investigate HSA-metal interactions.
Collapse
Affiliation(s)
| | - Rashik Ahmed
- Department of Chemistry and Chemical Biology, McMaster University ON L8S 4M1 Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University ON L8S 4M1 Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University ON L8S 4M1 Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton ON L8S 4M1 Canada
| |
Collapse
|
21
|
Zuo Y, Liu HT, Lin LB, Yue RZ, Liu HH, Wang HW, Wang L, Hou RL, Liu WZ, Li CZ, Wang JZ, Li P, Yin YL. A new metal ion chelator attenuates human tau accumulation-induced neurodegeneration and memory deficits in mice. Exp Neurol 2024; 373:114657. [PMID: 38141802 DOI: 10.1016/j.expneurol.2023.114657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Neuronal neurofibrillary tangles containing Tau hyperphosphorylation proteins are a typical pathological marker of Alzheimer's disease (AD). The level of tangles in neurons correlates positively with severe dementia. However, how Tau induces cognitive dysfunction is still unknown, which leads to a lack of effective treatments for AD. Metal ions deposition occurs with tangles in AD brain autopsy. Reduced metal ion can improve the pathology of AD. To explore whether abnormally phosphorylated Tau causes metal ion deposition, we overexpressed human full-length Tau (hTau) in the hippocampal CA3 area of mice and primary cultured hippocampal neurons (CPHN) and found that Tau accumulation induced iron deposition and activated calcineurin (CaN), which dephosphorylates glycogen synthase kinase 3 beta (GSK3β), mediating Tau hyperphosphorylation. Simultaneous activation of CaN dephosphorylates cyclic-AMP response binding protein (CREB), leading to synaptic deficits and memory impairment, as shown in our previous study; this seems to be a vicious cycle exacerbating tauopathy. In the current study, we developed a new metal ion chelator that displayed a significant inhibitory effect on Tau phosphorylation and memory impairment by chelating iron ions in vivo and in vitro. These findings provide new insight into the mechanism of memory impairment induced by Tau accumulation and develop a novel potential treatment for tauopathy in AD.
Collapse
Affiliation(s)
- Yue Zuo
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury, Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang 453003, China; School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang 453003, China
| | - Hui-Ting Liu
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury, Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Lai-Biao Lin
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury, Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Rui-Zhu Yue
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury, Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Huan-Huan Liu
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury, Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang 453003, China; The Second Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Hong-Wei Wang
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury, Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Lu Wang
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury, Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ruan-Ling Hou
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury, Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Wei-Zhen Liu
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury, Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Chang-Zheng Li
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury, Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang 453003, China; School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang 453003, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Li
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang 453003, China; Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China.
| | - Ya-Ling Yin
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury, Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
22
|
Baek Y, Lee M. Solid-state NMR spectroscopic analysis for structure determination of a zinc-bound catalytic amyloid fibril. Methods Enzymol 2024; 697:435-471. [PMID: 38816132 DOI: 10.1016/bs.mie.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Zinc ions are commonly involved in enzyme catalysis and protein structure stabilization, but their coordination geometry of zinc-protein complex is rarely determined. Here, in this chapter, we introduce a systematic solid-state NMR approach to determine the oligomeric assembly and Zn2+ coordination geometry of a de novo designed amyloid fibrils that catalyze zinc dependent ester hydrolysis. NMR chemical shifts and intermolecular contacts confirm that the peptide forms parallel-in-register β-sheets, with the two forms of Zn2+ bound histidines in each peptide. The amphiphilic parallel β-sheets assemble into stacked bilayers that are stabilized by hydrophobic side chains between β-sheets. The conformations of the histidine side chains, determined by 13C-15N distance measurements, reveal how histidines protrude from the β-sheet. 1H-15N correlation spectra show that the single-Zn2+ coordinated histidine associated with dynamic water. The resulting structure provides insight into how metal ions contribute to stabilizing the protein structure and driving its catalytic reactivity.
Collapse
Affiliation(s)
- Yoongyeong Baek
- Department of Chemistry, Drexel University, Philadelphia, PA, United States
| | - Myungwoon Lee
- Department of Chemistry, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
23
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
24
|
James EI, Baggett DW, Chang E, Schachter J, Nixey T, Choi K, Guttman M, Nath A. Tryptanthrin Analogs Substoichiometrically Inhibit Seeded and Unseeded Tau4RD Aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578649. [PMID: 38352474 PMCID: PMC10862865 DOI: 10.1101/2024.02.02.578649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Microtubule-associated protein tau is an intrinsically disordered protein (IDP) that forms characteristic fibrillar aggregates in several diseases, the most well-known of which is Alzheimer's disease (AD). Despite keen interest in disrupting or inhibiting tau aggregation to treat AD and related dementias, there are currently no FDA-approved tau-targeting drugs. This is due, in part, to the fact that tau and other IDPs do not exhibit a single well-defined conformation but instead populate a fluctuating conformational ensemble that precludes finding a stable "druggable" pocket. Despite this challenge, we previously reported the discovery of two novel families of tau ligands, including a class of aggregation inhibitors, identified through a protocol that combines molecular dynamics, structural analysis, and machine learning. Here we extend our exploration of tau druggability with the identification of tryptanthrin and its analogs as potent, substoichiometric aggregation inhibitors, with the best compounds showing potencies in the low nanomolar range even at a ~100-fold molar excess of tau4RD. Moreover, conservative changes in small molecule structure can have large impacts on inhibitory potency, demonstrating that similar structure-activity relationship (SAR) principles as used for traditional drug development also apply to tau and potentially to other IDPs.
Collapse
Affiliation(s)
- Ellie I. James
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA
| | - David W. Baggett
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
- Current address: Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Edcon Chang
- Takeda Development Center Americas, San Diego, CA
| | | | - Thomas Nixey
- Takeda Development Center Americas, San Diego, CA
| | | | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA
| |
Collapse
|
25
|
Yeerlan J, He B, Hu X, Zhang L. Global Research Trends and Hotspots for Ferroptosis, Necroptosis, and Pyroptosis in Alzheimer's Disease from the Past to 2023: A Combined Bibliometric Review. J Alzheimers Dis Rep 2024; 8:129-142. [PMID: 38312529 PMCID: PMC10836606 DOI: 10.3233/adr-230092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Background Alzheimer's disease (AD) is a genetically intricate neurodegenerative disorder. Studies on "Ferroptosis in AD", "Pyroptosis in AD", and "Necroptosis in AD" are becoming more prevalent and there is increasing evidence that they are closely related to AD. However, there has not yet been a thorough bibliometrics-based investigation on this subject. Objective This study uses a bibliometric approach to visualize and analyze the literature within the field of three distinct types of cell death in AD and explores the current research hotspots and prospective research directions. Methods We collected relevant articles from the Web of Science and used CiteSpace, VOS viewer, and Pajek to perform a visual analysis. Results A total of 123, 95, and 84 articles were published in "Ferroptosis in AD", "Pyroptosis in AD", and "Necroptosis in AD", respectively. Based on keywords analysis, we can observe that "oxidative stress" and "lipid peroxidation", "cell death" and "activation", and "Nlrp3 inflammasome" and "activation" were the three most prominent words in the field of "Ferroptosis in AD", "Pyroptosis in AD", and "Necroptosis in AD", respectively. Focusing on the breakout words in the keyword analysis, we reviewed the mechanisms of ferroptosis, pyroptosis, and necroptosis in AD. By mapping the time zones of the keywords, we speculated on the evolutionary trends of ferroptosis, pyrotosis, and necroptosis in AD. Conclusions Our findings can help researchers grasp the research status of three types of cell death in AD and determine new directions for future research as soon as possible.
Collapse
Affiliation(s)
| | - Binhong He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xianliang Hu
- Chengdu Eighth People’s Hospital, Geriatric Hospital of Chengdu Medical College, Chengdu, China
| | - LuShun Zhang
- Department of Neurobiology, Department of Pathology and Pathophysiology, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| |
Collapse
|
26
|
Madar P, Nagalapur P, Chaudhari S, Sharma D, Koparde A, Buchade R, Kshirsagar S, Uttekar P, Jadhav S, Chaudhari P. The Unveiling of Therapeutic Targets for Alzheimer's Disease: An Integrative Review. Curr Top Med Chem 2024; 24:850-868. [PMID: 38424435 DOI: 10.2174/0115680266282492240220101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease (AD) is characterized by a complex pathological landscape, necessitating a comprehensive treatment approach. This concise review paper delves into the idea of addressing multiple mechanisms in AD, summarizing the latest research findings on pathogenesis, risk factors, diagnostics, and therapeutic strategies. The etiology of AD is multifaceted, involving genetic, environmental, and lifestyle factors. The primary feature is the accumulation of amyloid-- beta and tau proteins, leading to neuroinflammation, synaptic dysfunction, oxidative stress, and neuronal loss. Conventional single-target therapies have shown limited effectiveness, prompting a shift toward simultaneously addressing multiple disease-related processes. Recent advancements in AD research underscore the potential of multifaceted therapies. This review explores strategies targeting both tau aggregation and amyloid-beta, along with interventions to alleviate neuroinflammation, enhance synaptic function, and reduce oxidative stress. In conclusion, the review emphasizes the growing importance of addressing various pathways in AD treatment. A holistic approach that targets different aspects of the disease holds promise for developing effective treatments and improving the quality of life for Alzheimer's patients and their caregivers.
Collapse
Affiliation(s)
- Pratiksha Madar
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Pooja Nagalapur
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Somdatta Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Devesh Sharma
- Department of Biotechnology, National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Akshada Koparde
- Department of Pharmaceutical Chemistry, Krishna Foundation's Jaywant Institute of Pharmacy, Malkapur, Karad, India
| | - Rahul Buchade
- Department of Pharmaceutical Chemistry, Indira College of Pharmacy, Tathwade, Pune, India
| | - Sandip Kshirsagar
- Department of Pharmaceutical Chemistry, Dr. D Y Patil College of Pharmacy, Pune, India
| | - Pravin Uttekar
- Department of Pharmacuetics, Savitribai Phule Pune University, Pune, India
| | - Shailaja Jadhav
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Praveen Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
27
|
Mandal PK, Maroon JC, Samkaria A, Arora Y, Sharma S, Pandey A. Iron Chelators and Alzheimer's Disease Clinical Trials. J Alzheimers Dis 2024; 100:S243-S249. [PMID: 39031369 DOI: 10.3233/jad-240605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disorder impacting millions of people with cognitive impairment and affecting activities of daily living. The deposition of neurofibrillary tangles of hyperphosphorylated tau proteins and accumulation of amyloid-β (Aβ) are the main pathological characteristics of AD. However, the actual causal process of AD is not yet identified. Oxidative stress occurs prior to amyloid Aβ plaque formation and tau phosphorylation in AD. The role of master antioxidant, glutathione, and metal ions (e.g., iron) in AD are the frontline area of AD research. Iron overload in specific brain regions in AD is associated with the rate of cognitive decline. We have presented the outcome from various interventional trials involving iron chelators intended to minimize the iron overload in AD. To date, however, no significant positive outcomes have been reported using iron chelators in AD and warrant further research.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne, VIC, Australia
| | - Joseph C Maroon
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
- Department of Forensic Science, Chandigarh University, Mohali, Punjab, India
| | - Yashika Arora
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Shallu Sharma
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
- School of Computer Science Engineering and Technology, Bennett University, Greater Noida, UP, India
| | - Ashutosh Pandey
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
- Department of Medicine, NEIGRIHMS, Shillong, Meghalaya, India
| |
Collapse
|
28
|
Andrade-Guerrero J, Rodríguez-Arellano P, Barron-Leon N, Orta-Salazar E, Ledesma-Alonso C, Díaz-Cintra S, Soto-Rojas LO. Advancing Alzheimer's Therapeutics: Exploring the Impact of Physical Exercise in Animal Models and Patients. Cells 2023; 12:2531. [PMID: 37947609 PMCID: PMC10648553 DOI: 10.3390/cells12212531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Alzheimer's disease (AD) is the main neurodegenerative disorder characterized by several pathophysiological features, including the misfolding of the tau protein and the amyloid beta (Aβ) peptide, neuroinflammation, oxidative stress, synaptic dysfunction, metabolic alterations, and cognitive impairment. These mechanisms collectively contribute to neurodegeneration, necessitating the exploration of therapeutic approaches with multiple targets. Physical exercise has emerged as a promising non-pharmacological intervention for AD, with demonstrated effects on promoting neurogenesis, activating neurotrophic factors, reducing Aβ aggregates, minimizing the formation of neurofibrillary tangles (NFTs), dampening inflammatory processes, mitigating oxidative stress, and improving the functionality of the neurovascular unit (NVU). Overall, the neuroprotective effects of exercise are not singular, but are multi-targets. Numerous studies have investigated physical exercise's potential in both AD patients and animal models, employing various exercise protocols to elucidate the underlying neurobiological mechanisms and effects. The objective of this review is to analyze the neurological therapeutic effects of these exercise protocols in animal models and compare them with studies conducted in AD patients. By translating findings from different approaches, this review aims to identify opportune, specific, and personalized therapeutic windows, thus advancing research on the use of physical exercise with AD patients.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Paola Rodríguez-Arellano
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Nayeli Barron-Leon
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Erika Orta-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Carlos Ledesma-Alonso
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| |
Collapse
|
29
|
Hu J, Sha W, Yuan S, Wu J, Huang Y. Aggregation, Transmission, and Toxicity of the Microtubule-Associated Protein Tau: A Complex Comprehension. Int J Mol Sci 2023; 24:15023. [PMID: 37834471 PMCID: PMC10573976 DOI: 10.3390/ijms241915023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The microtubule-associated protein tau is an intrinsically disordered protein containing a few short and transient secondary structures. Tau physiologically associates with microtubules (MTs) for its stabilization and detaches from MTs to regulate its dynamics. Under pathological conditions, tau is abnormally modified, detaches from MTs, and forms protein aggregates in neuronal and glial cells. Tau protein aggregates can be found in a number of devastating neurodegenerative diseases known as "tauopathies", such as Alzheimer's disease (AD), frontotemporal dementia (FTD), corticobasal degeneration (CBD), etc. However, it is still unclear how the tau protein is compacted into ordered protein aggregates, and the toxicity of the aggregates is still debated. Fortunately, there has been considerable progress in the study of tau in recent years, particularly in the understanding of the intercellular transmission of pathological tau species, the structure of tau aggregates, and the conformational change events in the tau polymerization process. In this review, we summarize the concepts of tau protein aggregation and discuss the views on tau protein transmission and toxicity.
Collapse
Affiliation(s)
- Jiaxin Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Wenchi Sha
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Shuangshuang Yuan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
30
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines 2023; 11:2488. [PMID: 37760929 PMCID: PMC10526226 DOI: 10.3390/biomedicines11092488] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria play a vital role in maintaining cellular energy homeostasis, regulating apoptosis, and controlling redox signaling. Dysfunction of mitochondria has been implicated in the pathogenesis of various brain diseases, including neurodegenerative disorders, stroke, and psychiatric illnesses. This review paper provides a comprehensive overview of the intricate relationship between mitochondria and brain disease, focusing on the underlying pathological mechanisms and exploring potential therapeutic opportunities. The review covers key topics such as mitochondrial DNA mutations, impaired oxidative phosphorylation, mitochondrial dynamics, calcium dysregulation, and reactive oxygen species generation in the context of brain disease. Additionally, it discusses emerging strategies targeting mitochondrial dysfunction, including mitochondrial protective agents, metabolic modulators, and gene therapy approaches. By critically analysing the existing literature and recent advancements, this review aims to enhance our understanding of the multifaceted role of mitochondria in brain disease and shed light on novel therapeutic interventions.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Psychology Department, Facultad de Ciencias de la Vida y la Naturaleza, Universidad Antonio de Nebrija, 28240 Madrid, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Athanasios A. Dalamitros
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
31
|
Matošević A, Opsenica DM, Spasić M, Maraković N, Zandona A, Žunec S, Bartolić M, Kovarik Z, Bosak A. Evaluation of 4-aminoquinoline derivatives with an n-octylamino spacer as potential multi-targeting ligands for the treatment of Alzheimer's disease. Chem Biol Interact 2023; 382:110620. [PMID: 37406982 DOI: 10.1016/j.cbi.2023.110620] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
The most successful therapeutic strategy in the treatment of Alzheimer's disease (AD) is directed toward increasing levels of the neurotransmitter acetylcholine (ACh) by inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), the enzymes responsible for its hydrolysis. In this paper, we extended our study on 4-aminoquinolines as human cholinesterase inhibitors on twenty-six new 4-aminoquinolines containing an n-octylamino spacer on C(4) and different substituents on the terminal amino group. We evaluated the potency of new derivatives to act as multi-targeted ligands by determining their inhibition potency towards human AChE and BChE, ability to chelate biometals Fe, Cu and Zn, ability to inhibit the action of β-secretase 1 (BACE1) and their antioxidant capacity. All of the tested derivatives were very potent inhibitors of human AChE and BChE with inhibition constants (Ki) ranging from 0.0023 to 1.6 μM. Most of the compounds were estimated to be able to cross the blood-brain barrier (BBB) by passive transport and were nontoxic to human neuronal, kidney and liver cells in concentrations in which they inhibit cholinesterases. Generally, newly synthesised compounds were weak reductants compared to standard antioxidants, but all possessed a certain amount of antioxidant activity compared to tacrine. Of the eleven most potent cholinesterase inhibitors, eight compounds also inhibited BACE1 activity at 10-18%. Based on our overall results, compounds 8 with 3-fluorobenzyl, 11 with 3-chlorobenzyl and 17 with 3-metoxy benzyl substituents on the terminal amino group stood out as the most promising for the treatment of AD; they strongly inhibited AChE and BChE, were non-toxic on HepG2, HEK293 and SH-SY5Y cells, had the potential to cross the BBB and possessed the ability to chelate biometals and/or inhibit the activity of BACE1 within a range close to the therapeutically desired degree of inhibition.
Collapse
Affiliation(s)
- Ana Matošević
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Dejan M Opsenica
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Studentski trg 12-16, 11000, Beograd, Serbia; Centre of Excellence in Environmental Chemistry and Engineering, ICTM, 11000, Belgrade, Serbia
| | - Marta Spasić
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11158, Belgrade, Serbia
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Antonio Zandona
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Marija Bartolić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Anita Bosak
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia.
| |
Collapse
|
32
|
Benarroch E. What Is the Role of Ferroptosis in Neurodegeneration? Neurology 2023; 101:312-319. [PMID: 37580137 PMCID: PMC10437014 DOI: 10.1212/wnl.0000000000207730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 08/16/2023] Open
|
33
|
Chen X, Xing L, Li X, Chen N, Liu L, Wang J, Zhou X, Liu S. Manganese Ion-Induced Amyloid Fibrillation Kinetics of Hen Egg White-Lysozyme in Thermal and Acidic Conditions. ACS OMEGA 2023; 8:16439-16449. [PMID: 37179629 PMCID: PMC10173442 DOI: 10.1021/acsomega.3c01531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
As manganese ions (Mn2+) are identified as an environmental risk factor for neurodegenerative diseases, uncovering their action mechanism on protein amyloid fibril formation is crucial for related disease treatments. Herein, we performed a combined study of Raman spectroscopy, atomic force microscopy (AFM), thioflavin T (ThT) fluorescence, and UV-vis absorption spectroscopy assays, in which the distinctive effect of Mn2+ on the amyloid fibrillation kinetics of hen egg white-lysozyme (HEWL) was clarified at the molecular level. With thermal and acid treatments, the unfolding of protein tertiary structures is efficiently accelerated by Mn2+ to form oligomers, as indicated by two Raman markers for the Trp residues on protein side chains: the FWHM at 759 cm-1 and the I1340/I1360 ratio. Meanwhile, the inconsistent evolutionary kinetics of the two indicators, as well as AFM images and UV-vis absorption spectroscopy assays, validate the tendency of Mn2+ toward the formation of amorphous aggregates instead of amyloid fibrils. Moreover, Mn2+ plays an accelerator role in the secondary structure transition from α-helix to organized β-sheet structures, as indicated by the N-Cα-C intensity at 933 cm-1 and the amide I position of Raman spectroscopy and ThT fluorescence assays. Notably, the more significant promotion effect of Mn2+ on the formation of amorphous aggregates provides credible clues to understand the fact that excess exposure to manganese is associated with neurological diseases.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Lei Xing
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Xinfei Li
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Ning Chen
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Liming Liu
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Jionghan Wang
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Xiaoguo Zhou
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Shilin Liu
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| |
Collapse
|
34
|
Wu L, Xian X, Tan Z, Dong F, Xu G, Zhang M, Zhang F. The Role of Iron Metabolism, Lipid Metabolism, and Redox Homeostasis in Alzheimer's Disease: from the Perspective of Ferroptosis. Mol Neurobiol 2023; 60:2832-2850. [PMID: 36735178 DOI: 10.1007/s12035-023-03245-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
In the development of Alzheimer's disease (AD), cell death is common. Novel cell death form-ferroptosis is discovered in recent years. Ferroptosis is an iron-regulated programmed cell death mechanism and has been identified in AD clinical samples. Typical characteristics of ferroptosis involve the specific changes in cell morphology, iron-dependent aggregation of reactive oxygen species (ROS) and lipid peroxides, loss of glutathione (GSH), inactivation of glutathione peroxidase 4 (GPX4), and a unique group of regulatory genes. Increasing evidence demonstrates that ferroptosis may be associated with neurological dysfunction in AD. However, the underlying mechanisms have not been fully elucidated. This article reviews the potential role of ferroptosis in AD, the involvement of ferroptosis in the pathological progression of AD through the mechanisms of iron metabolism, lipid metabolism, and redox homeostasis, as well as a range of potential therapies targeting ferroptosis for AD. Intervention strategies based on ferroptosis are promising for Alzheimer's disease treatment at present, but further researches are still needed.
Collapse
Affiliation(s)
- Linyu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Xiaohui Xian
- Department of Pathophysiology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and intervention, Shijiazhuang, 050051, People's Republic of China
| | - Zixuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
- Hebei Key Laboratory of Critical Disease Mechanism and intervention, Shijiazhuang, 050051, People's Republic of China.
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
- Hebei Key Laboratory of Critical Disease Mechanism and intervention, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
35
|
Qiu W, Liu H, Liu Y, Lu X, Wang L, Hu Y, Feng F, Li Q, Sun H. Regulation of beta-amyloid for the treatment of Alzheimer's disease: Research progress of therapeutic strategies and bioactive compounds. Med Res Rev 2023. [PMID: 36945751 DOI: 10.1002/med.21947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is difficult to treat. Extracellular amyloid is the principal pathological criterion for the diagnosis of AD. Amyloid β (Aβ) interacts with various receptor molecules on the plasma membrane and mediates a series of signaling pathways that play a vital role in the occurrence and development of AD. Research on receptors that interact with Aβ is currently ongoing. Overall, there are no effective medications to treat AD. In this review, we first discuss the importance of Aβ in the pathogenesis of AD, then summarize the latest progress of Aβ-related targets and compounds. Finally, we put forward the challenges and opportunities in the development of effective AD therapies.
Collapse
Affiliation(s)
- Weimin Qiu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yijun Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Lu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
- Department of Natural Medicinal Chemistry, Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Jiangsu, Huaian, China
| | - Qi Li
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
36
|
Costa I, Barbosa DJ, Benfeito S, Silva V, Chavarria D, Borges F, Remião F, Silva R. Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol Ther 2023; 244:108373. [PMID: 36894028 DOI: 10.1016/j.pharmthera.2023.108373] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ferroptosis is a type of regulated cell death characterized by intracellular accumulation of iron and reactive oxygen species, inhibition of system Xc-, glutathione depletion, nicotinamide adenine dinucleotide phosphate oxidation and lipid peroxidation. Since its discovery and characterization in 2012, many efforts have been made to reveal the underlying mechanisms, modulating compounds, and its involvement in disease pathways. Ferroptosis inducers include erastin, sorafenib, sulfasalazine and glutamate, which, by inhibiting system Xc-, prevent the import of cysteine into the cells. RSL3, statins, Ml162 and Ml210 induce ferroptosis by inhibiting glutathione peroxidase 4 (GPX4), which is responsible for preventing the formation of lipid peroxides, and FIN56 and withaferin trigger GPX4 degradation. On the other side, ferroptosis inhibitors include ferrostatin-1, liproxstatin-1, α-tocopherol, zileuton, FSP1, CoQ10 and BH4, which interrupt the lipid peroxidation cascade. Additionally, deferoxamine, deferiprone and N-acetylcysteine, by targeting other cellular pathways, have also been classified as ferroptosis inhibitors. Increased evidence has established the involvement of ferroptosis in distinct brain diseases, including Alzheimer's, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, multiple sclerosis, and Friedreich's ataxia. Thus, a deep understanding of how ferroptosis contributes to these diseases, and how it can be modulated, can open a new window of opportunities for novel therapeutic strategies and targets. Other studies have shown a sensitivity of cancer cells with mutated RAS to ferroptosis induction and that chemotherapeutic agents and ferroptosis inducers synergize in tumor treatment. Thus, it is tempting to consider that ferroptosis may arise as a target mechanistic pathway for the treatment of brain tumors. Therefore, this work provides an up-to-date review on the molecular and cellular mechanisms of ferroptosis and their involvement in brain diseases. In addition, information on the main ferroptosis inducers and inhibitors and their molecular targets is also provided.
Collapse
Affiliation(s)
- Inês Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- TOXRUN - Toxicology Research Unit, Department of Sciences, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Sofia Benfeito
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Vera Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
37
|
Berntsson E, Vosough F, Svantesson T, Pansieri J, Iashchishyn IA, Ostojić L, Dong X, Paul S, Jarvet J, Roos PM, Barth A, Morozova-Roche LA, Gräslund A, Wärmländer SKTS. Residue-specific binding of Ni(II) ions influences the structure and aggregation of amyloid beta (Aβ) peptides. Sci Rep 2023; 13:3341. [PMID: 36849796 PMCID: PMC9971182 DOI: 10.1038/s41598-023-29901-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD brains display deposits of insoluble amyloid plaques consisting mainly of aggregated amyloid-β (Aβ) peptides, and Aβ oligomers are likely a toxic species in AD pathology. AD patients display altered metal homeostasis, and AD plaques show elevated concentrations of metals such as Cu, Fe, and Zn. Yet, the metal chemistry in AD pathology remains unclear. Ni(II) ions are known to interact with Aβ peptides, but the nature and effects of such interactions are unknown. Here, we use numerous biophysical methods-mainly spectroscopy and imaging techniques-to characterize Aβ/Ni(II) interactions in vitro, for different Aβ variants: Aβ(1-40), Aβ(1-40)(H6A, H13A, H14A), Aβ(4-40), and Aβ(1-42). We show for the first time that Ni(II) ions display specific binding to the N-terminal segment of full-length Aβ monomers. Equimolar amounts of Ni(II) ions retard Aβ aggregation and direct it towards non-structured aggregates. The His6, His13, and His14 residues are implicated as binding ligands, and the Ni(II)·Aβ binding affinity is in the low µM range. The redox-active Ni(II) ions induce formation of dityrosine cross-links via redox chemistry, thereby creating covalent Aβ dimers. In aqueous buffer Ni(II) ions promote formation of beta sheet structure in Aβ monomers, while in a membrane-mimicking environment (SDS micelles) coil-coil helix interactions appear to be induced. For SDS-stabilized Aβ oligomers, Ni(II) ions direct the oligomers towards larger sizes and more diverse (heterogeneous) populations. All of these structural rearrangements may be relevant for the Aβ aggregation processes that are involved in AD brain pathology.
Collapse
Affiliation(s)
- Elina Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| | - Faraz Vosough
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Teodor Svantesson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Igor A Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Lucija Ostojić
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Xiaolin Dong
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Suman Paul
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, 171 77, Stockholm, Sweden
- Department of Clinical Physiology, Capio St. Göran Hospital, St. Göransplan 1, 112 19, Stockholm, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | |
Collapse
|
38
|
Andrikopoulos N, Li Y, Nandakumar A, Quinn JF, Davis TP, Ding F, Saikia N, Ke PC. Zinc-Epigallocatechin-3-gallate Network-Coated Nanocomposites against the Pathogenesis of Amyloid-Beta. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7777-7792. [PMID: 36724494 PMCID: PMC10037301 DOI: 10.1021/acsami.2c20334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The aggregation of amyloid beta (Aβ) is a hallmark of Alzheimer's disease (AD), a major cause of dementia and an unmet challenge in modern medicine. In this study, we constructed a biocompatible metal-phenolic network (MPN) comprising a polyphenol epigallocatechin gallate (EGCG) scaffold coordinated by physiological Zn(II). Upon adsorption onto gold nanoparticles, the MPN@AuNP nanoconstruct elicited a remarkable potency against the amyloid aggregation and toxicity of Aβ in vitro. The superior performance of MPN@AuNP over EGCG@AuNP was attributed to the porosity and hence larger surface area of the MPN in comparison with that of EGCG alone. The atomic detail of Zn(II)-EGCG coordination was unraveled by density functional theory calculations and the structure and dynamics of Aβ aggregation modulated by the MPN were further examined by discrete molecular dynamics simulations. As MPN@AuNP also displayed a robust capacity to cross a blood-brain barrier model through the paracellular pathway, and given the EGCG's function as an anti-amyloidosis and antioxidation agent, this MPN-based strategy may find application in regulating the broad AD pathology beyond protein aggregation inhibition.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yuhuan Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Aparna Nandakumar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - John F. Quinn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Thomas P. Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Nabanita Saikia
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| |
Collapse
|
39
|
Puentes-Díaz N, Chaparro D, Morales-Morales D, Flores-Gaspar A, Alí-Torres J. Role of Metal Cations of Copper, Iron, and Aluminum and Multifunctional Ligands in Alzheimer's Disease: Experimental and Computational Insights. ACS OMEGA 2023; 8:4508-4526. [PMID: 36777601 PMCID: PMC9909689 DOI: 10.1021/acsomega.2c06939] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/30/2022] [Indexed: 05/15/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, affecting millions of people around the world. Even though the causes of AD are not completely understood due to its multifactorial nature, some neuropathological hallmarks of its development have been related to the high concentration of some metal cations. These roles include the participation of these metal cations in the production of reactive oxygen species, which have been involved in neuronal damage. In order to avoid the increment in the oxidative stress, multifunctional ligands used to coordinate these metal cations have been proposed as a possible treatment to AD. In this review, we present the recent advances in experimental and computational works aiming to understand the role of two redox active and essential transition-metal cations (Cu and Fe) and one nonbiological metal (Al) and the recent proposals on the development of multifunctional ligands to stop or revert the damaging effects promoted by these metal cations.
Collapse
Affiliation(s)
- Nicolás Puentes-Díaz
- Departamento
de Química, Universidad Nacional
de Colombia−Sede Bogotá, Bogotá 11301, Colombia
| | - Diego Chaparro
- Departamento
de Química, Universidad Nacional
de Colombia−Sede Bogotá, Bogotá 11301, Colombia
- Departamento
de Química, Universidad Militar Nueva
Granada, Cajicá 250240, Colombia
| | - David Morales-Morales
- Instituto
de Química, Universidad Nacional Autónoma de México,
Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Areli Flores-Gaspar
- Departamento
de Química, Universidad Militar Nueva
Granada, Cajicá 250240, Colombia
- Areli Flores-Gaspar − Departamento de Química,
Universidad Militar Nueva
Granada, Cajicá, 250247, Colombia.
| | - Jorge Alí-Torres
- Departamento
de Química, Universidad Nacional
de Colombia−Sede Bogotá, Bogotá 11301, Colombia
- Jorge Alí-Torres − Departamento de Química, Universidad Nacional de
Colombia, Sede Bogotá,11301, Bogotá, Colombia.
| |
Collapse
|
40
|
Hajjo R, Sabbah DA, Abusara OH, Al Bawab AQ. A Review of the Recent Advances in Alzheimer's Disease Research and the Utilization of Network Biology Approaches for Prioritizing Diagnostics and Therapeutics. Diagnostics (Basel) 2022; 12:diagnostics12122975. [PMID: 36552984 PMCID: PMC9777434 DOI: 10.3390/diagnostics12122975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a polygenic multifactorial neurodegenerative disease that, after decades of research and development, is still without a cure. There are some symptomatic treatments to manage the psychological symptoms but none of these drugs can halt disease progression. Additionally, over the last few years, many anti-AD drugs failed in late stages of clinical trials and many hypotheses surfaced to explain these failures, including the lack of clear understanding of disease pathways and processes. Recently, different epigenetic factors have been implicated in AD pathogenesis; thus, they could serve as promising AD diagnostic biomarkers. Additionally, network biology approaches have been suggested as effective tools to study AD on the systems level and discover multi-target-directed ligands as novel treatments for AD. Herein, we provide a comprehensive review on Alzheimer's disease pathophysiology to provide a better understanding of disease pathogenesis hypotheses and decipher the role of genetic and epigenetic factors in disease development and progression. We also provide an overview of disease biomarkers and drug targets and suggest network biology approaches as new tools for identifying novel biomarkers and drugs. We also posit that the application of machine learning and artificial intelligence to mining Alzheimer's disease multi-omics data will facilitate drug and biomarker discovery efforts and lead to effective individualized anti-Alzheimer treatments.
Collapse
Affiliation(s)
- Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27599, USA
- National Center for Epidemics and Communicable Disease Control, Amman 11118, Jordan
- Correspondence:
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Osama H. Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Abdel Qader Al Bawab
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| |
Collapse
|
41
|
Jayaraman A, Reynolds R. Diverse pathways to neuronal necroptosis in Alzheimer's disease. Eur J Neurosci 2022; 56:5428-5441. [PMID: 35377966 DOI: 10.1111/ejn.15662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
Necroptosis, or programmed necrosis, involves the kinase activity of receptor interacting kinases 1 and 3, the activation of the pseudokinase mixed lineage kinase domain-like and formation of a complex called the necrosome. It is one of the non-apoptotic cell death pathways that has gained interest in the recent years, especially as a neuronal cell death pathway occurring in Alzheimer's disease. In this review, we focus our discussion on the various molecular mechanisms that could trigger neuronal death through necroptosis and have been shown to play a role in Alzheimer's disease pathogenesis and neuroinflammation. We describe how each of these pathways, such as tumour necrosis factor signalling, reactive oxygen species, endosomal sorting complex, post-translational modifications and certain individual molecules, is dysregulated or activated in Alzheimer's disease, and how this dysregulation/activation could trigger necroptosis. At the cellular level, many of these molecular mechanisms and pathways may act in parallel to synergize with each other or inhibit one another, and changes in the balance between them may determine different cellular vulnerabilities at different disease stages. However, from a therapeutic standpoint, it remains unclear how best to target one or more of these pathways, given that such diverse pathways could all contribute to necroptotic cell death in Alzheimer's disease.
Collapse
Affiliation(s)
- Anusha Jayaraman
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Richard Reynolds
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
42
|
Ji Y, Zheng K, Li S, Ren C, Shen Y, Tian L, Zhu H, Zhou Z, Jiang Y. Insight into the potential role of ferroptosis in neurodegenerative diseases. Front Cell Neurosci 2022; 16:1005182. [PMID: 36385946 PMCID: PMC9647641 DOI: 10.3389/fncel.2022.1005182] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Ferroptosis is a newly discovered way of programmed cell death, mainly caused by the accumulation of iron-dependent lipid peroxides in cells, which is morphologically, biochemically and genetically different from the previously reported apoptosis, necrosis and autophagy. Studies have found that ferroptosis plays a key role in the occurrence and development of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and vascular dementia, which suggest that ferroptosis may be involved in regulating the progression of neurodegenerative diseases. At present, on the underlying mechanism of ferroptosis in neurodegenerative diseases is still unclear, and relevant research is urgently needed to clarify the regulatory mechanism and provide the possibility for the development of agents targeting ferroptosis. This review focused on the regulatory mechanism of ferroptosis and its various effects in neurodegenerative diseases, in order to provide reference for the research on ferroptosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yingying Ji
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Kai Zheng
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Shiming Li
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Caili Ren
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Tian
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Haohao Zhu
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
- *Correspondence: Haohao Zhu
| | - Zhenhe Zhou
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
- Zhenhe Zhou
| | - Ying Jiang
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
- Ying Jiang
| |
Collapse
|
43
|
Zhang X, Zhu Z, Liu W, Gao F, Guo J, Song B, Lee LP, Zhang F. The Selective Function of Quantum Biological Electron Transfer between DNA Bases and Metal Ions in DNA Replication. J Phys Chem Lett 2022; 13:7779-7787. [PMID: 35969805 DOI: 10.1021/acs.jpclett.2c01877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal ions play vital roles in the electron transfer between biological molecules in humans, animals, and plants. However, the electron transfer between metal ions and nucleic acids and its impact on DNA-ion binding during DNA replication has been ignored. Here, we present a long-range quantum biological electron transfer (QBET) between DNA bases and metal ions and its selective function of DNA-ion binding in DNA replication. We discover biophysical DNA-ion binding and create biological filters that allow selective DNA replication by dual modulators of the valence and concentration of metal ions. QBET-based DNA replication filters provide powerful tools for ultrasensitive polymerase chain reaction (PCR) to selectively amplify target sequences with a discrete concentration window of metal ions; for example, Au3+ exhibits a concentration window that is approximately 3 orders of magnitude lower than that of Na+. DNA-ion filters provide new perspectives into metal ion-mediated QBET in DNA replication and hold great potential in life sciences and medical applications.
Collapse
Affiliation(s)
- Xianjing Zhang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhi Zhu
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenpeng Liu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Feng Gao
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Guo
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bo Song
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Luke P Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, California 94720, United States
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Feng Zhang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Oral Disease, Stomatology Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
44
|
Doroszkiewicz J, Mroczko B. New Possibilities in the Therapeutic Approach to Alzheimer's Disease. Int J Mol Sci 2022; 23:8902. [PMID: 36012193 PMCID: PMC9409036 DOI: 10.3390/ijms23168902] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 01/17/2023] Open
Abstract
Despite the fact that Alzheimer's disease (AD) is the most common cause of dementia, after many years of research regarding this disease, there is no casual treatment. Regardless of the serious public health threat it poses, only five medical treatments for Alzheimer's disease have been authorized, and they only control symptoms rather than changing the course of the disease. Numerous clinical trials of single-agent therapy did not slow the development of disease or improve symptoms when compared to placebo. Evidence indicates that the pathological alterations linked to AD start many years earlier than a manifestation of the disease. In this pre-clinical period before the neurodegenerative process is established, pharmaceutical therapy might prove invaluable. Although recent findings from the testing of drugs such as aducanumab are encouraging, they should nevertheless be interpreted cautiously. Such medications may be able to delay the onset of dementia, significantly lowering the prevalence of the disease, but are still a long way from having a clinically effective disease-modifying therapy.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-269 Bialystok, Poland
| |
Collapse
|
45
|
Aβ and Tau Interact with Metal Ions, Lipid Membranes and Peptide-Based Amyloid Inhibitors: Are These Common Features Relevant in Alzheimer’s Disease? Molecules 2022; 27:molecules27165066. [PMID: 36014310 PMCID: PMC9414153 DOI: 10.3390/molecules27165066] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, the amyloid hypothesis, i.e., the abnormal accumulation of toxic Aβ assemblies in the brain, has been considered the mainstream concept sustaining research in Alzheimer’s Disease (AD). However, the course of cognitive decline and AD development better correlates with tau accumulation rather than amyloid peptide deposition. Moreover, all clinical trials of amyloid-targeting drug candidates have been unsuccessful, implicitly suggesting that the amyloid hypothesis needs significant amendments. Accumulating evidence supports the existence of a series of potentially dangerous relationships between Aβ oligomeric species and tau protein in AD. However, the molecular determinants underlying pathogenic Aβ/tau cross interactions are not fully understood. Here, we discuss the common features of Aβ and tau molecules, with special emphasis on: (i) the critical role played by metal dyshomeostasis in promoting both Aβ and tau aggregation and oxidative stress, in AD; (ii) the effects of lipid membranes on Aβ and tau (co)-aggregation at the membrane interface; (iii) the potential of small peptide-based inhibitors of Aβ and tau misfolding as therapeutic tools in AD. Although the molecular mechanism underlying the direct Aβ/tau interaction remains largely unknown, the arguments discussed in this review may help reinforcing the current view of a synergistic Aβ/tau molecular crosstalk in AD and stimulate further research to mechanism elucidation and next-generation AD therapeutics.
Collapse
|
46
|
Gao J, Gao A, Zhou H, Chen L. The role of metal ions in the Golgi apparatus. Cell Biol Int 2022; 46:1309-1319. [PMID: 35830695 DOI: 10.1002/cbin.11848] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 11/09/2022]
Abstract
The Golgi apparatus is a membrane-bound organelle that functions as a central role in the secretory pathway. Since the discovery of the Golgi apparatus, its structure and function have attracted ever-increasing attention from researchers. Recently, it has been demonstrated that metal ions are necessary for the Golgi apparatus to maintain its proper structure and functions. Given that metal ions play an important role in various biological processes, their abnormal homeostasis is related to many diseases. Therefore, in this paper, we reviewed the uptake and release mechanisms of the Golgi apparatus Ca2+ , Cu, and Zn2+ . Furthermore, we describe the diseases associated with Golgi apparatus Ca2+ , Cu, and Zn2+ imbalance.
Collapse
Affiliation(s)
- Jiayin Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Anbo Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Hong Zhou
- Department of Radiology of the First Affiliated Hospital of University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
47
|
A Review on the Recent Advancements on Therapeutic Effects of Ions in the Physiological Environments. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4020026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review focuses on the therapeutic effects of ions when released in physiological environments. Recent studies have shown that metallic ions like Ag+, Sr2+, Mg2+, Mn2+, Cu2+, Ca2+, P+5, etc., have shown promising results in drug delivery systems and regenerative medicine. These metallic ions can be loaded in nanoparticles, mesoporous bioactive glass nanoparticles (MBGNs), hydroxyapatite (HA), calcium phosphates, polymeric coatings, and salt solutions. The metallic ions can exhibit different functions in the physiological environment such as antibacterial, antiviral, anticancer, bioactive, biocompatible, and angiogenic effects. Furthermore, the metals/metalloid ions can be loaded into scaffolds to improve osteoblast proliferation, differentiation, bone development, fibroblast growth, and improved wound healing efficacy. Moreover, different ions possess different therapeutic limits. Therefore, further mechanisms need to be developed for the highly controlled and sustained release of these ions. This review paper summarizes the recent progress in the use of metallic/metalloid ions in regenerative medicine and encourages further study of ions as a solution to cure diseases.
Collapse
|
48
|
Kou X, Hu C, Shi X, Li X, Yang A, Shen R. A multifunctional metal regulator as the potential theranostic agent: Design, synthesis, anti-AD activities and metallic ion sensing properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121110. [PMID: 35276472 DOI: 10.1016/j.saa.2022.121110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Although there is no cure for Alzheimer's disease (AD) due to its complex pathogenesis, early detection and treatment can help delay the development of the disease. So, it is necessary to develop multifunctional metal regulators that can integrate the therapeutics and diagnostics effect against AD. In this work, N-(anthracene-9-ylmethylene)benzohydrazide (probe 1), a fluorescent probe with imine and carbonyl as chelating sites was designed and synthesized. Results showed that 1 had good activities related to AD, such as regulation of metal homeostasis, inhibition of β-amyloid (Aβ) aggregation and scavenging of reactive oxygen species. The selectivity experiment showed that probe 1 had a good recognition effect on Cu2+. Fluorescence imaging assay also indicated that probe 1 had a good fluorescence imaging effect on Cu2+ in living cells. Furthermore, probe 1 had showed no cytotoxicity and good BBB permeability. These results indicated that probe 1 had potential diagnostic and therapeutic capabilities, and can be used as the multifunctional theranostic agent for AD.
Collapse
Affiliation(s)
- Xiaodi Kou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Chengting Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xuli Shi
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xingying Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
49
|
Wang F, Wang J, Shen Y, Li H, Rausch WD, Huang X. Iron Dyshomeostasis and Ferroptosis: A New Alzheimer’s Disease Hypothesis? Front Aging Neurosci 2022; 14:830569. [PMID: 35391749 PMCID: PMC8981915 DOI: 10.3389/fnagi.2022.830569] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Iron plays a crucial role in many physiological processes of the human body, but iron is continuously deposited in the brain as we age. Early studies found iron overload is directly proportional to cognitive decline in Alzheimer’s disease (AD). Amyloid precursor protein (APP) and tau protein, both of which are related to the AD pathogenesis, are associated with brain iron metabolism. A variety of iron metabolism-related proteins have been found to be abnormally expressed in the brains of AD patients and mouse models, resulting in iron deposition and promoting AD progression. Amyloid β (Aβ) and hyperphosphorylated tau, two pathological hallmarks of AD, can also promote iron deposition in the brain, forming a vicious cycle of AD development-iron deposition. Iron deposition and the subsequent ferroptosis has been found to be a potential mechanism underlying neuronal loss in many neurodegenerative diseases. Iron chelators, antioxidants and hepcidin were found useful for treating AD, which represents an important direction for AD treatment research and drug development in the future. The review explored the deep connection between iron dysregulation and AD pathogenesis, discussed the potential of new hypothesis related to iron dyshomeostasis and ferroptosis, and summarized the therapeutics capable of targeting iron, with the expectation to draw more attention of iron dysregulation and corresponding drug development.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Institute of Integrated Traditional and Western Medicine, Beijing, China
| | - Jiandong Wang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Institute of Integrated Traditional and Western Medicine, Beijing, China
| | - Ying Shen
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Institute of Integrated Traditional and Western Medicine, Beijing, China
| | - Hao Li
- Department of General Diseases, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wolf-Dieter Rausch
- Department of Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Xiaobo Huang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Institute of Integrated Traditional and Western Medicine, Beijing, China
- *Correspondence: Xiaobo Huang,
| |
Collapse
|
50
|
Ho T, Ahmadi S, Kerman K. Do glutathione and copper interact to modify Alzheimer's disease pathogenesis? Free Radic Biol Med 2022; 181:180-196. [PMID: 35092854 DOI: 10.1016/j.freeradbiomed.2022.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder first described in 1906 that is currently estimated to impact ∼40 million people worldwide. Extensive research activities have led to a wealth of information on the pathogenesis, hallmarks, and risk factors of AD; however, therapeutic options remain extremely limited. The large number of pathogenic factors that have been reported to potentially contribute to AD include copper dyshomeostasis as well as increased oxidative stress, which is related to alterations to molecular antioxidants like glutathione (GSH). While the individual roles of GSH and copper in AD have been studied by many research groups, their interactions have received relatively little attention, although they appear to interact and affect each other's regulation. Existing knowledge on how GSH-copper interactions may affect AD is sparse and lacks focus. This review first highlights the most relevant individual roles that GSH and copper play in physiology and AD, and then collects and assesses research concerning their interactions, in an effort to provide a more accessible and understandable picture of the role of GSH, copper, and their interactions in AD.
Collapse
Affiliation(s)
- Talia Ho
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Soha Ahmadi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|