1
|
Girase R, Gujarathi NA, Sukhia A, Kota SSN, Patil TS, Aher AA, Agrawal YO, Ojha S, Sharma C, Goyal SN. Targeted nanoliposomes for precision rheumatoid arthritis therapy: a review on mechanisms and in vivo potential. Drug Deliv 2025; 32:2459772. [PMID: 39891600 PMCID: PMC11789225 DOI: 10.1080/10717544.2025.2459772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/26/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory immune-triggered disease that causes synovitis, cartilage degradation, and joint injury. In nanotechnology, conventional liposomes were extensively investigated for RA. However, they frequently undergo rapid clearance, reducing circulation time and therapeutic efficacy. Additionally, their stability in the bloodstream is often compromised, resulting in premature drug release. The current review explores the potential of targeted liposomal-based nanosystems in the treatment of RA. It highlights the pathophysiology of RA, explores selective targeting sites, and elucidates diverse mechanisms of novel liposomal types and their applications. Furthermore, the targeting strategies of pH-sensitive, flexible, surface-modified, PEGylated, acoustic, ROS-mediated, and biofunctionalized liposomes are addressed. Targeted nanoliposomes showed potential in precisely delivering drugs to CD44, SR-A, FR-β, FLS, and toll-like receptors through the high affinity of ligands. In vitro studies interpreted stable release profiles and improved stability. Ex vivo studies on skin demonstrated that ultradeformable and glycerol-conjugated liposomes enhanced drug penetrability. In vivo experiments for liposomal types in the arthritis rat model depicted remarkable efficacy in reducing joint swelling, pro-inflammatory cytokines, and synovial hyperplasia. In conclusion, these targeted liposomes represented a significant leap forward in drug delivery, offering effective therapeutic options for RA. In the future, integrating these advanced liposomes with artificial intelligence, immunotherapy, and precision medicine holds great promise.
Collapse
Affiliation(s)
- Rushikesh Girase
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, India
| | | | - Amey Sukhia
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sri Sai Nikitha Kota
- Department of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, USA
| | | | - Abhijeet A. Aher
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, India
| | | | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, India
| |
Collapse
|
2
|
Chen X, Guan J, Lin Y, Luo H, Liu J, Ma J, Li C, Zhang D, Zang Y, Lai F. Design and synthesis of novel sulfur-substituted triptolide with the ability to induce autophagy through inhibition of SRSF1 expression. Eur J Med Chem 2025; 287:117342. [PMID: 39908790 DOI: 10.1016/j.ejmech.2025.117342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Six sulfur-substituted triptolide (TPL) analogs (STP1-6) were synthesized and evaluated for their biological functions. Among them, STP2 had significant antitumor activity both in vitro and in vivo. Notably, the intraperitoneal injections of 1 g/kg STP2 did not cause mice death and apparent pathological damage, while the mice in the TPL group (2 mg/kg) lost weight and all died within 4 days. The antitumor effect of STP2 could mediated by the inhibition of SRSF1 expression to regulate Bcl-x pre-mRNA splicing, which in turn induces autophagy and promotes cell death. This mechanism was the first time discovered in the field of TPL research. These results indicated that compound STP2 could be a promising lead compound for further studies.
Collapse
Affiliation(s)
- Xinyi Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Jichen Guan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yuzhi Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Haowen Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Junyi Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Jie Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Chuangjun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Dongming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| | - Yingda Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Fangfang Lai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| |
Collapse
|
3
|
Nazakat L, Ali S, Summer M, Nazakat F, Noor S, Riaz A. Pharmacological modes of plant-derived compounds for targeting inflammation in rheumatoid arthritis: A comprehensive review on immunomodulatory perspective. Inflammopharmacology 2025; 33:1537-1581. [PMID: 40074996 DOI: 10.1007/s10787-025-01664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/28/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is one of the most prevalent autoimmune, chronic, inflammatory disease characterized by joint inflammation, synovial swelling, loss of articular structures, swelling, and pain. RA is a major cause of discomfort and disability worldwide, associated with infectious agents, genetic determinants, epigenetic factors, advancing age, obesity, and smoking. Although conventional therapies for RA alleviate the symptoms, but their long-term use is associated with significant side effects. This necessitates the urge to discover complementary and alternative medicine from natural products with minimum side effects. PURPOSE In this review, natural product's potential mechanism of action against RA has been documented in the setting of in-vivo, in-vitro and pre-clinical trials, which provides new treatment opportunities for RA patients. The bioefficacy of these natural product's bioactive compounds must be further studied to discover novel natural medications for RA with high selectivity, improved effectiveness, and economic replacement with minimum side effects. STUDY DESIGN AND METHODS The current review article was designed systematically in chronological order. Plants and their phytochemicals are discussed in an order concerning their mode of action. All the mechanisms of action are depicted in diagrams which are thoroughly generated by the Chembiodraw to maintain the integrity of the work. Moreover, by incorporating the recent data with simple language which is not incorporated previously, we tried to provide a molecular insight to the readers of every level and ethnicity. Moreover, Google Scholar, PubMed, ResearchGate, and Science Direct databases were used to collect the data. SOLUTION Traditionally, various plant extracts and bioactive compounds are effectively used against RA, but their comprehensive pharmacological mechanistic actions are rarely discussed. Therefore, the objective of this study is to systematically review the efficacy and proposed mechanisms of action of different plants and their bioactive compounds including Tripterygium wilfordii Hook F (celastrol and triptolide), Nigella sativa (thymoquinone), Zingiber officinale (shogaols, zingerone), Boswellia serrata (boswellic acids), Curcuma longa (curcumin), and Syzygium aromaticum (eugenol) against rheumatoid arthritis. CONCLUSION These plants have strong anti-inflammatory, anti-oxidant, and anti-arthritic effects in different study designs of rheumatoid arthritis with negligible side effects. Phytomedicines could revolutionize pharmacology as they act through alternative pathways hence seeming biocompatible.
Collapse
Affiliation(s)
- Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Fakiha Nazakat
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
4
|
Zhang C, Weng Y, Wang H, Zhan S, Li C, Zheng D, Lin Q. A synergistic effect of triptolide and curcumin on rheumatoid arthritis by improving cell proliferation and inducing cell apoptosis via inhibition of the IL-17/NF-κB signaling pathway. Int Immunopharmacol 2024; 142:112953. [PMID: 39226828 DOI: 10.1016/j.intimp.2024.112953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive, systemic autoimmune disease. While triptolide (TPL) and curcumin (CUR) are known to have multiple beneficial effects on RA, the combined effect of TPL and CUR remains unexplored. This study aimed to investigate their synergistic effect on cell proliferation and apoptosis via the IL-17/NF-κB signaling pathway. The collagen-induced arthritis (CIA) rat model was established, showing severe joint and synovial damage compared to normal rats. Treatment with TPL and CUR reduced the severity of RA in the CIA rat model and alleviated serum inflammatory cytokines, such as rheumatoid factor, IL-17, TNF-α, IL-1β, and IL-6. The elevated levels of IL-17 and NF-κB in CIA rats were also inhibited, and the resistant apoptosis was aggravated by TPL and CUR. In vitro, the improvement of cell proliferation and induction of apoptosis were observed in LPS-stimulated MH7A cells treated with TPL and CUR, associated with the inhibition of the IL-17/NF-κB signaling pathway. Taken together, a synergistic effect of TPL and CUR on RA may involve relieving symptoms, improving excessive proliferation, inducing apoptosis resistance, and inhibiting the IL-17/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chaofeng Zhang
- Department of Hematology and Rheumatology, The Affiliated Hospital of Putian University, Fujian Province, China; School of Basic Medicine, Putian University, Fujian Province, China
| | - Yiyang Weng
- Pharmaceutical and Medical Technology College, Putian University, Fujian Province, China
| | - Haibin Wang
- Pharmaceutical and Medical Technology College, Putian University, Fujian Province, China
| | - Siting Zhan
- School of Basic Medicine, Putian University, Fujian Province, China
| | - Chaoqi Li
- Pharmaceutical and Medical Technology College, Putian University, Fujian Province, China
| | - Donghui Zheng
- Medical Image Center, The Affiliated Hospital of Putian University, Fujian Province, China
| | - Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Fujian Province, China.
| |
Collapse
|
5
|
Nabi T, Riyed TH, Ornob A. Deep learning based predictive modeling to screen natural compounds against TNF-alpha for the potential management of rheumatoid arthritis: Virtual screening to comprehensive in silico investigation. PLoS One 2024; 19:e0303954. [PMID: 39636801 PMCID: PMC11620472 DOI: 10.1371/journal.pone.0303954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/02/2024] [Indexed: 12/07/2024] Open
Abstract
Rheumatoid arthritis (RA) affects an estimated 0.1% to 2.0% of the world's population, leading to a substantial impact on global health. The adverse effects and toxicity associated with conventional RA treatment pathways underscore the critical need to seek potential new therapeutic candidates, particularly those of natural sources that can treat the condition with minimal side effects. To address this challenge, this study employed a deep-learning (DL) based approach to conduct a virtual assessment of natural compounds against the Tumor Necrosis Factor-alpha (TNF-α) protein. TNF-α stands out as the primary pro-inflammatory cytokine, crucial in the development of RA. Our predictive model demonstrated appreciable performance, achieving MSE of 0.6, MAPE of 10%, and MAE of 0.5. The model was then deployed to screen a comprehensive set of 2563 natural compounds obtained from the Selleckchem database. Utilizing their predicted bioactivity (pIC50), the top 128 compounds were identified. Among them, 68 compounds were taken for further analysis based on drug-likeness analysis. Subsequently, selected compounds underwent additional evaluation using molecular docking (< - 8.7 kcal/mol) and ADMET resulting in four compounds posing nominal toxicity, which were finally subjected to MD simulation for 200 ns. Later on, the stability of complexes was assessed via analysis encompassing RMSD, RMSF, Rg, H-Bonds, SASA, and Essential Dynamics. Ultimately, based on the total binding free energy estimated using the MM/GBSA method, Imperialine, Veratramine, and Gelsemine are proven to be potential natural inhibitors of TNF-α.
Collapse
Affiliation(s)
- Tasnia Nabi
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
| | - Tanver Hasan Riyed
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
| | - Akid Ornob
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
| |
Collapse
|
6
|
Li M, Li J, Tang Q, Zhu Y. Potential antitumor activity of triptolide and its derivatives: Focused on gynecological and breast cancers. Biomed Pharmacother 2024; 180:117581. [PMID: 39427548 DOI: 10.1016/j.biopha.2024.117581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Cancer remains one of the greatest global health concerns. This is especially true for gynecological cancers, which include cervical, ovarian, and endometrial cancers, and breast cancer. Natural products used for cancer treatment offer some unique advantages. Triptolide (TPL) is a biologically active terpenoid extracted from Tripterygium wilfordii, which exhibits anti-inflammatory, immunosuppressive, antitumor, and other pharmacological activities. However, clinical applications of TPL are restricted because of poor water solubility and severe cytotoxicity; to overcome these limitations, various TPL derivatives and drug delivery systems, especially nanocarriers, have been used. Furthermore, various preclinical and clinical studies have demonstrated that TPL and its derivatives exhibit excellent antitumor effects by targeting proteins involved in multiple signaling pathways. Here, we review the progress regarding novel drug delivery systems, antitumor activities, and molecular mechanisms of action of TPL and its derivatives against gynecological and breast cancers. TPL and its derivatives inhibit tumor growth, suppress tumor metastasis, and enhance the drug sensitization of resistant cancers. In addition, TPL and its derivatives exert synergistic antitumor effects against gynecological and breast cancers when combined with existing antitumor drugs, such as carboplatin, cisplatin, and PI3K inhibitors. Moreover, we highlight the clinical potential of TPL analogs against cancer from bench to bedside and their prospects for future applications in gynecologic and breast cancers.
Collapse
Affiliation(s)
- Mengjie Li
- College of Pharmacy, Qinghai University for Nationalities, Xining, China; Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jiamiao Li
- Department of Pharmacy, The Affilliated Chengdu 363 Hospital of Southwest Medical University, Chengdu, China
| | - Qing Tang
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yongxia Zhu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Huang D, Li N, Dong X. Advances in mRNA vaccine research in the field of quality control. Biologicals 2024; 88:101799. [PMID: 39504797 DOI: 10.1016/j.biologicals.2024.101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/12/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
In recent years, innovative research and development of mRNA vaccines have made remarkable achievements, especially in the context of pandemic infectious diseases such as the COVID-19 virus, and the need for rapid vaccine development has further fueled the rapid growth of this field. Nevertheless, there are still gaps in our understanding of the working mechanism of mRNA vaccines and their long-term safety, efficacy, and quality control. This article summarizes the development background and production process of mRNA vaccines, outlines existing reference guidelines, quality control projects, and testing methods at home and abroad, and also summarizes the difficulties and future prospects in research and development and quality control. It provides a reference for developing guidelines for mRNA vaccine production, quality control, and preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Daomiao Huang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, 200444, China; Suzhou Innovation Center of Shanghai University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
8
|
Li S, Chen Q, Zhang Y, Wang D, Hu H, Li J, Zhang C, Zhang J. Hyaluronic acid dissolving microneedle patch-assisted acupoint transdermal delivery of triptolide for effective rheumatoid arthritis treatment. Sci Rep 2024; 14:25256. [PMID: 39448702 PMCID: PMC11502756 DOI: 10.1038/s41598-024-76341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Triptolide (TP), a major active component of the herb Tripterygium wilfordii Hook F, has been shown excellent pharmacological effects on rheumatoid arthritis. However, TP is prone to causing severe organ toxicity, which limits its clinical application. In recent years, microneedle technology has provided a new option for the treatment of arthritis due to its advantages of efficient local transdermal drug delivery. In this study, we constructed a microneedle platform to deliver TP locally to the joints, thereby enhancing TP penetration and reducing systemic toxicity. Additionally, we investigated whether acupoint drug delivery can produce a synergistic effect of needles and drugs. First, TP was loaded into microneedles using polyvinylpyrrolidone and hyaluronic acid as matrix materials. Next, we established a rat adjuvant-induced arthritis (AIA) model to evaluate the therapeutic effect of TP-loaded microneedles. The experiments showed that TP-loaded microneedles alleviated the AIA rats' inflammatory response, joint swelling, and bone erosion. However, there was no significant difference in the therapeutic effect observed in the acupoint and non-acupoint administration groups. In conclusion, TP-loaded microneedles have the advantages of safety, convenience, and high efficacy over conventional administration routes, laying a foundation for the transdermal drug delivery system-based treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Siyao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Quanlong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Di Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
9
|
Carpena M, Pereira CSGP, Silva A, Barciela P, Jorge AOS, Perez-Vazquez A, Pereira AG, Barreira JCM, Oliveira MBPP, Prieto MA. Metabolite Profiling of Macroalgae: Biosynthesis and Beneficial Biological Properties of Active Compounds. Mar Drugs 2024; 22:478. [PMID: 39452886 PMCID: PMC11509156 DOI: 10.3390/md22100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Macroalgae are known as abundant sources of phytochemicals, which offer a plethora of beneficial biological properties. Besides being the most notable classes of compounds found in macroalgae, phlorotannins, bromophenols, and terpenoids comprise some of the most relevant for their biological properties. Phlorotannins, mainly prevalent in brown algae and structurally characterized as complex polyphenolic compounds derived from phloroglucinol units, possess robust antioxidant, anti-inflammatory, antitumor, and cytotoxic activities, modulated by factors such as the degree of polymerization and environmental conditions. Bromophenols, halogenated compounds found in algae and other marine organisms, exhibit significant antioxidant and antiviral properties. Their diverse structures and bromination patterns contribute to their potential as therapeutic and chemical defense agents. Pigments (chemically described as primary terpenoids) play a critical role in light absorption and energy transfer in macroalgae and are divided into three main groups: (i) carotenoids, which are primarily found in brown algae and provide photoprotective and antioxidant benefits; (ii) chlorophylls, known for facilitating the conversion of light into biological energy; and (iii) phycobilins, which are mostly found in red algae and play important roles in light absorption and energy transfer, besides providing remarkable health benefits. Finally, secondary terpenoids, which are particularly abundant in red algae (e.g., the Rhodomelaceae family) are central to cellular interactions and exhibit significant antioxidant, antimicrobial, antidiabetic, and anti-inflammatory properties. This study represents a detailed analysis of the biosynthesis, structural diversity, and biological activities of these macroalgae metabolites, emphasizing their potential biological properties.
Collapse
Affiliation(s)
- Maria Carpena
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| | - Cláudia S. G. P. Pereira
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.S.G.P.P.); (M.B.P.P.O.)
| | - Aurora Silva
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Paula Barciela
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| | - A. Olivia S. Jorge
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.S.G.P.P.); (M.B.P.P.O.)
| | - Ana Perez-Vazquez
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| | - Antia G. Pereira
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
- Investigaciones Agroalimentarias Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - João C. M. Barreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - M. Beatriz P. P. Oliveira
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.S.G.P.P.); (M.B.P.P.O.)
| | - Miguel A. Prieto
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| |
Collapse
|
10
|
Yao P, Tan Z, Weng B, Wang X, Wang H, Yang G, Sun F, Zhao Y. Locally Injectable Chitosan/β-Glycerophosphate Hydrogel Doped with Triptolide-Human Serum Albumin Nanoparticles for Treating Rheumatoid Arthritis. Pharmaceuticals (Basel) 2024; 17:1312. [PMID: 39458953 PMCID: PMC11510276 DOI: 10.3390/ph17101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) tends to occur in symmetrical joints and is always accompanied by synovial hyperplasia and cartilage damage. Triptolide (TP), an extract from Tripterygium, has anti-inflammatory and immunomodulatory properties and could be used in the treatment of RA. However, its poor water solubility and the multi-system lesions caused by the use of this substance limit its clinical application. Therefore, it would be of great significance to assemble a composite nanoparticle hydrogel and apply it to a collagen-induced arthritis (CIA) mouse model to investigate the therapeutic effect and biosafety of this compound. METHOD TP@HSA nanoparticles (TP@HSA NPs) were fabricated with a self-assembly method; a thermosensitive hydrogel loaded with the TP@HSA NPs (TP@HSA NP hydrogel) was prepared by using chitosan and beta- glycerophosphate (β-GP) and was then intra-articularly injected into CIA mice. The changes in joint swelling were measured with a digital caliper, and inflammation and cartilage damage were evaluated by using hematoxylin and eosin (H&E) and safranin O-fast green (SO&FG) staining, respectively. RESULTS TP@HSA NPs with an average diameter of 112 ± 2 nm were successfully assembled, and their encapsulation efficiency and drug loading efficiency were 47.6 ± 1.5% and 10.6 ± 3.3%, respectively. The TP@HSA NP hydrogel had a gelation temperature of 30.5 ± 0.2 °C, which allows for its injection at low temperatures and its sol-gel transformation under physiological conditions within 2 min, making it a suitable drug depot. The TP@HSA NP hydrogel was intra-articularly injected into CIA mice; it released TP locally and exerted anti-inflammatory and immunomodulatory effects, alleviating synovial inflammation and cartilage damage effectively. CONCLUSIONS We successfully fabricated a TP@HSA NP-loaded thermosensitive hydrogel with good biosafety, which can release TP slowly for the treatment of RA. Our study provides a basis for the development of TP-based innovative preparations and has good application prospects.
Collapse
Affiliation(s)
- Pu Yao
- School of Pharmacy& Bioengineering, Chongqing University of Technology, Chongqing 401320, China; (P.Y.)
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zirui Tan
- School of Pharmacy& Bioengineering, Chongqing University of Technology, Chongqing 401320, China; (P.Y.)
| | - Bangbi Weng
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaowen Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Hongping Wang
- School of Pharmacy& Bioengineering, Chongqing University of Technology, Chongqing 401320, China; (P.Y.)
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ge Yang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ying Zhao
- School of Pharmacy& Bioengineering, Chongqing University of Technology, Chongqing 401320, China; (P.Y.)
| |
Collapse
|
11
|
Wang F, Liu J. Regulating the lncRNA DSCR9/RPLP2/PI3K/AKT axis: an important mechanism of Xinfeng capsules in improving rheumatoid arthritis. Front Immunol 2024; 15:1465442. [PMID: 39376558 PMCID: PMC11456487 DOI: 10.3389/fimmu.2024.1465442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic and symmetrical polyarthritis. RA patients often experience inflammatory reaction and hypercoagulable state, which together affect the self-perception of patient (SPP). Currently, inhibiting inflammation and hypercoagulable state are common treatment methods for alleviating RA symptoms. Xinfeng Capsules (XFC) has a long history of treating RA, and can effectively improve the inflammatory response and hypercoagulable state of RA. However, the potential mechanisms have not yet been determined. Purpose and study design This study elucidated the action mechanism of XFC in RA inflammation and hypercoagulability through the lncDSCR9/RPLP2/PI3K/AKT axis. Results Clinical observations indicated that there was a strong link between XFC therapy and improvements in inflammatory and coagulation biomarkers, as well as SPP among RA patients. The subsequent network pharmacology analysis results identified the PI3K/AKT signaling pathway as a potential mediator for XFC treatment of RA. Furthermore, clinical validation and sequencing results revealed that lncRNA DSCR9 expression (a gene implicated in inflammation and coagulation) was negatively correlated with clinical markers of inflammation and coagulation, while positively correlated with SF-36 indicators. Notably, XFC treatment remarkably upregulated lncRNA DSCR9 expression and downregulated PI3K and AKT expressions, showing opposite expression trends to the untreated cases.The regulatory effect of XFC on the lncRNA DSCR9/RPLP2/PI3K/AKT axis in RA was investigated using techniques such as RNA pull-down assay, Western blot analysis, RT-PCR, and EdU assay. Moreover, the administration of the PI3K/AKT agonist RMH can counteract the effects of XFC on p-PI3K, p-AKT, inflammation, and hypercoagulability, reinforcing the role of pathway. Finally, animal studies utilizing HE staining and transmission electron microscopy (TEM) demonstrated that XFC notably decreased PI3K and AKT expressions in adjuvant-induced arthritis (AA) rats, mitigated inflammation and hypercoagulability, and enhanced the ultrastructure of synovial cells. These findings underscored the potential mechanisms of XFC in the treatment of RA. Conclusion Regulating the lncRNA DSCR9/RPLP2/PI3K/AKT axis may be an important mechanism by which XFC improved RA inflammatory response and hypercoagulable state.
Collapse
Affiliation(s)
- Fanfan Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, First Clinical Medical College, Hefei, Anhui, China
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jian Liu
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
12
|
Xu B, Wang Z, Zhang H, Xu X, Tang M, Wang G, Ding Z, Yu R, Ding M, Zhang T, Shi S. The Cytoprotective Effect of C60 Derivatives in the Self-Microemulsifying Drug Delivery System against Triptolide-Induced Cytotoxicity In Vitro. Molecules 2024; 29:4073. [PMID: 39274920 PMCID: PMC11396586 DOI: 10.3390/molecules29174073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
OBJECTIVE The aim of this study was to optimize the formulation of a C60-modified self-microemulsifying drug delivery system loaded with triptolide (C60-SMEDDS/TP) and evaluate the cytoprotective effect of the C60-SMEDDS/TP on normal human cells. RESULTS The C60-SMEDDS/TP exhibited rapid emulsification, an optimal particle size distribution of 50 ± 0.19 nm (PDI 0.211 ± 0.049), and a near-neutral zeta potential of -1.60 mV. The release kinetics of TP from the C60-SMEDDS/TP exhibited a sustained release profile and followed pseudo-first-order release kinetics. Cellular proliferation and apoptosis analysis indicated that the C60-SMEDDS/TP (with a mass ratio of TP: DSPE-PEG-C60 = 1:10) exhibited lower toxicity towards L02 and GES-1 cells. This was demonstrated by a higher IC50 (40.88 nM on L02 cells and 17.22 nM on GES-1 cells) compared to free TP (21.3 nM and 11.1 nM), and a lower apoptosis rate (20.8% on L02 cells and 26.3% on GES-1 cells, respectively) compared to free TP (50.5% and 47.0%) at a concentration of 50 nM. In comparison to the free TP group, L02 cells and GES-1 cells exposed to the C60-SMEDDS/TP exhibited a significant decrease in intracellular ROS and an increase in mitochondrial membrane potential (ΔψM). On the other hand, the C60-SMEDDS/TP demonstrated a similar inhibitory effect on BEL-7402 cells (IC50 = 28.9 nM) and HepG2 cells (IC50 = 107.6 nM), comparable to that of the free TP (27.2 nM and 90.4 nM). The C60-SMEDDS/TP group also exhibited a similar intracellular level of ROS and mitochondrial membrane potential compared to the SMEDDS/TP and free TP groups. METHOD Fullerenol-Grafted Distearoyl Phosphatidylethanolamine-Polyethylene Glycol (DSPE-PEG-C60) was synthesized and applied in the self-microemulsifying drug delivery system. The C60-SMEDDS/TP was formulated using Cremophor EL, medium-chain triglycerides (MCT), PEG-400, and DSPE-PEG-C60, and loaded with triptolide (TP). The toxicity and bioactivity of the C60-SMEDDS/TP were assessed using normal human liver cell lines (L02 cells), normal human gastric mucosal epithelial cell lines (GES-1 cells), and liver cancer cell lines (BEL-7402 cells and HepG2 cells). The production of reactive oxygen species (ROS) after the C60-SMEDDS/TP treatment was assessed using 2',7'-dichlorofluorescein diacetate (DCFDA) staining. The alterations in mitochondrial membrane potential (ΔψM) were assessed by measuring JC-1 fluorescence. CONCLUSIONS The cytoprotection provided by the C60-SMEDDS/TP favored normal cells (L02 and GES-1) over tumor cells (BEL-7402 and HepG2 cells) in vitro. This suggests a promising approach for the safe and effective treatment of TP.
Collapse
Affiliation(s)
- Beihua Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Zhenyu Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Huimin Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Xiao Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Mengjie Tang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Gang Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Zhongpeng Ding
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Ruihao Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Meihong Ding
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Ting Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Senlin Shi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| |
Collapse
|
13
|
Ren S, Xu Y, Dong X, Mu Q, Chen X, Yu Y, Su G. Nanotechnology-empowered combination therapy for rheumatoid arthritis: principles, strategies, and challenges. J Nanobiotechnology 2024; 22:431. [PMID: 39034407 PMCID: PMC11265020 DOI: 10.1186/s12951-024-02670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with multifactorial etiology and intricate pathogenesis. In RA, repeated monotherapy is frequently associated with inadequate efficacy, drug resistance, and severe side effects. Therefore, a shift has occurred in clinical practice toward combination therapy. However, conventional combination therapy encounters several hindrances, including low selectivity to arthritic joints, short half-lives, and varying pharmacokinetics among coupled drugs. Emerging nanotechnology offers an incomparable opportunity for developing advanced combination therapy against RA. First, it allows for co-delivering multiple drugs with augmented physicochemical properties, targeted delivery capabilities, and controlled release profiles. Second, it enables therapeutic nanomaterials development, thereby expanding combination regimens to include multifunctional nanomedicines. Lastly, it facilitates the construction of all-in-one nanoplatforms assembled with multiple modalities, such as phototherapy, sonodynamic therapy, and imaging. Thus, nanotechnology offers a promising solution to the current bottleneck in both RA treatment and diagnosis. This review summarizes the rationale, advantages, and recent advances in nano-empowered combination therapy for RA. It also discusses safety considerations, drug-drug interactions, and the potential for clinical translation. Additionally, it provides design tips and an outlook on future developments in nano-empowered combination therapy. The objective of this review is to achieve a comprehensive understanding of the mechanisms underlying combination therapy for RA and unlock the maximum potential of nanotechnology, thereby facilitating the smooth transition of research findings from the laboratory to clinical practice.
Collapse
Affiliation(s)
- Shujing Ren
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China
| | - Yuhang Xu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Xingpeng Dong
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Xia Chen
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China.
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| |
Collapse
|
14
|
Zúñiga-Hernandez J, Quiñones San Martin M, Figueroa B, Novoa U, Monsalve FA, Bacho M, San-Martin A, González DR. Azorella compacta Organic Extracts Exacerbate Metabolic Dysfunction-Associated Fatty Liver Disease in Mice Fed a High-Fat Diet. Pharmaceuticals (Basel) 2024; 17:746. [PMID: 38931413 PMCID: PMC11206875 DOI: 10.3390/ph17060746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Azorella compacta (A. compacta) is a shrub of the Andean Altiplano of Bolivia, Chile and Peru, consumed by local communities as a traditional medicine for several maladies such as diabetes, hepatic and inflammatory diseases. A. compacta is rich in mulinane- and azorellane-type diterpenoids. For two of these, acute hypoglycemic effects have been described, but the impact of A. compacta diterpenoids on fatty liver disease has not been investigated. Therefore, A. compacta organic fractions were prepared using petroleum ether, dichloromethane and methanol. Their content was characterized by UHPLC/MS, revealing the presence of ten diterpenoids, mainly mulinic acid, azorellanol and mulin-11,13-diene. Next, mice fed with a high-fat diet (HFD), a model of metabolic dysfunction-associated fatty liver disease (MAFLD), received one of the fractions in drinking water for two weeks. After this treatment, hepatic parameters were evaluated. The A. compacta fractions did not reduce hyperglycemia or body weight in the HFD-fed mice but increased the serum levels of hepatic transaminases (AST and ALT), reduced albumin and increased bilirubin, indicating hepatic damage, while histopathological alterations such as steatosis, inflammation and necrosis generated by the HFD were, overall, not ameliorated by the fractions. These results suggest that organic A. compacta extracts may generate hepatic complications in patients with MAFLD.
Collapse
Affiliation(s)
- Jessica Zúñiga-Hernandez
- Department of Basic Biomedical Sciences, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; (J.Z.-H.)
| | - Matías Quiñones San Martin
- Department of Basic Biomedical Sciences, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; (J.Z.-H.)
- Doctorado en Ciencias, Mención I+D de Productos Bioactivos, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3341717, Chile
| | - Benjamín Figueroa
- Department of Basic Biomedical Sciences, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; (J.Z.-H.)
| | - Ulises Novoa
- Department of Basic Biomedical Sciences, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; (J.Z.-H.)
| | - Francisco A. Monsalve
- Department of Preclinical Sciences, Faculty of Medicine, Universidad Católica del Maule, Talca 3466706, Chile;
| | - Mitchell Bacho
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Laboratorio de Síntesis Orgánica y Organometálica, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Aurelio San-Martin
- Departamento de Ciencias y Recursos Naturales, Facultad de Ciencias, Universidad de Magallanes, Punta Arenas 6200112, Chile
| | - Daniel R. González
- Department of Basic Biomedical Sciences, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; (J.Z.-H.)
| |
Collapse
|
15
|
Wang T, Huang C, Fang Z, Bahatibieke A, Fan D, Wang X, Zhao H, Xie Y, Qiao K, Xiao C, Zheng Y. A dual dynamically cross-linked hydrogel promotes rheumatoid arthritis repair through ROS initiative regulation and microenvironment modulation-independent triptolide release. Mater Today Bio 2024; 26:101042. [PMID: 38660473 PMCID: PMC11040138 DOI: 10.1016/j.mtbio.2024.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
High oxidative stress and inflammatory cell infiltration are major causes of the persistent bone erosion and difficult tissue regeneration in rheumatoid arthritis (RA). Triptolide (TPL) has become a highly anticipated anti-rheumatic drug due to its excellent immunomodulatory and anti-inflammatory effects. However, the sudden drug accumulation caused by the binding of "stimulus-response" and "drug release" in a general smart delivery system is difficult to meet the shortcoming of extreme toxicity and the demand for long-term administration of TPL. Herein, we developed a dual dynamically cross-linked hydrogel (SPT@TPL), which demonstrated sensitive RA microenvironment regulation and microenvironment modulation-independent TPL release for 30 days. The abundant borate ester/tea polyphenol units in SPT@TPL possessed the capability to respond and regulate high reactive oxygen species (ROS) levels on-demand. Meanwhile, based on its dense dual crosslinked structure as well as the spontaneous healing behavior of numerous intermolecular hydrogen bonds formed after the breakage of borate ester, TPL could remain stable and slowly release under high ROS environments of RA, which dramatically reduced the risk of TPL exerting toxicity while maximized its long-term efficacy. Through the dual effects of ROS regulation and TPL sustained-release, SPT@TPL alleviated oxidative stress and reprogrammed macrophages into M2 phenotype, showing marked inhibition of inflammation and optimal regeneration of articular cartilage in RA rat model. In conclusion, this hydrogel platform with both microenvironment initiative regulation and TPL long-term sustained release provides a potential scheme for rheumatoid arthritis.
Collapse
Affiliation(s)
- Tianyang Wang
- School of Material Science & Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Cheng Huang
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ziyuan Fang
- School of Material Science & Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Abudureheman Bahatibieke
- School of Material Science & Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Danping Fan
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Wang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Hongyan Zhao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajie Xie
- School of Material Science & Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kun Qiao
- School of Material Science & Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yudong Zheng
- School of Material Science & Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
16
|
Nkeck JR, Tchuisseu-Kwangoua AL, Pelda A, Tamko WC, Hamadjoda S, Essama DB, Fojo B, Niasse M, Diallo S, Ngandeu-Singwé M. Current Approaches to Prevent or Reverse Microbiome Dysbiosis in Chronic Inflammatory Rheumatic Diseases. Mediterr J Rheumatol 2024; 35:220-233. [PMID: 39211023 PMCID: PMC11350408 DOI: 10.31138/mjr.240224.cap] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 09/04/2024] Open
Abstract
Advances in knowledge of the microbiome and its relationship with the immune system have led to a better understanding of the pathogenesis of chronic inflammatory rheumatic diseases (CIRD). Indeed, the microbiome dysbiosis now occupies a particular place with implications for the determinism and clinical expression of CIRD, as well as the therapeutic response of affected patients. Several approaches exist to limit the impact of the microbiome during CIRD. This review aimed to present current strategies to prevent or reverse microbiome dysbiosis based on existing knowledge, in order to provide practical information to healthcare professionals treating patients suffering from CIRD.
Collapse
Affiliation(s)
- Jan René Nkeck
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Ange Larissa Tchuisseu-Kwangoua
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Adeline Pelda
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Wilson Chia Tamko
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Saquinatou Hamadjoda
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Doris Bibi Essama
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Baudelaire Fojo
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Moustapha Niasse
- Department of Rheumatology, Dantec Teaching Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Saïdou Diallo
- Department of Rheumatology, Dantec Teaching Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Madeleine Ngandeu-Singwé
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| |
Collapse
|
17
|
Gao C, Song XD, Chen FH, Wei GL, Guo CY. The protective effect of natural medicines in rheumatoid arthritis via inhibit angiogenesis. Front Pharmacol 2024; 15:1380098. [PMID: 38881875 PMCID: PMC11176484 DOI: 10.3389/fphar.2024.1380098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024] Open
Abstract
Rheumatoid arthritis is a chronic immunological disease leading to the progressive bone and joint destruction. Angiogenesis, accompanied by synovial hyperplasia and inflammation underlies joint destruction. Delaying or even blocking synovial angiogenesis has emerged as an important target of RA treatment. Natural medicines has a long history of treating RA, and numerous reports have suggested that natural medicines have a strong inhibitory activity on synovial angiogenesis, thereby improving the progression of RA. Natural medicines could regulate the following signaling pathways: HIF/VEGF/ANG, PI3K/Akt pathway, MAPKs pathway, NF-κB pathway, PPARγ pathway, JAK2/STAT3 pathway, etc., thereby inhibiting angiogenesis. Tripterygium wilfordii Hook. f. (TwHF), sinomenine, and total glucoside of Paeonia lactiflora Pall. Are currently the most representative of all natural products worthy of development and utilization. In this paper, the main factors affecting angiogenesis were discussed and different types of natural medicines that inhibit angiogenesis were systematically summarized. Their specific anti-angiogenesis mechanisms are also reviewed which aiming to provide new perspective and options for the management of RA by targeting angiogenesis.
Collapse
Affiliation(s)
- Chang Gao
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Xiao-Di Song
- Gannan Medical University, Jiangxi, Ganzhou, China
| | - Fang-Hui Chen
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Gui-Lin Wei
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Chun-Yu Guo
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| |
Collapse
|
18
|
Ma X, Yang Y, Li H, Luo Z, Wang Q, Yao X, Tang F, Huang Y, Ling Y, Ma W. Periplogenin inhibits pyroptosis of fibroblastic synoviocytes in rheumatoid arthritis through the NLRP3/Caspase-1/GSDMD signaling pathway. Int Immunopharmacol 2024; 133:112041. [PMID: 38636373 DOI: 10.1016/j.intimp.2024.112041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Although the pathogenesis of rheumatoid arthritis (RA) remains unclear, an increasing number of studies have confirmed that pyroptosis of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) is an important factor affecting the progression of RA. Periplogenin (PPN) is a natural cardiac glycoside; reportedly, it exerts anti-inflammatory and analgesic effects in diseases by inhibiting cell growth and migration. This study aimed to determine the effect of PPN on the growth, migration, and invasion of RA-FLS and the potential mechanism of pyroptosis regulation. We discovered that PPN could inhibit the migration and invasion abilities of RA-FLS and block their growth cycle, down-regulate the secretion and activation of NLRP3, Caspase-1, GSDMD, IL-1β, and IL-18, and reduce the number of pyroptosis. In summary, PPN inhibited pyroptosis, reduced the release of inflammatory factors, and improved RA-FLS inflammation by regulating the NLRP3/Caspase-1/GSDMD signaling pathway.
Collapse
Affiliation(s)
- Xi Ma
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - YuZheng Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Hao Li
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - ZeHong Luo
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - QiuYi Wang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - XueMing Yao
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Fang Tang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Ying Huang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yi Ling
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.
| | - WuKai Ma
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.
| |
Collapse
|
19
|
Zou J, Li M, Liu Z, Luo W, Han S, Xiao F, Tao W, Wu Q, Xie T, Kong N. Unleashing the potential: integrating nano-delivery systems with traditional Chinese medicine. NANOSCALE 2024; 16:8791-8806. [PMID: 38606497 DOI: 10.1039/d3nr06102g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
This review explores the potential of integrating nano-delivery systems with traditional Chinese herbal medicine, acupuncture, and Chinese medical theory. It highlights the intersections and potential of nano-delivery systems in enhancing the effectiveness of traditional herbal medicine and acupuncture treatments. In addition, it discusses how the integration of nano-delivery systems with Chinese medical theory can modernize herbal medicine and make it more readily accessible on a global scale. Finally, it analyzes the challenges and future directions in this field.
Collapse
Affiliation(s)
- Jianhua Zou
- State Key Laboratory of Quality Research in Chinese Medicines, and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Meng Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Ziwei Liu
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Wei Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Shiqi Han
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, USA
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| | - Tian Xie
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
20
|
Grodsky L, Wilson M, Rathinasabapathy T, Komarnytsky S. Triptolide Administration Alters Immune Responses to Mitigate Insulin Resistance in Obese States. Biomolecules 2024; 14:395. [PMID: 38672413 PMCID: PMC11048574 DOI: 10.3390/biom14040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Individuals who are overweight or obese are at increased risk of developing prediabetes and type 2 diabetes, yet the direct molecular mechanisms that connect diabetes to obesity are not clear. Chronic, sustained inflammation is considered a strong risk factor in these interactions, directed in part by the short-lived gene expression programs encoding for cytokines and pro-inflammatory mediators. In this study, we show that triptolide administration in the C57BL/6 diet-induced obese mice at up to 10 μg/kg/day for 10 weeks attenuated the development of insulin resistance and diabetes, but not obesity, in these animals. Significant reductions in adipose tissue inflammation and improved insulin sensitivity were observed in the absence of changes in food intake, body weight, body composition, or energy expenditure. Analysis of the core cluster of biomarkers that drives pro-inflammatory responses in the metabolic tissues suggested TNF-α as a critical point that affected the co-development of inflammation and insulin resistance, but also pointed to the putatively protective roles of increased COX-2 and IL-17A signaling in the mediation of these pathophysiological states. Our results show that reduction of diet-induced inflammation confers partial protection against insulin resistance, but not obesity, and suggest the possibility of achieving overweight phenotypes that are accompanied by minimal insulin resistance if inflammation is controlled.
Collapse
Affiliation(s)
- Lyudmila Grodsky
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (L.G.); (M.W.); (T.R.)
- Department of Post-Baccalaureate Studies, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
- School of Medicine, University of North Carolina at Chapel Hill, 150 Medical Drive, Chapel Hill, NC 27514, USA
| | - Mickey Wilson
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (L.G.); (M.W.); (T.R.)
| | - Thirumurugan Rathinasabapathy
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (L.G.); (M.W.); (T.R.)
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (L.G.); (M.W.); (T.R.)
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
21
|
Zhou L, Yang Y, Fu X, Xia B, Li C, Lu C, Qi Y, Zhang H, Liu T. The protective effect and molecular mechanism of glycyrrhizic acid glycosides against Tripterygium glycosides induced nephrotoxicity based on the RhoA/ROCK1 signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117100. [PMID: 37648177 DOI: 10.1016/j.jep.2023.117100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium glycosides (TG), which are extracted from the traditional Chinese medicine, Tripterygium wilfordii Hook F. (TwHF), has promising applications in the treatment of renal diseases; however, since its active components exerts bidirectional kidney toxicity, its clinical application is severely restricted. AIM OF THE STUDY Recent investigations have demonstrated definite toxicity-reducing effects from glycyrrhizic acid glycosides (GA) when combined with TG; however, the mechanism remains unclear. To our knowledge, this is the first study to investigate the specific molecular mechanism by which GA alleviates TG-induced renal toxicity from the perspective of tight junctions. MATERIALS AND METHODS Dynamic analyses, which investigated the changes in kidney toxicity biomarkers for different combinations and concentrations of TG and GA, were conducted for three weeks on SD rats and renal tissue structural changes were examined after three weeks of administration. Additionally, the transcription and translation levels of the relevant tight junctions and RhoA/ROCK1/MLC signalling proteins were analysed in HK-2 cells. RESULTS Our study showed that TG can cause transient tubulotoxicity at certain doses, and that the combined application of GA and TG can repair tight junction structures by regulating the key factors in the RhoA/ROCK1/MLC signalling pathway, thus reducing TG-induced nephrotoxicity. CONCLUSIONS Overall, this study provides a new strategy to reduce TG-induced toxicity by protecting renal tight junctions.
Collapse
Affiliation(s)
- Liu Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Yifei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Xiaotong Fu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Bing Xia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Chenna Lu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Ying Qi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Haijing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Ting Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| |
Collapse
|
22
|
Zhao Z, Huang H, Ke S, Deng B, Wang YX, Xu N, Peng A, Han G, Liang E, He X, He Q, Ke PF, Huang XZ, He M. Triptolide inhibits the proinflammatory potential of myeloid-derived suppressor cells via reducing Arginase-1 in rheumatoid arthritis. Int Immunopharmacol 2024; 127:111345. [PMID: 38086266 DOI: 10.1016/j.intimp.2023.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Triptolide (TPT) is widely used in the treatment of rheumatoid arthritis (RA). However, its regulatory mechanisms are not fully understood. This study demonstrated that Myeloid-derived suppressor cells (MDSCs) were expanded in both RA patients and arthritic mice. The frequency of MDSCs was correlated with RA disease severity and T helper 17 (Th17) responses. MDSCs from RA patients promoted the polarization of Th17 cells in vitro, which could be substantially attenuated by blocking arginase-1 (Arg-1). TPT inhibited the differentiation of MDSCs, particularly the monocytic MDSCs (M-MDSCs) subsets, as well as the expression of Arg-1 in a dose dependent manner. Alongside, TPT treatment reduced the potential of MDSCs to promote the polarization of IL-17+ T cell in vitro. Consistently, TPT immunotherapy alleviated adjuvant-induced arthritis (AIA) in a mice model, and reduced the frequency of MDSCs, M-MDSCs and IL-17+ T cells simultaneously. The presented data suggest a pathogenic role of MDSCs in RA and may function as a novel and effective therapeutic target for TPT in RA.
Collapse
Affiliation(s)
- Ziling Zhao
- Department of Laboratory Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huijie Huang
- Department of Laboratory Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sikai Ke
- Department of Laboratory Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bishun Deng
- Department of Laboratory Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun-Xiu Wang
- Department of Laboratory Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ning Xu
- Department of Laboratory Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Anping Peng
- Department of Laboratory Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guang Han
- Department of Laboratory Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Enyu Liang
- Department of Laboratory Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospitals of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qinglian He
- Department of Pathology, the Second Affiliated Hospitals of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei-Feng Ke
- Department of Laboratory Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian-Zhang Huang
- Department of Laboratory Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospitals of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Min He
- Department of Laboratory Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospitals of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
23
|
Song B, Chen Q, Tong C, Li Y, Li S, Shen X, Niu W, Hao M, Ma Y, Wang Y. Research Progress on Immunomodulatory Effects of Poly (Lactic-co- Glycolic Acid) Nanoparticles Loaded with Traditional Chinese Medicine Monomers. Curr Drug Deliv 2024; 21:1050-1061. [PMID: 37818569 DOI: 10.2174/0115672018255493230922101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/17/2023] [Accepted: 07/19/2023] [Indexed: 10/12/2023]
Abstract
Immunomodulatory mechanisms are indispensable and key factors in maintaining the balance of the environment in humans. When the immune function of the immune system is impaired, autoimmune diseases occur. Excessive body fatigue, natural aging of the human body, malnutrition, genetic factors and other reasons cause low immune function, due to which the body is prone to being infected by bacteria or cancer. Clinically, the existing therapeutic drugs still have problems such as high toxicity, long treatment cycle, drug resistance and high price, so we still need to explore and develop a high efficiency and low toxicity drug. Poly(lactic-co-glycolic acid) (PLGA) refers to a nontoxic polymer compound that exhibits excellent biocompatibility. Traditional Chinese medicine (TCM) monomers come from natural plants, and have the characteristics of high efficiency and low toxicity. Applying PLGA to TCM monomers can make up for the defects of traditional dosage forms, improve bioavailability, reduce the frequency and dosage of drug use, and reduce toxicity and side effects, thus having the characteristics of sustained release and targeting. Accordingly, PLGA nanoparticles loaded with TCM monomers have been the focus of development. The previous research on drug loading advantages, preparation methods, and immune regulation of TCM PLGA nanoparticles is summarized in the following sections.
Collapse
Affiliation(s)
- Bocui Song
- Department of Pharmaceutical Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qian Chen
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Chunyu Tong
- Department of Biological Science, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuqi Li
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Shuang Li
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Xue Shen
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Wenqi Niu
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Meihan Hao
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Yunfei Ma
- Department of Pharmaceutical Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanhong Wang
- Department of Biological Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
24
|
Zhang HR, Li YP, Shi ZJ, Liang QQ, Chen SY, You YP, Yuan T, Xu R, Xu LH, Ouyang DY, Zha QB, He XH. Triptolide induces PANoptosis in macrophages and causes organ injury in mice. Apoptosis 2023; 28:1646-1665. [PMID: 37702860 DOI: 10.1007/s10495-023-01886-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/14/2023]
Abstract
Macrophages represent the first lines of innate defense against pathogenic infections and are poised to undergo multiple forms of regulated cell death (RCD) upon infections or toxic stimuli, leading to multiple organ injury. Triptolide, an active compound isolated from Tripterygium wilfordii Hook F., possesses various pharmacological activities including anti-tumor and anti-inflammatory effects, but its applications have been hampered by toxic adverse effects. It remains unknown whether and how triptolide induces different forms of RCD in macrophages. In this study, we showed that triptolide exhibited significant cytotoxicity on cultured macrophages in vitro, which was associated with multiple forms of lytic cell death that could not be fully suppressed by any one specific inhibitor for a single form of RCD. Consistently, triptolide induced the simultaneous activation of pyroptotic, apoptotic and necroptotic hallmarks, which was accompanied by the co-localization of ASC specks respectively with RIPK3 or caspase-8 as well as their interaction with each other, indicating the formation of PANoptosome and thus the induction of PANoptosis. Triptolide-induced PANoptosis was associated with mitochondrial dysfunction and ROS production. PANoptosis was also induced by triptolide in mouse peritoneal macrophages in vivo. Furthermore, triptolide caused kidney and liver injury, which was associated with systemic inflammatory responses and the activation of hallmarks for PANoptosis in vivo. Collectively, our data reveal that triptolide induces PANoptosis in macrophages in vitro and exhibits nephrotoxicity and hepatotoxicity associated with induction of PANoptosis in vivo, suggesting a new avenue to alleviate triptolide's toxicity by harnessing PANoptosis.
Collapse
Affiliation(s)
- Hong-Rui Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China
| | - Ya-Ping Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Qi-Qi Liang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Si-Yuan Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yi-Ping You
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Tao Yuan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Rong Xu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing-Bing Zha
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China.
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China.
| |
Collapse
|
25
|
Zeng HL, Qiu Q, Fu TX, Deng AP, Xie XY. Development and optimization of sustained release triptolide microspheres. PLoS One 2023; 18:e0292861. [PMID: 37856525 PMCID: PMC10586653 DOI: 10.1371/journal.pone.0292861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
Rheumatoid arthritis is considered a chronic systemic autoimmune disorder that may cause joint destruction. Triptolide, an active component isolated from Tripterygium wilfordii Hook.f., is considered to have promising potential for clinical use in treating rheumatoid arthritis. However, its clinical application has been limited by the narrow therapeutic window, side effects associated with plasma drug fluctuations, low oral bioavailability, and poor patient compliance with the long and frequent dosing regimen. An extended drug release preparation may address these limitations. The aim of this work was therefore to develop, formulate and optimize sustained release triptolide microspheres with poly (lactide-co-glycolide) (PLGA). Triptolide-loaded microspheres were prepared using PLGA as the matrix polymer, dichloromethane as the oil phase, and polyvinyl alcohol (PVA) as the matrix forming emulsifier. An oil-in-water (O/W) emulsion solvent evaporation technique was utilized to prepare the microspheres. Surface response methodology (RSM) coupled with central composite design (CCD) was used to optimize the formulation and a total of twenty formulations were prepared. PVA concentration (X1), PLGA concentration (X2), and theoretical drug content (X3) were selected as independent variables; and drug content (Y1), encapsulation efficiency (Y2), mean diameter (Y3) and the initial release during the first day (Y4) were taken as the response variables. The optimized formulation showed mean diameter of 42.36 μm, drug content of 7.96%, encapsulation efficiency of 80.16% and an initial release of 14.48%. The prepared microspheres exhibited a sustained release profile of triptolide in vitro over 4 weeks, which was wellfitted with a Korsmeyer-Peppas equation. However, the initial drug release (~14%) of triptolide-loaded microspheres was very high and should be specifically investigated in future studies. The results indicate that long-term sustained release microspheres of triptolide can be considered a strategy to overcome the low bioavailability and poor patient compliance with conventional triptolide tablets. The issue of initial burst release and in vivo evaluations should be specifically investigated in the future.
Collapse
Affiliation(s)
- Hui-lin Zeng
- Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Qiu
- Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting-xiong Fu
- Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ai-ping Deng
- Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang-yang Xie
- Department of Pharmacy, General Hospital of Central Theater of the PLA, Wuhan, Hubei, China
| |
Collapse
|
26
|
Hu J, Ni J, Zheng J, Guo Y, Yang Y, Ye C, Sun X, Xia H, Liu Y, Liu H. Tripterygium hypoglaucum extract ameliorates adjuvant-induced arthritis in mice through the gut microbiota. Chin J Nat Med 2023; 21:730-744. [PMID: 37879792 DOI: 10.1016/s1875-5364(23)60466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 10/27/2023]
Abstract
Traditionally, Tripterygium hypoglaucum (Levl.) Hutch (THH) are widely used in Chinese folk to treat rheumatoid arthritis (RA). This study aimed to investigate whether the anti-RA effect of THH is related with the gut microbiota. The main components of prepared THH extract were identified by HPLC-MS. C57BL/6 mice with adjuvant-induced arthritis (AIA) were treated with THH extract by gavage for one month. THH extract significantly alleviated swollen ankle, joint cavity exudation, and articular cartilage destruction in AIA mice. The mRNA and protein levels of inflammatory mediators in muscles and plasma indicated that THH extract attenuated inflammatory responses in the joint by blocking TLR4/MyD88/MAPK signaling pathways. THH extract remarkably restored the dysbiosis of the gut microbiota in AIA mice, featuring the increases of Bifidobacterium, Akkermansia, and Lactobacillus and the decreases of Butyricimonas, Parabacteroides, and Anaeroplasma. Furthermore, the altered bacteria were closely correlated with physiological indices and drove metabolic changes of the intestinal microbiota. In addition, antibiotic-induced pseudo germ-free mice were employed to verify the role of the intestinal flora. Strikingly, THH treatment failed to ameliorate the arthritis symptoms and signaling pathways in pseudo germ-free mice, which validates the indispensable role of the intestinal flora. For the first time, we demonstrated that THH extract protects joint inflammation by manipulating the intestinal flora and regulating the TLR4/MyD88/MAPK signaling pathway. Therefore, THH extract may serve as a microbial modulator to recover RA in clincial practice.ver RA in clincial practice.
Collapse
Affiliation(s)
- Jianghui Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jimin Ni
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Cheng Ye
- Wuhan Customs Technology Center, Wuhan 430050, China
| | - Xiongjie Sun
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hui Xia
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yanju Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China.
| |
Collapse
|
27
|
Fan J, Jiang T, He D. Advances in the implications of the gut microbiota on the treatment efficacy of disease-modifying anti-rheumatic drugs in rheumatoid arthritis. Front Immunol 2023; 14:1189036. [PMID: 37841256 PMCID: PMC10568326 DOI: 10.3389/fimmu.2023.1189036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Alterations in the composition or function of the gut microbiota are associated with the etiology of human diseases. Drug-microbiota interactions can affect drug bioavailability, effectiveness, and toxicity through various routes. For instance, the direct effect of microbial enzymes on drugs can either boost or diminish their efficacy. Thus, considering its wide range of metabolic capabilities, the gut microbiota is a promising target for pharmacological modulation. Furthermore, drugs can alter the microbiota and the mechanisms by which they interact with their host. Individual variances in microbial profiles can also contribute to the different host responses to various drugs. However, the influence of interactions between the gut microbiota and drugs on treatment efficacy remains poorly elucidated. In this review, we will discuss the impact of microbiota dysbiosis in the pathogenesis of rheumatoid arthritis (RA), and we will attempt to elucidate the crosstalk between the gut microbiota and disease-modifying anti-rheumatic drugs (DMARDs), with an emphasis on how drug-microbiota interactions affect the treatment efficacy in RA. We speculate that improved knowledge of these critical interactions will facilitate the development of novel therapeutic options that use microbial markers for predicting or optimizing treatment outcomes.
Collapse
Affiliation(s)
- Junyu Fan
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Ting Jiang
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
28
|
Cui D, Xu D, Yue S, Yan C, Liu W, Fu R, Ma W, Tang Y. Recent advances in the pharmacological applications and liver toxicity of triptolide. Chem Biol Interact 2023; 382:110651. [PMID: 37516378 DOI: 10.1016/j.cbi.2023.110651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
Triptolide is a predominant active component of Triptergium wilfordii Hook. F, which has been used for the treatment of cancers and autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus and diabetic nephropathy. Therefore, triptolide and its derivates are considered to have promising prospects for development into drugs. However, the clinical application of triptolide is limited due to various organ toxicities, especially liver toxicity. The potential mechanism of triptolide-induced hepatotoxicity has attracted increasing attention. Over the past five years, studies have revealed that triptolide-induced liver toxicity is involved in metabolic imbalance, oxidative stress, inflammations, autophagy, apoptosis, and the regulation of cytochrome P450 (CYP450) enzymes, gut microbiota and immune cells. In this review, we summarize the pharmacological applications and hepatotoxicity mechanism of triptolide, which will provide solid theoretical evidence for further research of triptolide.
Collapse
Affiliation(s)
- Dongxiao Cui
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Dingqiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shijun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Chaoqun Yan
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Wenjuan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Ruijia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Wenfu Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China.
| |
Collapse
|
29
|
Pasdaran A, Hassani B, Tavakoli A, Kozuharova E, Hamedi A. A Review of the Potential Benefits of Herbal Medicines, Small Molecules of Natural Sources, and Supplements for Health Promotion in Lupus Conditions. Life (Basel) 2023; 13:1589. [PMID: 37511964 PMCID: PMC10416186 DOI: 10.3390/life13071589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Latin word lupus, meaning wolf, was in the medical literature prior to the 1200s to describe skin lesions that devour flesh, and the resources available to physicians to help people were limited. The present text reviews the ethnobotanical and pharmacological aspects of medicinal plants and purified molecules from natural sources with efficacy against lupus conditions. Among these molecules are artemisinin and its derivatives, antroquinonol, baicalin, curcumin, emodin, mangiferin, salvianolic acid A, triptolide, the total glycosides of paeony (TGP), and other supplements such as fatty acids and vitamins. In addition, medicinal plants, herbal remedies, mushrooms, and fungi that have been investigated for their effects on different lupus conditions through clinical trials, in vivo, in vitro, or in silico studies are reviewed. A special emphasis was placed on clinical trials, active phytochemicals, and their mechanisms of action. This review can be helpful for researchers in designing new goal-oriented studies. It can also help practitioners gain insight into recent updates on supplements that might help patients suffering from lupus conditions.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahareh Hassani
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
| | - Ali Tavakoli
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|
30
|
AbdulHussein AH, Al-Taee MM, Radih ZA, Aljuboory DS, Mohammed ZQ, Hashesh TS, Riadi Y, Hadrawi SK, Najafi M. Mechanisms of cancer cell death induction by triptolide. Biofactors 2023; 49:718-735. [PMID: 36876465 DOI: 10.1002/biof.1944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
Drug resistance is a hot topic issue in cancer research and therapy. Although cancer therapy including radiotherapy and anti-cancer drugs can kill malignant cells within the tumor, cancer cells can develop a wide range of mechanisms to resist the toxic effects of anti-cancer agents. Cancer cells may provide some mechanisms to resist oxidative stress and escape from apoptosis and attack by the immune system. Furthermore, cancer cells may resist senescence, pyroptosis, ferroptosis, necroptosis, and autophagic cell death by modulating several critical genes. The development of these mechanisms leads to resistance to anti-cancer drugs and also radiotherapy. Resistance to therapy can increase mortality and reduce survival following cancer therapy. Thus, overcoming mechanisms of resistance to cell death in malignant cells can facilitate tumor elimination and increase the efficiency of anti-cancer therapy. Natural-derived molecules are intriguing agents that may be suggested to be used as an adjuvant in combination with other anticancer drugs or radiotherapy to sensitize cancer cells to therapy with at least side effects. This paper aims to review the potential of triptolide for inducing various types of cell death in cancer cells. We review the induction or resistance to different cell death mechanisms such as apoptosis, autophagic cell death, senescence, pyroptosis, ferroptosis, and necrosis following the administration of triptolide. We also review the safety and future perspectives for triptolide and its derivatives in experimental and human studies. The anticancer potential of triptolide and its derivatives may make them effective adjuvants for enhancing tumor suppression in combination with anticancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Salema K Hadrawi
- Refrigeration and Air-Conditioning Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
31
|
Lin Y, Fu ML, Harb I, Ma LX, Tran SD. Functional Biomaterials for Local Control of Orthodontic Tooth Movement. J Funct Biomater 2023; 14:294. [PMID: 37367258 DOI: 10.3390/jfb14060294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
Orthodontic tooth movement (OTM) occurs with the application of a controlled mechanical force and results in coordinated tissue resorption and formation in the surrounding bone and periodontal ligament. The turnover processes of the periodontal and bone tissue are associated with specific signaling factors, such as Receptor Activator of Nuclear factor Kappa-β Ligand (RANKL), osteoprotegerin, runt-related transcription factor 2 (RUNX2), etc., which can be regulated by different biomaterials, promoting or inhibiting bone remodeling during OTM. Different bone substitutes or bone regeneration materials have also been applied to repair alveolar bone defects followed by orthodontic treatment. Those bioengineered bone graft materials also change the local environment that may or may not affect OTM. This article aims to review functional biomaterials that were applied locally to accelerate OTM for a shorter duration of orthodontic treatment or impede OTM for retention purposes, as well as various alveolar bone graft materials which may affect OTM. This review article summarizes various types of biomaterials that can be locally applied to affect the process of OTM, along with their potential mechanisms of action and side effects. The functionalization of biomaterials can improve the solubility or intake of biomolecules, leading to better outcomes in terms of increasing or decreasing the speed of OTM. The ideal timing for initiating OTM is generally considered to be 8 weeks post-grafting. However, more evidence is needed from human studies to fully understand the effects of these biomaterials, including any potential adverse effects.
Collapse
Affiliation(s)
- Yi Lin
- Division of Orthodontics, Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA
| | - Moyu Lara Fu
- School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ingrid Harb
- Division of Dentistry, Montreal Children's Hospital and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Lisa Xiaolu Ma
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Simon D Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Science, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
32
|
Huang Y, Ba X, Wang H, Shen P, Han L, Lin W, Yan J, Chen Z, Tu S. Triptolide alleviates collagen-induced arthritis in mice by modulating Treg/Th17 imbalance through the JAK/PTEN-STAT3 pathway. Basic Clin Pharmacol Toxicol 2023. [PMID: 37186366 DOI: 10.1111/bcpt.13880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/02/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND This study aimed to investigate the effects of triptolide (TP) on collagen-induced arthritis (CIA) mice and the related mechanisms. METHODS CIA mice were administered TP for 35 days. Mouse ankle joints and serum antibodies and cytokines were examined to assess the therapeutic effects of TP. The ratios of Treg, Th1, and Th17 cells were measured by flow cytometry and RT-qPCR. Reverse docking was used to characterize the binding modes of TP against target proteins. The expression of the STAT3 pathway in CIA mice was evaluated by western blotting and immunofluorescence staining. Mouse spleen lymphocytes were extracted and the expression of the STAT3 pathway after IL-6 stimulation was analyzed. RESULTS TP could significantly alleviate joint swelling, reduce bone destruction, and downregulate serum inflammation levels. TP improved the imbalance of Treg/Th17 cells in CIA mice. TP could form stable complexes with target proteins. TP significantly inhibited the activation of the JAK/PTEN-STAT3 pathway in mice. Moreover, TP regulated the activation of the JAK1/2-STAT3 signaling pathway in mouse spleen lymphocytes under inflammatory stimulation. CONCLUSION TP can inhibit inflammation and alleviate bone destruction in CIA mice. The underlying mechanism is related to the regulation of the imbalance of Treg/Th17 cells through the JAK/PTEN-STAT3 pathway.
Collapse
Affiliation(s)
- Yao Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ba
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Pan Shen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Wang N, Min X, Ma N, Zhu Z, Cao B, Wang Y, Yong Q, Huang J, Li K. The Negative Impact of Triptolide on the Immune Function of Human Natural Killer Cells. Pharmaceuticals (Basel) 2023; 16:458. [PMID: 36986557 PMCID: PMC10057343 DOI: 10.3390/ph16030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Triptolide (TP), a bioactive compound extracted the from traditional Chinese medicine Tripterygium wilfordii Hook F (TwHF), has been shown to be effective in treating several autoimmune diseases, and has suppressive effects in several key immune cells such as dendritic cells, T cells, and macrophages. However, it is unknown whether TP has an impact on natural killer (NK) cells. Here, we report that TP has suppressive effects on human NK cell activity and effector functions. The suppressive effects were observed in human peripheral blood mononuclear cell cultures and purified NK cells from healthy donors, as well as in purified NK cells from patients with rheumatoid arthritis. TP treatment induced downregulation of NK-activating receptor (CD54, CD69) expression and IFN-gamma secretion, in a dose-dependent manner. When exposed to K562 target cells, TP treatment induced inhibition of surface expression of CD107a and IFN-gamma synthesis in NK cells. Furthermore, TP treatment induced activation of inhibitory signaling (SHIP, JNK) and inhibition of MAPK signaling (p38). Thus, our findings demonstrate a previously unknown role for TP in NK cell functional suppression and reveal several key intracellular signaling that can be regulated by TP. Our findings also offer new insight into mechanisms of TP therapeutic treatment in autoimmune disease.
Collapse
Affiliation(s)
- Na Wang
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| | - Xiaoyun Min
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| | - Ning Ma
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| | - Zhuoran Zhu
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| | - Bo Cao
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| | - Yuan Wang
- Department of Geriatric Digestive Surgery, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| | - Qing Yong
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| | - Jingjin Huang
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China
- Genertec Universal Xi’an Aero-Engine Hospital, Xi’an 710016, China
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
34
|
Luo YM, Yang SD, Wen MY, Wang B, Liu JH, Li ST, Li YY, Cheng H, Zhao LL, Li SM, Jiang JJ. Insights into the mechanisms of triptolide nephrotoxicity through network pharmacology-based analysis and RNA-seq. FRONTIERS IN PLANT SCIENCE 2023; 14:1144583. [PMID: 36959927 PMCID: PMC10027700 DOI: 10.3389/fpls.2023.1144583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Triptolide (TPL) is a promising plant-derived compound for clinical therapy of multiple human diseases; however, its application was limited considering its toxicity. METHODS To explore the underlying molecular mechanism of TPL nephrotoxicity, a network pharmacology based approach was utilized to predict candidate targets related with TPL toxicity, followed by deep RNA-seq analysis to characterize the features of three transcriptional elements include protein coding genes (PCGs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) as well as their associations with nephrotoxicity in rats with TPL treatment. RESULTS & DISCUSSION Although the deeper mechanisms of TPL nephrotoxcity remain further exploration, our results suggested that c-Jun is a potential target of TPL and Per1 related circadian rhythm signaling is involved in TPL induced renal toxicity.
Collapse
Affiliation(s)
- Yue-Ming Luo
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shu-Dong Yang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Miao-Yu Wen
- Department of Geriatrics, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Bing Wang
- Department of Nephrology, Shenzhen Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia-Hui Liu
- Department of Nephrology, Shenzhen Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Si-Ting Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Yan Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hong Cheng
- Department of Geriatrics, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Li-Li Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Graduate school of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Shun-Min Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jian-Jun Jiang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
35
|
Tan G, Qin Z, Jiang S, Zhang L, Zhang G, Huang M, Huang Z, Jin J. MitoQ alleviates triptolide-induced cardiotoxicity via activation of p62/Nrf2 axis in H9c2 cells. Toxicol In Vitro 2023; 86:105487. [PMID: 36272531 DOI: 10.1016/j.tiv.2022.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/05/2022] [Accepted: 10/16/2022] [Indexed: 12/05/2022]
Abstract
Triptolide (TP) is one of the major components of Tripterygium wilfordii, which is a traditional Chinese medicine widely used in the treatment of various autoimmune and inflammatory diseases. However, the cardiotoxicity induced by TP greatly limits its widespread clinical application. In view of the role of ROS-mediated oxidative stress in TP-induced cardiotoxicity, mitoQ, a mitochondria-targeted ROS scavenger, was used in this study to investigate its protective effect against TP-induced cardiomyocyte toxicity and its possible underlying mechanism. Here we demonstrated that mitoQ could significantly attenuate TP-induced cardiotoxicity in cardiomyocyte H9c2 cells, with a remarkable improvement in cell viability and reduction in ROS levels. P62-Nrf2 signaling pathway has been reported to play a critical role in regulating oxidative stress and protecting cells from harmful stimuli. In this study, we found that mitoQ significantly activated p62-Nrf2 signaling pathway in H9c2 cells with or without TP treatment. Moreover, knockdown of p62 or Nrf2 could block the protective effect of mitoQ against TP in H9c2 cells. Taken together, our study demonstrates that mitoQ can alleviate TP-induced cardiotoxicity via the activation of p62-Nrf2 signaling pathway, which provides new potential strategies to combat TP-induced cardiomyocyte toxicity.
Collapse
Affiliation(s)
- Guoyao Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiyan Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shiqin Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gengyi Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
36
|
Rao Q, Ma G, Li M, Wu H, Zhang Y, Zhang C, Ma Z, Huang L. Targeted delivery of triptolide by dendritic cell-derived exosomes for colitis and rheumatoid arthritis therapy in murine models. Br J Pharmacol 2023; 180:330-346. [PMID: 36156794 DOI: 10.1111/bph.15958] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/02/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Triptolide (TP) elicits a beneficial effect in the treatment of autoimmune diseases, such as ulcerative colitis (UC) and rheumatoid arthritis (RA). However, its multiorgan toxicity needs to be resolved. Dendritic cells (DCs) are the primary target of TP, which induces immunosuppression, and DC-derived exosomes (DEX) can selectively enter DCs in vivo. Here, we encapsulated TP with DEX (DEXTP) to generate TP-targeted delivery to reduce toxicity. EXPERIMENTAL APPROACH The effect of DEXTP was evaluated in murine colitis and RA models. Toxicity was examined by haematoxylin and eosin staining and serum biochemical marker detection. Affinity of DEXs for DCs was tracked by fluorescent labelling. The immune environment was evaluated and mimicked in vitro for further analysis of the mechanism. KEY RESULTS DEXTP effectively carried TP to DCs in vivo, and alleviated local inflammation and damage in colitis and RA mice with no obvious toxicity. Additionally, DEXTP reshaped the immune milieu by decreasing CD4+ T-cell levels and increasing regulatory T-cell levels in vivo. Furthermore, consistent T-cell differentiation was observed in vitro, and DC activation was inhibited by alterations in surface factors and secrete cytokines, and by induction of apoptosis or other form of death. CONCLUSIONS AND IMPLICATIONS Encapsulating TP with DEX is a new method that both reduces the toxicity of TP and induces immunosuppression in UC and RA mice. The underlying immune mechanism involves DEXTP targeting DCs in vivo, to inhibit DC activation and induce DC apoptosis, which further induces T-cell immunosuppression.
Collapse
Affiliation(s)
- Quan Rao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guangchao Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meng Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yixi Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Congen Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Luqi Huang
- Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
37
|
Sun Y, Liu J, Xin L, Wen J, Zhou Q, Chen X, Ding X, Zhang X. Xinfeng capsule inhibits inflammation and oxidative stress in rheumatoid arthritis by up-regulating LINC00638 and activating Nrf2/HO-1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115839. [PMID: 36272490 DOI: 10.1016/j.jep.2022.115839] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xinfeng capsule is a traditional Chinese medicine compound, which has been clinically used for more than 20 years in the treatment of rheumatoid arthritis (RA), ankylosing spondylitis, osteoarthritis and its extracurricular lesions. However, the molecular role of XFC in the treatment of RA remains unclear. OBJECTIVE This study aims to explore the efficacy and potential mechanism of XFC through retrospective data mining analysis, animal experiments and cell experiments. METHODS The effect of XFC on clinical laboratory indexes of RA patients was observed using data mining techniques combined with association rule analysis and a random walk model. Afterwards, a rat model of adjuvant arthritis (AA) was established with Freund's complete adjuvant, followed by the observation of pathological changes in synovial tissues and the ultrastructure of synoviocytes. A RA cell model was constructed by inducing fibroblast-like synoviocytes (FLSs) with tumor necrosis factor-alpha (TNF-α) to assess the effects of XFC-containing serum on inflammation and oxidative stress through long non-coding RNA LINC00638. RESULTS In retrospective data mining, XFC effectively reduced immune inflammation and increase the level of antioxidant enzymes in RA patients. Subsequently, animal experiments showed that XFC significantly repressed immune inflammation, oxidative stress, synovial hyperplasia, and cartilage destruction, while improving the ultrastructure of synoviocytes in AA rats. XFC-containing serum diminished the proliferation of TNF-α-induced RA-FLSs, increased LINC00638 expression (P<0.01), decreased interleukin-6 (IL-6), IL-17, reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels (P<0.01), and increased the protein expression of nuclear factor erythrocyte 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and superoxide dismutase 2 (SOD2) (P<0.01). Furthermore, rescue experiments manifested that XFC-containing serum reversed the effects of silencing LINC00638 on inflammation and oxidative stress in RA-FLSs. CONCLUSION XFC inhibits inflammation and oxidative stress in RA by up-regulating LINC00638 and activating Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Yanqiu Sun
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230038, Anhui Province, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China.
| | - Jian Liu
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230038, Anhui Province, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China.
| | - Ling Xin
- Information Center, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230038, Anhui Province, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China.
| | - Jianting Wen
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230038, Anhui Province, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China.
| | - Qin Zhou
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230038, Anhui Province, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China.
| | - Xiaolu Chen
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230038, Anhui Province, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China.
| | - Xiang Ding
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230038, Anhui Province, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China.
| | - Xianheng Zhang
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230038, Anhui Province, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China.
| |
Collapse
|
38
|
Song R, Han X, Jie H, Zhang X, Li S, Sun E. Effects and mechanisms of Celastrol on the formation of neutrophil extracellular traps (NETs). ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:16. [PMID: 36760253 PMCID: PMC9906213 DOI: 10.21037/atm-22-5720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
Background To investigate the effect and mechanism of Celastrol on the formation of neutrophil extracellular traps (NETs), and to provide a theoretical basis for the clinical application of Tripterygium wilfordii. Methods First, we isolated neutrophils from the peripheral blood of healthy volunteers, and then observed the effect of Celastrol on Phorbol Myristate Acetate (PMA)-induced neutrophil release of NETs. The level of NETs was detected by using the membrane-impermeable nucleic acid dye, SytoxGreens. In addition, the levels of reactive oxygen species (ROS) were also examined to determine whether Celastrol affects ROS production during PMA-induced NETs. Results Celastrol produced significant cytotoxicity at a concentration of 5 µM (213.2±75.07), and the effect of stimulant PMA (25 nM) treatment was not statistically different (197.3±25.15) (P=0.9167). Celastrol (1.25, 0.625, and 0.3125 µM) did not exhibit cytotoxicity when treating neutrophils. Compared with the PMA (25 nM) + Celastrol (1.25, 0.625, and 0.3125 µM) group and the PMA (25 nM) monotherapy group, SytoxGreen showed a statistically significant reduction in fluorescence at 528 µM under 485 µM light excitation. Also, under the co-localization marker of Hochest and SytoxGreen double staining, we observed that the release of NETs in the PMA-treated group was higher than that in the control group. The PMA-induced neutrophil release of NETs was markedly reduced compared to the PMA-treated group. The NET release was substantially decreased under double staining with the Hochest and SytoxGreen co-localization markers. The fluorescence intensity of the Celastrol plus PMA group was significantly lower than that of the PMA treatment group alone, indicating a decrease in the level of intracellular ROS. Interestingly, the level of ROS in the treatment group who received Celastrol alone was lower than that in the control group, indicating that Tripterygium wilfordii could inhibit the spontaneous production of ROS by neutrophils in the absence of stimulation. Conclusions The molecular mechanism of Celastrol involves inhibition of PMA-stimulated neutrophil NETs formation in vitro, which is possibly related to the reduction of ROS levels. This indicates that Celastrol, the main component in Tripterygium wilfordii, can inhibit the formation of NETs, which provides a theoretical basis for the study of NETs-related diseases.
Collapse
Affiliation(s)
- Rui Song
- Department of Rheumatology and Immunology, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| | - Xinai Han
- Department of Rheumatology and Immunology, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| | - Hongyu Jie
- Department of Rheumatology and Immunology, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| | - Xiaoming Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| | - Shiqi Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Wu Q, Chen X, Qiao C, Cao X, Du Q, Yuan Y, Zuo Y, Miao Y, Zheng Z, Zhang T, Zang L, Yang X, Shi W, Xie Z, Xu Y, Wu D, Wen C, Zheng H. Methotrexate and Triptolide regulate Notch signaling pathway by targeting the Nedd4-Numb axis. Int Immunopharmacol 2023; 114:109595. [PMID: 36700774 DOI: 10.1016/j.intimp.2022.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Methotrexate (MTX) is used to treat rheumatoid arthritis, acute leukemia, and psoriasis. MTX can cause certain side effects, such as myelosuppression, while the exact mechanism of myelosuppression caused by MTX is unknown. Notch signaling pathway has been considered to be essential to regulate hematopoietic stem cell (HSC) regeneration and homeostasis, thus contributing to bone marrow hematopoiesis. However, whether MTX affects Notch signaling remains unexplored. Here, our study provides evidence that MTX strongly suppresses the Notch signaling pathway. We found that MTX inhibited the interaction between Nedd4 with Numb, thus restricting K48-linked polyubiquitination of Numb and stabilizing Numb proteins. This in turn inhibited the Notch signaling pathway by reducing Notch1 protein levels. Interestingly, we found that a monomeric drug, Triptolide, is capable of alleviating the inhibitory effect of MTX on Notch signaling pathway. This study promotes our understanding of MTX-mediated regulation of Notch signaling and could provide ideas to alleviate MTX-induced myelosuppression.
Collapse
Affiliation(s)
- Qiuyu Wu
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiangjie Chen
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Caixia Qiao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xinhua Cao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qian Du
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yukang Yuan
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yibo Zuo
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ying Miao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhijin Zheng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Tingting Zhang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China
| | - Lichao Zang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - Xinyu Yang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - Weifeng Shi
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - Zhijun Xie
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Yang Xu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Depei Wu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Chengping Wen
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
40
|
Triptolide and methotrexate binding competitively to bovine serum albumin: A study of spectroscopic experiments, molecular docking, and molecular dynamic simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Li N, Chen Z, Feng W, Gong Z, Lin C, Chen J, Chu C, Xu Q. Triptolide improves chondrocyte proliferation and secretion via down-regulation of miR-221 in synovial cell exosomes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154479. [PMID: 36194972 DOI: 10.1016/j.phymed.2022.154479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA), the most common type of inflammatory arthritis, can cause bone damage and disability. Triptolide, a prominent treatment for RA, has satisfactory anti-inflammatory effects. However, the mechanism of action of triptolide in RA remains unknown. PURPOSE This study aimed to explore the molecular mechanisms underlying triptolide-mediated improvements in RA and identify the miRNA pathway responsible for these effects. METHODS We identified various dysregulated miRNAs associated with RA by mining previously described microarray data and verified and screened these candidates using RT-qPCR. Hematoxylin-eosin staining was then applied to identify pathological changes in the affected joints, and cell counting kit-8 analysis and flow cytometry were employed to examine cell proliferation and apoptosis, respectively. Extracted exosomes were verified using transmission electron microscopy. RESULTS Our results revealed that the legs of rats with collagen-induced arthritis presented with obvious swelling and bone damage, a high degree of inflammatory cell infiltration into the synovium, and structural changes to the cartilage. Data mining identified 39 dysregulated miRNAs in these tissues, and RT-qPCR further refined these observations to highlight miR-221 as a potential RA biomarker. Subsequent evaluations revealed that fibroblast-like synovial (FLS) cells secrete Exs carrying dysregulated miR-221 in vitro. These Exs mediate miR-221 levels, inflammation, and TLR4/MyD88 signaling via their fusion with chondrocytes, leading to changes in chondrocyte growth and metabolic factor levels. Additionally, the addition of triptolide impaired miR-221 expression, cell proliferation, inflammatory factors, and the protein levels of TLR4/MyD88 in RA-FLS and promoted the apoptosis of FLS. The therapeutic effect of triptolide on miR-221 Exs was reversed by miR-221 inhibitor in both normal and RA FLS. CONCLUSION Our research shows that effective treatment with triptolide is mediated by its regulation of growth and secretory functions of chondrocytes via the inhibition of miR-221 secretion by FLS, providing a new target and natural medicinal candidate for future RA treatments.
Collapse
Affiliation(s)
- Nan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, China
| | - Zhixin Chen
- Chinese Medicine Department, South China Agricultural University Hospital, 510642, Guangzhou, China
| | - Wei Feng
- Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Zhaohui Gong
- Guangzhou University of Chinese Medicine, 510405, Guangzhou, China; Department of Cardiovascular, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Changsong Lin
- Guangzhou University of Chinese Medicine, 510405, Guangzhou, China; Department of Rheumatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, China.
| | - Congqiu Chu
- Oregon Health & Science University, 97239, Portland, OR, United States of America.
| | - Qiang Xu
- Guangzhou University of Chinese Medicine, 510405, Guangzhou, China; Department of Rheumatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405, Guangzhou, China.
| |
Collapse
|
42
|
Zhu Y, Ouyang Z, Du H, Wang M, Wang J, Sun H, Kong L, Xu Q, Ma H, Sun Y. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharm Sin B 2022; 12:4011-4039. [PMID: 36386472 PMCID: PMC9643300 DOI: 10.1016/j.apsb.2022.08.022] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
Natural products, and especially the active ingredients found in traditional Chinese medicine (TCM), have a thousand-year-long history of clinical use and a strong theoretical basis in TCM. As such, traditional remedies provide shortcuts for the development of original new drugs in China, and increasing numbers of natural products are showing great therapeutic potential in various diseases. This paper reviews the molecular mechanisms of action of natural products from different sources used in the treatment of inflammatory diseases and cancer, introduces the methods and newly emerging technologies used to identify and validate the targets of natural active ingredients, enumerates the expansive list of TCM used to treat inflammatory diseases and cancer, and summarizes the patterns of action of emerging technologies such as single-cell multiomics, network pharmacology, and artificial intelligence in the pharmacological studies of natural products to provide insights for the development of innovative natural product-based drugs. Our hope is that we can make use of advances in target identification and single-cell multiomics to obtain a deeper understanding of actions of mechanisms of natural products that will allow innovation and revitalization of TCM and its swift industrialization and internationalization.
Collapse
Affiliation(s)
- Yuyu Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zijun Ouyang
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Haojie Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Meijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Jiaojiao Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haiyan Sun
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Hongyue Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
43
|
Lu Q, Xu J, Jiang H, Wei Q, Huang R, Huang G. The bone-protective mechanisms of active components from TCM drugs in rheumatoid arthritis treatment. Front Pharmacol 2022; 13:1000865. [PMID: 36386147 PMCID: PMC9641143 DOI: 10.3389/fphar.2022.1000865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease whose hallmarks are synovial inflammation and irreversible bone destruction. Bone resorption resulting from osteoclasts involves the whole immune and bone systems. Breakdown of bone remodeling is attributed to overactive immune cells that produce large quantities of cytokines, upregulated differentiation of osteoclasts with enhanced resorptive activities, suppressed differentiation of osteoblasts, invading fibroblasts and microbiota dysbiosis. Despite the mitigation of inflammation, the existing treatment in Western medicine fails to prevent bone loss during disease progression. Traditional Chinese medicine (TCM) has been used for thousands of years in RA treatment, showing great efficacy in bone preservation. The complex components from the decoctions and prescriptions exhibit various pharmacological activities. This review summarizes the research progress that has been made in terms of the bone-protective effect of some representative compounds from TCM drugs and proposes the substantial mechanisms involved in bone metabolism to provide some clues for future studies. These active components systemically suppress bone destruction via inhibiting joint inflammation, osteoclast differentiation, and fibroblast proliferation. Neutrophil, gut microenvironment and microRNA has been proposed as future focus.
Collapse
Affiliation(s)
- Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haixu Jiang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Runyue Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| |
Collapse
|
44
|
Ji B, Cai Z, Liu D, Ding Y, Zhang Y, Naranmandakh S, Huang C, Xiao W, Li Y. A worldwide bibliometric analysis of triptolide research from 1997 to 2021. Am J Transl Res 2022; 14:7290-7307. [PMID: 36398275 PMCID: PMC9641448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES In recent years, triptolide has received much attention due to its wide range of pharmacological activities. However, no bibliometric studies have been published on triptolide. This study conducted a bibliometric study to provide scientific and insightful information for further research. METHODS This study performed a bibliometric study of articles published in the Web of Science database from 1997 to 2021. Based on the keywords used in relation to the title of the article containing the word triptolide, 970 publications were searched for further analysis. We used Microsoft Excel for frequency analysis, VOSviewer and CiteSpace for data visualization, and Rstudio for citation metrics and analysis. RESULTS After analysis, standard bibliometric indicators such as the growth of publications, prolific authors and coauthorship, country distributions, preferred journals, most influential institutions and top cited documents were presented in this study. CONCLUSIONS According to our findings, the number of triptolide-related publications has been increasing since 2009. China was the largest contributor to triptolide research, followed by the USA. Biomedicine & Pharmacotherapy was the leading journal related to triptolide research. The most productive authors were Zhang LY (China Pharmaceut Univ) and Jiang ZZ (China Pharmaceut Univ). China Pharmaceutical University was the most influential institution in the field of triptolide research. Our findings suggest that the effective use of triptolide in cancer therapy as well as overcoming its multiorgan toxicity to promote its widespread clinical applications are expected to be hot research topics in the future.
Collapse
Affiliation(s)
- Bingzhou Ji
- Department of Orthopedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Zijun Cai
- Department of Orthopedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Yilan Ding
- Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
| | - Yueyao Zhang
- Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of MongoliaSukhbaatar District 14201, Ulaanbaatar, Mongolia
| | - Cheng Huang
- Department of Orthopedics, China-Japan Friendship HospitalBeijing, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| |
Collapse
|
45
|
Yuan Z, Wang J, Zhang H, Miao Y, Tang Q, Yuan Z, Nong C, Duan Z, Zhang L, Jiang Z, Yu Q. Triptolide increases resistance to bile duct ligation-induced liver injury and fibrosis in mice by inhibiting RELB. Front Nutr 2022; 9:1032722. [PMID: 36313114 PMCID: PMC9608656 DOI: 10.3389/fnut.2022.1032722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 12/04/2022] Open
Abstract
Cholestasis is a common, chronic liver disease that may cause fibrosis and cirrhosis. Tripterygium wilfordii Hook.f (TWHF) is a species in the Euonymus family that is commonly used as a source of medicine and food in Eastern and Southern China. Triptolide (TP) is an epoxy diterpene lactone of TWHF, as well as the main active ingredient in TWHF. Here, we used a mouse model of common bile duct ligation (BDL) cholestasis, along with cultured human intrahepatic biliary epithelial cells, to explore whether TP can relieve cholestasis. Compared with the control treatment, TP at a dose of 70 or 140 μg/kg reduced the serum levels of the liver enzymes alanine transaminase, aspartate aminotransferase, and alkaline phosphatase in mice; hematoxylin and eosin staining also showed that TP reduced necrosis in tissues. Both in vitro and in vivo analyses revealed that TP inhibited cholangiocyte proliferation by reducing the expression of RelB. Immunohistochemical staining of CK19 and Ki67, as well as measurement of Ck19 mRNA levels in hepatic tissue, revealed that TP inhibited the BDL-induced ductular reaction. Masson 3 and Sirius Red staining for hepatic hydroxyproline showed that TP alleviated BDL-induced hepatic fibrosis. Additionally, TP substantially inhibited BDL-induced hepatic inflammation. In summary, TP inhibited the BDL-induced ductular reaction by reducing the expression of RelB in cholangiocytes, thereby alleviating liver injury, fibrosis, and inflammation.
Collapse
Affiliation(s)
- Zihang Yuan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jie Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haoran Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yingying Miao
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qianhui Tang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ziqiao Yuan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Cheng Nong
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhicheng Duan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China,*Correspondence: Zhenzhou Jiang,
| | - Qinwei Yu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Qinwei Yu,
| |
Collapse
|
46
|
Li C, Zhang C, Zhu C, Zhang J, Xia Q, Liu K, Zhang Y. Inflammation aggravated the hepatotoxicity of triptolide by oxidative stress, lipid metabolism disorder, autophagy, and apoptosis in zebrafish. Front Pharmacol 2022; 13:949312. [PMID: 36110530 PMCID: PMC9468416 DOI: 10.3389/fphar.2022.949312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Triptolide is a major compound isolated from the Tripterygium wilfordii Hook that is mainly used for the treatment of autoimmune disorders and inflammatory diseases. Though triptolide-induced hepatotoxicity has been widely reported, the hepatic effects when the patients are in an inflammatory state are not clear. In this study, we used low-dose Lipopolysaccharides (LPS) to disrupt the inflammation homeostasis in the liver of zebrafish and explored the hepatotoxicity of triptolide under an inflammatory state. Compared with the Triptolide group, LPS-Triptolide cotreatment exacerbate the liver injury with a remarkable decrease of liver size and liver-specific fluorescence intensity, accompanied by significant elevation of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Liver cell damages were further demonstrated by histological staining and scanning electron microscopy observation. Lipid metabolism was severely impaired as indicated by delayed yolk sac absorption, accumulated triglycerides in the liver, and dysregulation of the related genes, such as ppar-α, cpt-1, mgst, srebf1/2, and fasn. Oxidative stress could be involved in the molecular mechanism as the Nrf2/keap1 antioxidant pathways were down-regulated when the zebrafish in an inflammatory state. Moreover, the expression of autophagy-related genes such as beclin, atg5, map1lc3b, and atg3 was also dysregulated. Finally, apoptosis was significantly induced in responses to LPS-Triptolide co-treatment. We speculate that triptolide could exacerbate the immune response and impair lipid metabolism, resulting in enhanced sensitivity of the zebrafish liver to triptolide-induced toxic effects through disruption of the antioxidant system and induction of apoptosis.
Collapse
Affiliation(s)
- Chenqinyao Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Changqing Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Chengyue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Jie Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
- *Correspondence: Yun Zhang,
| |
Collapse
|
47
|
Ge J, Liu Z, Zhong Z, Wang L, Zhuo X, Li J, Jiang X, Ye XY, Xie T, Bai R. Natural terpenoids with anti-inflammatory activities: Potential leads for anti-inflammatory drug discovery. Bioorg Chem 2022; 124:105817. [DOI: 10.1016/j.bioorg.2022.105817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 04/15/2022] [Indexed: 12/19/2022]
|
48
|
Panigrahi AR, Srinivas L, Panda J. Exosomes: Insights and therapeutic applications in cancer. Transl Oncol 2022; 21:101439. [PMID: 35551002 PMCID: PMC9108525 DOI: 10.1016/j.tranon.2022.101439] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/19/2022] Open
Abstract
Cancer refers to the division of abnormal cells at an uncontrollable rate that possesses the ability to infiltrate and destroy normal tissues. It frequently spreads to normal tissues throughout the body, a condition known as metastasis, which is a significant concern. It is the second leading cause of mortality globally and treatment therapy can assist in improving survival rates. Exosomes are the extracellular vesicles secreted by several cells that act as messengers between cells. When engineered, exosomes act as promising drug delivery vehicles that help achieve targeted action at the tumour site and reduce the limitations of conventional treatments such as castration, chemotherapy, radiation, etc. The present review provides an overview of exosomes, the biogenesis, sources, isolation methods and characterization. The current status and applications of chemotherapeutic agents loaded, engineered exosomes in cancer treatment were convoluted.
Collapse
Affiliation(s)
- Anita Raj Panigrahi
- GITAM Institute of Pharmacy, GITAM Deemed to be University, Rushikonda, Visakhapatnam, 530045, India
| | - Lankalapalli Srinivas
- GITAM Institute of Pharmacy, GITAM Deemed to be University, Rushikonda, Visakhapatnam, 530045, India.
| | - Jagadeesh Panda
- Raghu College of Pharmacy, Dakamarri, Visakhapatnam - 531162, India
| |
Collapse
|
49
|
Gang W, Hao H, Yong H, Ruibing F, Chaowen L, Yizheng H, Chao L, Haitao Z. Therapeutic Potential of Triptolide in Treating Bone-Related Disorders. Front Pharmacol 2022; 13:905576. [PMID: 35784734 PMCID: PMC9240268 DOI: 10.3389/fphar.2022.905576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
Triptolide, a diterpene triepoxide, is a pharmacologically active compound isolated from a Chinese medicinal herb Tripterygium wilfordii Hook F (TwHF). Triptolide has attracted considerable attention in recent times due to its multiple biological and pharmaceutical activities, with an emphasis on therapeutic importance in the treatment of diverse disorders. With essential medicinal implications, TwHF's extracts have been used as anti-inflammatory, antiproliferative, antioxidative, and immunosuppressive agents for centuries, with continuous and relevant modifications to date to enhance its utility in several diseases and pathophysiology. Here, in this review, we accentuate the studies, highlighting the effects of triptolide on treating bone-related disorders, both inflammatory and cancerous, particularly osteosarcoma, and their manifestations. Based on this review, future avenues could be estimated for potential research strategies, molecular mechanisms, and outcomes that might contribute toward reinforcing new dimensions in the clinical application of triptolide in treating bone-related disorders.
Collapse
Affiliation(s)
- Wu Gang
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Hu Hao
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Huang Yong
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Feng Ruibing
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | | | - Huang Yizheng
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Li Chao
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Zhang Haitao
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
50
|
Pei WJ, Wu YZ, Wang YS, Ding Q, Guo XL, Ren FL, Wang X. Gel based on cubic liquid crystals nanoparticles enhance anti-inflammation and bone protection effects of triptolide. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|