1
|
Baran K, Czechowska A, Kopacz K, Padula G, Migdalska-Sęk M, Tomaszewski W, Nowak K, Domżalski M, Brzeziańska-Lasota E. MMP13 mRNA Expression Level as a Potential Marker for Knee OA Progression-An Observational Study. J Clin Med 2025; 14:1263. [PMID: 40004793 PMCID: PMC11856394 DOI: 10.3390/jcm14041263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Osteoarthritis (OA) is a very common degenerative joint disease that has a significant negative impact on patients' lives and which can lead to functional limitations and disability. Matrix metalloproteinase 13 (MMP-13) is a key enzyme responsible for the degenerative changes in cartilage occurring during the pathogenesis of OA. This cohort study analyzed the differences in the expression level of MMP13 mRNA in articular cartilage with subchondral bone and in the synovium of patients with OA, according to the disease stage, in order to develop potential markers for OA progression, as well as for the degree of pain perception, in order to discover a molecular biomarker related to pain. Methods: In thirty-one patients (n = 31), the expression level of the studied gene was assessed in the affected and unaffected areas of the knee joint using the qPCR method. Statistical analysis was performed using the Mann-Whitney U test, the Kruskal-Wallis test, and Spearman's rank correlation coefficient. Results: A significantly higher expression level of MMP13 mRNA was noticed in the OA-affected articular cartilage with subchondral bone compared to the control tissue (p = 0.027, Mann-Whitney U test). The expression level of MMP13 mRNA was higher in patients with stage 4 knee OA than in those with stage 3, but the difference in MMP13 mRNA expression level was statistically insignificant (p > 0.05, Mann-Whitney U test). A higher MMP13 mRNA expression level was noticed in the OA-affected synovium compared to the control tissue (median RQ: 0.068 and 0.037, respectively), but these differences were not significant (p > 0.05, Mann-Whitney U test). A significantly higher MMP13 mRNA expression level was observed in the synovium of stage 4 knee OA patients compared to stage 3 patients (p = 0.015, Mann-Whitney U test). There was no significant difference in the expression level of MMP13 mRNA between both tissues, i.e., the articular cartilage with subchondral bone and the synovium from the stage 3 group and the control tissue (p > 0.05, Mann-Whitney U test); however, a significant difference was found between these tissues in stage 4 and in the control tissue (p = 0.014, Mann-Whitney U test). Conclusions: The results of our pilot study indicated the diagnostic potential of MMP13 mRNA and proved its role in the development and progression of OA. Further studies are needed to verify the potential utility of MMP13 mRNA in the development of molecularly targeted therapy for patients with OA.
Collapse
Affiliation(s)
- Kamila Baran
- Department of Biomedicine and Genetics, Biology and Medical Microbiology, Medical University of Lodz, 92-215 Lodz, Poland; (M.M.-S.); (E.B.-L.)
| | - Aleksandra Czechowska
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, 90-001 Lodz, Poland; (A.C.); (K.K.); (G.P.)
| | - Karolina Kopacz
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, 90-001 Lodz, Poland; (A.C.); (K.K.); (G.P.)
| | - Gianluca Padula
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, 90-001 Lodz, Poland; (A.C.); (K.K.); (G.P.)
| | - Monika Migdalska-Sęk
- Department of Biomedicine and Genetics, Biology and Medical Microbiology, Medical University of Lodz, 92-215 Lodz, Poland; (M.M.-S.); (E.B.-L.)
| | - Wiesław Tomaszewski
- Foundation for Medical Education, Health Promotion, Art and Culture ARS MEDICA, 03-721 Warsaw, Poland;
| | - Krzysztof Nowak
- Department of Orthopedics and Traumatology, University Clinical Hospital No. 2 of the Medical University of Lodz, 90-549 Lodz, Poland; (K.N.); (M.D.)
| | - Marcin Domżalski
- Department of Orthopedics and Traumatology, University Clinical Hospital No. 2 of the Medical University of Lodz, 90-549 Lodz, Poland; (K.N.); (M.D.)
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Biology and Medical Microbiology, Medical University of Lodz, 92-215 Lodz, Poland; (M.M.-S.); (E.B.-L.)
| |
Collapse
|
2
|
Vaidya N, Agarwal R, Dipankar DG, Patkar H, Ganu G, Nagore D, Godse C, Mehta A, Mehta D, Nair S. Efficacy and Safety of Boswellia serrata and Apium graveolens L. Extract Against Knee Osteoarthritis and Cartilage Degeneration: A Randomized, Double-blind, Multicenter, Placebo-Controlled Clinical Trial. Pharm Res 2025; 42:249-269. [PMID: 39875757 PMCID: PMC11880083 DOI: 10.1007/s11095-025-03818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Osteoarthritis is the prevailing form of inflammatory condition in joints of adults and the aging population, leading to long-term disability and chronic pain. Current therapeutic options have variable therapeutic efficacy and/or several side effects. METHODS A randomized, placebo-controlled, double-blind clinical trial was conducted in 62 participants using a nutraceutical [standardized Boswellia serrata Roxb. gum resin (300 mg) and Apium graveolens L. seed extract (250 mg)], to determine its safety and efficacy for supporting cartilage health and reduction in knee osteoarthritis symptoms. All participants were assessed for physical function and pain with the help of WOMAC, VAS, Physicians' Global Assessment for the six-minute walk test/pain. Knee X-ray, KOOS questionnaire score, and FACIT-F score were assessed. Additionally, inflammatory, cartilage degeneration and regeneration biomarkers in serum and urine were evaluated at baseline and after 90 days of treatment. RESULTS Oral administration of the nutraceutical resulted in prolonged symptomatic relief with reduced pain, stiffness, and swelling. Inflammatory (serum IL-7, IL-1, IL-6, hs-CRP, TNF-α, ESR) and cartilage degeneration biomarkers (serum CTX-II, COMP, MMP-3 and urinary CTX-II) were decreased in the nutraceutical group compared to baseline and placebo. Furthermore, serum N-propeptide of collagen IIA (PIIANP) and procollagen-type-C propeptide (PIICP) levels were increased in the nutraceutical group, suggesting collagen synthesis contributing to cartilage regeneration. At given doses for 90 days, there were no adverse effects based on the clinical examination, biochemical, hematological, and ECG analysis. CONCLUSIONS Taken together, the combination of Boswellia and celery could be a safe and promising herbal nutraceutical option for managing osteoarthritis and cartilage health effectively.
Collapse
Affiliation(s)
- Narendra Vaidya
- Lokmanya Medical Research Center and Hospital, Pune, 411033, India
| | - Ramshyam Agarwal
- Lokmanya Medical Research Center and Hospital, Pune, 411033, India
| | - D G Dipankar
- Dr. D. Y. Patil College of Ayurved & Research Centre, Pimpri-Chinchwad, 411018, India
| | | | | | | | - Chhaya Godse
- Phytoveda Pvt. Ltd., V.N. Purav Marg, Mumbai, 400022, India
- Viridis Biopharma Pvt. Ltd., Mumbai, 400022, India
| | - Anirudh Mehta
- Phytoveda Pvt. Ltd., V.N. Purav Marg, Mumbai, 400022, India
- Viridis Biopharma Pvt. Ltd., Mumbai, 400022, India
| | - Dilip Mehta
- Phytoveda Pvt. Ltd., V.N. Purav Marg, Mumbai, 400022, India
- Viridis Biopharma Pvt. Ltd., Mumbai, 400022, India
| | - Sujit Nair
- Phytoveda Pvt. Ltd., V.N. Purav Marg, Mumbai, 400022, India.
- Viridis Biopharma Pvt. Ltd., Mumbai, 400022, India.
| |
Collapse
|
3
|
Wu Y, Chen W, Jian J, Liu W, Wang H, Gao D, Liu W. The potential molecular markers of inflammatory response in KOA with AD based on single-cell transcriptome sequencing analysis and identification of ligands by virtual screening. Mol Divers 2025; 29:319-336. [PMID: 38622351 DOI: 10.1007/s11030-024-10854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Alzheimer's disease (AD) and osteoarthritis (OA) are both senile degenerative diseases. Clinical studies have found that OA patients have a significantly increased risk of AD in their later life. This study hypothesized that chronic aseptic inflammation might lead to AD in KOA patients. However, current research has not yet clarified the potential mechanism between AD and KOA. Therefore, this study intends to use KOA transcriptional profiling and single-cell sequencing analysis technology to explore the molecular mechanism of KOA affecting AD development, and screen potential molecular biomarkers and drugs for the prediction, diagnosis, and prognosis of AD in KOA patients. It was found that the higher the expression of TXNIP, MMP3, and MMP13, the higher the risk coefficient of AD was. In addition, the AUC of TXNIP, MMP3, and MMP13 were all greater than 0.70, which had good diagnostic significance for AD. Finally, through the virtual screening of core proteins in FDA drugs and molecular dynamics simulation, it was found that compound Cobicistat could be targeted to TXNIP, Itc could be targeted to MMP3, and Isavuconazonium could be targeted to MMP13. To sum up, TXNIP, MMP3, and MMP13 are prospective molecular markers in KOA with AD, which could be used to predict, diagnose, and prognosis.
Collapse
Affiliation(s)
- Yufeng Wu
- Traditional Chinese Medicine Hospital of Zhongshan, Zhongshan, 528400, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Weijian Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- The Fifth Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510095, China
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Junde Jian
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Guangzhou Orthopedic Hospital, Guangdong Province, Guangzhou University of Chinese Medicine, Guangzhou, 510045, China
| | - Weinian Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Guangzhou Orthopedic Hospital, Guangdong Province, Guangzhou University of Chinese Medicine, Guangzhou, 510045, China
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- The First Clinical Medical College, Guangdong Province, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Dawei Gao
- Traditional Chinese Medicine Hospital of Zhongshan, Zhongshan, 528400, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Wengang Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
- The Fifth Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510095, China.
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China.
| |
Collapse
|
4
|
Wang C, Lu J, Wu Y, Chu Y, Ho Y, Liu F, Peng Y. CN7:1h Alleviates Inflammation, Apoptosis and Extracellular Matrix Degradation in Osteoarthritis by Modulating the NF-κB and mTOR Pathways. J Cell Mol Med 2025; 29:e70368. [PMID: 39875323 PMCID: PMC11774621 DOI: 10.1111/jcmm.70368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease with a complex aetiology, which includes inflammation, cellular growth dysregulation and extracellular matrix (ECM) degradation. This study investigated the therapeutic potential of a small-molecule compound, 2-amino-4-(3,4,5-trimethoxyphenyl)-4H-benzo[h]chromene-3-carbonitrile (CN7:1h) in modulating these critical biochemical pathways in OA. Cellular models and rat models of OA were used to explore the impact of CN7:1h on the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and mechanistic target of rapamycin (mTOR) signalling pathways. Parameters such as autophagy, apoptosis and ECM preservation were evaluated. CN7:1h demonstrated a non-cytotoxic profile at a concentration as high as 140 μM as confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. At a concentration of 5 μM, CN7:1h was shown to inhibit the activation of NF-κB and mTOR pathways. CN7:1h was also shown to promote autophagy and reduce apoptosis in cellular models. In rat models, CN7:1h facilitated cartilage repair and demonstrating the therapeutic efficacy of this compound. In conclusion, CN7:1h is a promising bioactive compound for the modulation of key biochemical pathways with therapeutic benefits in degenerative conditions, such as OA. Its high bioavailability and lack of cytotoxicity make CN7:1h an excellent candidate for further research aimed at clinical applications.
Collapse
Affiliation(s)
- Chih‐Chien Wang
- Department of OrthopedicsTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| | - Jeng‐Wei Lu
- Biotech Research and Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ya‐Wun Wu
- Graduate Institute of Pathology and ParasitologyNational Defense Medical CenterTaipeiTaiwan
| | - You‐Hsiang Chu
- Graduate Institute of Pathology and ParasitologyNational Defense Medical CenterTaipeiTaiwan
| | - Yi‐Jung Ho
- Graduate Institute of Life SciencesNational Defense Medical CenterTaipeiTaiwan
- School of Pharmacy, National Defense Medical CenterTaipeiTaiwan
| | - Feng‐Cheng Liu
- Rheumatology/Immunology and Allergy, Department of MedicineTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| | - Yi‐Jen Peng
- Department of PathologyTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| |
Collapse
|
5
|
Sriram A, Ithape H, Singh PK. Deep-insights: Nanoengineered gel-based localized drug delivery for arthritis management. Asian J Pharm Sci 2025; 20:101012. [PMID: 39995751 PMCID: PMC11848107 DOI: 10.1016/j.ajps.2024.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/15/2024] [Accepted: 07/03/2024] [Indexed: 02/26/2025] Open
Abstract
Arthritis is an inflammatory joint disorder that progressively impairs function and diminishes quality of life. Conventional therapies often prove ineffective, as oral administration lacks specificity, resulting in off-target side effects like hepatotoxicity and GIT-related issues. Intravenous administration causes systemic side effects. The characteristic joint-localized symptoms such as pain, stiffness, and inflammation make the localized drug delivery suitable for managing arthritis. Topical/transdermal/intra-articular routes have become viable options for drug delivery in treating arthritis. However, challenges with those localized drug delivery routes include skin barrier and cartilage impermeability. Additionally, conventional intra-articular drug delivery also leads to rapid clearance of drugs from the synovial joint tissue. To circumvent these limitations, researchers have developed nanocarriers that enhance drug permeability through skin and cartilage, influencing localized action. Gel-based nanoengineered therapy employs a gel matrix to incorporate the drug-encapsulated nanocarriers. This approach combines the benefits of gels and nanocarriers to enhance therapeutic effects and improve patient compliance. This review emphasizes deep insights into drug delivery using diverse gel-based novel nanocarriers, exploring their various applications embedded in hyaluronic acid (biopolymer)-based gels, carbopol-based gels, and others. Furthermore, this review discusses the influence of nanocarrier pharmacokinetics on the localization and therapeutic manipulation of macrophages mediated by nanocarriers. The ELVIS (extravasation through leaky vasculature and inflammatory cell-mediated sequestration) effect associated with arthritis is advantageous in drug delivery. Simply put, the ELVIS effect refers to the extravasation of nanocarriers through leaky vasculatures, which finally results in the accumulation of nanocarriers in the joint cavity.
Collapse
Affiliation(s)
| | | | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Telangana 500037, India
| |
Collapse
|
6
|
Zheng X, Li J, Ma Q, Gong J, Pan J. Integrative analyses of mendelian randomization and bioinformatics reveal casual relationship and genetic links between COVID-19 and knee osteoarthritis. BMC Med Genomics 2025; 18:2. [PMID: 39748395 PMCID: PMC11697936 DOI: 10.1186/s12920-024-02074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Clinical and epidemiological analyses have found an association between coronavirus disease 2019 (COVID-19) and knee osteoarthritis (KOA). Infection with COVID-19 may increase the risk of developing KOA. OBJECTIVES This study aimed to investigate the potential causal relationship between COVID-19 and KOA using Mendelian randomization (MR) and to explore the underlying mechanisms through a systematic bioinformatics approach. METHODS Our investigation focused on exploring the potential causal relationship between COVID-19, acute upper respiratory tract infection (URTI) and KOA utilizing a bidirectional MR approach. Additionally, we conducted differential gene expression analysis using public datasets related to these three conditions. Subsequent analyses, including transcriptional regulation analysis, immune cell infiltration analysis, single-cell analysis, and druggability evaluation, were performed to explore potential mechanisms and prioritize therapeutic targets. RESULTS The results indicate that COVID-19 has a one-way impact on KOA, while URTI does not play a causal role in this association. Ribosomal dysfunction may serve as an intermediate factor connecting COVID-19 with KOA. Specifically, COVID-19 has the potential to influence the metabolic processes of the extracellular matrix, potentially impacting the joint homeostasis. A specific group of genes (COL10A1, BGN, COL3A1, COMP, ACAN, THBS2, COL5A1, COL16A1, COL5A2) has been identified as a shared transcriptomic signature in response to KOA with COVID-19. Imatinib, Adiponectin, Myricetin, Tranexamic acid, and Chenodeoxycholic acid are potential drugs for the treatment of KOA patients with COVID-19. CONCLUSIONS This study uniquely combines Mendelian randomization and bioinformatics tools to explore the possibility of a causal relationship and genetic association between COVID-19 and KOA. These findings are expected to provide novel perspectives on the underlying biological mechanisms that link COVID-19 and KOA.
Collapse
Affiliation(s)
- Xiao Zheng
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jinhao Li
- Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qinfeng Ma
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jianping Gong
- Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jianbo Pan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
7
|
He M, Yu Q, Xiao H, Dong H, Li D, Gu W. Screening and validation of key genes associated with osteoarthritis. BMC Musculoskelet Disord 2024; 25:954. [PMID: 39587568 PMCID: PMC11587628 DOI: 10.1186/s12891-024-08015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Osteoarthritis is recognized as a common geriatric condition characterized by irregular chronic pain. Its prevalence is steadily increasing, posing significant challenges to global public health, while some studies indicate a trend towards younger individuals being affected. This condition severely impacts patients' quality of life. METHODS Using the Gene Expression Omnibus (GEO) database, we downloaded datasets GSE114007, GSE169077, and GSE206848. We utilized R software to screen and confirm differentially expressed genes (DEGs) related to the development of osteoarthritis. A cross-analysis of the three datasets was conducted, with the least overlapping dataset, GSE206848, selected as the validation set. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on the DEGs from GSE114007 and GSE169077. Weighted Gene Co-Expression Network Analysis (WGCNA) was employed to identify modules closely associated with osteoarthritis, and genes from these intersecting modules were entered into the STRING database to construct Protein-Protein Interaction Networks. The top ten genes by connectivity were identified and validated using GSE206848. Key genes were identified and preliminarily validated using Quantitative Real-Time PCR (QPCR). Subsequent validation of related genes was carried out through Western Blot (WB) analysis. RESULTS Differentially expressed genes were identified from the GSE114007 and GSE169077 datasets and validated in the GSE206848 dataset, with ANGPTL4 selected as the key gene. QPCR results indicated a significant difference in ANGPTL4 expression levels between normal and osteoarthritic chondrocytes. Western Blot analysis confirmed a significant difference in ANGPTL4 protein expression between normal and osteoarthritic chondrocytes. CONCLUSION Based on the experimental findings, ANGPTL4 appears to be a potential key gene in osteoarthritis.
Collapse
Affiliation(s)
- MingLiu He
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - QiFan Yu
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Xiao
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - HengDa Dong
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - DaZhuang Li
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - WenGuang Gu
- The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
8
|
Rogoschin J, Komnik I, Potthast W. Neuromuscular Adaptations Related to Medial Knee Osteoarthritis and Influence of Unloader Braces on Neuromuscular Activity in Knee Osteoarthritis Subjects-A Systematic Review. Am J Phys Med Rehabil 2024; 103:1051-1059. [PMID: 38709674 DOI: 10.1097/phm.0000000000002521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
ABSTRACT Unloader braces are a treatment modality for medial compartment knee osteoarthritis. The functional mechanisms involved are not yet fully understood. Therefore, this two-part systematic review examines the following research questions: How is muscle activation altered by medial compartment knee osteoarthritis, and do medial tibio-femoral compartment unloader braces alter muscle activation? If so, could this alteration be part of the unloading mechanism by affecting the altered muscle activity in medial compartment knee osteoarthritis?A systematic literature search was conducted using PubMed, LIVIVO, Web of Science, Google Scholar, and CENTRAL for articles published until August 2023. The first systematic review, examining neuromuscular alterations, identified 703 articles, with a final inclusion of 20. The second systematic review, which evaluated the neuromuscular effects of unloader braces, identified 123 articles with the final inclusion of 3. Individuals with medial compartment knee osteoarthritis demonstrated increased activity and co-contraction of the periarticular knee muscles, whereas medial tibio-femoral compartment unloader braces seemed to reduce activity and co-contraction. In contrast to the belief that unloader braces result in muscle weakness as they decrease muscle activity and co-contraction, our limited insights indicate that they rather might reduce the pathological increase. This may result in joint load reduction due to lower compressive forces. However, further investigation is required.
Collapse
Affiliation(s)
- Jana Rogoschin
- From the Institute of Biomechanics and Orthopedics, German Sports University, Cologne, Germany (JR); Institute of Biomechanics and Orthopedics, German Sports University, Cologne, Germany (IK); and Institute of Biomechanics and Orthopedics, German Sports University, Cologne, Germany (WP)
| | | | | |
Collapse
|
9
|
Zheng J, Xiong X, Li K, Wang G, Cao H, Huang H. SPHK2 Knockdown Inhibits the Proliferation and Migration of Fibroblast-Like Synoviocytes Through the IL-17 Signaling Pathway in Osteoarthritis. J Inflamm Res 2024; 17:7221-7234. [PMID: 39416266 PMCID: PMC11479950 DOI: 10.2147/jir.s476077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Objective Synovial inflammation is vital for the progression of osteoarthritis (OA). The objective of this study was to explore the effects and potential molecular mechanisms of sphingosine kinase 2 (SPHK2) on the proliferation and migration of fibroblast-like synoviocytes (FLS). Methods A TNF-α-stimulated FLS model and a papain-induced OA rat model were constructed. The functions of SPHK2 knockdown in OA were explored by a series of in vivo and in vitro assays. Downstream target genes of SPHK2 were investigated using transcriptome sequencing and validated by reverse transcription quantitative PCR (RT-qPCR). The effects of the SPHK2/IL-17 signaling pathway on inflammation, proliferation, and migration of OA-FLS were investigated using the IL-17 pathway inhibitor (secukinumab) and the activator (rhIL-17A). Results TNF-α stimulation promoted SPHK2 expression at mRNA and protein levels in OA-FLS. SPHK2 knockdown reduced IL-1β, IL-6, MMP-2, MMP-9, cyclinD1, and PCNA levels and suppressed proliferation and migration of OA-FLS. SPHK2 knockdown alleviated cartilage damage and synovial inflammation in the OA rat model. LRRIQ3, H4C8, CXCL1, CABP4, COL23A1, and PROK2 expression levels were regulated by SPHK2. SPHK2 knockdown inhibited the protein levels of IL-17A, IL-17RA, and Act1. The IL-17 pathway inhibitor secukinumab enhanced the inhibitory effect of SPHK2 knockdown on the proliferation and migration of OA-FLS, while the IL-17 pathway activator rhIL-17A exerted the opposite effect. Conclusion SPHK2 knockdown inhibits proliferation and migration of OA-FLS by blocking the IL-17 pathway, which provides a novel approach to the OA treatment.
Collapse
Affiliation(s)
- Jiaxuan Zheng
- Department of Pathology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, 570311, People’s Republic of China
| | - Xiaolong Xiong
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, 570311, People’s Republic of China
| | - Ke Li
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, 570311, People’s Republic of China
| | - Guangji Wang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, 570311, People’s Republic of China
| | - Huiyuan Cao
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, 570311, People’s Republic of China
| | - Hui Huang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, 570311, People’s Republic of China
| |
Collapse
|
10
|
Gilbert SJ, Jones R, Egan BJ, Bonnet CS, Evans SL, Mason DJ. Investigating mechanical and inflammatory pathological mechanisms in osteoarthritis using MSC-derived osteocyte-like cells in 3D. Front Endocrinol (Lausanne) 2024; 15:1359052. [PMID: 39157681 PMCID: PMC11328832 DOI: 10.3389/fendo.2024.1359052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Changes to bone physiology play a central role in the development of osteoarthritis with the mechanosensing osteocyte releasing factors that drive disease progression. This study developed a humanised in vitro model to detect osteocyte responses to either interleukin-6, a driver of degeneration and bone remodelling in animal and human joint injury, or mechanical loading, to mimic osteoarthritis stimuli in joints. Methods Human MSC cells (Y201) were differentiated in 3-dimensional type I collagen gels in osteogenic media and osteocyte phenotype assessed by RTqPCR and immunostaining. Gels were subjected to a single pathophysiological load or stimulated with interleukin-6 with unloaded or unstimulated cells as controls. RNA was extracted 1-hour post-load and assessed by RNAseq. Markers of pain, bone remodelling, and inflammation were quantified by RT-qPCR and ELISA. Results Y201 cells embedded within 3D collagen gels assumed dendritic morphology and expressed mature osteocytes markers. Mechanical loading of the osteocyte model regulated 7564 genes (Padj p<0.05, 3026 down, 4538 up). 93% of the osteocyte transcriptome signature was expressed in the model with 38% of these genes mechanically regulated. Mechanically loaded osteocytes regulated 26% of gene ontology pathways linked to OA pain, 40% reflecting bone remodelling and 27% representing inflammation. Load regulated genes associated with osteopetrosis, osteoporosis and osteoarthritis. 42% of effector genes in a genome-wide association study meta-analysis were mechanically regulated by osteocytes with 10 genes representing potential druggable targets. Interleukin-6 stimulation of osteocytes at concentrations reported in human synovial fluids from patients with OA or following knee injury, regulated similar readouts to mechanical loading including markers of pain, bone remodelling, and inflammation. Discussion We have developed a reproducible model of human osteocyte like cells that express >90% of the genes in the osteocyte transcriptome signature. Mechanical loading and inflammatory stimulation regulated genes and proteins implicated in osteoarthritis symptoms of pain as well as inflammation and degeneration underlying disease progression. Nearly half of the genes classified as 'effectors' in GWAS were mechanically regulated in this model. This model will be useful in identifying new mechanisms underlying bone and joint pathologies and testing drugs targeting those mechanisms.
Collapse
Affiliation(s)
- Sophie J. Gilbert
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ryan Jones
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ben J. Egan
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Cleo Selina Bonnet
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Sam L. Evans
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Engineering, Cardiff University, Cardiff, United Kingdom
| | - Deborah J. Mason
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
11
|
Wang X, He W, Huang H, Han J, Wang R, Li H, Long Y, Wang G, Han X. Recent Advances in Hydrogel Technology in Delivering Mesenchymal Stem Cell for Osteoarthritis Therapy. Biomolecules 2024; 14:858. [PMID: 39062572 PMCID: PMC11274544 DOI: 10.3390/biom14070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoarthritis (OA), a chronic joint disease affecting over 500 million individuals globally, is characterized by the destruction of articular cartilage and joint inflammation. Conventional treatments are insufficient for repairing damaged joint tissue, necessitating novel therapeutic approaches. Mesenchymal stem cells (MSCs), with their potential for differentiation and self-renewal, hold great promise as a treatment for OA. However, challenges such as MSC viability and apoptosis in the ischemic joint environment hinder their therapeutic effectiveness. Hydrogels with biocompatibility and degradability offer a three-dimensional scaffold that support cell viability and differentiation, making them ideal for MSC delivery in OA treatment. This review discusses the pathological features of OA, the properties of MSCs, the challenges associated with MSC therapy, and methods for hydrogel preparation and functionalization. Furthermore, it highlights the advantages of hydrogel-based MSC delivery systems while providing insights into future research directions and the clinical potential of this approach.
Collapse
Affiliation(s)
- Xiangjiang Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Wentao He
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collage of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Jiali Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ruren Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hongyi Li
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ying Long
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Guiqing Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Xianjing Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| |
Collapse
|
12
|
Yang T, Cao T, Yang X, Wang G, Li Y. Elucidation of the key therapeutic targets and potential mechanisms of Andrographolide multi-targets against osteoarthritis via network pharmacological analysis and experimental validation. Gene 2024; 911:148351. [PMID: 38462021 DOI: 10.1016/j.gene.2024.148351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Our purpose is to unveil Andrographolide's potential multi-target and multi-mechanism therapeutic effects in treating OA via systematic network pharmacological analysis and cell experimental validation. MATERIALS AND METHODS Initially, we gathered data from Andrographolide and OA-related databases to obtain information on Andrographolide's biological properties and the targets linked with OA. We developed a bioinformatic network about Andrographolide and OA, whereby we analyzed the network to identify potential therapeutic targets and mechanisms of action of Andrographolide. Subsequently, we used molecular docking to analyze the binding sites of Andrographolide to the target proteins. At the same time, SDF-1 was used to construct an OA cell model to verify the therapeutic effect of Andrographolide on OA and its effect on target proteins. RESULTS Our experimental results show that Andrographolide has excellent pharmaceutical properties, by Lipinski's rules for drugs, suggesting that this compound can be considered to have a high therapeutic potential in drug development. 233 targets were preliminarily investigated, the mechanisms through which Andrographolide targets OA primarily involve the TNF signaling pathway, PI3K-AKT signaling pathway, IL-17 signaling pathway, and TLR signaling pathway. These mechanisms target OA by influencing immune and inflammatory responses in the joints, regulating apoptosis to prevent chondrocyte death. Finally, TNF-α, STAT3, TP53, IL-6, JUN, IL-1β, HIF-1α, TGF-β1, and AKT1 were identified as 9 key targets of Andrographolide anti-OA. In addition, our molecular docking analyzes with cell experimental validation further confirm the network pharmacology results. According to our molecular docking results, Andrographolide can bind to all the hub target proteins and has a good binding ability (binding energy < -5 kcal/mol), with the strongest binding affinity to AKT1 of -9.2 kcal/ mol. The results of cell experiments showed that Andrographolide treatment significantly increased the cell viability and the expression of COL2A1 and ACAN proteins. Moreover, 30 μM Andrographolide significantly reversed SDF-1-induced increases in the protein expression of TNF-α, STAT3, TP53, IL-6, JUN, IL-1β, HIF-1α, and TGF-β1, and decreases in the protein expression of AKT1. CONCLUSION This study provides a comprehensive understanding of the potential therapeutic targets and mechanisms of action of Andrographolide in OA treatment. Our findings suggest that Andrographolide is a promising candidate for drug development in the management of OA.
Collapse
Affiliation(s)
- Tengyun Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Tingting Cao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xianguang Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Guoliang Wang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Yanlin Li
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
13
|
Zhou E, Wu J, Zhou X, Yin Y. Systemic inflammatory biomarkers are novel predictors of all-cause and cardiovascular mortality in individuals with osteoarthritis: a prospective cohort study using data from the NHANES. BMC Public Health 2024; 24:1586. [PMID: 38872115 PMCID: PMC11170786 DOI: 10.1186/s12889-024-19105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Chronic inflammation may contribute to increased mortality risk in individuals with osteoarthritis (OA), but research on the prognostic value of inflammatory biomarkers is limited. We aimed to evaluate the associations of the systemic immune-inflammation index (SII) and systemic inflammation response index (SIRI) with all-cause and cardiovascular mortality among US adults with OA. METHODS This cohort study included 3545 adults with OA aged ≥ 20 years from the National Health and Nutrition Examination Survey 1999-2020. The SII and SIRI were calculated using complete blood cell count data. Participants were categorized as having a higher or lower SII and SIRI using cutoff points derived by the maximally selected rank statistics method. Cox proportional hazards models, Fine-Gray competing risk regression models and time-dependent receiver operating characteristic (ROC) analysis were used to evaluate the associations between the SII/SIRI and mortality in OA patients. RESULTS Over a median follow-up of 5.08 (3.42-9.92) years, 636 (17.94%) deaths occurred, including 149 (4.20%) cardiovascular deaths. According to multivariable-adjusted models involving demographic, socioeconomic, and health factors, OA patients with a higher SII had a twofold greater risk of all-cause mortality than patients with a lower SII (HR 2.01; 95% CI: 1.50-2.68). Similarly, a higher SIRI was associated with an 86% increased risk of all-cause mortality relative to a lower SIRI (HR 1.86; 95% CI: 1.46-2.38). Similar to the trend found with all-cause mortality, patients with an elevated SII and SIRI had a 88% and 67% increased risk of cardiovascular mortality, respectively, compared to patients with a lower SII (HR 1.88; 95% CI: 1.16-3.03) and SIRI (HR 1.67; 95% CI: 1.14-2.44). Time-dependent ROC curves showed that both the SII and SIRI have moderate and valid performance in predicting short- and long-term mortality in patients with OA. CONCLUSIONS Higher SII and SIRI values were associated with greater all-cause and cardiovascular mortality among US adults with OA.
Collapse
Affiliation(s)
- Erye Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou , Jiangsu, 215006, China
| | - Jian Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou , Jiangsu, 215006, China
| | - Xin Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou , Jiangsu, 215006, China
| | - Yufeng Yin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou , Jiangsu, 215006, China.
| |
Collapse
|
14
|
Vaishya R, Gupta BM, Mamdapur GMN, Kappi MM, Vaish A. Global Research on Osteoarthritis During 1994-2023: A Scientometric Assessment of Publications and Citations. Indian J Orthop 2024; 58:650-660. [PMID: 38812866 PMCID: PMC11130104 DOI: 10.1007/s43465-024-01111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/19/2024] [Indexed: 05/31/2024]
Abstract
Introduction This study presents a global research scenario in the broad domain of osteoarthritis (OA) research, using quantitative and qualitative publication and citation indicators. Methods The study is based on 45,368 global publications, sourced from the Scopus bibliographical database, covering three decades (1994-2023). We studied the performance of the top 12 developed and top 12 developing countries. The key countries, organizations and authors at national and international levels were identified. The broad subject areas and key journals contributing to global OA research were delineated, besides identifying the broad characteristics of highly cited papers in the field. Results The United States and China were the most productive countries, while the Netherlands and Canada made the largest citation impact. Harvard Medical School and the University of Sydney made the most contribution, while Boston University and Pfizer Inc., USA registered the highest citation impact. Hunter DJ and Guermazi A were the most productive authors, while Lohmander LS, and Hochberg MC registered the highest citation impact. Osteoarthritis and Cartilage (n = 4879) and Annals of the Rheumatic Diseases (n = 786) published the maximum papers, while Arthritis and Rheumatism and Nature Reviews Rheumatology registered the largest citation impact. The highly cited papers with 100 or more citations constituted 6.25% of the total publications. Conclusions There has been a systematic growth of publications on OA. The research on OA was mainly done in developed countries, with the maximum publications coming from the United States of America, China and Canada. The most impactful publications on OA were from the Netherlands, Canada and the United States of America. Supplementary Information The online version contains supplementary material available at 10.1007/s43465-024-01111-9.
Collapse
Affiliation(s)
- Raju Vaishya
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospitals, Sarita Vihar, New Delhi, 110076 India
| | | | - Ghouse Modin Nabeesab Mamdapur
- Department of Library and Information Science, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018 India
| | - Mallikarjun M Kappi
- Library and Information Centre, Government First Grade College, Hosapete, Vijayanagara, Karnataka 583201 India
| | - Abhishek Vaish
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospitals, Sarita Vihar, New Delhi, 110076 India
| |
Collapse
|
15
|
Xu L, Ma J, Yu Q, Zhu K, Wu X, Zhou C, Lin X. Evidence supported by Mendelian randomization: impact on inflammatory factors in knee osteoarthritis. Front Med (Lausanne) 2024; 11:1382836. [PMID: 38863887 PMCID: PMC11165061 DOI: 10.3389/fmed.2024.1382836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/01/2024] [Indexed: 06/13/2024] Open
Abstract
Background Prior investigations have indicated associations between Knee Osteoarthritis (KOA) and certain inflammatory cytokines, such as the interleukin series and tumor necrosis factor-alpha (TNFα). To further elaborate on these findings, our investigation utilizes Mendelian randomization to explore the causal relationships between KOA and 91 inflammatory cytokines. Methods This two-sample Mendelian randomization utilized genetic variations associated with KOA from a large, publicly accessible Genome-Wide Association Study (GWAS), comprising 2,227 cases and 454,121 controls of European descent. The genetic data for inflammatory cytokines were obtained from a GWAS summary involving 14,824 individuals of European ancestry. Causal relationships between exposures and outcomes were primarily investigated using the inverse variance weighted method. To enhance the robustness of the research results, other methods were combined to assist, such as weighted median, weighted model and so on. Multiple sensitivity analysis, including MR-Egger, MR-PRESSO and leave one out, was also carried out. These different analytical methods are used to enhance the validity and reliability of the final results. Results The results of Mendelian randomization indicated that Adenosine Deaminase (ADA), Fibroblast Growth Factor 5(FGF5), and Hepatocyte growth factor (HFG) proteins are protective factors for KOA (IVWADA: OR = 0.862, 95% CI: 0.771-0.963, p = 0.008; IVWFGF5: OR = 0.850, 95% CI: 0.764-0.946, p = 0.003; IVWHFG: OR = 0.798, 95% CI: 0.642-0.991, p = 0.042), while Tumor necrosis factor (TNFα), Colony-stimulating factor 1(CSF1), and Tumor necrosis factor ligand superfamily member 12(TWEAK) proteins are risk factors for KOA. (IVWTNFα: OR = 1.319, 95% CI: 1.067-1.631, p = 0.011; IVWCSF1: OR = 1.389, 95% CI: 1.125-1.714, p = 0.002; IVWTWEAK: OR = 1.206, 95% CI: 1.016-1.431, p = 0.032). Conclusion The six proteins identified in this study demonstrate a close association with the onset of KOA, offering valuable insights for future therapeutic interventions. These findings contribute to the growing understanding of KOA at the microscopic protein level, paving the way for potential targeted therapeutic approaches.
Collapse
Affiliation(s)
- Lilei Xu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Ma
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Yu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kean Zhu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuewen Wu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuanlong Zhou
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianming Lin
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
16
|
Ogurkowska M, Podgórski T, Nowak A. Association of cartilage metabolism biomarkers and 25(OH)D levels with muscle biomechanical functions in professional rowers and canoeists. Sci Rep 2024; 14:1112. [PMID: 38212477 PMCID: PMC10784497 DOI: 10.1038/s41598-024-51272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
The purpose of the study was to assess the association of cartilage metabolism biomarkers and vitamin D metabolite levels with muscle biomechanical functions in professional rowers and canoeists. The serum levels of aggrecan, cartilage oligomeric matrix protein (COMP), and 25-hydroxyvitamin D (25(OH)D) were determined in elite male sweep-oar rowers (n = 24) and canoeists (n = 15). This was followed by a biomechanical study consisting in isometric measurement of peak torque (PT) of muscles involved in the rowing cycle in the athletes. There were found significant correlations of COMP with the ratio of trunk PT flexor to extensor (p < 0.05) and 25(OH)D with trunk PT-left rotators (p < 0.05), knee joints PT-left and right flexor (p ≤ 0.01), ratio of knee joint PT-right flexor to knee joint PT-right extensor (p < 0.05) in rowers and aggreccan with elbow joint PT of the right flexor (p ≤ 0.01) and extensor (p = 0.05) in canoeists. The correlations of COMP and aggrecan levels with PT of the muscle groups studied in rowers and canoeists indicate the importance of stabilizing the muscular system in cartilage metabolism. The relationship between 25(OH)D status and biomechanical parameters confirm that vitamin D plays an important role in maintaining skeletal muscle health.
Collapse
Affiliation(s)
- Małgorzata Ogurkowska
- Department of Biomechanics, Poznan University of Physical Education, Królowej Jadwigi Street 27/39, 61-871, Poznań, Poland.
| | - Tomasz Podgórski
- Department of Physiology and Biochemistry, Poznan University of Physical Education, Poznań, Poland
| | - Alicja Nowak
- Department of Physiology and Biochemistry, Poznan University of Physical Education, Poznań, Poland
| |
Collapse
|
17
|
Chen S, Kang P, Zhao Z, Zhang H, Li J, Xu K, Gong D, Jiao F, Wang H, Zhang M. Danggui-Shaoyao-San (DSS) ameliorates the progression of osteoarthritis via suppressing the NF-κB signaling pathway: an in vitro and in vivo study combined with bioinformatics analysis. Aging (Albany NY) 2024; 16:648-664. [PMID: 38194722 PMCID: PMC10817397 DOI: 10.18632/aging.205410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a common chronic age-related joint disease characterized primarily by inflammation of synovial membrane and degeneration of articular cartilage. Accumulating evidence has demonstrated that Danggui-Shaoyao-San (DSS) exerts significant anti-inflammatory effects, suggesting that it may play an important role in the treatment of knee osteoarthritis (KOA). METHODS In the present study, DSS was prepared and analyzed by high-performance liquid chromatography (HPLC). Bioinformatics analyses were carried out to uncover the functions and possible molecular mechanisms by which DSS against KOA. Furthermore, the protective effects of DSS on lipopolysaccharide (LPS)-induced rat chondrocytes and cartilage degeneration in a rat OA model were investigated in vivo and in vitro. RESULTS In total, 114 targets of DSS were identified, of which 60 candidate targets were related to KOA. The target enrichment analysis suggested that the NF-κB signaling pathway may be an effective mechanism of DSS. In vitro, we found that DSS significantly inhibited LPS-induced upregulation of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), matrix metalloproteinase-3 (MMP3), and matrix metalloproteinase-13 (MMP13). Meanwhile, the degradation of collagen II was also reversed by DSS. Mechanistically, DSS dramatically suppressed LPS-induced activation of the nuclear factor kappa B (NF-κB) signaling pathway. In vivo, DSS treatment prevented cartilage degeneration in a rat OA model. CONCLUSIONS DSS could ameliorate the progression of OA through suppressing the NF-κB signaling pathway. Our findings indicate that DSS may be a promising therapeutic approach for the treatment of KOA.
Collapse
Affiliation(s)
- Shuai Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Pan Kang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Zhuanglin Zhao
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, Guangdong, China
| | - Hongyi Zhang
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, Guangdong, China
| | - Jianliang Li
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Kun Xu
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Dawei Gong
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Feng Jiao
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, Guangdong, China
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Meng Zhang
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou 450003, Henan, China
| |
Collapse
|
18
|
Singh K, Gupta JK, Kumar S. The Pharmacological Potential of Resveratrol in Reducing Soft Tissue Damage in Osteoarthritis Patients. Curr Rheumatol Rev 2024; 20:27-38. [PMID: 37694798 DOI: 10.2174/1573397119666230911113134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 09/12/2023]
Abstract
Osteoarthritis is a degenerative joint disease that causes the cartilage and bone underneath the joint to break down. This causes pain and stiffness. Resveratrol, a polyphenolic compound found in various vegetables, fruits, and red wine, has been studied for its beneficial effects on osteoarthritis. Resveratrol has been shown to target a variety of pathways, including the NF-κB, PI3K/Akt, MAPK/ERK, and AMPK pathways. In particular, resveratrol has been studied for its potential use in treating osteoarthritis, and it has been shown to reduce inflammation, reduce cartilage degradation, and improve joint function. In this review, we discuss the evidence for the pharmacological use of resveratrol in minimizing soft tissue damage associated with osteoarthritis. We summarize the studies on how resveratrol has anti-inflammatory, anti-oxidant, and anti-apoptotic effects, as well as effects on cartilage degradation, osteoblast and synoviocyte proliferation, and cytokine production. We also discuss the possible mechanisms of action of resveratrol in osteoarthritis and its potential as a therapeutic agent. Finally, we discuss the potential risks and adverse effects of long-term resveratrol supplementation. Overall, resveratrol has been found to be a possible treatment for osteoarthritis because of its anti-inflammatory, anti-oxidant, and anti-apoptotic properties, and its ability to control the production of enzymes that break down cartilage, osteoblasts, and synoviocytes. Although numerous clinical studies have demonstrated resveratrol's efficacy as an osteoarthritis management agent, further long-term studies are needed to better understand the safety and potential benefits of using resveratrol for osteoarthritis management.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| |
Collapse
|
19
|
Kim JR, Pham THN, Kim WU, Kim HA. A causative role for periarticular skeletal muscle weakness in the progression of joint damage and pain in OA. Sci Rep 2023; 13:21349. [PMID: 38049482 PMCID: PMC10696078 DOI: 10.1038/s41598-023-46599-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/02/2023] [Indexed: 12/06/2023] Open
Abstract
Although osteoarthritis (OA) is regarded as a disease of the articular cartilage, recent research has demonstrated alterations in periarticular muscles that surround the affected joint. Here, we investigated changes in periarticular muscle during the progression of OA, as well as the cause-and-effect relationship between muscle weakness and OA, in a mouse model of OA by destabilization of the medial meniscus (DMM). Pathological phenotypes in the periarticular muscles were assessed in the early and late stages of OA by DMM. OA pathology and pain behavior in the mice after DMM induction were examined in response to periarticular muscle weakness induced by multiple rounds of barium chloride (BaCl2) injections. The examinations were also performed in myostatin knockout mice with strengthened muscle phenotypes by muscle hypertrophy. Morphological alterations in the tibialis anterior (TA) and quadriceps muscles in DMM mice included variations in muscle-fiber size, aberrant extracellular matrix (ECM) deposition, inflammatory cell infiltration, and decreased muscle mass. Periarticular muscle fibers isolated from DMM mice showed reductions in the number of satellite cells and myogenic capacity of primary myoblast, as well as proliferation. DMM + muscle injury mice also showed exacerbated joint degeneration compared to the DMM vehicles. Myostatin knockout mice were characterized by attenuated OA and the complete abrogation of pain behavior after DMM. Our results suggest an association between muscle weakness and OA progression and pain.
Collapse
Affiliation(s)
- Ju-Ryoung Kim
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, 896, Pyungchon, Anyang, Kyunggi, 14068, Korea
- Institute for Skeletal Aging, Hallym University, Gangwon-Do, 24252, Korea
| | - Thi Hong Nhung Pham
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, 896, Pyungchon, Anyang, Kyunggi, 14068, Korea
- Institute for Skeletal Aging, Hallym University, Gangwon-Do, 24252, Korea
| | - Wan-Uk Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Center for Intergrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, 06591, Korea
| | - Hyun Ah Kim
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, 896, Pyungchon, Anyang, Kyunggi, 14068, Korea.
- Institute for Skeletal Aging, Hallym University, Gangwon-Do, 24252, Korea.
| |
Collapse
|
20
|
Kung Y, Chien WC, Shen HH, Chen SL, Yu WL, Wang YC, Chen WS, Wu CH. Potential of thermoresponsive hydrogel as an alternative therapy for rat knee osteoarthritis. J Biomater Appl 2023; 38:707-718. [PMID: 37867223 DOI: 10.1177/08853282231208506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Osteoarthritis is a degenerative condition that is highly prevalent and primarily affects the joints. The knee is the most commonly affected site, impacting the lives of over 300 million individuals worldwide. This study presents a potential solution to address the unmet need for a minimally invasive technique in the treatment of osteoarthritis: a biocompatible, injectable, and thermoresponsive hydrogel. In comparison to commercially available products such as lyophilized platelets, dextrose, and triamcinolone, the thermoresponsive hydrogel exhibits significantly superior performance in dynamic behaviors, including print area, stability, and step cycle, when tested on rats with knee osteoarthritis. However, it demonstrates similar treatment efficacy to these products in static behaviors, as observed through histopathological and immunohistochemical analysis. Therefore, the thermoresponsive hydrogel holds promise as an effective alternative therapy for osteoarthritis. Moreover, by blending the hydrogel with drugs, controlled and sustained release can be achieved, thereby facilitating the long-term management of osteoarthritis symptoms.
Collapse
Affiliation(s)
- Yi Kung
- Department of Biomechatronic Engineering, National Chiayi University, Chiayi, Taiwan
| | - Wei-Chun Chien
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsin-Hsin Shen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Sen-Lu Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wei-Lin Yu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yu-Chi Wang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chueh-Hung Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| |
Collapse
|
21
|
Hasiba-Pappas S, Kamolz LP, Luze H, Nischwitz SP, Lumenta DB, Winter R. Regenerative Therapies for Basal Thumb Arthritis-A Systematic Review. Int J Mol Sci 2023; 24:14909. [PMID: 37834357 PMCID: PMC10573355 DOI: 10.3390/ijms241914909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Basal thumb arthritis is a painful and debilitating pathology that can severely reduce a patients' quality of life. Common therapies include oral pain control, local steroid injections and/or surgery. Yet, therapeutic data on long-term improvement and even cartilage repair are scarce. This review aims to present the currently available literature on novel therapies for basal thumb arthritis, including platelet-rich plasma (PRP), fat grafting and phototherapy, and investigate their potential efficacy. The entire OVID database and PubMed were searched for studies containing the topics PRP injection, lipofilling, laser treatment and regenerative treatment for carpometacarpal arthritis. Seven studies on the effect of fat tissue on basal thumb arthritis were found. Four authors reported on PRP injections, one RCT examined a combinational treatment of PRP and fat grafting, another phototherapy for the thumb joint and one prospective trial on chondrocyte transplantation was found. Pain improvement and decreased impairment were reported in the majority of PRP and/or fat grafting studies as well as after chondrocyte implantation. Phototherapy did not significantly improve the condition. This review revealed that only limited data on regenerative therapies for carpometacarpal arthritis are currently available, yet PRP and lipofilling show promising results and merit further investigation.
Collapse
Affiliation(s)
- Sophie Hasiba-Pappas
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 5, A-8036 Graz, Austria; (S.H.-P.); (L.-P.K.); (D.B.L.)
| | - Lars-P. Kamolz
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 5, A-8036 Graz, Austria; (S.H.-P.); (L.-P.K.); (D.B.L.)
- COREMED—Cooperative Centre for Regenerative Medicine, Joanneum Research GmbH, Neue Stiftingtalstr. 2, A-8010 Graz, Austria
| | - Hanna Luze
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 5, A-8036 Graz, Austria; (S.H.-P.); (L.-P.K.); (D.B.L.)
| | - Sebastian P. Nischwitz
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 5, A-8036 Graz, Austria; (S.H.-P.); (L.-P.K.); (D.B.L.)
| | - David B. Lumenta
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 5, A-8036 Graz, Austria; (S.H.-P.); (L.-P.K.); (D.B.L.)
| | - Raimund Winter
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 5, A-8036 Graz, Austria; (S.H.-P.); (L.-P.K.); (D.B.L.)
| |
Collapse
|
22
|
Geng R, Li J, Yu C, Zhang C, Chen F, Chen J, Ni H, Wang J, Kang K, Wei Z, Xu Y, Jin T. Knee osteoarthritis: Current status and research progress in treatment (Review). Exp Ther Med 2023; 26:481. [PMID: 37745043 PMCID: PMC10515111 DOI: 10.3892/etm.2023.12180] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/11/2023] [Indexed: 09/26/2023] Open
Abstract
Knee osteoarthritis (KOA) is a common chronic articular disease worldwide. It is also the most common form of OA and is characterized by high morbidity and disability rates. With the gradual increase in life expectancy and ageing population, KOA not only affects the quality of life of patients, but also poses a burden on global public health. OA is a disease of unknown etiology and complex pathogenesis. It commonly affects joints subjected to greater loads and higher levels of activity. The knee joint, which is the most complex joint of the human body and bears the greatest load among all joints, is therefore most susceptible to development of OA. KOA lesions may involve articular cartilage, synovium, joint capsule and periarticular muscles, causing irreversible articular damage. Factors such as mechanical overload, inflammation, metabolism, hormonal changes and ageing serve key roles in the acceleration of KOA progression. The clinical diagnosis of KOA is primarily based on combined analysis of symptoms, signs, imaging and laboratory examination results. At present, there is no cure for KOA and the currently available therapies primarily focus on symptomatic treatment and delay of disease progression. Knee replacement surgery is typically performed in patients with advanced disease. The current study presents a review of epidemiological characteristics, risk factors, histopathological manifestations, pathogenesis, diagnosis, treatment modalities and progress in KOA research.
Collapse
Affiliation(s)
- Ruizhi Geng
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Jiayi Li
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Anatomy and Histology, and Embryology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Yu
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Orthopedics, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, P.R. China
| | - Chaoqun Zhang
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Fei Chen
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Jie Chen
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- School of Public Health, Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Haonan Ni
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaxu Wang
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Kaiqiang Kang
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Ziqi Wei
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Anatomy and Histology, and Embryology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yongqing Xu
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Tao Jin
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| |
Collapse
|
23
|
Chen W, Liu W, Jiang T, Liu L, He Q, Lin T, Zhang J, Huo L, Xu X, Wang H, Liang D, Liu W. Tongbi Huoluo Decoction alleviates cartilage degeneration in knee osteoarthritis by inhibiting degradation of extracellular matrix. Chin Med 2023; 18:91. [PMID: 37507774 PMCID: PMC10385923 DOI: 10.1186/s13020-023-00802-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is an age-related degenerative disease characterized by abrasion of articular cartilage. Tongbi Huoluo Decoction (TBHLD) has been transformed from the famous traditional Chinese medicine Duhuo Jisheng Decoction, which can effectively alleviate pain symptoms in KOA. However, the active components and mechanisms of TBHLD in treating KOA have not yet been elucidated. The purpose of the study was to demonstrate the molecular mechanism of TBHLD in treating KOA. METHODS The components and targets of TBHLD and KOA were collected from multiple databases, and the protein to protein interaction (PPI) network was constructed. Next, we performed topological calculation and enrichment analysis. Besides, we performed virtual screening for molecular docking and molecular dynamics simulation (MDS). Furthermore, the vitro and vivo experiments were performed to evaluate the validity and mechanism of TBHLD. RESULTS 206 active components and 187 potential targets were screened from Tongbi Huoluo Decoction. A total of 50 intersecting genes were identified between TBHLD and KOA, 20 core targets were calculated by network topology analysis. The core targets were enriched in the ECM interaction pathways. The results of virtual screening for molecular docking and MDS showed that the active components of TBHLD had steady binding conformations with core genes. Moreover, we identified 32 differential serum components in TBHLD-containing serum using LC-MS, including 22 upregulated and 10 downregulated serum components. TBHLD improved the proliferation activity of OA chondrocytes, decreased the expression of Col1a1, Col1a2, Mmp2, Mmp13 in OA chondrocytes, ameliorated the cartilage lesions and restored the cartilage abrasion. CONCLUSION TBHLD inhibited degradation of cartilage ECM by regulating the expression of type I collagens and Mmps to ameliorate cartilage degeneration in KOA.
Collapse
Affiliation(s)
- Weijian Chen
- The Fifth Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510095, China
- Guangdong Second Hospital of Traditional Chinese Medicine (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Weinian Liu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510045, Guangdong, China
| | - Tao Jiang
- Guangdong Second Hospital of Traditional Chinese Medicine (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Lingyun Liu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Qi He
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Tianye Lin
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Jiayuan Zhang
- The Fifth Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510095, China
- Guangdong Second Hospital of Traditional Chinese Medicine (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Liwei Huo
- Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510045, Guangdong, China
| | - Xuemeng Xu
- The Fifth Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510095, China
- Guangdong Second Hospital of Traditional Chinese Medicine (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Haibin Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
- Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| | - Du Liang
- Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510045, Guangdong, China.
| | - Wengang Liu
- The Fifth Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510095, China.
- Guangdong Second Hospital of Traditional Chinese Medicine (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China.
| |
Collapse
|
24
|
Zdziechowski A, Gluba-Sagr A, Rysz J, Woldańska-Okońska M. Why Does Rehabilitation Not (Always) Work in Osteoarthritis? Does Rehabilitation Need Molecular Biology? Int J Mol Sci 2023; 24:ijms24098109. [PMID: 37175818 PMCID: PMC10179350 DOI: 10.3390/ijms24098109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Osteoarthritis (OA) is a common disease among the human population worldwide. OA causes functional impairment, leads to disability and poses serious socioeconomic burden. The rehabilitation offers a function-oriented method to reduce the disability using diverse interventions (kinesiotherapy, physical therapy, occupational therapy, education, and pharmacotherapy). OA as a widespread disease among elderly patients is often treated by rehabilitation specialists and physiotherapists, however the results of rehabilitation are sometimes unsatisfactory. The understanding of molecular mechanisms activated by rehabilitation may enable the development of more effective rehabilitation procedures. Molecular biology methods may prove crucial in rehabilitation as the majority of rehabilitation procedures cannot be estimated in double-blinded placebo-controlled trials commonly used in pharmacotherapy. This article attempts to present and estimate the role of molecular biology in the development of modern rehabilitation. The role of clinicians in adequate molecular biology experimental design is also described.
Collapse
Affiliation(s)
- Adam Zdziechowski
- Department of Internal Diseases, Rehabilitation and Physical Medicine, Medical University, 90-700 Łódź, Poland
| | - Anna Gluba-Sagr
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Łódź, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Łódź, Poland
| | - Marta Woldańska-Okońska
- Department of Internal Diseases, Rehabilitation and Physical Medicine, Medical University, 90-700 Łódź, Poland
| |
Collapse
|
25
|
Shabbir MA, Mehak F, Khan MR, Ahmed W, Nawaz MF, Hassoun A, Bhat ZF, Aadil RM. Unraveling the role of natural functional oils in modulating osteoarthritis related complications. Crit Rev Food Sci Nutr 2023; 64:6881-6901. [PMID: 36762672 DOI: 10.1080/10408398.2023.2176815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Osteoarthritis (OA) is a common joint disease and has been studied extensively in recent years as no promising therapy available so far for its treatment and remains a great challenge for health care specialists. Although the identification of some major mechanisms that contribute to this disease suggests a plethora of bioactive agents in tackling the associated complications yet OA's pathophysiology is still poorly understood owing to complex mechanistic changes observed. Experimental research is now exploring a wide range of therapeutically effective agents in an effort to find a way to repair OA-related joint degeneration and halt it from getting worse. Data was acquired and reviewed from most relevant and recent studies. This review summarizes the studies that are currently available and focuses on how various unconventional functional oils affect osteoarthritis and the affected joint tissues. An analysis of the recent scientific literature allowed us to highlight the potential anti-arthritic properties of edible oils and their main constituents, which seems to suggest an interesting new potential therapeutic application. Due to eccentric nature of OA, it is necessary to concentrate initially on the management of symptoms. The evidence supporting functional oils chondroprotective potential is still accumulating, underpinning a global need for more sustainable natural sources of treatment. More clinical research that focuses on the consequences of long-term treatment, possible negative effects, and epigenetic implications is necessary to get optimistic results. However, different animal or clinical studies suggest that linolenic and linoleic fatty acids decreased chondrocyte oxidative stress, cartilage breakdown, and expression of inflammatory markers. Distinct fatty acids along with minor components of oils also reduced the generation of prostaglandins and decreased oxidative stress. Furthermore, the potential roles of the main components of edible oils and possible negative results (if any) are also reported. While no severe side effects have been reported for any edible oils. Overall, these studies identify and support the use of functional oils as an adjuvant therapy for the management of OA and as a means of symptomatic alleviation for OA patients. However, to prove the effectiveness or to draw precise conclusions, high-quality clinical trials are required.
Collapse
Affiliation(s)
- Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Fakiha Mehak
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Waqar Ahmed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Furqan Nawaz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-J, Jammu, J&K, India
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
26
|
Karlapudi V, Sunkara KB, Konda PR, Sarma KV, Rokkam MP. Efficacy and Safety of Aflapin®, a Novel Boswellia Serrata Extract, in the Treatment of Osteoarthritis of the Knee: A Short-Term 30-Day Randomized, Double-Blind, Placebo-Controlled Clinical Study. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:159-168. [PMID: 35512759 DOI: 10.1080/07315724.2021.2014370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Aflapin®, also known as AprèsFlex® was developed as an enhanced bioavailable extract of Boswellia serrata gum resin, standardized to 20% 3-O-acetyl-11-keto-β-boswellic acid. This randomized, double-blind, placebo-controlled clinical trial confirms the efficacy of Aflapin in ameliorating the symptoms of osteoarthritis (OA) of the knee. METHODS Based on the inclusion/exclusion criteria of the American College of Rheumatology, seventy subjects were recruited and randomized into Placebo (n = 35) and Aflapin (n = 35) groups. Subjects received either 100 mg Aflapin or a placebo for 30 days. All subjects were evaluated for pain and physical function using the standard tools i.e., Visual Analog Scale (VAS), Lequesne Functional Index (LFI), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) at the baseline (Day 0), 5, and 30 days of treatment. Additionally, several inflammatory and cartilage biomarkers, including matrix metalloproteinase-3 (MMP-3), tumor necrosis factor-α (TNFα), high-sensitive C-reactive protein (hsCRP), Cartilage Oligomeric Matrix Protein (COMP), and collagen type II cleavage (C2C) were evaluated. Total blood chemistry analyses were conducted to affirm the safety of Aflapin. RESULTS Sixty-seven subjects completed the study. Aflapin conferred significant improvements in pain scores as early as five days of treatment. Post-trial, VAS, LFI, WOMAC pain, WOMAC stiffness, WOMAC function, and total WOMAC scores decreased in the Aflapin group by 45%, 40.9%, 44.4%, 66.3%, 44.4%, and 48%, respectively. Aflapin supplementation also reduced circulating MMP-3, TNFα, hsCRP, and C2C. CONCLUSION This investigation affirms that Aflapin is clinically efficacious, fast-acting, and safe in the management of osteoarthritis. No significant adverse effects were observed.
Collapse
Affiliation(s)
- Vasu Karlapudi
- Department of Orthopedics, Pujitha Hospital, Vijayawada, India
| | | | | | - Kadainti V Sarma
- Department of Statistics, Sri. Venkateswara University, Tirupati, India
| | | |
Collapse
|
27
|
Yang F, Zhao M, Sang Q, Yan C, Wang Z. Long non-coding RNA PMS2L2 is down-regulated in osteoarthritis and inhibits chondrocyte proliferation by up-regulating miR-34a. J Immunotoxicol 2022; 19:74-80. [PMID: 35930398 DOI: 10.1080/1547691x.2022.2049664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNA (lncRNA) PMS2L2 has been reported to participate in endotoxin-induced inflammatory responses. As these types of responses can promote osteoarthritis (OA), it was of interest to ascertain if PMS2L2 may be involved in OA. To explore any potential participation of PMS2L2 in OA, synovial fluid was extracted from both OA patients and healthy controls (n = 62 each) and PMS2L2 expression of each sample determined by RT-qPCR. In addition, as miR-34a has a potential binding site on PMS2L2, hypothetical interactions between PMS2L2 and miR-34a in chondrocytes were analyzed by performing over-expression experiments. Furthermore, the role of PMS2L2 and miR-34a in the regulation of chondrocyte proliferation was analyzed using CCK-8 and BrdU assays. The results showed that PMS2L2 expression in OA patient synovial fluid was lower compared to that in control group fluid, and the extent of this reduction was related to disease stage. In in vitro studies, it was seen that endotoxin treatment of chondrocytes led to decreased PMS2L2 expression. It was found that PMS2L2 over-expression caused increased miR-34a expression in OA patient chondrocytes but not in cells from healthy controls. In contrast, miR-34a over-expression in either cell population did not affect PMS2L2 expression. Lastly, over-expression of both PMS2L2 and miR-34a led to inhibited chondrocyte proliferation. Of note, a combined over-expression of PMS2L2 and miR-34a resulted in stronger effects on proliferation compared to that from either single over-expression. Based on the findings that PMS2L2 is down-regulated during ongoing states of OA, and that changes in PMS2L2 expression can lead to increases in chondrocyte expression of miR-34a - resulting in inhibition of chondrocyte proliferation in OA. From these findings, one may conclude that finding means to regulate PMS2L2 could be a promising new target in the development of regimens for the treatment of OA.
Collapse
Affiliation(s)
- Fei Yang
- Department of Orthopedics, Yanqing District Hospital, Beijing (Yanqing Hospital Peking University Third Hospital), Beijing, PR China
| | - Min Zhao
- Department of General Surgery, Yanqing District Hospital, Beijing (Yanqing Hospital Peking University Third Hospital), Beijing, PR China
| | - Qinghua Sang
- Department of General Surgery, Yanqing District Hospital, Beijing (Yanqing Hospital Peking University Third Hospital), Beijing, PR China
| | - Changhong Yan
- Department of General Surgery, Yanqing District Hospital, Beijing (Yanqing Hospital Peking University Third Hospital), Beijing, PR China
| | - Zhenjun Wang
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
28
|
Multitech-Based Study on Medicinal Material Basis and Action Mechanism of Herbal Formula Xian-Ling-Gu-Bao Capsule in Treatment of Osteoarthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6986372. [PMID: 36110195 PMCID: PMC9470326 DOI: 10.1155/2022/6986372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022]
Abstract
Currently, osteoarthritis (OA) is thought to be the most prevalent chronic joint disease worldwide. The epidemiology of this disorder is complex, and the treatment is challenging. Xian-Ling-Gu-Bao (XLGB) capsule, a herbal compound preparation, is widely used for the treatment of bone disorders, including OA. Although its efficacy and safety have been demonstrated in clinical trials and practice, the underlying medicinal constituents and mechanism have not been clearly elucidated. Therefore, this study aimed to explore the medicinal constituents and mechanism of XLGB for OA treatment. The phytochemical constituents in XLGB capsule were detected by liquid chromatography-mass spectrometry (LC-MS), the medicinal constituents and therapeutic mechanism for OA treatment were deduced by network analysis, and the deduced mechanism was validated by in vitro experiment. As a result, a total of 55 constituents were detected in XLGB extract, in which 16 constituents were screened out for target collection. Based on the analysis of target profile, XLGB targets showed a high degree of similarity with OA targets. Network analysis revealed that XLGB had a holistic effect of multiple active constituents on multiple targets and pathways. The core targets of XLGB were presumed to be MAPKs, PI3K, AKT, BCL2, RELA, TNF, NOS2, and so on, and the mechanism was speculated to mainly inhibit chondrocyte apoptosis and inflammatory response through JNK and PI3K/AKT/NF-κB signaling cascades. Finally, in vitro study confirmed that XLGB extract protected ATDC5 cells against lipopolysaccharide- (LPS-) induced apoptosis and inflammatory response, and these effects were supposed to be involved in the inhibition of JNK and PI3K/AKT/NF-κB pathways. Our study could provide a scientific basis for further research and clinical use of XLGB capsule.
Collapse
|
29
|
Terzi MY, Okuyan HM, Karaboğa İ, Gökdemir CE, Tap D, Kalacı A. Urotensin-II Prevents Cartilage Degeneration in a Monosodium Iodoacetate-Induced Rat Model of Osteoarthritis. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Li H, Wang Q, Gong D. LINC00313 alleviates osteoarthritis progression in mice through promoting TRAF1 promoter methylation and inhibiting the ASK1/JNK signaling pathway. Immunopharmacol Immunotoxicol 2022; 44:732-745. [PMID: 35815528 DOI: 10.1080/08923973.2022.2078728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES This study aimed to explore the underlying role and mechanism of LINC00313 in osteoarthritis (OA) progression. METHODS CHON-001 chondrocytes were treated with interleukin (IL)-1β to induce OA in vitro, and then transfected with LINC00313 overexpression plasmids (pcDNA-LINC00313) or small interfering RNA against tumor necrosis factor (TNF) receptor-associated factor 1 (si-TRAF1). Cell viability, apoptosis, levels of inflammatory cytokines tumor necrosis factor-α (TNF-α), IL-6 and IL-8, and expression of extracellular matrix (ECM) degradation related proteins in CHON-001 cells were determined. TRAF1 promoter methylation were was detected with methylation-specific polymerase chain reaction (MSP) assay. Furthermore, a c-Jun N-terminal kinase (JNK) signaling activator was used to confirm whether the apoptosis signal-regulating kinase 1 (ASK1)/JNK signaling pathway was involved in the function of LINC00313/TRAF1 axis in chondrocytes. In addition, an OA mouse model was established and lentivirus LINC00313 overexpression vector (Lv-LINC00313) was injected, and then inflammatory cytokine levels, ECM protein expression, and pathological changes in cartilage tissues were detected. RESULTS LINC00313 was downregulated and TRAF1 was upregulated in OA cartilage tissues. LINC00313 overexpression or TRAF1 silencing attenuated IL-1β-induced viability inhibition, apoptosis, inflammation and ECM degradation in CHON-001 cells. Moreover, LINC00313 inhibited TRAF1 expression through promoting DNA methyltransferase 1 (DNMT1) mediated promoter methylation. TRAF1 overexpression reversed the effects of LINC00313 on IL-1β-induced chondrocyte injury. LINC00313 overexpression inhibited the ASK1/JNK signaling pathway, and JNK activator reversed the effect. In addition, Lv-LINC00313 treatment alleviated cartilage tissue damage and cartilage matrix degradation in OA mice. CONCLUSIONS LINC00313 alleviated OA progression through inhibiting TRAF1 expression and the ASK1/JNK signaling pathway.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Trauma, Yantaishan Hospital, Yantai, People's Republic of China
| | - Qingpeng Wang
- Department of Spinal Surgery, Laiyang Central Hospital of Yantai City, Yantai, People's Republic of China
| | - Dapeng Gong
- Department of Trauma and Orthopaedics, Laiyang Central Hospital of Yantai City, Yantai, People's Republic of China
| |
Collapse
|
31
|
Ma L, Zheng X, Lin R, Sun AR, Song J, Ye Z, Liang D, Zhang M, Tian J, Zhou X, Cui L, Liu Y, Liu Y. Knee Osteoarthritis Therapy: Recent Advances in Intra-Articular Drug Delivery Systems. Drug Des Devel Ther 2022; 16:1311-1347. [PMID: 35547865 PMCID: PMC9081192 DOI: 10.2147/dddt.s357386] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022] Open
Abstract
Drug delivery for osteoarthritis (OA) treatment is a continuous challenge because of their poor bioavailability and rapid clearance in joints. Intra-articular (IA) drug delivery is a common strategy and its therapeutic effects depend mainly on the efficacy of the drug-delivery system used for OA therapy. Different types of IA drug-delivery systems, such as microspheres, nanoparticles, and hydrogels, have been rapidly developed over the past decade to improve their therapeutic effects. With the continuous advancement in OA mechanism research, new drugs targeting specific cell/signaling pathways in OA are rapidly evolving and effective drug delivery is critical for treating OA. In this review, recent advances in various IA drug-delivery systems for OA treatment, OA targeted strategies, and related signaling pathways in OA treatment are summarized and analyzed based on current publications.
Collapse
Affiliation(s)
- Luoyang Ma
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Xiaoyan Zheng
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang city, Guangdong province, 524045, People's Republic of China
| | - Rui Lin
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Antonia RuJia Sun
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen City, Guangdong Province, 518055, People’s Republic of China
| | - Jintong Song
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Zhiqiang Ye
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Dahong Liang
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Min Zhang
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Jia Tian
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Xin Zhou
- Marine Medical Research Institute of Zhanjiang, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Liao Cui
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Yuyu Liu
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Yanzhi Liu
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang city, Guangdong province, 524045, People's Republic of China
- Shenzhen Osteomore Biotechnology Co., Ltd., Shenzhen city, Guangdong Province, 518118, People’s Republic of China
- Correspondence: Yanzhi Liu; Yuyu Liu, Tel +86-759-2388405; +86-759-2388588, Email ;
| |
Collapse
|
32
|
Wang G, Li C, Zhang X, Tang L, Li Y. Long non-coding PRNCR1 regulates the proliferation and apoptosis of synoviocytes in osteoarthritis by sponging miR-377-3p. J Orthop Surg Res 2022; 17:238. [PMID: 35422021 PMCID: PMC9008967 DOI: 10.1186/s13018-022-03035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background LncRNA PRNCR1 has been reported to be involved in LPS-induced inflammation, which contributes to osteoarthritis (OA). We predicted that miR-377-3p could bind to PRNCR1.MiR-377-3p can suppress OA development. We therefore analyzed the potential interaction between them in OA. Methods Expression of miR-377-3p and PRNCR1 in both OA (n = 40) and control (n = 40) samples were analyzed by RT-qPCR. MiR-377-3p or PRNCR1 were overexpressed in synoviocytes to explore their potential interaction. The subcellular location of PRNCR1 was analyzed by nuclear fractionation assay. The direct interaction between miR-377-3p and PRNCR1 was analyzed by RNA-pull down assay. The proliferation and apoptosis of synoviocytes were analyzed by BrdU and apoptosis assay, respectively. Results PRNCR1 was overexpressed in OA, while miR-377-3p was downexpressed in OA. PRNCR1 was detected in the cytoplasm and directly interacted with miR-377-3p. Interestingly, overexpression of PRNCR1 and miR-377-3p showed no regulatory role in each other’s expression. LPS treatment increased PRNCR1 expression and decreased miR-377-3p expression. PRNCR1 overexpression decreased LPS-induced synoviocyte proliferation and increased LPS-induced synoviocyte apoptosis. MiR-377-3p played opposite roles in cell proliferation and apoptosis. Moreover, PRNCR1 suppressed the role of miR-377-3p. Conclusions Therefore, PRNCR1 is was detected in cytoplasm and regulates synoviocyte proliferation and apoptosis in OA by sponging miR-377-3p. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03035-2.
Collapse
|
33
|
Tramś E, Malesa K, Pomianowski S, Kamiński R. Role of Platelets in Osteoarthritis-Updated Systematic Review and Meta-Analysis on the Role of Platelet-Rich Plasma in Osteoarthritis. Cells 2022; 11:1080. [PMID: 35406644 PMCID: PMC8997794 DOI: 10.3390/cells11071080] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 01/15/2023] Open
Abstract
Platelets are an essential component of hemostasis, with an increasing role in host inflammatory processes in injured tissues. The reaction between receptors and vascular endothelial cells results in the recruitment of platelets in the immune response pathway. The aim of the present review is to describe the role of platelets in osteoarthritis. Platelets induce secretion of biological substances, many of which are key players in the inflammatory response in osteoarthritis. Molecules involved in cartilage degeneration, or being markers of inflammation in osteoarthritis, are cytokines, such as tumor necrosis factor α (TNFα), interleukins (IL), type II collagen, aggrecan, and metalloproteinases. Surprisingly, platelets may also be used as a treatment modality for osteoarthritis. Multiple randomized controlled trials included in our systematic review and meta-analyses prove the effectiveness of platelet-rich plasma (PRP) as a minimally invasive method of pain alleviation in osteoarthritis treatment.
Collapse
Affiliation(s)
| | | | | | - Rafał Kamiński
- Centre of Postgraduate Medical Education, Department of Orthopaedics and Trauma Surgery, Professor A. Gruca Teaching Hospital, Konarskiego 13, 05-400 Otwock, Poland; (E.T.); (K.M.); (S.P.)
| |
Collapse
|
34
|
Wang G, Xing D, Liu W, Zhu Y, Liu H, Yan L, Fan K, Liu P, Yu B, Li JJ, Wang B. Preclinical studies and clinical trials on mesenchymal stem cell therapy for knee osteoarthritis: A systematic review on models and cell doses. Int J Rheum Dis 2022; 25:532-562. [PMID: 35244339 DOI: 10.1111/1756-185x.14306] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
AIM To provide a systematic analysis of the study design in knee osteoarthritis (OA) preclinical studies, focusing on the characteristics of animal models and cell doses, and to compare these to the characteristics of clinical trials using mesenchymal stem cells (MSCs) for the treatment of knee OA. METHOD A systematic and comprehensive search was conducted using the PubMed, Web of Science, Ovid, and Embase electronic databases for research papers published in 2009-2020 on testing MSC treatment in OA animal models. The PubMed database and ClinicalTrials.gov website were used to search for published studies reporting clinical trials of MSC therapy for knee OA. RESULTS In total, 9234 articles and two additional records were retrieved, of which 120 studies comprising preclinical and clinical studies were included for analysis. Among the preclinical studies, rats were the most commonly used species for modeling knee OA, and anterior cruciate ligament transection was the most commonly used method for inducing OA. There was a correlation between the cell dose and body weight of the animal. In clinical trials, there was large variation in the dose of MSCs used to treat knee OA, ranging from 1 × 106 to 200 × 106 cells with an average of 37.91 × 106 cells. CONCLUSION Mesenchymal stem cells have shown great potential in improving pain relief and tissue protection in both preclinical and clinical studies of knee OA. Further high-quality preclinical and clinical studies are needed to explore the dose effectiveness relationship of MSC therapy and to translate the findings from preclinical studies to humans.
Collapse
Affiliation(s)
- Guishan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China.,Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Beijing, China
| | - Wei Liu
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, China
| | - Yuanyuan Zhu
- Department of Pharmacy, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Haifeng Liu
- Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Lei Yan
- Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Kenan Fan
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Peidong Liu
- Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Jiao Jiao Li
- Faculty of Engineering and IT, School of Biomedical Engineering, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Bin Wang
- Department of Orthopedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China.,Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
Li Z, Dai A, Yang M, Chen S, Deng Z, Li L. p38MAPK Signaling Pathway in Osteoarthritis: Pathological and Therapeutic Aspects. J Inflamm Res 2022; 15:723-734. [PMID: 35140502 PMCID: PMC8820459 DOI: 10.2147/jir.s348491] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/16/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is an aging-related joint disease, pathologically featured with degenerated articular cartilage and deformation of subchondral bone. OA has become the fourth major cause of disability in the world, imposing a huge economic burden. At present, the pathogenesis and pathophysiology of OA are still unclear. Complex regulating networks containing different biochemical signaling pathways are involved in OA pathogenesis and progression. The p38MAPK signaling pathway is a member of the MAPK signaling pathway family, which participates in the induction of cellular senescence, the differentiation of chondrocytes, the synthesis of matrix metalloproteinase (MMPs) and the production of pro-inflammatory factors. In recent years, studies on the regulating role of p38MAPK signaling pathway and the application of its inhibitors have attracted growing attention, with an increasing number of in vivo and in vitro studies. One interesting finding is that the inhibition of p38MAPK could suppress chondrocyte inflammation and ameliorate OA, indicating its therapeutic role in OA treatment. Based on this, we reviewed the mechanisms of p38MAPK signaling pathway in the pathogenesis of OA, hoping to provide new ideas for future research and OA treatment.
Collapse
Affiliation(s)
- Zongchao Li
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Aonan Dai
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Ming Yang
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- School of Clinical Medicine, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- School of Clinical Medicine, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Correspondence: Zhenhan Deng, Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518035, People’s Republic of China, Tel +86 13928440786, Fax +86 755-83366388, Email ; Liangjun Li, Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan South Road, Changsha City, 410018, People’s Republic of China, Tel +86 13875822004, Fax +86 731-85668156, Email
| | - Liangjun Li
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
- Correspondence: Zhenhan Deng, Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518035, People’s Republic of China, Tel +86 13928440786, Fax +86 755-83366388, Email ; Liangjun Li, Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan South Road, Changsha City, 410018, People’s Republic of China, Tel +86 13875822004, Fax +86 731-85668156, Email
| |
Collapse
|
36
|
Zhou Q, Ren Q, Jiao L, Huang J, Yi J, Chen J, Lai J, Ji G, Zheng T. The potential roles of JAK/STAT signaling in the progression of osteoarthritis. Front Endocrinol (Lausanne) 2022; 13:1069057. [PMID: 36506076 PMCID: PMC9729341 DOI: 10.3389/fendo.2022.1069057] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is an age-related chronic progressive degenerative disease that induces persistent pain and disabilities. The development of OA is a complex process, and the risk factors are various, including aging, genetics, trauma and altered biomechanics. Inflammation and immunity play an important role in the pathogenesis of OA. JAK/STAT pathway is one of the most prominent intracellular signaling pathways, regulating cell proliferation, differentiation, and apoptosis. Inflammatory factors can act as the initiators of JAK/STAT pathway, which is implicated in the pathophysiological activity of chondrocyte. In this article, we provide a review on the importance of JAK/STAT pathway in the pathological development of OA. Potentially, JAK/STAT pathway becomes a therapeutic target for managing OA.
Collapse
Affiliation(s)
- Qingluo Zhou
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Linhui Jiao
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jun Yi
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinliang Lai
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Guanglin Ji, ; Tiansheng Zheng,
| | - Tiansheng Zheng
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Guanglin Ji, ; Tiansheng Zheng,
| |
Collapse
|
37
|
Han Y, Wu J, Gong Z, Zhou Y, Li H, Wang B, Qian Q. Identification and development of a novel 5-gene diagnostic model based on immune infiltration analysis of osteoarthritis. J Transl Med 2021; 19:522. [PMID: 34949204 PMCID: PMC8705150 DOI: 10.1186/s12967-021-03183-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 12/05/2021] [Indexed: 11/27/2022] Open
Abstract
Background Osteoarthritis (OA), which is due to the progressive loss and degeneration of articular cartilage, is the leading cause of disability worldwide. Therefore, it is of great significance to explore OA biomarkers for the prevention, diagnosis, and treatment of OA. Methods and materials The GSE129147, GSE57218, GSE51588, GSE117999, and GSE98918 datasets with normal and OA samples were downloaded from the Gene Expression Omnibus (GEO) database. The GSE117999 and GSE98918 datasets were integrated, and immune infiltration was evaluated. The differentially expressed genes (DEGs) were analyzed using the limma package in R, and weighted gene co-expression network analysis (WGCNA) was used to explore the co-expression genes and co-expression modules. The co-expression module genes were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and hub genes were identified by the degree, MNC, closeness, and MCC algorithms. The hub genes were used to construct a diagnostic model based on support vector machines. Results The Immune Score in the OA samples was significantly higher than in the normal samples, and a total of 2313 DEGs were identified. Through WGCNA, we found that the yellow module was significantly positively correlated with the OA samples and Immune Score and negatively correlated with the normal samples. The 142 DEGs of the yellow module were related to biological processes such as regulation of inflammatory response, positive regulation of inflammatory response, blood vessel morphogenesis, endothelial cell migration, and humoral immune response. The intersections of the genes obtained by the 4 algorithms resulted in 5 final hub genes, and the diagnostic model constructed with these 5 genes showed good performance in the training and validation cohorts. Conclusions The 5-gene diagnostic model can be used to diagnose OA and guide clinical decision-making. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03183-9.
Collapse
Affiliation(s)
- YaGuang Han
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Jun Wu
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China.,Department of Orthopaedic Surgery, Nantong Sixth People's Hospital, Nantong Hospital Affiliated To Shanghai University, Nantong, Jiangsu, China
| | - ZhenYu Gong
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - YiQin Zhou
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - HaoBo Li
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Bo Wang
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China.
| | - QiRong Qian
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China.
| |
Collapse
|
38
|
Cheng Y, Li F, Zhang WS, Zou GY, Shen YX. Silencing BLNK protects against interleukin-1β-induced chondrocyte injury through the NF-κB signaling pathway. Cytokine 2021; 148:155686. [PMID: 34521030 DOI: 10.1016/j.cyto.2021.155686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is the most common joint disease in the elderly and is characterized by the progressive degeneration of articular cartilage. It is necessary to study the molecular pathology of OA. This study aimed to explore the role and mechanism of BLNK in regulating interleukin-1β (IL-1β)-induced chondrocyte injury and OA progression. METHODS GSE1919 (5 normal samples and 5 OA samples) was downloaded from the Gene Expression Omnibus (GEO) database. The limma package in R software was used to identify differentially expressed genes (DEGs) between control and OA-affected cartilage. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the differentially expressed genes were also performed. Apoptosis was assessed by flow cytometry. An OA rat model was established, and the relative expression of BLNK was assessed by real time quantitative PCR (qRT-PCR) and immunohistochemical staining. The expression of collagen II, MMP9, p65 and p-p65 was measured by Western blot analysis. Moreover, inflammatory factors (TNF-α and IL-18) were assessed by ELISA. The NF-κB inhibitor JSH-23 was used to assess the impact of BLNK on the NF-κB signaling pathway. RESULTS In total, 1318 DEGs were identified between normal and OA-affected cartilage according to the criteria (P-value <0.05 and |logFC > 1|). These DEGs were mainly enriched in the NF-κB pathway. BLNK was highly expressed in OA cartilage tissue and injured chondrocytes. Silencing BLNK significantly downregulated the IL-1β-induced apoptosis of chondrocytes. Silencing BLNK partially increased collagen II expression and downregulated MMP13 expression. Moreover, silencing BLNK partially decreased TNF-α and IL-18 expression. BLNK silencing inhibited the activation of NF-κB in OA. Silencing BLNK delayed OA progression through the NF-κB signaling pathway. CONCLUSION Silencing BLNK delayed OA progression and IL-1β-induced chondrocyte injury by regulating the NF-κB pathway.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China; Department of Orthopaedics, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng 224005, PR China
| | - Feng Li
- Department of Orthopaedics, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng 224005, PR China
| | - Wen-Sheng Zhang
- Department of Orthopaedics, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng 224005, PR China
| | - Guo-You Zou
- Department of Orthopaedics, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng 224005, PR China
| | - Yi-Xin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China.
| |
Collapse
|
39
|
Peláez P, Damiá E, Torres-Torrillas M, Chicharro D, Cuervo B, Miguel L, del Romero A, Carrillo JM, Sopena JJ, Rubio M. Cell and Cell Free Therapies in Osteoarthritis. Biomedicines 2021; 9:1726. [PMID: 34829953 PMCID: PMC8615373 DOI: 10.3390/biomedicines9111726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is the most common articular disease in adults and has a current prevalence of 12% in the population over 65 years old. This chronic disease causes damage to articular cartilage and synovial joints, causing pain and leading to a negative impact on patients' function, decreasing quality of life. There are many limitations regarding OA conventional therapies-pharmacological therapy can cause gastrointestinal, renal, and cardiac adverse effects, and some of them could even be a threat to life. On the other hand, surgical options, such as microfracture, have been used for the last 20 years, but hyaline cartilage has a limited regeneration capacity. In recent years, the interest in new therapies, such as cell-based and cell-free therapies, has been considerably increasing. The purpose of this review is to describe and compare bioregenerative therapies' efficacy for OA, with particular emphasis on the use of mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP). In OA, these therapies might be an alternative and less invasive treatment than surgery, and a more effective option than conventional therapies.
Collapse
Affiliation(s)
- Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Elena Damiá
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Belén Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Laura Miguel
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Ayla del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Jose Maria Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Joaquín J. Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Mónica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| |
Collapse
|
40
|
Chun JM, Lee AY, Moon BC, Choi G, Kim JS. Effects of Dipsacus asperoides and Phlomis umbrosa Extracts in a Rat Model of Osteoarthritis. PLANTS 2021; 10:plants10102030. [PMID: 34685839 PMCID: PMC8540002 DOI: 10.3390/plants10102030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 11/17/2022]
Abstract
The implementation of the Nagoya Protocol highlighted the importance of identifying alternative herbal products that are as effective as traditional medicine. Dipsacus asperoides and Phlomis umbrosa, two species used in the Korean medicine ‘Sok-dan’, are used for the treatment of bone- and arthritis-related diseases, and they are often mixed or misused. To identify herbal resources with similar efficacy, we compared the effects of D. asperoides extract (DAE) and P. umbrosa extract (PUE) on osteoarthritis (OA) in a monosodium iodoacetate (MIA)-induced OA rat model. Weight-bearing distribution, serum cytokines, histopathological features, and the expression of matrix metalloproteinases (MMPs) of knee joint tissues were examined in the OA rats treated with DAE and PUE (200 mg/kg) for 21 days. DAE and PUE restored weight-bearing distribution, inhibited the production of serum cytokines, and alleviated the histopathological features of the OA knee tissue. DAE or PUE treatment decreased OA-induced overexpression of MMP-2, MMP-9, and MMP-13 in the knee joint tissue. This study demonstrated the efficacy of both DAE and PUE in an MIA-induced OA model, providing a basis for the clinical use of these products in traditional Korean medicine.
Collapse
Affiliation(s)
- Jin Mi Chun
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Korea; (A.Y.L.); (B.C.M.); (G.C.)
- Correspondence: (J.M.C.); (J.-S.K.)
| | - A Yeong Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Korea; (A.Y.L.); (B.C.M.); (G.C.)
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Korea; (A.Y.L.); (B.C.M.); (G.C.)
| | - Goya Choi
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Korea; (A.Y.L.); (B.C.M.); (G.C.)
| | - Joong-Sun Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Korea; (A.Y.L.); (B.C.M.); (G.C.)
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (J.M.C.); (J.-S.K.)
| |
Collapse
|
41
|
Rankothgedera S, Atukorala I, Fernando C, Munidasa D, Wijayaratne L, Udagama P. A potential diagnostic serum immunological marker panel to differentiate between primary and secondary knee osteoarthritis. PLoS One 2021; 16:e0257507. [PMID: 34543351 PMCID: PMC8452079 DOI: 10.1371/journal.pone.0257507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022] Open
Abstract
Inflammation contributes to knee osteoarthritis (KOA) where many immunological mediators participate in its initiation and progression. Most clinicians manage primary (pKOA) and secondary osteoarthritis (sKOA) alike. Whether immunological profiles of pKOA and sKOA differ remains obscure. Hence, we aimed to differentially identify potential serum immunologic diagnostic markers of pKOA and of sKOA. This case control study used 46 KOA patients (pKOA, n = 30; sKOA, n = 16), and 60 age, gender matched controls (normal healthy, n = 30; systemic lupus erythematosus [SLE] disease controls, n = 30) where serum was assayed for cytokines (TNF-α, IL-1β, IL-6, IL-10) and nitric oxide derivatives (NOx). Sandwich ELISA assessed cytokine levels, while the ‘Griess assay’ quantified NOx levels. The diagnostic accuracy of optimal marker combinations was evaluated by the CombiROC web tool. Compared with pKOA, sKOA serum displayed significantly elevated levels of pro inflammatory cytokines (TNF-α, IL-1β, IL-6) with a concurrent decrease in the anti-inflammatory cytokine, IL-10 (P<0.05). This was reiterated by significantly higher Th1:Th2 (TNF-α: IL-10) serum cytokine ratio observed in sKOA compared to that of pKOA. The CombiROC curves identified TNF-α, IL-1β, IL-6 and NOx as the best performing panel of potential diagnostic markers to discriminate pKOA from control groups (~97% accuracy, 90% Sensitivity [SE] and 98% specificity [SP]), while TNF-α, IL-1β and IL-6 discriminated sKOA from control groups (~100% accuracy, 100% SE, and 98% SP). The study identified discrete serum immune biomarker panels to differentiate between pKOA (TNF-α, IL-1β, IL-6 and NOx) and sKOA (TNF-α, IL-1β and IL-6). These findings may assist in developing distinct therapeutic agents for the two types of KOA.
Collapse
Affiliation(s)
- Sakuni Rankothgedera
- Faculty of Science, Department of Zoology & Environment Sciences, University of Colombo, Colombo, Sri Lanka
| | - Inoshi Atukorala
- Faculty of Medicine, Department of Clinical Medicine, University of Colombo, Colombo, Sri Lanka
| | - Chandrika Fernando
- Faculty of Science and Engineering, School of Electrical Engineering, Computer and Mathematical Sciences (EECMS), Curtin University, Perth, Western Australia
| | | | | | - Preethi Udagama
- Faculty of Science, Department of Zoology & Environment Sciences, University of Colombo, Colombo, Sri Lanka
- * E-mail:
| |
Collapse
|
42
|
Li S, Wang H, Zhang Y, Qiao R, Xia P, Kong Z, Zhao H, Yin L. COL3A1 and MMP9 Serve as Potential Diagnostic Biomarkers of Osteoarthritis and Are Associated With Immune Cell Infiltration. Front Genet 2021; 12:721258. [PMID: 34512730 PMCID: PMC8430221 DOI: 10.3389/fgene.2021.721258] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022] Open
Abstract
Background Osteoarthritis (OA) is one of the most common age-related degenerative diseases. In recent years, some studies have shown that pathological changes in the synovial membrane occur earlier than those in the cartilage in OA. However, the molecular mechanism of synovitis in the pathological process of OA has not been elucidated. This study aimed to identify novel biomarkers associated with OA and to emphasize the role of immune cells in the pathogenesis of OA. Methods Microarray datasets were obtained from the Gene Expression Omnibus (GEO) and ArrayExpress databases and were then analyzed using R software. To determine differential immune cell subtype infiltration, the CIBERSORT deconvolution algorithm was used. Quantitative reverse transcription PCR (qRT-PCR) was used to determine the relative expressions of selected genes. Besides, Western blotting was used to assess the protein expression levels in osteoarthritic chondrocytes. Results After analyzing the database profiles, two potential biomarkers, collagen type 3 alpha 1 chain (COL3A1), and matrix metalloproteinase 9 (MMP9), associated with OA were discovered, which were confirmed by qRT-PCR and Western blotting. Specifically, the results revealed that, as the concentration of IL-1β increased, so did the gene and protein expression levels of COL3A1 and MMP9. Conclusion The findings provide valuable information and direction for future research into novel targets for OA immunotherapy and diagnosis and aids in the discovery of the underlying biological mechanisms of OA pathogenesis.
Collapse
Affiliation(s)
- Shushan Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haitao Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Renqiu Qiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peige Xia
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiheng Kong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbo Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yin
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
43
|
Pirosa A, Tankus EB, Mainardi A, Occhetta P, Dönges L, Baum C, Rasponi M, Martin I, Barbero A. Modeling In Vitro Osteoarthritis Phenotypes in a Vascularized Bone Model Based on a Bone-Marrow Derived Mesenchymal Cell Line and Endothelial Cells. Int J Mol Sci 2021; 22:ijms22179581. [PMID: 34502489 PMCID: PMC8430538 DOI: 10.3390/ijms22179581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 12/03/2022] Open
Abstract
The subchondral bone and its associated vasculature play an important role in the onset of osteoarthritis (OA). Integration of different aspects of the OA environment into multi-cellular and complex human, in vitro models is therefore needed to properly represent the pathology. In this study, we exploited a mesenchymal stromal cell line/endothelial cell co-culture to produce an in vitro human model of vascularized osteogenic tissue. A cocktail of inflammatory cytokines, or conditioned medium from mechanically-induced OA engineered microcartilage, was administered to this vascularized bone model to mimic the inflamed OA environment, hypothesizing that these treatments could induce the onset of specific pathological traits. Exposure to the inflammatory factors led to increased network formation by endothelial cells, reminiscent of the abnormal angiogenesis found in OA subchondral bone, demineralization of the constructs, and increased collagen production, signs of OA related bone sclerosis. Furthermore, inflammation led to augmented expression of osteogenic (alkaline phosphatase (ALP) and osteocalcin (OCN)) and angiogenic (vascular endothelial growth factor (VEGF)) genes. The treatment, with a conditioned medium from the mechanically-induced OA engineered microcartilage, also caused increased demineralization and expression of ALP, OCN, ADAMTS5, and VEGF; however, changes in network formation by endothelial cells were not observed in this second case, suggesting a possible different mechanism of action in inducing OA-like phenotypes. We propose that this vascularized bone model could represent a first step for the in vitro study of bone changes under OA mimicking conditions and possibly serve as a tool in testing anti-OA drugs.
Collapse
Affiliation(s)
- Alessandro Pirosa
- Department of Biomedicine, University Hospital Basel, University of Basel, 4056 Basel, Switzerland; (A.P.); (E.B.T.); (A.M.); (L.D.); (I.M.)
| | - Esma Bahar Tankus
- Department of Biomedicine, University Hospital Basel, University of Basel, 4056 Basel, Switzerland; (A.P.); (E.B.T.); (A.M.); (L.D.); (I.M.)
| | - Andrea Mainardi
- Department of Biomedicine, University Hospital Basel, University of Basel, 4056 Basel, Switzerland; (A.P.); (E.B.T.); (A.M.); (L.D.); (I.M.)
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (P.O.); (M.R.)
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Paola Occhetta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (P.O.); (M.R.)
| | - Laura Dönges
- Department of Biomedicine, University Hospital Basel, University of Basel, 4056 Basel, Switzerland; (A.P.); (E.B.T.); (A.M.); (L.D.); (I.M.)
| | - Cornelia Baum
- Department of Orthopaedic Surgery and Traumatology, University Hospital Basel, 4031 Basel, Switzerland;
- Department of Research and Development, Schulthess Klinik Zurich, 8008 Zurich, Switzerland
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (P.O.); (M.R.)
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, 4056 Basel, Switzerland; (A.P.); (E.B.T.); (A.M.); (L.D.); (I.M.)
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, 4056 Basel, Switzerland; (A.P.); (E.B.T.); (A.M.); (L.D.); (I.M.)
- Correspondence:
| |
Collapse
|
44
|
Chen W, Lin T, He Q, Yang P, Zhang G, Huang F, Wang Z, Peng H, Li B, Liang D, Wang H. Study on the potential active components and molecular mechanism of Xiao Huoluo Pills in the treatment of cartilage degeneration of knee osteoarthritis based on bioinformatics analysis and molecular docking technology. J Orthop Surg Res 2021; 16:460. [PMID: 34273999 PMCID: PMC8285844 DOI: 10.1186/s13018-021-02552-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Knee osteoarthritis is a common joint degenerative disease. Xiao Huoluo Pills (XHLP) has been used to treat degenerative diseases such as osteoarthritis and hyperosteogeny. However, XHLP’s specific effective ingredients and mechanism of action against osteoarthritis have not been explored. Therefore, bioinformatics technology and molecular docking technology are employed in this study to explore the molecular basis and mechanism of XHLP in the treatment of knee osteoarthritis. Methods Public databases (TCMSP, Batman-TCM, HERB, DrugBank, and UniProt) are used to find the effective active components and corresponding target proteins of XHLP (screening conditions: OB > 30%, DL ≥ 0.18). Differentially expressed genes related to cartilage lesions of knee osteoarthritis are obtained based on the GEO database (screening conditions: adjust P value < 0.01, |log2 FC|≥1.0). The Venn package in R language and the BisoGenet plug-in in Cytoscape are adopted to predict the potential molecules of XHLP in the treatment of knee osteoarthritis. The XHLP-active component-target interaction network and the XHLP-knee osteoarthritis-target protein core network are constructed using Cytoscape software. Besides, GO/KEGG enrichment analysis on core genes is performed using the Bioconductor package and clusterProfiler package in the R language to explain the biological functions and signal pathways of the core proteins. Finally, molecular docking is performed through software such as Vina, LeDock, Discovery Studio 2016, PyMOL, AutoDockTools 1.5.6, so as to verify the binding ability between the active components of the drug and the core target protein. Results XHLP has been screened out of 71 potentially effective active compounds for the treatment of OA, mainly including quercetin, Stigmasterol, beta-sitosterol, Izoteolin, and ellagic acid. Knee osteoarthritis cartilage lesion sequencing data (GSE114007) was screened out of 1672 differentially expressed genes, including 913 upregulated genes and 759 downregulated genes, displayed as heat maps and volcano maps. Besides, 33 core target proteins are calculated by Venn data package in R and BisoGenet plug-in in Cytoscape. The enrichment analysis on these target genes revealed that the core target genes are mainly involved in biological processes such as response to oxygen levels, mechanical stimulus, vitamin, drug, and regulation of smooth muscle cell proliferation. These core target genes are involved in signaling pathways related to cartilage degeneration of knee osteoarthritis such as TNF signaling pathway and PI3K-Akt signaling pathway. Finally, the molecular docking verification demonstrates that some active components of the drug have good molecular docking and binding ability with the core target protein, further confirming that XHLP has the effect of inhibiting cartilage degeneration in knee osteoarthritis. Conclusions In this study, based on the research foundation of bioinformatics and molecular docking technology, the active components and core target molecules of XHLP for the treatment of cartilage degeneration of knee osteoarthritis are screened out, and the potential mechanism of XHLP inhibiting cartilage degeneration of knee osteoarthritis is deeply explored. The results provide theoretical basis and new treatment plan for XHLP in the treatment of knee osteoarthritis.
Collapse
Affiliation(s)
- Weijian Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510045, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China
| | - Tianye Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,Department of Joint Orthopaedic, the Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Qi He
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Peng Yang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,Department of Joint Orthopaedic, the Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Gangyu Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Fayi Huang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Zihao Wang
- Queen's University Belfast, University Road, Belfast, Northen Ireland, BT7 1NN, United Kingdom
| | - Hao Peng
- Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510045, Guangdong, China
| | - Baolin Li
- Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510045, Guangdong, China
| | - Du Liang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China. .,Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510045, Guangdong, China. .,Department of Orthopaedics, Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China. .,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China. .,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China. .,Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
45
|
Li P, Li H, Shu X, Wu M, Liu J, Hao T, Cui H, Zheng L. Intra-articular delivery of flurbiprofen sustained release thermogel: improved therapeutic outcome of collagenase II-induced rat knee osteoarthritis. Drug Deliv 2021; 27:1034-1043. [PMID: 32627602 PMCID: PMC8216450 DOI: 10.1080/10717544.2020.1787555] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Knee osteoarthritis (OA) is a common degenerative disease. Intra-articular administration of flurbiprofen is frequently employed in clinic to treat OA, while repeated injections are required because of the limited effective duration. To improve therapeutic outcome and prolong the treatment interval, a poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) (PCLA-PEG-PCLA) triblock copolymer based flurbiprofen thermosensitive gel for the sustained intra-articular drug delivery was designed in this study. The anti-OA effects of this flurbiprofen thermogel were investigated on collagenase II-induced rat knee OA model by multiple approaches and compared with that of conventional sodium hyaluronate and flurbiprofen injecta. In vitro drug release studies indicated that flurbiprofen was sustained released from the thermosensitive gel for more than three weeks. This sustained drug release system exerted comparable short-term analgesic effects and distinctly improved long-term analgesic efficacy in terms of the increased percentage of the total ipsilateral paw print intensity and the reduced Knee-Bend scores of OA rats. The inflammatory response was attenuated in the samples of flurbiprofen gel treated group by showing decreased IL-1, IL-6, and IL-11 levels in the joint fluid and down-regulated IL-1, IL-6, IL-11, COX-2, TNF-α, and NF-κB/p65 expression in the articular cartilages. The results suggest the suitability of thermosensitive copolymer PCLA-PEG-PCLA for sustained intra-articular effects of flurbiprofen and provide in vivo experimental evidence for potential clinical application of this flurbiprofen delivery system to better management of OA cases.
Collapse
Affiliation(s)
- Peinan Li
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, China
| | - Haokun Li
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, China
| | - Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Moli Wu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jia Liu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Tangna Hao
- Department of Pharmacy, Second Clinical College, Dalian Medical University, Dalian, China
| | - Hongxia Cui
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Lianjie Zheng
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, China
| |
Collapse
|
46
|
From Pathogenesis to Therapy in Knee Osteoarthritis: Bench-to-Bedside. Int J Mol Sci 2021; 22:ijms22052697. [PMID: 33800057 PMCID: PMC7962130 DOI: 10.3390/ijms22052697] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is currently the most widespread musculoskeletal condition and primarily affects weight-bearing joints such as the knees and hips. Importantly, knee OA remains a multifactorial whole-joint disease, the appearance and progression of which involves the alteration of articular cartilage as well as the synovium, subchondral bone, ligaments, and muscles through intricate pathomechanisms. Whereas it was initially depicted as a predominantly aging-related and mechanically driven condition given its clear association with old age, high body mass index (BMI), and joint malalignment, more recent research identified and described a plethora of further factors contributing to knee OA pathogenesis. However, the pathogenic intricacies between the molecular pathways involved in OA prompted the study of certain drugs for more than one therapeutic target (amelioration of cartilage and bone changes, and synovial inflammation). Most clinical studies regarding knee OA focus mainly on improvement in pain and joint function and thus do not provide sufficient evidence on the possible disease-modifying properties of the tested drugs. Currently, there is an unmet need for further research regarding OA pathogenesis as well as the introduction and exhaustive testing of potential disease-modifying pharmacotherapies in order to structure an effective treatment plan for these patients.
Collapse
|
47
|
Schulze-Tanzil G. Experimental Therapeutics for the Treatment of Osteoarthritis. J Exp Pharmacol 2021; 13:101-125. [PMID: 33603501 PMCID: PMC7887204 DOI: 10.2147/jep.s237479] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) therapy remains a large challenge since no causative treatment options are so far available. Despite some main pathways contributing to OA are identified its pathogenesis is still rudimentary understood. A plethora of therapeutically promising agents are currently tested in experimental OA research to find an opportunity to reverse OA-associated joint damage and prevent its progression. Hence, this review aims to summarize novelly emerging experimental approaches for OA. Due to the diversity of strategies shown only main aspects could be summarized here including herbal medicines, nanoparticular compounds, growth factors, hormones, antibody-, cell- and extracellular vesicle (EV)-based approaches, optimized tools for joint viscosupplementation, genetic regulators such as si- or miRNAs and promising combinations. An abundant multitude of compounds obtained from plants, environmental, autologous or synthetic sources have been identified with anabolic, anti-inflammatory, -catabolic and anti-apoptotic properties. Some ubiquitous signaling pathways such as wingless and Integration site-1 (Wnt), Sirtuin, Toll-like receptor (TLR), mammalian target of rapamycin (mTOR), Nuclear Factor (NF)-κB and complement are involved in OA and addressed by them. Hyaluronan (HA) provided benefit in OA since many decades, and novel HA formulations have been developed now with higher HA content and long-term stability achieved by cross-linking suitable to be combined with other agents such as components from herbals or chemokines to attract regenerative cells. pH- or inflammation-sensitive nanoparticular compounds could serve as versatile slow-release systems of active compounds, for example, miRNAs. Some light has been brought into the intimate regulatory network of small RNAs in the pathogenesis of OA which might be a novel avenue for OA therapy in future. Attraction of autologous regenerative cells by chemokines and exosome-based treatment strategies could also innovate OA therapy.
Collapse
Affiliation(s)
- Gundula Schulze-Tanzil
- Department of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Bavaria, Germany
| |
Collapse
|
48
|
Makarczyk MJ, Gao Q, He Y, Li Z, Gold MS, Hochberg MC, Bunnell BA, Tuan RS, Goodman SB, Lin H. Current Models for Development of Disease-Modifying Osteoarthritis Drugs. Tissue Eng Part C Methods 2021; 27:124-138. [PMID: 33403944 PMCID: PMC8098772 DOI: 10.1089/ten.tec.2020.0309] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a painful and disabling disease that affects millions of people worldwide. Symptom-alleviating treatments exist, although none with long-term efficacy. Furthermore, there are currently no disease-modifying OA drugs (DMOADs) with demonstrated efficacy in OA patients, which is, in part, attributed to a lack of full understanding of the pathogenesis of OA. The inability to translate findings from basic research to clinical applications also highlights the deficiencies in the available OA models at simulating the clinically relevant pathologies and responses to treatments in humans. In this review, the current status in the development of DMOADs will be first presented, with special attention to those in Phase II-IV clinical trials. Next, current in vitro, ex vivo, and in vivo OA models are summarized and the respective advantages and disadvantages of each are highlighted. Of note, the development and application of microphysiological or tissue-on-a-chip systems for modeling OA in humans are presented and the issues that need to be addressed in the future are discussed. Microphysiological systems should be given serious consideration for their inclusion in the DMOAD development pipeline, both for their ability to predict drug safety and efficacy in human clinical trials at present, as well as for their potential to serve as a test platform for personalized medicine. Impact statement At present, no disease-modifying osteoarthritis (OA) drugs (DMOADs) have been approved for widespread clinical use by regulatory bodies. The failure of developing effective DMOADs is likely owing to multiple factors, not the least of which are the intrinsic differences between the intact human knee joint and the preclinical models. This work summarizes the current OA models for the development of DMOADs, discusses the advantages/disadvantages of each, and then proposes future model development to aid in the discovery of effective and personalized DMOADs. The review also highlights the microphysiological systems, which are emerging as a new platform for drug development.
Collapse
Affiliation(s)
- Meagan J. Makarczyk
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, California, USA
| | - Yuchen He
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhong Li
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael S. Gold
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark C. Hochberg
- Department of Medicine and Epidemiology and Public Health, University of Maryland, Baltimore, Maryland, USA
| | - Bruce A. Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, California, USA
- Department of Bioengineering, Stanford University, California, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
49
|
Liang Q, Asila A, Deng Y, Liao J, Liu Z, Fang R. Osteopontin-induced lncRNA HOTAIR expression is involved in osteoarthritis by regulating cell proliferation. BMC Geriatr 2021; 21:57. [PMID: 33446111 PMCID: PMC7809850 DOI: 10.1186/s12877-020-01993-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/29/2020] [Indexed: 01/16/2023] Open
Abstract
Background Osteopontin plays critical roles in osteoarthritis (OA) by regulating the functions of osteoclasts. It is known that osteopontin can induce the expression of lncRNA HOX transcript antisense RNA (HOTAIR), indicating the involvement of HOTAIR in OA. This study was carried out to investigate the role of HOTAIR in OA. Methods Synovial fluid was extracted from both OA patients (n = 58) and healthy controls (n = 58). Expression of osteopontin and HOTAIR in synovial fluid was determined by RT-qPCR. Osteopontin was used to treat chondrocytes at dosages of 0, 1, 5 and 10 µg/ml, followed by measurement of HOTAIR expression by RT-qPCR. The role of osteopontin and HOTAIR overexpression, as well as HOTAIR knockdown in regulating the proliferation of chondrocytes was analyzed by cck-8 assay. Results HOTAIR was upregulated in OA. A positive correlation between HOTAIR and osteopontin was observed. In the primary chondrocytes, osteopontin treatment increased HOTAIR expression, while HOTAIR overexpression and knockdown failed to significantly affect osteopontin expression. In addition, osteopontin and HOTAIR overexpression increased chondrocyte proliferation, while HOTAIRE knockdown decreased chondrocyte proliferation. In addition, HOTAIR knockdown reduced the effects of osteopontin treatment on cell proliferation. Conclusions Osteopontin-induced HOTAIR expression is involved in osteoarthritis by regulating cell proliferation.
Collapse
Affiliation(s)
- Quanzhi Liang
- Department of Orthopedics, Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, No. 116, Huanghe Road, Shayibake District, 830000, Urumqi City, Xinjiang Province, People's Republic of China
| | - Ailijiang Asila
- Department of Orthopedics, Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, No. 116, Huanghe Road, Shayibake District, 830000, Urumqi City, Xinjiang Province, People's Republic of China
| | - Yingjie Deng
- Department of Orthopedics, Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, No. 116, Huanghe Road, Shayibake District, 830000, Urumqi City, Xinjiang Province, People's Republic of China
| | - Jun Liao
- Department of Orthopedics, Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, No. 116, Huanghe Road, Shayibake District, 830000, Urumqi City, Xinjiang Province, People's Republic of China
| | - Zhenfeng Liu
- Department of Rehabilitation, the Ninth People's Hospital of Wuxi, 214000, Wuxi City, Jiangsu Province, People's Republic of China
| | - Rui Fang
- Department of Orthopedics, Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, No. 116, Huanghe Road, Shayibake District, 830000, Urumqi City, Xinjiang Province, People's Republic of China.
| |
Collapse
|
50
|
Wang R, Xu B. TGF-β1-modified MSC-derived exosomal miR-135b attenuates cartilage injury via promoting M2 synovial macrophage polarization by targeting MAPK6. Cell Tissue Res 2021; 384:113-127. [PMID: 33404840 DOI: 10.1007/s00441-020-03319-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is the most common joint disease with an unsatisfactory therapy outcome and characterized by the degradation of articular cartilage and synovial inflammation. Here, we isolated bone marrow mesenchymal stem cells (BMSCs) from rat's bone marrow and BMSC-derived exosome (BMSCs-Exo) from BMSCs successfully. MiR-135b was proved to be highly expressed in TGF-β1-stimulated BMSC-derived exosomes (BMSCs-ExoTGF-β1). Then, our results demonstrated that BMSCs-ExoTGF-β1 reduced OA-induced upregulation of pro-inflammatory factors in rat's serum and damage in cartilage tissues, which was then reversed by miR-135b decreasing. Subsequently, we found that the OA-resulted M1 polarization of synovial macrophages (SMs) was repressed by BMSCs-ExoTGF-β1, this effect of BMSCs-ExoTGF-β1 was limited by miR-135b decreasing. We also proved that M2 polarization of SMs can be induced by miR-135b mimics. Furthermore, we found that the promotory effect of miR-135b and BMSCs-ExoTGF-β1 on M2 SMs polarization was reversed by increasing of MAPK6. Overall, our data showed that BMSCs-ExoTGF-β1 attenuated cartilage damage in OA rats through carrying highly expressed miR-135b. Mechanistically, miR-135b promoted M2 polarization of SMs through targeting MAPK6, thus improving cartilage damage. Our study provided a novel regulatory mechanism of BMSCs-Exo in OA development and revealed a new potential treatment target of OA.
Collapse
Affiliation(s)
- Rui Wang
- Department of Sports Trauma & Arthroscopy, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, 230022, People's Republic of China
| | - Bin Xu
- Department of Sports Trauma & Arthroscopy, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|