1
|
Zhang W, Lei W, Bo T, Xu J, Wang W. Metabolomics' Change Under β-Cypermethrin Stress and Detoxification Role of CYP5011A1 in Tetrahymena thermophila. Metabolites 2025; 15:143. [PMID: 40137108 PMCID: PMC11944115 DOI: 10.3390/metabo15030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND β-cypermethrin (β-CYP) exhibits high toxicity to aquatic organisms and poses significant risks to aquatic ecosystems. Tetrahymena thermophila, a protozoa widely distributed in aquatic environments, can tolerate high concentrations of β-cypermethrin. However, the comprehensive detoxification mechanisms remain poorly understood in Tetrahymena. METHODS Untargeted metabolomics was used to explore the detoxification mechanisms of T. thermophila under β-CYP stress. RESULTS Trehalose, maltose, glycerol, and D-myo-inositol were upregulated under β-CYP exposure in Tetrahymena. Furthermore, the expression level of CYP5011A1 was upregulated under β-CYP treatment. CYP5011A1 knockout mutants resulted in a decreasing proliferation rate of T. thermophila under β-CYP stress. The valine-leucine and isoleucine biosynthesis and glycine-serine and threonine metabolism were significantly affected, with significantly changed amino acids including serine, isoleucine, and valine. CONCLUSIONS These findings confirmed that T. thermophila develops β-CYP tolerance by carbohydrate metabolism reprogramming and Cyp5011A1 improves cellular adaptations by influencing amino acid metabolisms. Understanding these mechanisms can inform practices aimed at reducing the adverse effects of agricultural chemicals on microbial and environmental health.
Collapse
Affiliation(s)
- Wenyong Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; (W.Z.); (J.X.)
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
- Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Wenliang Lei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Jing Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China; (W.Z.); (J.X.)
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (W.L.); (T.B.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| |
Collapse
|
2
|
Zhang T, Gong C, Pu J, Peng A, Yang J, Wang X. Enhancement of Tolerance against Flonicamid in Solenopsis invicta Queens through Overexpression of CYP6AQ83. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:237-248. [PMID: 39680625 DOI: 10.1021/acs.jafc.4c08903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Solenopsis invicta, an extremely destructive invasive species, has rapidly spread in China, with queens exhibiting chemical tolerance. In this study, bioassays were conducted on S. invicta colonies collected in Nanchong, revealing that the LC50 value of flonicamid for queens (3.91 mg/L) was significantly higher than that for workers (1.07 mg/L). Comparative analysis of transcriptomes of workers and queens treated with flonicamid revealed that differentially expressed genes (DEGs) were significantly enriched in the metabolism of xenobiotics by cytochrome P450 and drug metabolism by cytochrome P450 pathways. Based on the screening of transcriptome data, CYP6AQ83 might be involved in the detoxification metabolism of flonicamid in queens. After RNA interference, the sensitivity of queens to flonicamid was significantly increased by 30% in the treatment of the dsCYP6AQ83 group. Furthermore, heterologous overexpression of CYP6AQ83 in Drosophila melanogaster also significantly enhanced the tolerance against flonicamid. These results indicated that the overexpression of CYP6AQ83 in the queen enhances the tolerance against flonicamid.
Collapse
Affiliation(s)
- Tianyi Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Changwei Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Pu
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Peng
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jizhi Yang
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuegui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Han C, Rahman MM, Kim J, Lueke B, Nauen R. Genome-wide analysis of detoxification genes conferring diamide insecticide resistance in Spodoptera exigua identifies CYP9A40. CHEMOSPHERE 2024; 367:143623. [PMID: 39481490 DOI: 10.1016/j.chemosphere.2024.143623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
For over a decade, diamide insecticides have been effective against lepidopteran pests like beet armyworm, Spodoptera exigua (Hübner, 1808). However, the evolution of resistance poses a challenge to their sustainable use. We identified an I4790 M mutation in the S. exigua ryanodine receptor (RyR) gene, but its correlation with resistance varied across the field-collected Korean populations of S. exigua. RNA sequencing and differential gene expression analysis were performed to investigate other resistance mechanisms. Diamide-resistant and susceptible strains and F1 hybrids were compared by mapping RNA-seq reads to the S. exigua reference genome. CYP9A40 was identified as a critical gene in diamide resistance due to its high expression in the resistant strains. Synergist bioassays with piperonyl butoxide supported the role of P450s in diamide metabolic resistance in S. exigua. A strong positive correlation between CYP9A40 over-expression levels (up to 80-fold) and diamide LC50 values was obtained for field-collected populations uniformly showing a 100% frequency of the RyR I4790 M target-site resistance allele. To validate the function of CYP9A40 in diamide detoxification, we recombinantly expressed the gene and tested its ability to bind and degrade chlorantraniliprole as a substrate. The results confirmed its catalytic role in diamide metabolism. CYP9A40 has been identified and validated to confer metabolic resistance in Korean S. exigua populations. It works alongside the RyR target-site I4790 M mutation to enhance diamide resistance. These mechanisms offer insights for resistance monitoring and support insecticide resistance management programs to improve control strategies for S. exigua.
Collapse
Affiliation(s)
- Changhee Han
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, South Korea
| | - Md-Mafizur Rahman
- Department Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh; Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, 24341, South Korea
| | - Juil Kim
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, South Korea; Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, 24341, South Korea.
| | - Bettina Lueke
- Bayer AG, Crop Science Division, R&D, 40789, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, 40789, Monheim, Germany.
| |
Collapse
|
4
|
Yang L, Zhang PT, Li MM, Wang XY, Zhao QQ, Lin JJ, Zhao JQ, Liu BS, Li S, Ji R, Fang JC, Sun Y. ( E)-β-Farnesene Protects Rice from Rice Striped Stem Borer Attack by Inhibiting Its Beneficial Gut Microbes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23716-23726. [PMID: 39417995 DOI: 10.1021/acs.jafc.4c02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Herbivores harbor gut microbes that affect their development and contribute to their nutrition, reproduction, and survival. Plant defenses could target the herbivore's beneficial gut microbes, but this has not been well studied in rice. In this context, we identified a rice terpene synthase gene, Os04g0341500. It was strongly induced after feeding by rice striped stem borers (SSB, Chilo suppressalis), and it can catalyze the (E)-β-farnesene (Eβf) synthesis. When added to artificial diets, Eβf impaired the development and survival of SSB larvae. High-throughput amplicon sequencing revealed that SSB fed on Eβf were decreased in beneficial gut microbes, compared to those feeding on the corresponding control feed. In vitro feeding of Eβf suggested that this antimicrobial sesquiterpene directly inhibited the growth of SSB gut microbes. The present study suggested that the Eβf-induced decrease of relative abundance of gut microbes potentially impairs larval development and survival in SSB.
Collapse
Affiliation(s)
- Lei Yang
- Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241002, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Pei-Tao Zhang
- Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241002, China
| | - Miao-Miao Li
- Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241002, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xin-Yu Wang
- Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241002, China
| | - Qing-Qing Zhao
- Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241002, China
| | - Jun-Jie Lin
- Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241002, China
| | - Jia-Qi Zhao
- Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241002, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bao-Sheng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shuai Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ji-Chao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yang Sun
- Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
5
|
Hu B, Xing Z, Dong H, Chen X, Ren M, Liu K, Rao C, Tan A, Su J. Cytochrome P450 CYP6AE70 Confers Resistance to Multiple Insecticides in a Lepidopteran Pest, Spodoptera exigua. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23141-23150. [PMID: 39382406 DOI: 10.1021/acs.jafc.4c04872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cytochrome P450 monooxygenases are associated with the detoxification of xenobiotics, and overexpression of P450 genes has been proven to be associated with insecticide resistance in insect species. Our previous study has revealed that multiple CYP6AE genes were significantly overexpressed in a resistant strain of Spodoptera exigua, and among these genes, CYP6AE70 was particularly highly expressed. However, the functional roles of the CYP6AE genes in insecticide resistance remain unknown in this pest. Here, we investigate the relationship between the CYP6AE genes and insecticide resistance by focusing on CYP6AE70. The expression of CYP6AE70 was increased after exposure to chlorpyrifos, cypermethrin, and deltamethrin. Ectopic overexpression of P450 in transgenic flies by the GAL4/UAS system dramatically enhanced the tolerance to these three insecticides. Furthermore, the recombinant CYP6AE70 was functionally expressed in Sf9 cells, and metabolic assays revealed that the recombinant P450 protein could efficiently metabolize chlorpyrifos, cypermethrin, and deltamethrin. Finally, molecular modeling and docking also showed that this P450 protein were tightly bound to the three insecticides. These results determine that the upregulation of CYP6AE genes results in resistance to multiple insecticides in S. exigua. This study improves our understanding of P450-mediated insecticide resistance and will help us to design more effective resistance management for pest control.
Collapse
Affiliation(s)
- Bo Hu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhiping Xing
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Hui Dong
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xiangzhu Chen
- School of Medicine, Linyi University, Linyi 276000, China
| | - Miaomiao Ren
- College of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Kuitun Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Cong Rao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jianya Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Huang X, Zheng L, Wang Y. The Survival and Physiological Response of Calliptamus abbreviatus Ikonn (Orthoptera: Acrididae) to Flavonoids Rutin and Quercetin. INSECTS 2024; 15:95. [PMID: 38392514 PMCID: PMC10888613 DOI: 10.3390/insects15020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Insect-resistant substances from plants are important natural resources that human beings can potentially develop and use to control pests. In this study, we explored the adverse effects of rutin and quercetin on grasshopper (Calliptamus abbreviatus), as well as the insect's physiological response to these substances in laboratory and field experiments. These two plant compounds exhibited toxic effects on C. abbreviatus, with quercetin showing a stronger toxicity, indicated by a lower survival, slower development, and higher induced gene expression and activities of UDP-glucuronosyltransferase, cytochrome P450s, superoxide dismutase, peroxidase and catalase, compared to rutin. These compounds, especially quercetin, have the potential to be developed as biopesticides to control grasshoppers.
Collapse
Affiliation(s)
- Xunbing Huang
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China
| | - Li Zheng
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Yueyue Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China
| |
Collapse
|
7
|
Huang Y, Xu L, Zheng J, Wu P, Zhang Y, Qiu L. Identification and characterization of both cis- and trans-regulators mediating fenvalerate-induced expression of CYP6B7 in Helicoverpa armigera. Int J Biol Macromol 2024; 258:128995. [PMID: 38159702 DOI: 10.1016/j.ijbiomac.2023.128995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
As we known, inducibility is an important feature of P450 genes. Previous studies indicated that CYP6B7 could be induced and involved in fenvalerate detoxification in Helicoverpa armigera. However, the regulatory mechanism of CYP6B7 induced by fenvalerate is still unclear. In this study, CYP6B7 promoter of H. armigera was cloned and the cis-acting element of fenvalerate was identified to be located between -84 and - 55 bp of CYP6B7 promoter. Subsequently, 33 candidate transcription factors (CYP6B7-fenvalerate association proteins, CAPs) that may bind to the cis-acting element were screened and verified by yeast one-hybrid. Among them, the expression levels of several CAPs were significantly induced by fenvalerate. Knockdown of juvenile hormone-binding protein-like (JHBP), RNA polymerase II-associated protein 3 (RPAP3), fatty acid synthase-like (FAS) and peptidoglycan recognition protein LB-like (PGRP) resulted in significant expression inhibition of CYP6B7, and increased sensitivity of H. armigera to fenvalerate. Co-transfection of reporter gene p (-84/-55) with pFast-CAP showed that JHBP, RPAP3 and PGRP could significantly increase the activity of CYP6B7 promoter. These results suggested that trans-acting factors JHBP, RPAP3 and PGRP may bind with cis-acting elements to regulate the expression of CYP6B7 induced by fenvalerate, and play an important role in the detoxification of H. armigera to fenvalerate.
Collapse
Affiliation(s)
- Yun Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Xu
- College of Resources and Environment and Henan Engineering Research Center of Green Pesticide Creation &Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Peizhuo Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Dai H, Liu B, Yang L, Yao Y, Liu M, Xiao W, Li S, Ji R, Sun Y. Investigating the Regulatory Mechanism of the Sesquiterpenol Nerolidol from a Plant on Juvenile Hormone-Related Genes in the Insect Spodoptera exigua. Int J Mol Sci 2023; 24:13330. [PMID: 37686136 PMCID: PMC10488281 DOI: 10.3390/ijms241713330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Various plant species contain terpene secondary metabolites, which disrupt insect growth and development by affecting the activity of juvenile hormone-degrading enzymes, and the juvenile hormone (JH) titers maintained in insects. Nerolidol, a natural sesquiterpenol belonging to the terpenoid group, exhibits structural similarities to insect JHs. However, the impact of nerolidol on insect growth and development, as well as its underlying molecular mechanism, remains unclear. Here, the effects of nerolidol on Spodoptera exigua were investigated under treatment at various sub-lethal doses (4.0 mg/mL, 1.0 mg/mL, 0.25 mg/mL). We found that a higher dose (4.0 mg/mL) of nerolidol significantly impaired the normal growth, development, and population reproduction of S. exigua, although a relatively lower dose (0.25 mg/mL) of nerolidol had no significant effect on this growth and development. Combined transcriptome sequencing and gene family analysis further revealed that four juvenile hormone esterase (JHE)-family genes that are involved in juvenile hormone degradation were significantly altered in S. exigua larvae after nerolidol treatment (4.0 mg/mL). Interestingly, the juvenile hormone esterase-like (JHEL) gene Sexi006721, a critical element responsive to nerolidol stress, was closely linked with the significant augmentation of JHE activity and JH titer in S. exigua (R2 = 0.94, p < 0.01). Taken together, we speculate that nerolidol can function as an analog of JH by modulating the expression of the enzyme genes responsible for degrading JH, resulting in JH disorders and ultimately disrupting the development of insect larvae. This study ultimately provides a theoretical basis for the sustainable control of S. exigua in the field whilst proposing a new perspective for the development of novel biological pesticides.
Collapse
Affiliation(s)
- Hanyang Dai
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.D.); (B.L.)
| | - Baosheng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.D.); (B.L.)
| | - Lei Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.D.); (B.L.)
| | - Yu Yao
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Mengyun Liu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wenqing Xiao
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shuai Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.D.); (B.L.)
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.D.); (B.L.)
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yang Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.D.); (B.L.)
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
9
|
Yuan X, Li H, Guo X, Jiang H, Zhang Q, Zhang L, Wang G, Li W, Zhao M. Functional roles of two novel P450 genes in the adaptability of Conogethes punctiferalis to three commonly used pesticides. Front Physiol 2023; 14:1186804. [PMID: 37457033 PMCID: PMC10338330 DOI: 10.3389/fphys.2023.1186804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Insect cytochrome P450 (CYP450) genes play important roles in the detoxification and metabolism of xenobiotics, such as plant allelochemicals, mycotoxins and pesticides. The polyphagous Conogethes punctiferalis is a serious economic pest of fruit trees and agricultural crops, and it shows high adaptability to different living environments. Methods: The two novel P450 genes CYP6CV1 and CYP6AB51 were identified and characterized. Quantitative real-time PCR (qRT-PCR) technology was used to study the expression patterns of the two target genes in different larval developmental stages and tissues of C. punctiferalis. Furthermore, RNA interference (RNAi) technology was used to study the potential functions of the two P450 genes by treating RNAi-silenced larvae with three commonly used pesticides. Results: The CYP6CV1 and CYP6AB51 genes were expressed throughout various C. punctiferalis larval stages and in different tissues. Their expression levels increased along with larval development, and expression levels of the two target genes in the midgut were significantly higher than in other tissues. The toxicity bioassay results showed that the LC50 values of chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin on C. punctiferalis larvae were 0.2028 μg/g, 0.0683 μg/g and 0.6110 mg/L, respectively. After treating with different concentrations of chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin (LC10, LC30, LC50), independently, the relative expressions of the two genes CYP6CV1 and CYP6AB51 were significantly induced. After the dsRNA injection, the expression profiles of the two CYP genes were reduced 72.91% and 70.94%, respectively, and the mortality rates of the larvae significantly increased when treated with the three insecticides independently at LC10 values. Discussion: In the summary, after interfering with the CYP6CV1 and CYP6AB51 in C. punctiferalis, respectively, the sensitivity of C. punctiferalis to chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin was significantly increased, indicating that the two CYP6 genes were responsible for the adaptability of C. punctiferalis to the three chemical insecticides in C. punctiferalis. The results from this study demonstrated that CYP6CV1 and CYP6AB51 in C. punctiferalis play crucial roles in the detoxification of chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin.
Collapse
Affiliation(s)
- Xingxing Yuan
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Han Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xianru Guo
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - He Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lijuan Zhang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Gaoping Wang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Weizheng Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Man Zhao
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
10
|
Zhang Z, Wang D, Shan Y, Chen J, Hu H, Song X, Ma X, Ren X, Ma Y. Knockdown of CYP9A9 increases the susceptibility to lufenuron, methoxyfenozide and a mixture of both in Spodoptera exigua. INSECT MOLECULAR BIOLOGY 2023; 32:263-276. [PMID: 36582185 DOI: 10.1111/imb.12829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/27/2022] [Indexed: 05/15/2023]
Abstract
Lufenuron (LUF) and Methoxyfenozide (MET) as Insect Growth Regulators (IGRs) contribute to the current control of the catastrophic crop pest, Spodoptera exigua (Lepidoptera, Noctuidae). Yet S. exigua has evolved resistance to LUF and MET, which is possibly mediated by cytochrome P450 monooxygenases (P450s), particularly from the CYP3 clade family, as it plays a key role in the detoxification of insecticides. However, a mixture of LUF and MET (MML) (optimal ratio: 6:4) remains highly insecticidal. Here, we analysed the response of S. exigua to sublethal concentrations of LUF, MET, and MML via transcriptomics. Twelve differentially expressed genes (DEGs) encoding CYP3 clade members were observed in transcriptomes and CYP9A9 was significantly upregulated after treatment with LUF, MET, and MML. Further, CYP9A9 was most highly expressed in the midgut of L4 S. exigua larvae. RNAi-mediated knockdown of CYP9A9 reduced the activity of CYP450 and increased the susceptibility of S. exigua larvae to LUF, MET, and MML. Thus, CYP9A9 plays a key role in the detoxification of LUF, MET, and MML in S. exigua. These findings provide new insights into insecticidal actions of IGRs, which can be applied to the establishment of novel pest management strategies.
Collapse
Affiliation(s)
- Zhixian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yongpan Shan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jixiang Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
11
|
Zhang Z, Pei P, Zhang M, Li F, Tang G. Chromosome-level genome assembly of Dastarcus helophoroides provides insights into CYP450 genes expression upon insecticide exposure. PEST MANAGEMENT SCIENCE 2023; 79:1467-1482. [PMID: 36502364 DOI: 10.1002/ps.7319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/26/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Dastarcus helophoroides is an important natural enemy of cerambycids, and is wildly used in biological control of pests. Nevertheless, the absence of complete genomic information limits the investigation of the underlying molecular mechanisms. Here, a chromosome-level of Dastarcus helophoroides genome is assembled using a combination strategy of Illumina, PacBio, 10x™ Genomics, and Hi-C. RESULTS The final assembly is 609.09 Mb with contig N50, scaffold N50 and GC content of 5.46 Mb, 42.56 Mb and 31.50%, respectively, and 95.25% of the contigs anchor into 13 chromosomes. In total 14 890 protein-coding genes and 65.37% repeat sequences are predicted in the assembly genome. The phylogenetic analysis of single-copy gene families shared among 20 insect species indicates that Dastarcus helophoroides is placed as the sister species to clade (Nitidulidae+Curculionoidea+Chrysomeloidea) + Tenebrionoidea, and diverges from the related species ~242.9 Mya. In total 36 expanded gene families are identified in Dastarcus helophoroides genome, and are functionally related to drug metabolism and metabolism of xenobiotics by cytochrome P450. Some members of CYP4 Clade and CYP6 Clade are up-regulated in Dastarcus helophoroides adults upon insecticide exposure, of which expressions of DhCYP4Q, DhCYP6A14X1 and DhCYP4C1 are significantly up-regulated. The silencing of the three genes leads to adults more sensitive to insecticide and increased knocked-down rate, which may indicate their critical roles in stress resistance and detoxication. CONCLUSION Our study systematically integrated the chromosome-level genome, transcriptome and gene expression of Dastarcus helophoroides, which will provide valuable resources for understanding mechanisms of pesticide metabolism, growth and development, and utilization of the natural enemy in integrated control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengqing Zhang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Pei Pei
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Meng Zhang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Feifei Li
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Guanghui Tang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| |
Collapse
|
12
|
Li PR, Shi Y, Ju D, Liu YX, Wang W, He YS, Zhang YY, Yang XQ. Metabolic functional redundancy of the CYP9A subfamily members leads to P450-mediated lambda-cyhalothrin resistance in Cydia pomonella. PEST MANAGEMENT SCIENCE 2023; 79:1452-1466. [PMID: 36519662 DOI: 10.1002/ps.7317] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The evolution of insect resistance to pesticides poses a continuing threat to sustainable pest management. While much is known about the molecular mechanisms that confer resistance in model insects and few agricultural pests, far less is known about fruit pests. Field-evolved resistance to synthetic insecticides such as lambda-cyhalothrin has been widely documented in Cydia pomonella, a major invasive pest of pome fruit worldwide, and the increased production of cytochrome P450 monooxygenases (P450s) has been linked to resistance in field-evolved resistant populations. However, the underlying molecular mechanisms of P450-mediated insecticide resistance remain largely unknown. RESULTS Here we found that functional redundancy and preference of metabolism by P450s genes in the CYP9A subfamily confer resistance to lambda-cyhalothrin in Cydia pomonella. A total of four CYP9A genes, including CYP9A61, CYP9A120, CYP9A121, and CYP9A122, were identified from Cydia pomonella. Among these, CYP9A120, CYP9A121, and CYP9A122 were predominantly expressed in the midgut of larvae. The expression levels of these P450 genes were significantly induced by a lethal dose that would kill 10% (LD10 ) of lambda-cyhalothrin and were overexpressed in a field-evolved lambda-cyhalothrin resistant population. Knockdown of CYP9A120 and CYP9A121 by RNA-mediated interference (RNAi) increased the susceptibility of larvae to lambda-cyhalothrin. In vitro assays demonstrated that recombinant P450s expressed in Sf9 cells can metabolize lambda-cyhalothrin, but with functional redundancy and divergence through regioselectivity of metabolism. CYP9A121 preferred to convert lambda-cyhalothrin to 2'-hydroxy-lambda-cyhalothrin, whereas CYP9A122 only generated 4'-hydroxy metabolite of lambda-cyhalothrin. Although possesses a relatively low metabolic capability, CYP9A120 balanced catalytic competence to generate both 2'- and 4'-metabolites. CONCLUSION Collectively, these results reveal that metabolic functional redundancy of three members of the CYP9A subfamily leads to P450-mediated lambda-cyhalothrin resistance in Cydia pomonella, thus representing a potential adaptive evolutionary strategy during its worldwide expansion. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pei-Rong Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, China
| | - Yu Shi
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Di Ju
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, China
| | - Yu-Xi Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, China
| | - Wei Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, China
| | - Ying-Shi He
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yu-Yun Zhang
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xue-Qing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, China
| |
Collapse
|
13
|
Shyam-Sundar N, Ramasubramanian R, Karthi S, Senthil-Nathan S, Chanthini KMP, Sivanesh H, Stanley-Raja V, Ramkumar G, Narayanan KR, Mahboob S, Al-Ghanim KA, Abdel-Megeed A, Krutmuang P. Effects of phytocompound Precocene 1 on the expression and functionality of the P450 gene in λ-cyhalothrin-resistant Spodoptera litura (Fab.). Front Physiol 2022; 13:900570. [PMID: 36439259 PMCID: PMC9684723 DOI: 10.3389/fphys.2022.900570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 09/13/2022] [Indexed: 10/25/2023] Open
Abstract
Spodoptera litura (Fabricius) is an agriculturally significant polyphagous insect pest that has evolved a high level of resistance to conventional insecticides. A dietary assay was used in this work to assess the resilience of field populations of S. litura to λ-cyhalothrin. Analysis of the function and expression of the cytochrome P450 gene was used to test the sensitivity of S. litura larvae to sub-lethal concentrations of the insecticidal plant chemical Precocene 1, both by itself and in combination with λ-cyhalothrin. The activity of esterase enzymes (α and β) was found to decrease 48 h post treatment with Precocene 1. The activity of GST enzyme and cytochrome P450 increased with Precocene 1 treatment post 48 h, however. Expression studies revealed the modulation by Precocene 1 of cytochrome P450 genes, CYP4M16, CYP4M15, CYP4S8V4, CYP4G31, and CYP4L10. While CYP4M16 expression was stimulated the most by the synergistic Precocene 1 + λ-cyhalothrin treatment, expression of CYP4G31 was the most down-regulated by Precocene 1 exposure. Hence, it is evident that λ-cyhalothrin-resistant pest populations are still sensitive to Precocene 1 at a sublethal concentration that is nevertheless capable of hindering their development. Precocene 1 can therefore be considered a potent candidate for the effective management of insecticide-resilient S. litura.
Collapse
Affiliation(s)
- Narayanan Shyam-Sundar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Ramakrishnan Ramasubramanian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Kanagaraj Muthu-Pandian Chanthini
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Haridoss Sivanesh
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Vethamonickam Stanley-Raja
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Govindaraju Ramkumar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | | | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
14
|
Zhao P, Xue H, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Gao X, Luo J, Cui J. Knockdown of cytochrome P450 gene CYP6AB12 based on nanomaterial technology reduces the detoxification ability of Spodoptera litura to gossypol. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105284. [PMID: 36464384 DOI: 10.1016/j.pestbp.2022.105284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
In insects, cytochrome P450 monooxygenases (P450s or CYPs) play an important role in the detoxification and metabolism of exogenous plant allelochemicals. In this study, a P450 gene CYP6AB12 was identified and characterized from Spodoptera litura. The cDNA contains an open reading frame (ORF) encoding 511 amino acid residues. CYP6AB12 was expressed at different ages of S. litura, with the highest levels found in the third and fourth instar larvae. Its highest expression was found in the midgut and fat body of fourth instar larvae fed with gossypol. Moreover, these expression levels were substantially increased compared with those from larvae fed with control diet. Gene silencing was then conducted by smearing dsRNA mixed with nanomaterials onto the cuticle. CYP6AB12 expression was significantly decreased in the midgut and fat body, and the net weight increase was substantially lower than that of the control group, indicating that the treatment group had more sensitivity to gossypol than the control. These results reveal that CYP6AB12 plays an important role in the detoxification and metabolism of gossypol, thus further confirming that P450s have a broad ability to detoxify and metabolize plant allelochemicals. It provides an important molecular basis for the exploration of detoxification metabolism and pest control of S. litura.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Xue
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangzhen Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Kaixin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Dongyang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Lin Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| |
Collapse
|
15
|
Pathak J, Ramasamy GG, Agrawal A, Srivastava S, Basavaarya BR, Muthugounder M, Muniyappa VK, Maria P, Rai A, Venkatesan T. Comparative Transcriptome Analysis to Reveal Differentially Expressed Cytochrome P450 in Response to Imidacloprid in the Aphid Lion, Chrysoperla zastrowi sillemi (Esben-Petersen). INSECTS 2022; 13:900. [PMID: 36292848 PMCID: PMC9604014 DOI: 10.3390/insects13100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The aphid lion, Chrysoperla zastrowi sillemi (Neuroptera: Chrysopidae) is a highly effective beneficial predator of many agricultural pests and has developed resistance to several insecticides. Understanding the molecular mechanism of insecticide resistance in the predators is crucial for its effective application in IPM programs. Therefore, transcriptomes of imidacloprid-resistant and susceptible strains have been assessed using RNA-seq. Cytochrome P450 is one of the important gene families involved in xenobiotic metabolism. Hence, our study focused on the CYP gene family where mining, nomenclature, and phylogenetic analysis revealed a total of 95 unique CYP genes with considerable expansion in CYP3 and CYP4 clans. Further, differential gene expression (DGE) analysis revealed ten CYP genes from CYP3 and CYP4 clans to be differentially expressed, out of which nine genes (CYP4419A1, CYP4XK1, CYP4416A10, CYP4416A-fragment8, CYP6YL1, CYP6YH6, CYP9GK-fragment16, CYP9GN2, CYP9GK6) were downregulated and one (CYP9GK3) was upregulated in the resistant strain as compared to the susceptible strain. Expression validation by quantitative real-time PCR (qRT-PCR) is consistent with the DGE results. The expansion and differential expression of CYP genes may be an indicator of the capacity of the predator to detoxify a particular group of insecticides.
Collapse
Affiliation(s)
- Jyoti Pathak
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Gandhi Gracy Ramasamy
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Aditi Agrawal
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Subhi Srivastava
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Bhusangar Raghavendra Basavaarya
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Mohan Muthugounder
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Venugopal Kundalagurki Muniyappa
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Pratheepa Maria
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistical Research Institute, Pusa, New Delhi 110012, India
| | - Thiruvengadam Venkatesan
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| |
Collapse
|
16
|
Zuo Y, Wang Z, Ren X, Pei Y, Aioub AAA, Hu Z. Evidence for Multiple Origins of Knockdown Resistance (kdr) in Spodoptera exigua (Hübna) (Lepidoptera: Noctuidae) From China. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1279-1284. [PMID: 35604386 PMCID: PMC9652999 DOI: 10.1093/jee/toac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 05/25/2023]
Abstract
The beet armyworm, Spodoptera exigua (Hübna) is a serious agricultural pest that is challenging to control due to resistance to most pesticides, including pyrethroids. This resistance has previously been linked to the knockdown resistance (kdr) mutation (L1014F) of the voltage-gated sodium channel (VGSC) in S. exigua. To better understand the frequencies of the kdr mutation of SeVGSC and identify the evolutionary origins of kdr mutation in S. exigua, seven populations of S. exigua were collected in China, and partial SeVGSC genomic sequences for each individual were acquired. The bioassays showed that the survival rates of seven populations of S. exigua larvae exposed to the discriminating dose of beta-cypermethrin (0.05 mg/cm2) ranged from 91.66% to 100%, indicating that all seven populations had evolved resistance to beta-cypermethrin. The frequencies of kdr mutation (CTT to TTT) of SeVGSC of field populations ranged China were from 60% to 89.6%. The CTT to CAT substitution at this coding position resulting in the L1014H (kdr-H) mutation was found in only one individual from the QP18 population. Based on the phylogeny of SeVGSC alleles, it appeared that the kdr mutation in S. exigua populations had multiple origins, which has major consequences for pyrethroid effectiveness in the field. Thus, it is recommended to limit the use of pyrethroid and encourage rotation of insecticides with different modes of action for control of S. exigua to alleviate resistance development.
Collapse
Affiliation(s)
- Yayun Zuo
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi, China
| | - Zeyu Wang
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi, China
| | - Xuan Ren
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi, China
| | - Yakun Pei
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi, China
| | - Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, 44511, Zagazig, Egypt
| | | |
Collapse
|
17
|
Zhang MY, Zhang P, Su X, Guo TX, Zhou JL, Zhang BZ, Wang HL. MicroRNA-190-5p confers chlorantraniliprole resistance by regulating CYP6K2 in Spodoptera frugiperda (Smith). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105133. [PMID: 35715027 DOI: 10.1016/j.pestbp.2022.105133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The fall armyworm Spodoptera frugiperda (Smith) (FAA) is responsible for considerable losses in grain production, and chemical control is the most effective strategy. However, frequent insecticide application can lead to the development of resistance. In insects, cytochrome P450 plays a crucial role in insecticide metabolism. CYP6K2 is related to FAA resistance to chlorantraniliprole. However, the regulatory mechanism of CYP6K2 expression is poorly understood. In this study, a conserved target of isolated miRNA-190-5p was located in the 3' UTR of CYP6K2 in FAA. A luciferase reporter analysis showed that in FAA, miRNA-190-5p can combine with the 3'UTR of CYP6K2 to suppress its expression. Injected miRNA-190-5p agomir significantly reduced CYP6K2 abundance by 54.6% and reduced tolerance to chlorantraniliprole in FAA larvae, whereas injected miRNA-190-5p antagomir significantly increased CYP6K2 abundance by 1.77-fold and thus improved chlorantraniliprole tolerance in FAA larvae. These results provide a basis for further research on the posttranscriptional regulatory mechanism of CYP6K2 and will facilitate further study on the function of miRNAs in regulating tolerance to chlorantraniliprole in FAA.
Collapse
Affiliation(s)
- Meng-Yuan Zhang
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Pei Zhang
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Xu Su
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Tian-Xin Guo
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Jun-Lei Zhou
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Bai-Zhong Zhang
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China.
| | - Hong-Liang Wang
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| |
Collapse
|
18
|
Gao S, Liu K, Liu H, Yin S, Guo X, Zhang Y, Zhang K, Li R. Functional analysis of a cytochrome P450 gene CYP9Z6 responding to terpinen-4-ol in the red flour beetle, Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105065. [PMID: 35430067 DOI: 10.1016/j.pestbp.2022.105065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/26/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
Tribolium castaneum is an agricultural and stored pest found throughout the world. The cytochrome P450 genes of T. castaneum can encode various detoxification enzymes and catabolize heterologous substances, conferring tolerance to insecticides. Herein, we describe the identification of a P450 gene (CYP9Z6) from T. castaneum and investigated its expression profile and potential role in the detoxification of terpinen-4-ol. TcCYP9Z6 expression was significantly induced after exposure to terpinen-4-ol, and RNA-mediated silencing of TcCYP9Z6 increased terpinen-4-ol-induced larval mortality from 47.75% to 63.92%, showing that TcCYP9Z6 is closely related to the detoxification of terpinen-4-ol. The developmental expression profile revealed that TcCYP9Z6 was mainly expressed in late adults and late larvae. Tissue expression profiling revealed that the highest TcCYP9Z6 expression occurred in the head, in both the adult and the larval tissues, followed by the gut in larvae and the antennae in adults. These developmental stages and tissues with high TcCYP9Z6 expression are closely related to the detoxification of heterologous substances. These results indicated that TcCYP9Z6 may play a pivotal role in the detoxification of terpinen-4-ol, which provides support for using TcCYP9Z6 a potential gene for the RNAi-mediated prevention and control of T. castaneum.
Collapse
Affiliation(s)
- Shanshan Gao
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Kui Liu
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Hui Liu
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Se Yin
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xinlong Guo
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Yonglei Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Kunpeng Zhang
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China.
| | - Ruimin Li
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China.
| |
Collapse
|
19
|
Rabelo MM, Santos IB, Paula-Moraes SV. Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae) Fitness and Resistance Stability to Diamide and Pyrethroid Insecticides in the United States. INSECTS 2022; 13:insects13040365. [PMID: 35447807 PMCID: PMC9030708 DOI: 10.3390/insects13040365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary Spodoptera exigua is a polyphagous pest, commonly known as beet armyworm. This pest is distributed worldwide and causes yield reduction in a variety of crops. Chemical control using synthetic insecticides is the primary strategy to manage beet armyworm. In the United States, beet armyworm resistance to both chlorantraniliprole and bifenthrin insecticides was first reported in 2020. Here we examined beet armyworm fitness and stability of resistance to chlorantraniliprole and pyrethroid insecticides, since knowledge of the stability of resistance is a crucial aspect when recommending rotation of insecticides with different mode of action. Our results have indicated no decrease in bifenthrin resistance for at least a three-year period (i.e., 27 generations) when insecticide exposure was suspended. However, susceptibility to chlorantraniliprole dropped approximately 160-fold through this three-year period. Our results indicate that beet armyworm resistance to bifenthrin is stable, but unstable to chlorantraniliprole. Unstable resistance can be successfully managed at field level by switching off the selection pressure with replacement of the insecticide other than a pyrethroid. Abstract In the United States, beet armyworm resistance to both chlorantraniliprole and bifenthrin insecticides was first reported in 2020. Here we examined beet armyworm fitness and stability of resistance to chlorantraniliprole and pyrethroid insecticides since knowledge of the stability of resistance is a crucial aspect when recommending rotation of insecticides with different mode of action. Concentration-mortality bioassays were performed with field and laboratory susceptible populations. The F2, F13, and F27 generations of the field-derived population, maintained in the laboratory without insecticide, were exposed to commercial formulations of bifenthrin and chlorantraniliprole using the leaf-dip bioassay method (IRAC n. 007). Insects from F27 had the fitness components (survival, body weight, development time) documented and compared by LSM in each insecticide concentration tested. The resistance ratio to chlorantraniliprole reached 629, 80, 15-fold at F2, F13, and F27, respectively. These results contrast with an over 1000-fold resistance ratio to bifenthrin in all generations. The field-derived population had fitness reduced by chlorantraniliprole, but not by bifenthrin. In summary, the resistance of beet armyworm to bifenthrin was stable with no shift in fitness. In contrast, resistance to chlorantraniliprole was not stable through the generations kept in the laboratory without selection pressure, likely due to fitness cost.
Collapse
|
20
|
Wang Y, Zhang YC, Zhang KX, Jia ZQ, Tang T, Zheng LL, Liu D, Zhao CQ. Neuroligin 3 from common cutworm enhances the GABA-induced current of recombinant SlRDL1 channel. PEST MANAGEMENT SCIENCE 2022; 78:603-611. [PMID: 34619015 DOI: 10.1002/ps.6669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Neuroligin (NLG) protein is a nerve cell adhesion molecule and plays a key role in the precision apposition of presynaptic domains on inhibitory and excitatory synapses. Existing studies mainly focused on the function of NLG3 against the excitatory channel. However, the interaction between insect NLG3 and ionotropic GABA receptor, which is the main inhibitory channel, remains unclear. In this study, the Nlg3 of common cutworm (CCW), Spodoptera litura Fabricius, one important agricultural Lepidopteron, is selected to explore its function in the inhibitory channel. RESULTS The SlNlg3 was obtained and the SlNLG3 contains the characteristic features including transmembrane domain, PDZ-binding motif and type-B carboxylesterases signature 2 motif. The SlNlg3 messenger RNA (mRNA) was most abundant in midgut, and exhibited multiple expression patterns in different developmental stages and tissues or body parts. Compared with the single injection of SlRDL1, the median effective concentration value of GABA in activating currents was smaller in Xenopus laevis oocytes co-injected with SlRDL1 and SlNlg3. In addition, SlNlg3 could enhance the GABA-induced current of homomeric SlRDL1 channel from -391.86 ± 15.41 to -2152.51 ± 30.09 nA. DsSlNlg3 depressed the expression level of SlNlg3 mRNA more than 64.29% at 6 h. After exposure to median lethal dose of fluralaner, the mortality of CCW injected with dsSlNlg3 was significantly decreased by 13.34% and 30.00% at 24 and 48 h, respectively, compared to injection of dsEGFP. CONCLUSION NLG3 should have physiological function on ionotropic GABA receptor in vitro, which provided a favorable foundation for further research on the physiological function of Nlg gene in Lepidopteron. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yi-Chi Zhang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ke-Xin Zhang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhong-Qiang Jia
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Tao Tang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lin-Lin Zheng
- College of Plant Protection, Wuxi Branch Company of Chongqing Company of China National Tobacco Corporation, Wuxi, China
| | - Di Liu
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chun-Qing Zhao
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Katsavou E, Riga M, Ioannidis P, King R, Zimmer CT, Vontas J. Functionally characterized arthropod pest and pollinator cytochrome P450s associated with xenobiotic metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105005. [PMID: 35082029 DOI: 10.1016/j.pestbp.2021.105005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The cytochrome P450 family (P450s) of arthropods includes diverse enzymes involved in endogenous essential physiological functions and in the oxidative metabolism of xenobiotics, insecticides and plant allelochemicals. P450s can also establish insecticide selectivity in bees and pollinators. Several arthropod P450s, distributed in different phylogenetic groups, have been associated with xenobiotic metabolism, and some of them have been functionally characterized, using different in vitro and in vivo systems. The purpose of this review is to summarize scientific publications on arthropod P450s from major insect and mite agricultural pests, pollinators and Papilio sp, which have been functionally characterized and shown to metabolize xenobiotics and/or their role (direct or indirect) in pesticide toxicity or resistance has been functionally validated. The phylogenetic relationships among these P450s, the functional systems employed for their characterization and their xenobiotic catalytic properties are presented, in a systematic approach, including critical aspects and limitations. The potential of the primary P450-based metabolic pathway of target and non-target organisms for the development of highly selective insecticides and resistance-breaking formulations may help to improve the efficiency and sustainability of pest control.
Collapse
Affiliation(s)
- Evangelia Katsavou
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Maria Riga
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Christoph T Zimmer
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - John Vontas
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
22
|
Hafeez M, Li X, Chen L, Ullah F, Huang J, Zhang Z, Zhang J, Siddiqui JA, Zhou SX, Ren XY, Imran M, Assiri MA, Lou Y, Lu Y. Molecular characterization and functional analysis of cytochrome P450-mediated detoxification CYP302A1 gene involved in host plant adaptation in Spodoptera frugieprda. FRONTIERS IN PLANT SCIENCE 2022; 13:1079442. [PMID: 36762173 PMCID: PMC9906809 DOI: 10.3389/fpls.2022.1079442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/30/2022] [Indexed: 05/13/2023]
Abstract
The fall armyworm (FAW) Spodoptera frugiperda is a destructive and polyphagous pest of many essential food crops including maize and rice. The FAW is hard to manage, control, or eradicate, due to its polyphagous nature and voracity of feeding. Here, we report the characterization and functional analysis of the detoxification gene CYP302A1 and how S. frugieprda larvae use a detoxification mechanism to adapt host plants. Results demonstrated that CYP302A1 expression levels were much higher in midgut tissue and the older S. frugiperda larvae. Our current studies revealed the enhanced P450 activity in the midguts of S. frugiperda larvae after exposure to rice plants as compared to corn plants and an artificial diet. Furthermore, higher mortality was observed in PBO treated larvae followed by the exposure of rice plants as compared to the corn plant. The dsRNA-fed larvae showed downregulation of CYP302A1 gene in the midgut. At the same time, higher mortality, reduced larval weight and shorter developmental time was observed in the dsRNA-fed larvae followed by the exposure of rice plant as compared to the corn plant and DEPC-water treated plants as a control. These results concluded that the inducible P450 enzyme system and related genes could provide herbivores with an ecological opportunity to adapt to diverse host plants by utilizing secondary compounds present in their host plants.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Limin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Integrated Plant Protection Center, Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jun Huang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
| | - Shu-xing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiao-yun Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Yonggen Lou, ; Yaobin Lu,
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Yonggen Lou, ; Yaobin Lu,
| |
Collapse
|
23
|
Hafeez M, Ullah F, Khan MM, Li X, Zhang Z, Shah S, Imran M, Assiri MA, Fernández-Grandon GM, Desneux N, Rehman M, Fahad S, Lu Y. Metabolic-based insecticide resistance mechanism and ecofriendly approaches for controlling of beet armyworm Spodoptera exigua: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1746-1762. [PMID: 34709552 DOI: 10.1007/s11356-021-16974-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The beet army worm, Spodoptera exigua, is a widely distributed polyphagous pest of economically important crops worldwide. The management of this pest insect continues to face many challenges. Despite synthetic chemicals posing a serious threat to the environment, these remain the conventional approach for controlling S. exigua in the field. An over-reliance on chemical control has not only led to selection for resistance to insecticides and to a reduction of natural enemies, but has also polluted various components of ecosystem. Given these increasing pressures on the ecosystem, there is a need to implement integrated pest management (IPM) approaches exploiting a wider range of tools (biotechnological approaches, microbial control, biological control, cultural control, and use of host plant resistance) for an alternative to chemical control. The IPM approach can not only reduce the hazard of chemical residues in the environment and associated health problems, but may also provide best strategies to control insect pests. This review synthesizes published information on insecticide resistance of S. exigua and explores alternative IPM approaches to control S. exigua.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangdong Province, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Sakhawat Shah
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Hubei, People's Republic of China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | | | - Nicolas Desneux
- UMR ISA, Université Côte d'Azur, INRAE, CNRS, 06000, Nice, France
| | - Muzammal Rehman
- School of Agriculture, Yunnan University, Kunming, 650504, Yunnan, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China.
- Department of Agronomy, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan.
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
| |
Collapse
|
24
|
Hou WT, Staehelin C, Elzaki MEA, Hafeez M, Luo YS, Wang RL. Functional analysis of CYP6AE68, a cytochrome P450 gene associated with indoxacarb resistance in Spodoptera litura (Lepidoptera: Noctuidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104946. [PMID: 34446184 DOI: 10.1016/j.pestbp.2021.104946] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Spodoptera litura (Fabricius) is a widely distributed, highly polyphagous pest that can cause severe damage to a variety of economically important crops. Various populations have developed resistance to different classes of insecticides. In this study, we report on two indoxacarb-resistant S. litura populations, namely Ind-R (resistance ratio = 18.37-fold) derived from an indoxacarb-susceptible (Ind-S) population and a population caught from a field (resistance ratio = 46.72-fold). A synergist experiment showed that piperonyl butoxide (PBO) combined with indoxacarb produced higher synergistic effects (synergist ratio = 5.29) in the Ind-R population as compared to Ind-S (synergist ratio = 3.08). Elevated enzyme activity of cytochrome P450 monooxygenases (P450s) was observed for Ind-R (2.15-fold) and the Field-caught population (4.03-fold) as compared to Ind-S, while only minor differences were noticed in the activities of esterases and glutathione S-transferases. Furthermore, expression levels of P450 genes of S. litura were determined by quantitative reverse transcription PCR to explore differences among the three populations. The results showed that the mRNA levels of CYP6AE68, a novel P450 gene belonging to the CYP6 family, were constitutively overexpressed in Ind-R (32.79-fold) and in the Field-caught population (68.11-fold). CYP6AE68 expression in S. litura was further analyzed for different developmental stages and in different tissues. Finally, we report that RNA interference-mediated silencing of CYP6AE68 increased the mortality of fourth-instar larvae exposed to indoxacarb at the LC50 dose level (increase by 33.89%, 29.44% and 22.78% for Ind-S, Ind-R and the Field-caught population, respectively). In conclusion, the findings of this study indicate that expression levels of CYP6AE68 in S. litura larvae are associated with indoxacarb resistance and that CYP6AE68 may play a significant role in detoxification of indoxacarb.
Collapse
Affiliation(s)
- Wen-Tao Hou
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, China
| | | | - Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yu-Sen Luo
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Rui-Long Wang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
25
|
Resistance in the Genus Spodoptera: Key Insect Detoxification Genes. INSECTS 2021; 12:insects12060544. [PMID: 34208014 PMCID: PMC8230579 DOI: 10.3390/insects12060544] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022]
Abstract
The genus Spodoptera (Lepidoptera: Noctuidae) includes species that are among the most important crop pests in the world. These polyphagous species are able to feed on many plants, including corn, rice and cotton. In addition to their ability to adapt to toxic compounds produced by plants, they have developed resistance to the chemical insecticides used for their control. One of the main mechanisms developed by insects to become resistant involves detoxification enzymes. In this review, we illustrate some examples of the role of major families of detoxification enzymes such as cytochromes P450, carboxyl/cholinesterases, glutathione S-transferases (GST) and transporters such as ATP-binding cassette (ABC) transporters in insecticide resistance. We compare available data for four species, Spodoptera exigua, S. frugiperda, S. littoralis and S. litura. Molecular mechanisms underlying the involvement of these genes in resistance will be described, including the duplication of the CYP9A cluster, over-expression of GST epsilon or point mutations in acetylcholinesterase and ABCC2. This review is not intended to be exhaustive but to highlight the key roles of certain genes.
Collapse
|
26
|
Kariyanna B, Prabhuraj A, Asokan R, Ramkumar G, Venkatesan T, Gracy RG, Mohan M. Genome mining and functional analysis of cytochrome P450 genes involved in insecticide resistance in Leucinodes orbonalis (Lepidoptera: Crambidae). Biotechnol Appl Biochem 2020; 68:971-982. [PMID: 32744379 DOI: 10.1002/bab.1997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/14/2020] [Indexed: 11/06/2022]
Abstract
Genome-wide analysis of cytochrome P450 monooxygenase (CYP) genes from the advanced genome project of the Leucinodes orbonalis and the expression analysis provided significant information about the metabolism-mediated insecticide resistance. A total of 72 putative CYP genes were identified from the genome and transcriptome of L. orbonalis. The genes were classified under 30 families and 46 subfamilies based on the standard nomenclature. In the present study, a novel CYP gene, CYP324F1, was identified and it has not been reported from any other living system so far. Biochemical assays showed enhanced titers (5.81-18.5-fold) of O-demethylase of CYP in five field-collected populations. We selected 34 homologous CYP gene sequences, seemed to be involved in insecticide resistance for primer design and quantitative real-time PCR studies. Among the many overexpressed genes (>10 fold), the expression levels of CYP324F1 and CYP306A1 were prominent across all the field populations as compared with the susceptible iso-female line. Oral delivery of ds-CYP324F1 and ds-CYP306A1 directed against CYP324F1 and CYP306A1 to the larvae of one of the insecticide resistance populations caused reduced expression of these two transcripts in a dose-dependent manner (53.4%-85.0%). It appears that the increased titer of O-demethylase is the result of increased transcription level of CYP genes in resistant populations. The data provide insight for identifying the novel resistance management strategies against L. orbonalis.
Collapse
Affiliation(s)
- Bheeranna Kariyanna
- University of Agricultural Sciences, Raichur, Karnataka, India.,ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, Karnataka, India
| | | | - Ramasamy Asokan
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | | | | | - Ramasamy G Gracy
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, Karnataka, India
| | - Muthugounder Mohan
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, Karnataka, India
| |
Collapse
|
27
|
Wang Y, Huang X, Chang BH, Zhang Z. Growth Performance and Enzymatic Response of the Grasshopper, Calliptamus abbreviatus (Orthoptera: Acrididae), to Six Plant-Derived Compounds. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5851654. [PMID: 32501501 PMCID: PMC7273521 DOI: 10.1093/jisesa/ieaa049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Plant-derived compounds are sources of biopesticides for the control of insect pests. We compared the growth performance and enzymatic response of the grasshopper Calliptamus abbreviatus Ikonn to six plant-derived compounds (rutin, quercetin, nicotine, matrine, azadirachtin, and rotenone) in laboratory and field trials. When exposed to the six compounds, C. abbreviatus had significantly reduced growth and survival. All the compounds significantly induced an elevated level of reactive oxygen species, indicating oxidative damage. The activity of detoxifying enzymes, including cytochrome P450s, carboxylesterase, glutathione-S-transferase, and UDP-glucuronosyltransferase, and the antioxidant enzymes, including superoxide dismutase, catalase, and peroxidase, all significantly increased after exposure to the six compounds. These data suggest that the six plant-derived compounds had negative effects on C. abbreviatus. Of the six compounds, matrine, azadirachtin, and rotenone were more toxic to C. abbreviatus, followed by nicotine, quercetin, and rutin. These results show the potential of these compounds as botanical pesticides, which can be applied for the biological control of the grasshopper C. abbreviatus.
Collapse
Affiliation(s)
- Yueyue Wang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, P.R. China
| | - Xunbing Huang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, P.R. China
| | - Babar Hussain Chang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, P.R. China
- Department of Entomology, Sindh Agriculture University, Tando Jam, Pakistan
| | - Zehua Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, P.R. China
| |
Collapse
|
28
|
Hafeez M, Qasim M, Ali S, Yousaf HK, Waqas M, Ali E, Ahmad MA, Jan S, Bashir MA, Noman A, Wang M, Gharmh HA, Khan KA. Expression and functional analysis of P450 gene induced tolerance/resistance to lambda-cyhalothrin in quercetin fed larvae of beet armyworm Spodoptera exigua (Hübner). Saudi J Biol Sci 2020; 27:77-87. [PMID: 31889821 PMCID: PMC6933212 DOI: 10.1016/j.sjbs.2019.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/04/2022] Open
Abstract
Beet armyworm, Spodoptera exigua (Hübner) is an agronomical important and most devastating polyphagous pest that damages a variety of crops around the globe including China. Quercetin is one of the abundant dietary flavonoids and the important defense allelochemicals in plants. Therefore, the changes in insect detoxification enzymes activities in response to plants allelochemicals may result increased the sensitivity to insecticides. In this study, we examined the induced effect of quercetin on larval tolerance to lambda-cyhalothrin in S. exigua. Application of cytochrome P450 inhibitor piperonyl butoxide (PBO) significantly synergized the lambda-cyhalothrin toxicity in quercetin-fed S. exigua larvae. Moreover, larval weight significantly reduced in quercetin, lambda-cyhalothrin, and quercetin + lambda-cyhalothrin treatment. Furthermore, our results showed that the P450 detoxification enzyme effectively increased in all treatments as compared to the control. Quantitative Real-time PCR analysis revealed that expression level of CYP6AE10 significantly upregulated in larvae treated with quercetin, lambda-cyhalothrin and quercetin + lambda-cyhalothrin in the midgut and fat body respectively. In addition, RNAi mediated knockdown of CYP6AE10 in S. exigua larvae significantly decreased the transcription level of target cytochrome P450 gene followed by the exposure with quercetin, lambda-cyhalothrin, and quercetin + lambda-cyhalothrin. Similarly, the knockdown of CYP6AE10 by the injection of dsRNA led to increased mortality after the treatment with respective chemicals. Overall, these data showed that P450s might possibly play an important role in the metabolic adaptation of S. exigua larvae to its host plant defense allelochemicals as well as insecticides. In conclusion, S. exigua can take benefit from its host plant's secondary metabolites to elaborate its defense against synthetic insecticides.
Collapse
Affiliation(s)
- Muhammad Hafeez
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei 430070, PR China
| | - Muhammad Qasim
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Sajjad Ali
- Department of Botany, Bacha Khan University, Charsadda 24630, Pakistan
| | - Hafiz Kamran Yousaf
- College of Plant Protection Department of Entomology, China Agriculture University, Beijing 100193, China
| | - Muhammad Waqas
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei 430070, PR China
| | - Ehsan Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei 430070, PR China
| | - Muhammad Afaq Ahmad
- College of Plant Health and Medicine, Qingdao Agricultural University, China
| | - Saad Jan
- Department of Agriculture Entomology Section, Bacha Khan University, Charsadda 24630, Pakistan
| | - Muhammad Amjad Bashir
- Department of Plant Protection, Faculty of Agriculture Sciences, Ghazi University, Dera Ghazi Khan 32200, Punjab, Pakistan
| | - Ali Noman
- Department of Botany Government College University, Faisalabad 38040, Pakistan
| | - Mo Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei 430070, PR China
| | - Hamed A. Gharmh
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
29
|
Ullah F, Gul H, Wang X, Ding Q, Said F, Gao X, Desneux N, Song D. RNAi-Mediated Knockdown of Chitin Synthase 1 ( CHS1) Gene Causes Mortality and Decreased Longevity and Fecundity in Aphis gossypii. INSECTS 2019; 11:insects11010022. [PMID: 31888020 PMCID: PMC7023125 DOI: 10.3390/insects11010022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022]
Abstract
Chitin is a vital part of the insect exoskeleton and peritrophic membrane, synthesized by chitin synthase (CHS) enzymes. Chitin synthase 1 (CHS1) is a crucial enzyme in the final step of chitin biosynthetic pathway and consequently plays essential role towards insect growth and molting. RNA interference (RNAi) is an agent that could be used as an extremely target-specific and ecologically innocuous tactic to control different insect pests associated with economically important crops. The sole purpose of the current study is to use CHS1 as the key target gene against the cotton-melon aphid, Aphis gossypii, via oral feeding on artificial diets mixed with dsRNA-CHS1. Results revealed that the expression level of CHS1 gene significantly decreased after the oral delivery of dsRNA-CHS1. The knockdown of CHS1 gene caused up to 43%, 47%, and 59% mortality in third-instar nymph after feeding of dsCHS1 for 24, 48, and 72 h, respectively, as compared to the control. Consistent with this, significantly lower longevity (approximately 38%) and fecundity (approximately 48%) were also found in adult stage of cotton-melon aphids that were fed with dsCHS1 for 72 h at nymphal stage. The qRT-PCR analysis of gene expression demonstrated that the increased mortality rates and lowered longevity and fecundity of A. gossypii were attributed to the downregulation of CHS1 gene via oral-delivery-mediated RNAi. The results of current study confirm that CHS1 could be an appropriate candidate target gene for the RNAi-based control of cotton-melon aphids.
Collapse
Affiliation(s)
- Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Hina Gul
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Xiu Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Qian Ding
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Fazal Said
- Department of Agriculture, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Nicolas Desneux
- Université Côte d’Azur, INRA, CNRS, UMR ISA, 06000 Nice, France;
| | - Dunlun Song
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
- Correspondence:
| |
Collapse
|
30
|
Dar MI, Green ID, Khan FA. Trace metal contamination: Transfer and fate in food chains of terrestrial invertebrates. FOOD WEBS 2019. [DOI: 10.1016/j.fooweb.2019.e00116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Knock-Down of Gossypol-Inducing Cytochrome P450 Genes Reduced Deltamethrin Sensitivity in Spodoptera exigua (Hübner). Int J Mol Sci 2019; 20:ijms20092248. [PMID: 31067723 PMCID: PMC6539524 DOI: 10.3390/ijms20092248] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 12/02/2022] Open
Abstract
Plants employ an intricate and dynamic defense system that includes physiological, biochemical, and molecular mechanisms to counteract the effects of herbivorous attacks. In addition to their tolerance to phytotoxins, beet armyworm has quickly developed resistance to deltamethrin; a widely used pyrethroid insecticide in cotton fields. The lethal concentration (LC50) required to kill 50% of the population of deltamethrin to gossypol-fed Spodoptera exigua larvae was 2.34-fold higher than the control group, suggesting a reduced sensitivity as a consequence of the gossypol diet. Piperonyl butoxide (PBO) treatment was found to synergize with deltamethrin in gossypol-fed S. exigua larvae. To counteract these defensive plant secondary metabolites, beet armyworm elevates their production of detoxification enzymes, including cytochrome P450 monooxygenases (P450s). Gossypol-fed beet armyworm larvae showed higher 7-ethoxycoumarin-O-deethylase (ECOD) activities and exhibited enhanced tolerance to deltamethrin after 48 and 72 h when compared to the control. Moreover, gossypol pretreated S. exigua larvae showed faster weight gain than the control group after transferring to a deltamethrin-supplemented diet. Meanwhile, gossypol-induced P450s exhibited high divergence in the expression level of two P450 genes: CYP6AB14 and CYP9A98 in the midgut and fat bodies contributed to beet armyworm tolerance to deltamethrin. Knocking down of CYP6AB14 and CYP9A98, via double-stranded RNAs (dsRNA) in a controlled diet, rendered the larvae more sensitive to the insecticide. These data demonstrate that generalist insects can exploit secondary metabolites from host plants to enhance their defense systems against other toxic chemicals. Impairing this defense pathway by RNA interference (RNAi) holds a potential to eliminate the pest’s tolerance to insecticides and, therefore, reduce the required dosages of agrochemicals in pest control.
Collapse
|